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Abstract We introduce the concept of fractional derivative of Riemann–Liouville on time scales.

Fundamental properties of the new operator are proved, as well as an existence and uniqueness

result for a fractional initial value problem on an arbitrary time scale.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
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1. Introduction

Let T be a time scale, that is, a nonempty closed subset of R.
We consider the following initial value problem:

T
t0
Da

t yðtÞ¼ fðt;yðtÞÞ; t2 ½t0;t0þa� ¼J #T; 0< a< 1; ð1Þ

T
t0
I1�a
t yðt0Þ ¼ 0; ð2Þ
where t0
TDa

t is the (left) Riemann–Liouville fractional

derivative operator or order a defined on T; t0
TI1�a

t the (left)

Riemann–Liouville fractional integral operator or order
1� a defined on T, and function f : J � T ! R is a right-

dense continuous function. Our main results give necessary
and sufficient conditions for the existence and uniqueness of
solution to problem (1)–(2).

2. Preliminaries

In this section, we collect notations, definitions, and results,

which are needed in the sequel. We use CðJ ;RÞ for a
Banach space of continuous functions y with the norm
kyk1 ¼ sup jyðtÞj : t 2 Jf g, where J is an interval. A time

scale T is an arbitrary nonempty closed subset of R. The reader
interested on the calculus on time scales is referred to the

books (Bohner and Peterson, 2001, 2003). For a survey,
see (Agarwal et al., 2002). Any time scale T is a complete
metric space with the distance dðt; sÞ ¼ jt� sj; t; s 2 T.
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Consequently, according to the well-known theory of general
metric spaces, we have for T the fundamental concepts such
as open balls (intervals), neighborhoods of points, open sets,

closed sets, compact sets, etc. In particular, for a given number
d > 0, the d-neighborhood UdðtÞ of a given point t 2 T is the
set of all points s 2 T such that dðt; sÞ < d. We also have, for

functions f : T ! R, the concepts of limit, continuity, and
the properties of continuous functions on a general complete
metric space. Roughly speaking, the calculus on time scales

begins by introducing and investigating the concept of deriva-
tive for functions f : T ! R. In the definition of derivative, an
important role is played by the so-called jump operators
(Bohner and Peterson, 2003).

Definition 1. Let T be a time scale. For t 2 T we define the
forward jump operator r : T ! T by rðtÞ :¼ inffs2T : s> tg,
and the backward jump operator q :T!T by

qðtÞ :¼ supfs2T : s< tg.

Remark 2. In Definition 1, we put inf£ ¼ supT (i.e.,
rðMÞ ¼ M if T has a maximum M) and sup£ ¼ infT (i.e.,
qðmÞ ¼ m if T has a minimum m), where £ denotes the empty

set.

If rðtÞ > t, then we say that t is right-scattered; if qðtÞ < t,

then t is said to be left-scattered. Points that are simultane-
ously right-scattered and left-scattered are called isolated. If
t < supT and rðtÞ ¼ t, then t is called right-dense; if

t > infT and qðtÞ ¼ t, then t is called left-dense. The graininess
function l : T ! ½0;1Þ is defined by lðtÞ :¼ rðtÞ � t.

The derivative makes use of the set Tj, which is derived

from the time scale T as follows: if T has a left-scattered
maximum M, then Tj :¼ T n fMg; otherwise, Tj :¼ T.

Definition 3 (Delta derivative (Agarwal and Bohner, 1999)).
Assume f : T ! R and let t 2 Tj. We define

f DðtÞ :¼ lim
s!t

fðrðsÞÞ � fðtÞ
rðsÞ � t

; t–rðsÞ;

provided the limit exists. We call f DðtÞ the delta derivative (or

Hilger derivative) of f at t. Moreover, we say that f is delta dif-

ferentiable on Tj provided f DðtÞ exists for all t 2 Tj. The func-

tion f D : Tj ! R is then called the (delta) derivative of f on Tj.

