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Abstract. In this paper we address the problem of decoding 2D convolutional

codes over an erasure channel. To this end we introduce the notion of neighbors
around a set of erasures which can be considered an analogue of the notion of

sliding window in the context of 1D convolutional codes. The main idea is

to reduce the decoding problem of 2D convolutional codes to a problem of
decoding a set of associated 1D convolutional codes. We first show how to

recover sets of erasures that are distributed on vertical, horizontal and diagonal

lines. Finally we outline some ideas to treat any set of erasures distributed
randomly on the 2D plane.

1. Introduction

It is well-known that when transmitting over an erasure channel the symbols
sent either arrive correctly or they are erased. In recent years, there has been an
increased interest in the study of one-dimensional (1D) convolutional codes over
an erasure channel [2, 14, 15, 16] as a possible alternative for the widely use of
block codes. Due to their rich structure 1D convolutional codes have an interesting
property called sliding window property that allows adaptation of the correction
process to the distribution of the erasure pattern. In the recent paper [16] it has
been shown how it is possible to exploit this property in order to recover erasures
which are uncorrectable by any other kind of (block) codes. The codes proposed
were codes over large alphabets with strong distance properties, called Maximum
Distance Profile (MDP), reverse-MDP and complete-MDP codes. Simulation results
showed that these codes perform extremely efficiently when compared to Maximum
Distance Separable (MDS) block codes.
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In the context of 1D convolutional codes the received codeword is viewed as a
finite sequence v = (v0, v1, . . . , v`) and the sliding window is constructed by selecting
a subsequence of v, (vi, . . . , vi+N ), where i,N ∈ N depend on the erasure pattern.
Once the appropriate window is fixed, the decoding is performed within that window
as if it were a block code. In the context of two-dimensional (2D) convolutional codes
[3, 4, 8, 12, 13, 17] the information is distributed in two dimensions and therefore
there is not an obvious way to extend the idea of sliding window to the 2D case.

In this work our main goal is to present a procedure for the decoding of 2D
convolutional codes over an erasure channel.

The main idea is similar to the one used for 1D convolutional codes, namely, we
provide a systematic procedure to group the received information in appropriate
ways so that the decoding can be split into simpler tasks. More concretely, when
receiving a set of erasures in the 2D plane, a number of associated 1D convolutional
codes are considered in order to recursively recover parts of the erasure.

To this end, we introduce the notion of neighbors around an erasure and show
that within these neighbors the information can be regarded as codewords of an
associated 1D convolutional code. This reduces the problem of decoding 2D convo-
lutional codes over an erasure channel to a problem of decoding 1D convolutional
codes over the same channel.

This article is organized as follows. In Section 2 we recall the notation and some
required concepts of 1D and 2D convolutional codes. In Section 3 we address the
problem of decoding sets of erasures that are distributed along horizontal, vertical
and diagonal lines. An algorithm for the general case is discussed in Section 4. We
conclude the paper with some conclusions in Section 5.

2. 1D and 2D convolutional codes

In this section we recall the basic background on 1D and 2D (finite support)
convolutional codes.

Denote by F[z1, z2] the ring of polynomials in the two variables z1 and z2, with
coefficients in the finite field F.

Definition 1 ([5]). A 2D finite support convolutional code C of rate k/n is a free
F[z1, z2]-submodule of F[z1, z2]n with rank k.

A full column rank polynomial matrix Ĝ(z1, z2) ∈ F[z1, z2]n×k whose columns
constitute a basis for C, i.e., such that

C = ImF[z1,z2] Ĝ(z1, z2)

=
{
v̂(z1, z2) ∈ F[z1, z2]n | v̂(z1, z2) = Ĝ(z1, z2)û(z1, z2) with û(z1, z2) ∈ F[z1, z2]k

}
,

is called an encoder of C. The elements of C are called codewords.

Note that the definition given in [5] deals with 2D finite support convolutional
codes defined on Z× Z instead of N× N.

If the code C admits a right factor prime encoder [4, 6, 8, 17], then it can be

equivalently described using an (n− k)× n full rank polynomial matrix Ĥ(z1, z2),
called parity-check matrix of C, as

C = KerF[z1,z2] Ĥ(z1, z2) =
{
v̂(z1, z2) ∈ F[z1, z2]n | Ĥ(z1, z2)v̂(z1, z2) = 0

}
.
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We denote by N0 the set of nonnegative integers, and use the ordering in N2
0

given by

(a, b) ≺ (c, d) if and only if a+ b < c+ d, or a+ b = c+ d and b < d.

For a polynomial vector v̂(z1, z2) ∈ F[z1, z2]n, we write

v̂(z1, z2) = v(0, 0) + v(1, 0)z1 + v(0, 1)z2 + · · ·+ v(γ, 0)zγ1 + · · ·+ v(0, γ)zγ2

=
∑

0≤a+b≤γ

v(a, b)za1z
b
2,(1)

(with v(a, b) ∈ Fn and γ ≥ 0) and we define its support as the set

supp(v̂(z1, z2)) = {(a, b) ∈ N2
0 | v(a, b) 6= 0}.

The weight of v̂(z1, z2) is defined as

wt (v̂(z1, z2)) =
∑

(a,b)∈N2
0

wt (v(a, b)) =
∑

(a,b)∈supp(v̂(z1,z2))

wt (v(a, b))

where wt (v(a, b)) is the Hamming weight of v(a, b) (i.e., the number of nonzero
entries of v(a, b)) and the distance of a code is

dist (C) = min {wt (v̂(z1, z2)) | v̂(z1, z2) ∈ C, with v̂(z1, z2) 6= 0} .

Moreover, we represent a polynomial matrix Ĥ(z1, z2) as

Ĥ(z1, z2) = H(0, 0) +H(1, 0)z1 +H(0, 1)z2 + · · ·+H(δ, 0)zδ1 + · · ·+H(0, δ)zδ2

=
∑

0≤i+j≤δ

H(i, j)zi1z
j
2,(2)

with H(i, j) ∈ F(n−k)×n and where H(a, b) 6= 0 for some (a, b) with a + b = δ. We

call δ the degree of Ĥ(z1, z2).
Using expressions (1) and (2), we can expand the kernel representation

Ĥ(z1, z2)v̂(z1, z2) = 0

as ∑
0≤a+b≤γ+δ

 ∑
0≤i+j≤δ

H(i, j)v(a− i, b− j)

 za1zb2 = 0

(where v(l, k) = 0 if l + k > γ + δ or l + k < 0) or equivalently, using constant
matrices as

(3) Hv = 0

where

v =
[
v(0, 0)> v(1, 0)> v(0, 1)> v(2, 0)> v(1, 1)> · · · v(0, γ)>

]> ∈ F
(γ+1)(γ+2)

2 n

and
H ∈ F

(γ+δ+1)(γ+δ+2)
2 (n−k)× (γ+1)(γ+2)

2 n.

In Figure 1 we illustrate H and v for δ = 3, where 0 denotes the (n− k)×n zero
matrix. To understand the structure of matrix H, note that for t = 0, 1, 2, . . . in

the columns corresponding to the block indices t(t+1)
2 +1, t(t+1)

2 +2, . . . , t(t+1)
2 +t+1

appear all the coefficient matrices H(i, j) of Ĥ(z1, z2) ordered according to ≺ with
the particularity that the matrices H(i, j), with i+ j = d, for d = 0, 1, 2, . . . , δ − 1,
are separated from the matrices H(i, j), with i+ j = d+ 1, by t zero blocks.

We will refer to v(i, j) ∈ Fn as coefficients of v̂(z1, z2) or v.
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Figure 1. Matrix H and vector v, for δ = 3

Example 1. Let C = KerF[z1,z2] Ĥ(z1, z2) with δ = 2 the degree of Ĥ(z1, z2) ∈
F(n−k)×n. Suppose that

v̂(z1, z2) =
∑

0≤a+b≤10

v(a, b)za1z
b
2 ∈ C

is a transmitted codeword. Then, equation (3) holds with H ∈ F91(n−k)×66n and

v =
[
v(0, 0)> v(1, 0)> v(0, 1)> v(2, 0)> · · · v(0, 10)>

]> ∈ F66n.

In the context of 1D convolutional codes it is easy to see that the analogous set
of homogeneous equations of expression (3) is

(4)



H0

...
. . .

Hα · · · H0

. . .
...

. . .

Hα · · · H0

. . .
...
Hα




v0

v1

...
vγ

 = 0,

where C = KerF[z] Ĥ(z) with Ĥ(z) = H0 +H1z+ · · ·+Hαz
α, for α > 0 and Hα 6= 0.

An important distance measure of 1D convolutional codes is their `th column
distances dc(`), given by the expression
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dc(`) = min
{

wt(v̂[0,`](z)) | v̂(z) ∈ C and v0 6= 0
}

= min
{

wt(v̂) | v̂ =
[
v>0 · · · v>`

]> ∈ KerF[z]H
c
` ⊂ F(`+1)n, v0 6= 0

}
where v̂[0,`](z) = v0 +v1z+ · · ·+v`z

` represents the `-th truncation of the codeword
v̂(z) ∈ C and Hc

` , called the sliding parity-check matrix, is defined as

(5) Hc
` =


H0

H1 H0

...
...