Definition 4. A function f : T ! R is called rd-continuous
provided it is continuous at right-dense points in T and its
left-sided limits exist (finite) at left-dense points in T. The set

of rd-continuous functions f : T ! R is denoted by Crd.
Similarly, a function f : T ! R is called ld-continuous
provided it is continuous at left-dense points in T and its

right-sided limits exist (finite) at right-dense points in T. The
set of ld-continuous functions f : T ! R is denoted by Cld.

Definition 5. Let ½a; b� denote a closed bounded interval in T.
A function F : ½a; b� ! R is called a delta antiderivative of

function f : ½a; bÞ ! R provided F is continuous on ½a; b�, delta
differentiable on ½a; bÞ, and F DðtÞ ¼ fðtÞ for all t 2 ½a; bÞ. Then,
we define the D-integral of f from a to b byZ b

a

fðtÞDt :¼ FðbÞ � FðaÞ:
Proposition 6. (See Ahmadkhanlu and Jahanshahi (2012))

Suppose T is a time scale and f is an increasing continuous func-
tion on the time-scale interval ½a; b�. If F is the extension of f to
the real interval ½a; b� given by

FðsÞ :¼ fðsÞ if s 2 T;

fðtÞ if s 2 ðt; rðtÞÞ R T;

�

thenZ b

a

fðtÞDt 6
Z b

a

FðtÞdt:

We also make use of the classical gamma and beta
functions.

Definition 7 (Gamma function). For complex numbers with a
positive real part, the gamma function CðtÞ is defined by the
following convergent improper integral:

CðtÞ :¼
Z 1

0

xt�1e�xdx:

Definition 8 (Beta function). The beta function, also called the
Euler integral of the first kind, is the special function Bðx; yÞ
defined by

Bðx; yÞ :¼
Z 1

0

tx�1ð1� tÞy�1
dt; x > 0; y > 0:

Remark 9. The gamma function satisfies the following useful
property: Cðtþ 1Þ ¼ tCðtÞ. The beta function can be expressed

through the gamma function by Bðx; yÞ ¼ CðxÞCðyÞ
CðxþyÞ .
3. Main results

We introduce a new notion of fractional derivative on time

scales. Before that, we define the fractional integral on a time
scale T. This is in contrast with (Benkhettou et al., 2015, in
press-a, 2016), where first a notion of fractional differentiation

on time scales is introduced and only after that, with the help
of such a concept, the fraction integral is defined.

Definition 10. (Fractional integral on time scales) Suppose T is
a time scale, ½a; b� is an interval of T, and h is an integrable

function on ½a; b�. Let 0 < a < 1. Then the (left) fractional
integral of order a of h is defined by

T
a I

a
t hðtÞ :¼

Z t

a

ðt� sÞa�1

CðaÞ hðsÞDs;

where C is the gamma function.

Definition 11. (Riemann–Liouville fractional derivative on
time scales) Let T be a time scale, t 2 T; 0 < a < 1, and
h : T ! R. The (left) Riemann–Liouville fractional derivative

of order a of h is defined by

T
a D

a
t hðtÞ :¼

1

Cð1� aÞ
Z t

a

ðt� sÞ�a
hðsÞDs

� �D

: ð3Þ
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Remark 12. If T ¼ R, then Definition 11 gives the classical

(left) Riemann–Liouville fractional derivative (Podlubny,
1999). For different extensions of the fractional derivative to
time scales, using the Caputo approach instead of the

Riemann–Liouville, see (Ahmadkhanlu and Jahanshahi,
2012; Bastos et al., 2011). For local approaches to fractional
calculus on time scales we refer the reader to (Benkhettou
et al., 2015, in press-a, 2016). Here we are only considering left

operators. The corresponding right operators are easily
obtained by changing the limits of integration in Definitions
10 and 11 from a to t (left of t) into t to b (right of t), as done

in the classical fractional calculus (Podlubny, 1999). Here we
restrict ourselves to the delta approach to time scales.
Analogous definitions are, however, trivially obtained for the

nabla approach to time scales by using the duality theory of
(Caputo and Torres, 2015).