. . .

H` H`−1 · · · H0

 ∈ F(`+1)(n−k)×(`+1)n,

where H` = 0 for ` > α. From these notions the next simple result readily follows.

Lemma 1. If a 1D convolutional code C has column distance dc(`) ≥ d then none
of the first n columns of Hc

` is contained in the span of any other d− 2 columns.

In 1D case every coefficient vi of the received polynomial v̂(z) = v0 + v1z +
· · · + vγz

γ depends on the previous α coefficients vi−1, vi−2, . . . , vi−α. In order
to find the values of a set of erasures occurring in v̂(z) or equivalently in v =[
v>0 v>1 · · · v>γ

]>
, we can make use of the so-called sliding window, that is, we can

select a suitable interval v in order to decode within that window (see [16]). Hence,
the received information sequence can be handled in many suitable ways, depending
on the distribution of the set of erasures. For instance if the number of erasures
is too large to be treated directly, one can split it into smaller blocks and start to
decode the easiest blocks first. This flexibility in grouping the information allows
1D convolutional codes to correct more erasures than a block code of the same
length could do.

In the 2D case the codewords are distributed over the 2D plane and there is not
an obvious extension of the notion of sliding window. In this paper we propose
a systematic procedure to group the 2D information in such a way that what we
obtain can be treated as 1D codewords. This simplifies the decoding problem as
the treatment of 1D convolutional codes is simpler and decoding algorithms have
been implemented (see [16]).

Given a 2D convolutional code C = KerF[z1,z2] Ĥ(z1, z2) with δ the degree of

Ĥ(z1, z2), two coefficients of v̂(z1, z2) ∈ C, say v(a, b) and v(i, j), are “mutually
related” if (a, b) and (i, j) are in an equilateral triangle with side length δ, i.e.,
there exists (r, s) such that

(a, b), (i, j) ∈ ∆r,s = {(r − u, s− t) | 0 ≤ u+ t ≤ δ}.

Note that the coefficients v(i, j) with (i, j) ∈ ∆r,s satisfy a block of (n− k) homo-
geneous equations. This is made clear by the following example.

Example 2. For δ = 3, the coefficient v(4, 4) depends on the coefficients v(i, j) such
that (i, j) lies, for example, in the two triangles ∆4,4 and ∆6,4 given by Figure 2,
which correspond to the block of n− k equations

H(0, 0)v(4, 4) +H(1, 0)v(3, 4) +H(0, 1)v(4, 3)+
H(2, 0)v(2, 4) +H(1, 1)v(3, 3) +H(0, 2)v(4, 2)+
H(3, 0)v(1, 4) +H(2, 1)v(2, 3) +H(1, 2)v(3, 2) +H(0, 3)v(4, 1) = 0
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184 Joan-Josep Climent, Diego Napp, Raquel Pinto and Rita Simões

1 2 3 4 5

1

2

3

4

5
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(b) ∆6,4

Figure 2. Triangles ∆4,4 and ∆4,6

and

H(0, 0)v(6, 4) +H(1, 0)v(5, 4) +H(0, 1)v(6, 3)+
H(2, 0)v(4, 4) +H(1, 1)v(5, 3) +H(0, 2)v(6, 2)+
H(3, 0)v(3, 4) +H(2, 1)v(4, 3) +H(1, 2)v(5, 2) +H(0, 3)v(6, 1) = 0.

For each pair (a, b) there exist (δ+1)(δ+2)
2 triangles ∆r,s such that (a, b) ∈ ∆r,s.

All these triangles define the hexagon

{(i, j) | a− δ ≤ i ≤ a+ δ, b− δ ≤ j ≤ b+ δ, a+ b− δ ≤ i+ j ≤ a+ b+ δ}.

Therefore, a coefficient v(a, b) appears in (δ+1)(δ+2)
2 block of n − k equations of

(3) and we say that the coefficient v(a, b) influences all the coefficients v(i, j) such
that (i, j) lies in this hexagon.

Example 3. For δ = 3, the coefficient v(4, 4) of v influences all the coefficients
v(i, j) such that (i, j) lies in the hexagon of Figure 3. This corresponds to the
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7

Figure 3. Hexagon

equations given by H̃ ṽ = 0 where matrix H̃ and vector ṽ are given in Figure 4. It

is important to note that H̃ and ṽ are submatrices of H and v (see equation (3)),

respectively. Moreover, the set of equations H̃ ṽ = 0 appears in Hv = 0.

Suppose now that the vector v̂(z1, z2) is transmitted through an erasure channel.
Each one of the components of v is either received correctly or is considered erasure.
Denote by E(v̂(z1, z2)) and Ē(v̂(z1, z2)) the sets of indices in which there are erasures
and there are not erasures, respectively, i.e.,

E(v̂(z1, z2)) = {(a, b) ∈ supp(v̂(z1, z2)) | there is an erasure in v(a, b)} ,
Ē(v̂(z1, z2)) = supp(v̂(z1, z2)) \ E(v̂(z1, z2)).

Advances in Mathematics of Communications Volume 10, No. 1 (2016), 179–193



Decoding of 2D convolutional codes over an erasure channel 185

H(0, 2)

0

0

0

0

0

H(1, 1)

0

0

0

0

0

H(2, 0)

0

0

0

0

0

0

H(0, 2)

0

0

0

0

H(0, 1)

H(1, 1)

0

H(0, 2)

0

0

H(1, 0)

H(2, 0)

0

H(1, 1)

0

0

0

0

0

H(2, 0)

0

0

0

0

H(0, 2)

0

0

0

0

H(0, 1)

H(1, 1)

0

0

H(0, 2)

H(0, 0)

H(1, 0)

H(2, 0)

H(0, 1)

H(0, 2)

H(1, 1)

0

0

0

H(1, 0)

H(1, 1)

H(2, 0)

0

0

0

0

H(2, 0)

0

0

0

H(0, 1)

0

0

0

0

H(0, 0)

H(1, 0)

0

0

H(0, 1)

0

0

0

H(0, 0)

H(0, 1)

H(1, 0)

0

0

0

0

H(1, 0)

0

0

0

H(0, 0)

0

0

0

0

0

0

0

0

H(0, 0)

0

0

0

0

H(0, 0)

0

(a) H̃

v(4, 2)

v(3, 3)

v(2, 4)

v(5, 2)

v(4, 3)

v(3, 4)

v(2, 5)

v(6, 2)

v(5, 3)

v(4, 4)

v(3, 5)

v(2, 6)

v(6, 3)

v(5, 4)

v(4, 5)

v(3, 6)

v(6, 4)

v(5, 5)

v(4, 6)

(b)
ṽ

Figure 4. Matrix H̃ and vector ṽ

If no confusion arises we use E and Ē for E(v̂(z1, z2)) and Ē(v̂(z1, z2)), respec-
tively.

One can select the columns of the matrix in (3) which correspond to the co-
efficients v(i, j) that contain an erasure in order to construct a new system of
equations where the erasures are the variables to be determined. More concretely,
denote by HE and HĒ the submatrices of H whose block columns are indexed by
E and Ē , respectively and vE and vĒ accordingly, so that we can write expression
(3) as HEvE + HĒvĒ = 0. Note that as the channel is an erasure channel, vĒ , and
therefore HĒvĒ , is known. Hence, we obtain a system of linear nonhomogeneous
equations

(6) HEvE = −HĒvĒ ,

where the components of the vector vE that are erased are considered the unknowns
to be determined. Thus, in order to decode vE one needs to solve system (6).

The next lemma is straightforward and shows the importance of the distance of
a code when transmitting over an erasure channel.

Lemma 2. Let C = KerF[z1,z2] Ĥ(z1, z2) be given. The following are equivalent:

(i) dist (C) ≥ d.
(ii) Any d− 1 erasures can be recovered.

(iii) Any d− 1 columns of H are linearly independent.
(iv) Any d− 1 columns of HE are linearly independent, for any E.

It follows from Lemma 2 that in order to construct 2D convolutional codes with
good error-correcting capabilities one needs to construct a matrix H having d lin-
early independent columns such that d is as large as possible. However, trying to
decode directly using the matrix H is computationally very expensive due to its
large size (even for small parameters n, k, δ, γ) and moreover the construction of H
with the properties of Lemma 2 seems extremely difficult. In this paper we propose
a solution to overcome such a problem by considering special submatrices of H.
These matrices appear in the context of 1D convolutional codes and their existence
and construction has been extensively investigated [1, 7, 9, 10, 11, 14, 15].
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3. Decoding set of erasures on lines

In this section we present a notion that can be considered analogous to the notion
of sliding window, called neighbor around a set of erasures. This will allow us to
present a solution for the decoding problem of 2D convolutional codes by decoding
a set of associated 1D convolutional codes.