Along the work, we consider the order a of the fractional
derivatives in the real interval ð0; 1Þ. We can, however, easily
generalize our definition of fractional derivative to any positive

real a. Indeed, let a 2 Rþ nN. Then there exists b 2 ð0; 1Þ such
that a ¼ bac þ b, where bac is the integer part of a, and we can

set

T
a D

a
t h :¼ T

a D
b
t h

Dbac
:

Fractional operators of negative order are defined as follows.

Definition 13. If �1 < a < 0, then the (Riemann–Liouville)
fractional derivative of order a is the fractional integral of
order �a, that is,

T
a D

a
t :¼ T

a I
�a
t :

Definition 14. If �1 < a < 0, then the fractional integral of
order a is the fractional derivative of order �a, that is,

T
a I

a
t :¼ T

a D
�a
t :
3.1. Properties of the time-scale fractional operators

In this section we prove some fundamental properties of the
fractional operators on time scales.

Proposition 15. Let T be a time scale with derivative D, and
0 < a < 1. Then,

T
a D

a
t ¼ D � T

a I
1�a
t :

Proof. Let h : T ! R. From (3) we have

T
a D

a
t hðtÞ ¼ 1

Cð1�aÞ
R t

a
ðt� sÞ�a

hðsÞDs� �D
¼ T

a I
1�a
t hðtÞ� �D ¼ D � T

a I
1�a
t

� �
hðtÞ:

The proof is complete. h

Proposition 16. For any function h integrable on ½a; b�, the

Riemann–Liouville D-fractional integral satisfies T
a I

a
t � T

a I
b
t ¼

T
a I

aþb
t for a > 0 and b > 0.
Proof. By definition,

a
TIat � a

TIbt
� �ðhðtÞÞ ¼ a

TIat a
TIbt ðhðtÞÞ

� �
¼ 1

CðaÞ
R t

a
ðt� sÞa�1

a
TIbt ðhðsÞÞ

� �
Ds

¼ 1
CðaÞ

R t

a
ðt� sÞa�1 1

CðbÞ
R s

a
ðs� uÞb�1

hðuÞDu
� �

Ds

¼ 1
CðaÞCðbÞ

R t

a

R s

a
ðt� sÞa�1ðs� uÞb�1

hðuÞDuDs
¼ 1

CðaÞCðbÞ
R t

a

R s

a
ðt� sÞa�1ðs� uÞb�1

hðuÞDu
h

þ R t

s
ðt� sÞa�1ðs� uÞb�1

hðuÞDu
i
Ds

¼ 1
CðaÞCðbÞ

R t

a

R t

a
ðt� sÞa�1ðs� uÞb�1

hðuÞDu
h i

Ds:

From Fubini’s theorem, we interchange the order of integra-
tion to obtain

a
TIat � a

TIbt
� �ðhðtÞÞ¼ 1

CðaÞCðbÞ
R t

a

R t

a
ðt� sÞa�1ðs�uÞb�1

hðuÞDs
h i

Du

¼ 1
CðaÞCðbÞ

R t

a

R t

a
ðt� sÞa�1ðs�uÞb�1Ds

h i
hðuÞDu

¼ 1
CðaÞCðbÞ

R t

a

R t

u
ðt� sÞa�1ðs�uÞb�1Ds

h i
hðuÞDu:

By setting s ¼ uþ rðt� uÞ; r 2 R, we obtain that

T
a I

a
t �T

a I
b
t

� �ðhðtÞÞ
¼ 1

CðaÞCðbÞ
R t

a

R 1

0
ð1� rÞa�1ðt�uÞa�1

rb�1ðt�uÞb�1ðt�uÞdr
h i

hðuÞDu
¼ 1

CðaÞCðbÞ
R 1

0
ð1� rÞa�1

rb�1dr
R t

a
ðt�uÞaþb�1

hðuÞDu
¼ Bða;bÞ

CðaÞCðbÞ
R t

a
ðt�uÞaþb�1

hðuÞDu¼ 1
CðaþbÞ

R t

a
ðt�uÞaþb�1

hðuÞDu
¼T

a I
aþb
t hðtÞ:

The proof is complete. h

Proposition 17. For any function h integrable on ½a; b� one has
T
a D

a
t � T

a I
a
t h ¼ h.