3.1. Horizontal lines. Let us first suppose that the set of erasures described by
E(v̂(z1, z2)) contains a subset Eh of indices whose support lies on a horizontal line
of length t+ 1 , i.e.,

(7) Eh ⊂ {(r, s), (r + 1, s), . . . , (r + t, s)} ⊂ E(v̂(z1, z2)).

Hence, equation (3) can be divided as

(8) HEhvEh = −HĒhvĒh ,

where HEh and HĒh are submatrices of H whose block columns are indexed by Eh
and Ēh = supp(v̂(z1, z2))\Eh, respectively, and vEh and vĒh are defined accordingly.

Note that Eh might be strictly contained in E and so the vector vĒh may contain
erasures as well.

Definition 2. Let Eh be given by (7). We define δ + 1 different neighbors around
Eh as

Ωj,δ
(
Eh
)

= {(a, b) | r − δ ≤ a ≤ r + t+ δ − j, s− δ + j ≤ b ≤ s+ j,

a+ b ≥ r + s− δ + j, r ≥ δ, s ≥ δ}

for j = 0, 1, 2, . . . , δ.

The next example will help to understand this concept.

Example 4. Consider the set of erasures when (r, s) = (3, 6) and t = 4 then

Eh = {(3, 6), (4, 6), (5, 6), (6, 6), (7, 6)},

and, for δ = 3, Figure 5 shows the neighbors Ω0,3

(
Eh
)

and Ω2,3

(
Eh
)
.

1 2 3 4 5 6 7 8 9 1011

1

2

3

4

5

6

7

8

9

(a) Ω0,3

(
Eh
) 1 2 3 4 5 6 7 8 9 1011

1

2

3

4

5

6

7

8

9

(b) Ω2,3

(
Eh
)

Figure 5. Neighbors Ω0,3

(
Eh
)

and Ω2,3

(
Eh
)

The neighbors introduced in Definition 2 define a set of indices (i, j) such that
the corresponding coefficients v(i, j) of v̂(z1, z2) have the particularity that they
alone satisfy a set of equations with the structure that appears in the context of 1D
convolutional codes. This is elaborated in the next result.
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Lemma 3. Let C = KerF[z1,z2] Ĥ(z1, z2) with δ the degree of Ĥ(z1, z2). Suppose
that v̂(z1, z2) ∈ C is a transmitted codeword, E is the support of its coefficients with
erasures and Eh ⊂ E is the support of the coefficients with erasures distributed on a
horizontal line in N2

0, with cardinality t+ 1. Consider H and v as in (3), HEh and
vEh as in (8) and define a vector vΩj by selecting the coefficients v(c, d) of v with

(c, d) ∈ Ωj,δ
(
Eh
)
\ Eh. Define HΩj a submatrix of H, accordingly. Then it holds

that, for j = 0, 1, . . . , δ,

(9) Hj
EhvEh = HΩjvΩj

where
(10)

Hj
Eh =



H(0, j)
H(1, j) H(0, j)
H(2, j) H(1, j) H(0, j)

.

.

.
.
.
.

.

.

.
. . .

H(δ − j, j) H(δ − j − 1, j) H(δ − j − 2, j)
H(δ − j, j) H(δ − j − 1, j) · · · · · · H(0, j)

. . .
. . .

. . .

. . . · · · H(0, j)

. . .
.
.
.

H(δ − j, j) H(δ − j − 1, j)
H(δ − j, j)


,

is a (n− k)(t+ 1 + δ − j)× n(t+ 1) submatrix of HEh .

Proof. Let us first consider the case j = 0. As explained before each v(r, s) in-
fluences the vectors v(i, j) with (i, j) contained in the hexagon centered in (r, s).
Moreover, each triangle ∆a,b, with (r, s) ∈ ∆a,b is associated to one block of (n−k)
equations that involve v(i, j) with (i, j) ∈ ∆a,b (see Example 2).

Consider the block of (n− k) equations corresponding to the triangle ∆r,s where
(r, s) is the first index of Eh, namely,

H(0, 0)v(r, s) +H(1, 0)v(r − 1, s) + · · ·+H(0, δ)v(r, s− δ) = 0,

or equivalently, separating the coefficients v(c, d) with (c, d) ∈ Eh and v(c, d) with
(c, d) ∈ Ωj,δ

(
Eh
)
\ Eh

H(0, 0)v(r, s) = −H(1, 0)v(r − 1, s)− · · · −H(0, δ)v(r, s− δ).
Then [H(0, 0) 0 · · · 0] and [−H(1, 0) −H(0, 1) · · · −H(0, δ)] constitute the first
(n−k) rows of H0

Eh and HΩ0
, respectively, and [v(r−1, s)> v(r, s−1)> · · · v(r, s−

δ)>]> the first coefficients of vΩ0
. Considering next the equations associated to the

triangle ∆r+1,s we obtain in the same way the second (n− k) block of equations of
(9), namely,

H(1, 0)v(r, s) +H(0, 0)v(r + 1, s) +H(0, 1)v(r + 1, s− 1)+

+H(1, 1)v(r, s− 1) + · · ·+H(0, δ)v(r + 1, s− δ) = 0,

or equivalently separating the coefficients v(c, d) with (c, d) ∈ Eh and v(c, d) with
(c, d) ∈ Ωj,δ

(
Eh
)
\ Eh

H(1, 0)v(r, s) +H(0, 0)v(r + 1, s) = −H(0, 1)v(r + 1, s− 1)−
−H(1, 1)v(r, s− 1)− · · · −H(0, δ)v(r + 1, s− δ).

We proceed in the same way t+1+δ−j = t+1+δ times to complete the system of
equations of (9) for j = 0. Same reasoning applies for the cases j = 1, 2, . . . , δ.
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Given a 2D convolutional code C = KerF[z1,z2] Ĥ(z1, z2) with δ the degree of

Ĥ(z1, z2), we can define, for each j = 0, 1, . . . , δ, a 1D convolutional code

(11) Cj = KerF[z] Ĥ
(j)(z)

where Ĥ(j)(z) = H(0, j) +H(1, j)z + · · ·+H(δ − j, j)zδ−j , with column distances
dcj(`), ` ≥ 0.

It follows from Lemma 3 that we associate to Eh a set of (δ+1) 1D convolutional
codes Cj that correspond to the δ + 1 neighbors Ωj,δ

(
Eh
)
.

The following lemma states that if a neighbor only contains the erasures on the
horizontal line then HΩjvΩj can be computed, as the vector vΩj does not contain
erasures and therefore we obtain a system of equations (as in (9)) having as inde-
terminates the erasures corresponding to Eh, i.e., the erasures in vEh . Furthermore,
solving such a system amounts to decoding the associated 1D convolutional code
Cj .

Lemma 4. Let C = KerF[z1,z2] Ĥ(z1, z2) with δ the degree of Ĥ(z1, z2). Suppose

that v̂(z1, z2) ∈ C is a transmitted codeword and let Eh ⊂ E be given.
Let J be the set of indices j such that Ωj,δ

(
Eh
)

contains only indices in Eh (and

not in E \ Eh), i.e.,

E ∩ Ωj,δ
(
Eh
)

= Eh.
Then for each j0 ∈ J there exists a subsystem of (9) such that

(12) Hj0
EhvEh = aj0

where aj0 = HΩj0
vΩj0

is known and Hj0
Eh is as in (10). Moreover, consider the 1D

convolutional code Cj0 with column distances dcj0(`), ` ≥ 0. If there exists `0 such
that at most dcj0(`0)− 1 erasures occur in any (`0 + 1)n consecutive components of
vEh , then we can completely recover the vector vEh .

Proof. The first claim is obvious from Lemma 3. For the second part let ṽEh ∈
F(`0+1)n be the first (`0 + 1)n components of vEh . Hence, the first (`0 + 1)(n − k)
equations of (12) can be written as

(13) H̃j0
Eh ṽEh = ãj0

where ãj0 is the column vector formed by the first (`0 + 1)(n − k) components of
aj0 and

(14) H̃j0
Eh =


H(0, j0)
H(1, j0) H(0, j0)

...
...

. . .

H(`0, j0) H(`0 − 1, j0) · · · H(0, j0)


with H(`0, j0) = 0 for `0 > δ − j0.

By assumption there are e ≤ dcj0(`0) − 1 erasures in ṽEh . Take the columns of

the matrix H̃j0
Eh that correspond to the positions of the e erasures to form a matrix˜̃

H
j0

Eh and construct a matrix Ĥj0
Eh with the remaining columns of H̃j0

Eh . Define ˜̃vEh
and v̂Eh , accordingly to obtain the nonhomogeneous system˜̃

H
j0

Eh
˜̃vEh = −Ĥj0

Eh v̂Eh + ãj0

with the vector ˜̃vEh ∈ Fe to be determined.
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By Lemma 1 the columns of
˜̃
H
j0

Eh are linearly independent and therefore the

system has a unique solution. In this way we recover the vector ˜̃vEh . If we cut
off the first (`0 + 1)n components of vEh that have already been decoded one can
proceed in an analogous way to decode the next (`0 + 1)n components. In such a
way we completely recover the vector vEh . This concludes the proof.