Proof. By Propositions 15 and 16, we have

T
a D

a
t � T

a I
a
t hðtÞ ¼ T

a I
1�a
t

T
a I

a
t ðhðtÞÞ

� �	 
D ¼ T
a IthðtÞ
	 
D ¼ hðtÞ:

The proof is complete. h

Corollary 18. For 0 < a < 1, we have T
a D

a
t � T

a D
�a
t ¼ Id and

T
a I

�a
t � T

a I
a
t ¼ Id, where Id denotes the identity operator.

Proof. From Definition 14 and Proposition 17, we have that
T
a D

a
t � T

a D
�a
t ¼ T

a D
a
t � T

a I
a
t ¼ Id; from Definition 13 and

Proposition 17, we have that T
a I

�a
t � T

a I
a
t ¼ T

a D
a
t � T

a I
a
t ¼ Id. h

Definition 19. For a > 0, let a
TIat ð½a; b�Þ denote the space of

functions that can be represented by the Riemann–Liouville
D integral of order a of some Cð½a; b�Þ-function.

Theorem 20. Let f 2 Cð½a; b�Þ and a > 0. In order that

f 2 T
a I

a
t ð½a; b�Þ, it is necessary and sufficient that

T
a I

1�a
t f 2 C1ð½a; b�Þ ð4Þ

and

T
a I

1�a
t fðtÞ� ���

t¼a
¼ 0: ð5Þ
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Proof. Assume f 2 T
a I

a
t ð½a; b�Þ; fðtÞ ¼ T

a I
a
t gðtÞ for some

g 2 Cð½a; b�Þ, and
T
a I

1�a
t ðfðtÞÞ ¼ T

a I
1�a
t

T
a I

a
t gðtÞ

� �
:

From Proposition 16, we have

T
a I

1�a
t ðfðtÞÞ ¼ T

a ItgðtÞ ¼
Z t

a

gðsÞDs:

Therefore, T
a I

1�a
t f 2 Cð½a; b�Þ and

T
a I

1�a
t fðtÞ� ���

t¼a
¼

Z t

a

gðsÞDs ¼ 0:

Conversely, assume that f 2 Cð½a; b�Þ satisfies (4) and (5). Then,

by Taylor’s formula applied to function T
a I

1�a
t f, one has

T
a I

1�a
t fðtÞ ¼

Z t

a

D
Ds

T
a I

1�a
s fðsÞDs; 8t 2 ½a; b�:

Let uðtÞ :¼ D
Dt

T
a I

1�a
t fðtÞ. Note that u 2 Cð½a; b�Þ by (4). Now, by

Proposition 16, we have

T
a I

1�a
t ðfðtÞÞ ¼ T

a I
1
tuðtÞ ¼ T

a I
1�a
t

T
a I

a
t ðuðtÞÞ

	 

and thus

T
a I

1�a
t ðfðtÞÞ � T

a I
1�a
t

T
a I

a
t ðuðtÞÞ

	 
 � 0:

Then,

T
a I

1�a
t f� T

a I
a
t ðuðtÞÞ

	 
 � 0:

From the uniqueness of solution to Abel’s integral equation

(Jahanshahi et al., 2015), this implies that f� T
a I

a
tu � 0.

Thus, f ¼ T
a I

a
tu and f 2 T

a I
a
t ½a; b�. h

Theorem 21. Let a > 0 and f 2 Cð½a; b�Þ satisfy the condition in
Theorem 20. Then,

T
a I

a
t � T

a D
a
t

� �ðfÞ ¼ f:

Proof. By Theorem 20 and Proposition 16, we have:

T
a I

a
t � T

a D
a
t fðtÞ ¼ T

a I
a
t � T

a D
a
t

T
a I

a
tuðtÞ

� � ¼ T
a I

a
tuðtÞ ¼ fðtÞ:

The proof is complete. h
3.2. Existence of solutions to fractional IVPs on time scales

In this section we prove the existence of a solution to the

fractional order initial value problem (1)–(2) defined on a time
scale. For this, let T be a time scale and J ¼ ½t0; t0 þ a� � T.
Then the function y 2 CðJ ;RÞ is a solution of problem
(1)–(2) if

T
t0
Da

t yðtÞ ¼ fðt; yÞon J ;

T
t0
Iat yðt0Þ ¼ 0:

To establish this solution, we need to prove the following

lemma and theorem.