Remark 1. The condition that Ωj,δ
(
Eh
)

contains only indices in Eh can be con-
sidered analogous to the condition of having some guard space in the 1D context.
It is well-known that in order to decode a 1D convolutional code it is necessary to
have some guard space, see [16, Remark 3.7] for more details.

Lemma 4 can be optimized by considering the best column distance among the
set of (δ + 1) 1D convolutional codes Cj as follows:

dcmax(`) = max
j ∈ {0, 1, . . . , δ} ∩ J

dcj(`),

with J being as in Lemma 4.

Theorem 1. Let C = KerF[z1,z2] Ĥ(z1, z2) with δ the degree of Ĥ(z1, z2). Suppose

that v̂(z1, z2) ∈ C is a transmitted codeword and let Eh ⊂ E be given.
If there exists an `, say `0, such that in any consecutive (`0 + 1)n elements of

vEh at most dcmax(`0)− 1 erasures occur, then we can fully recover vEh .

Proof. The proof follows the same steps as the proof of Lemma 4 with j0 = j`0
where dcj`0

(`0) = dcmax(`0).

We finish this subsection with an algorithm to recover horizontal erasures.
Assume v̂(z1, z2) ∈ C is transmitted over an erasure channel. If the condition

of Theorem 1 is satisfied then a constructive algorithm can be developed in order
to recover the codeword v̂(z1, z2). Next we outline the main ideas of an algorithm
based on the proof of Lemma 4, where |A| denotes the cardinality of a set A ⊂ N2

0:

Data: v̂(z1, z2) the received sequence and the erasures Eh ⊂ E .
Result: the corrected vector vEh .

Let `0 be as in Theorem 1, j`0 such that dcj`0
(`0) = dcmax(`0) and H̃

j`0
Eh as in

(14).
while

∣∣Eh∣∣ > 0 do
Take ṽEh the first min

{
(`0 + 1)n,

∣∣Eh∣∣n} components of vEh ;
Compute ãj`0 = HΩj`0

vΩj`0
as in Lemmas 3 and 4 and take its first

min
{

(`0 + 1)n,
∣∣Eh∣∣n} components to estimate ṽEh by solving equation

(13);

Store ṽEh and take out the first min
{

(`0 + 1),
∣∣Eh∣∣} indices of Eh;

end
Algorithm 1: How to recover a set of horizontal erasures

3.2. Vertical lines. In this subsection we treat in an analogous way sets of era-
sures whose support lies in a vertical line.

Let us first suppose that the set of erasures described by E(v̂(z1, z2)) contains a
subset Ev of indices whose support lies on a vertical line of length t+ 1, i.e.,

(15) Ev ⊂ {(r, s), (r, s+ 1), . . . , (r, s+ t)} ⊂ E .
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Definition 3. Let Ev be given by (15). We define δ+ 1 different neighbors around
Ev as

Ωj,δ (Ev) = {(a, b) | r − δ + j ≤ a ≤ r + j, s− δ ≤ b ≤ s+ t+ δ − j,
a+ b ≥ r + s− δ + j, r ≥ δ, s ≥ δ}

for j = 0, 1, 2, . . . , δ.

Example 5. Consider the set of erasures when (r, s) = (4, 3) and t = 4 then

Ev = {(4, 3), (4, 4), (4, 5), (4, 6), (4, 7)},

and, for δ = 3, Figure 6 shows the neighbors Ω0,3 (Ev) and Ω3,3 (Ev).

1 2 3 4 5 6 7 8
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3

4

5

6

7

8

9

10

11

(a) Ω0,3 (Ev)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

(b) Ω3,3 (Ev)

Figure 6. Neighbors Ω0,3 (Ev) and Ω3,3 (Ev)

All the results of Subsection 3.1 can be rewritten replacing Eh by Ev and Hj
Eh

by

H
j
Ev =



H(j, 0)
H(j, 1) H(j, 0)
H(j, 2) H(j, 1) H(j, 0)

.

.

.
.
.
.

.

.

.
. . .

H(j, δ − j) H(j, δ − j − 1) H(j, δ − j − 2)
H(j, δ − j) H(j, δ − j − 1) · · · · · · H(j, 0)

. . .
. . .

. . .