Lemma 22. Let 0 < a < 1;J #T, and f : J � R ! R.
Function y is a solution of problem (1)–(2) if and only if this
function is a solution of the following integral equation:
yðtÞ ¼ 1

CðaÞ
Z t

t0

ðt� sÞa�1
fðs; yðsÞÞDs:

Proof. By Theorem 21, T
t0
Iat � T

t0
Da

t ðyðtÞÞ
� �

¼ yðtÞ. From (3) we

have

yðtÞ ¼ 1

CðaÞ
Z t

t0

ðt� sÞa�1
fðs; yðsÞÞDs:

The proof is complete. h

Our first result is based on the Banach fixed point theorem
(Cronin, 1994).

Theorem 23. Assume J ¼ ½t0; t0 þ a�#T. The initial value
problem (1)–(2) has a unique solution on J if the function

fðt; yÞ is a right-dense continuous bounded function such that
there exists M > 0 for which jfðt; yðtÞÞj < M on J and the
Lipshitz condition

9L > 0 : 8 t 2 J and x; y 2 R; kfðt; xÞ � fðt; yÞk 6 Lkx� yk

holds.

Proof. Let S be the set of rd-continuous functions on J #T.

For y 2 S, define

kyk ¼ sup
t2J

kyðtÞk:

It is easy to see that S is a Banach space with this norm. The
subset of SðqÞ and the operator T are defined by

SðqÞ ¼ X 2 S : kXsk 6 qf g
and

TðyÞ ¼ 1

CðaÞ
Z t

t0

ðt� sÞa�1
fðs; yðsÞÞDs:

Then,

jTðyðtÞÞj 6 1

CðaÞ
Z t

t0

ðt� sÞa�1
MDs 6 M

CðaÞ
Z t

t0

ðt� sÞa�1Ds:

Since ðt� sÞa�1
is an increasing monotone function, by using

Proposition 6 we can write that

Z t

t0

ðt� sÞa�1Ds 6
Z t

t0

ðt� sÞa�1
ds:

Consequently,

TðyðtÞÞj j 6 M

CðaÞ
Z t

t0

ðt� sÞa�1
ds 6 M

CðaÞ
aa

a
¼ q:

By considering q ¼ Maa

Cðaþ1Þ, we conclude that T is an operator

from SðqÞ to SðqÞ. Moreover,

kTðxÞ � TðyÞk 6 1
CðaÞ

R t

t0
ðt� sÞa�1jfðs; xðsÞÞ � fðs; yðsÞÞjDs

6 Lkx�yk1
CðaÞ

R t

t0
ðt� sÞa�1Ds

6 Lkx�yk1
CðaÞ

R t

t0
ðt� sÞa�1

ds

6 Lkx�yk1
CðaÞ

aa

a ¼ Laa

Cðaþ1Þ kx� yk1
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for x; y 2 SðqÞ. If Laa

Cðaþ1Þ 6 1, then it is a contraction map. This

implies the existence and uniqueness of the solution to the
problem (1)–(2). h

Theorem 24. Suppose f : J � R ! R is a rd-continuous
bounded function such that there exists M > 0 with

jfðt; yÞj 6 M for all t 2 J ; y 2 R. Then problem (1)–(2) has a
solution on J .