. . . · · · H(j, 0)

. . .
.
.
.

H(j, δ − j) H(j, δ − j − 1)
H(j, δ − j)



.

3.3. Diagonal lines. Analogously, we can study how to recover erasures whose
support is distributed in a diagonal line in N2

0.
Hence, let us now suppose that the set of erasures of v̂(z1, z2) contains a set of

components with erasures whose support lies in a diagonal of length t+ 1, i.e.,

(16) Ed ⊂ {(r + t, s), (r + t− 1, s+ 1), . . . , (r, s+ t)} ⊂ E .
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Definition 4. Let Ed be given by (16). We define δ+ 1 different neighbors around
Ed as

Ωj,δ
(
Ed
)

= {(a, b) | a ≤ r + j, b ≤ s+ t+ j, r ≥ δ, s ≥ δ,
r + s+ j − δ ≤ a+ b ≤ r + s+ j}

for j = 0, 1, 2, . . . , δ.

Example 6. Consider the set of erasures when (r, s) = (8, 5) and t = 4 then

Ed = {(8, 5), (7, 6), (6, 7), (5, 8), (4, 9)},
and, for δ = 3, Figure 7 shows the neighbors Ω0,3

(
Ed
)

and Ω1,3

(
Ed
)
.
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(a) Ω0,3

(
Ed
) 1 2 3 4 5 6 7 8 9 10
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4

5

6

7

8

9

10

(b) Ω1,3

(
Ed
)

Figure 7. Neighbors Ω0,3

(
Ed
)

and Ω1,3

(
Ed
)

As in the Subsection 3.2, all the results of Subsection 3.1 can be rewritten re-
placing Eh by Ed and Hj

Eh by

Hj

Ed =



H(j, 0)
H(j − 1, 1) H(j, 0)
H(j − 2, 2) H(j − 1, 1) H(j, 0)

...
...

...
. . .

H(0, j) H(1, j − 1) H(2, j − 2)
H(0, j) H(1, j − 1) · · · · · · H(j, 0)

. . .
. . .

. . .

. . . · · · H(j, 0)

. . .
...

H(0, j) H(1, j − 1)
H(0, j)



.

4. General algorithm

An obvious algorithm to treat a general erasure pattern E can be derived by
considering the different Eh, Ev and Ed and applying the corresponding algorithms
for horizontal, vertical and diagonal lines sequentially. Note that these three dif-
ferent algorithms are intertwined. Hence it can happen that when the decoding of
the horizontal erasures is no longer possible, we can apply the decoding of vertical
erasures to decode erasures that may then help to decode horizontal erasures in a
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second round. Only when the three algorithms can no longer decode, the general
algorithm declares that it cannot decode any further.

It was shown in [16] that there exist 1D convolutional codes, called (reverse and
complete) MDP, that have the maximum possible column distances (for a given
set of parameters) and therefore perform particularly well over an erasure channel.
Hence, another interesting simplified version of a general decoding algorithm for a

2D convolutional code C = KerF[z1,z2] Ĥ(z1, z2) can be implemented by considering

only two 1D convolutional codes Ch = KerF[z] Ĥ
h(z) and Cv = KerF[z] Ĥ

v(z) that

correspond to the neighbors Ω0,δ

(
Eh
)

and Ω0,δ (Ev), respectively. Note that these
neighbors contain indices that are to the left of and bellow the vertical and horizontal
erasures, respectively. Hence, this algorithm recovers the erasures “on the left to
right” and “from below to above” and requires having correct information in the left

and below the erasure. Finally construct Ĥv(z) = Ĥh(z) in such a way that Ch = Cv
are MDP 1D convolutional codes (see [1, 16] for details on concrete constructions)

and define Ĥ(z1, z2) with Ĥ(z, 0) = Ĥ(0, z) = Ĥh(z).

5. Conclusions

In this paper we have proposed a method to recover erasures in a 2D (finite sup-
port) convolutional code that are distributed in the 2D plane. We have shown that
by considering neighbors around 2D erasures it is possible to treat these erasures
as if they were erasures of 1D convolutional codes. Therefore techniques used for
the decoding problem of 1D convolutional codes can be applied in the 2D context,
thus simplifying the decoding of 2D convolutional codes.

Although this procedure does not solve all the possible erasure patterns it repre-
sents the first constructive procedure to deal with general erasures in 2D convolu-
tional codes. This work raises an obvious but challenging follow-up question: how
to design 2D convolutional codes so that the associated 1D convolutional codes have
large column distances? This problem appears to be highly nontrivial and will be
a topic of future research.
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