Proof. We use Schauder’s fixed point theorem (Cronin, 1994)

to prove that T defined by (3) has a fixed point. The proof is
given in several steps. Step 1: T is continuous. Let yn be a
sequence such that yn ! y in CðJ ;RÞ. Then, for each t 2 J ,

jTðynÞðtÞ �TðyÞðtÞj
6 1

CðaÞ
R t

t0
ðt� sÞa�1

fðs; ynðsÞÞ � fðs; yðsÞÞj jDs
6 1

CðaÞ
R t

t0
ðt� sÞa�1

sup
s2J

fðs; ynðsÞÞ � fðs; yðsÞÞj jDs

6 fð�;ynð�ÞÞ�fð�;yð�ÞÞk k1
CðaÞ

R t

t0
ðt� sÞa�1Ds

6 kfð�;ynð�ÞÞ�fð�;yð�ÞÞk1
CðaÞ

R t

t0
ðt� sÞa�1

ds

6 kfð�;ynð�ÞÞ�fð�;yð�ÞÞk1
CðaÞ

aa

a

6 aa fð�;ynð�ÞÞ�fð�;yð�ÞÞk k1
Cðaþ1Þ :

Since f is a continuous function, we have

TðynÞðtÞ � TðyÞðtÞj j1 6 aa

Cðaþ 1Þ fð�; ynð�ÞÞ � fð�; yð�ÞÞk k1
! 0 as n ! 1:

Step 2: the map T sends bounded sets into bounded sets in
CðJ ;RÞ. Indeed, it is enough to show that for any q there exists
a positive constant l such that, for each

y 2 Bq ¼ fy 2 CðJ ;RÞ : kyk1 6 qg;
we have kTðyÞk1 6 l. By hypothesis, for each t 2 J we have

jTðyÞðtÞj 6 1
CðaÞ

R t

t0
ðt� sÞa�1jfðs; yðsÞÞjDs

6 M
CðaÞ

R t

t0
ðt� sÞa�1Ds

6 M
CðaÞ

R t

t0
ðt� sÞa�1

ds

6 Maa

aCðaÞ ¼ Maa

Cðaþ1Þ ¼ l:

Step 3: the map T sends bounded sets into equicontinuous
sets of CðJ ;RÞ. Let t1; t2 2 J ; t1 < t2;Bq be a bounded set of

CðJ ;RÞ as in Step 2, and y 2 Bq. Then,

jTðyÞðt2Þ �TðyÞðt1Þj
6 1

CðaÞ j
R t1
t0
ðt1� sÞa�1

fðs;yðsÞÞDs
�R t2

t0
ðt2� sÞa�1

fðs;yðsÞÞDsj
6 1

CðaÞ j
R t1
t0
ððt1� sÞa�1�ðt2� sÞa�1

þðt2� sÞa�1Þfðs;yðsÞÞDs
�R t2

t0
ðt2� sÞa�1

fðs;yðsÞÞDsj
6 M

CðaÞ
R t1
t0
ððt1� sÞa�1�ðt2� sÞa�1ÞDsþR t2

t1
ðt2� sÞa�1Ds

��� ���
6 M

CðaÞ
R t1
t0
ððt1� sÞa�1�ðt2� sÞa�1ÞdsþR t2

t1
ðt2� sÞa�1

ds
��� ���

6 M
Cðaþ1Þ ½ðt2� t1Þaþðt1� t0Þa�ðt2� t0Þa�þ M

Cðaþ1Þ ðt2� t1Þa

¼ 2M
Cðaþ1Þ ðt2� t1Þaþ M

Cðaþ1Þ ½ðt1� t0Þa�ðt2� t0Þa�:
As t1 ! t2, the right-hand side of the above inequality tends to

zero. As a consequence of Steps 1 to 3, together with the
Arzela–Ascoli theorem, we conclude that T : CðJ ;RÞ !
CðJ ;RÞ is completely continuous. Step 4: a priori bounds.

Now it remains to show that the set

X ¼ fy 2 CðJ ;RÞ : y ¼ kTðyÞ; 0 < k < 1g
is bounded. Let y 2 X. Then y ¼ kTðyÞ for some 0 < k < 1.
Thus, for each t 2 J , we have

yðtÞ ¼ k
1

CðaÞ
Z t

t0

ðt� sÞa�1
fðs; yðsÞÞDs

� 
:

We complete this step by considering the estimation in Step 2.
As a consequence of Schauder’s fixed point theorem, we con-
clude that T has a fixed point, which is solution of problem
(1)–(2). h
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