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We derive the Helmholtz theorem for nondifferentiable Hamiltonian systems in the framework of Cresson’s quantum calculus.
Precisely, we give a theorem characterizing nondifferentiable equations, admitting a Hamiltonian formulation. Moreover, in the
affirmative case, we give the associated Hamiltonian.

1. Introduction

Several types of quantum calculus are available in the lit-
erature, including Jackson’s quantum calculus [1, 2], Hahn’s
quantum calculus [3–5], the time-scale 𝑞-calculus [6, 7], the
power quantum calculus [8], and the symmetric quantum
calculus [9–11]. Cresson introduced in 2005 his quantum cal-
culus on a set of Hölder functions [12].This calculus attracted
attention due to its applications in physics and the calculus
of variations and has been further developed by several dif-
ferent authors (see [13–16] and references therein). Cresson’s
calculus of 2005 [12] presents, however, some difficulties, and
in 2011 Cresson and Greff improved it [17, 18]. Indeed, the
quantum calculus of [12] let a free parameter, which is present
in all the computations. Such parameter is certainly difficult
to interpret.The new calculus of [17, 18] bypasses the problem
by considering a quantity that is free of extra parameters and
reduces to the classical derivative for differentiable functions.
It is this new version of 2011 that we consider here, with a
brief review of it being given in Section 2. Along the text,
by Cresson’s calculus we mean this quantum version of 2011
[17, 18]. For the state of the art on the quantum calculus
of variations we refer the reader to the recent book [19].
With respect to Cresson’s approach, the quantum calculus
of variations is still in its infancy: see [13, 17, 18, 20–22]. In
[17] nondifferentiable Euler-Lagrange equations are used in

the study of PDEs. Euler-Lagrange equations for variational
functionals with Lagrangians containing multiple quantum
derivatives, depending on a parameter or containing higher-
order quantum derivatives, are studied in [20]. Variational
problems with constraints, with one and more than one
independent variable, of first and higher-order type are inves-
tigated in [21]. Recently, problems of the calculus of variations
and optimal control with time delay were considered [22].
In [18], a Noether type theorem is proved but only with
the momentum term. This result is further extended in [23]
by considering invariance transformations that also change
the time variable, thus obtaining not only the generalized
momentum term of [18] but also a new energy term. In [13],
nondifferentiable variational problems with a free terminal
point, with or without constraints, of first and higher-order
are investigated. Here, we continue to develop Cresson’s
quantum calculus in obtaining a result for Hamiltonian
systems and by considering the so-called inverse problem of
the calculus of variations.

A classical problem in analysis is the well-known Helm-
holtz’s inverse problem of the calculus of variations: find a
necessary and sufficient condition under which a (system of)
differential equation(s) can be written as an Euler-Lagrange
or a Hamiltonian equation and, in the affirmative case, find
all possible Lagrangian or Hamiltonian formulations. This
condition is usually called the Helmholtz condition. The
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Lagrangian Helmholtz problem has been studied and solved
by Douglas [24], Mayer [25], and Hirsch [26, 27].TheHamil-
tonian Helmholtz problem has been studied and solved, up
to our knowledge, by Santilli in his book [28]. Generalization
of this problem in the discrete calculus of variations frame-
work has been done in [29, 30], in the discrete Lagrangian
case. In the case of time-scale calculus, that is, a mixing
between continuous and discrete subintervals of time, see [31]
for a necessary condition for a dynamic integrodifferential
equation to be an Euler-Lagrange equation on time scales.
For the Hamiltonian case it has been done for the discrete
calculus of variations in [32] using the framework of [33]
and in [34] using a discrete embedding procedure derived
in [35]. In the case of time-scale calculus it has been done
in [36]; for the Stratonovich stochastic calculus see [37]. Here
we give the Helmholtz theorem for Hamiltonian systems
in the case of nondifferentiable Hamiltonian systems in the
framework of Cresson’s quantum calculus. By definition, the
nondifferentiable calculus extends the differentiable calculus.
Such as in the discrete, time-scale, and stochastic cases, we
recover the same conditions of existence of a Hamiltonian
structure.

The paper is organized as follows. In Section 2, we give
some generalities and notions about the nondifferentiable
calculus introduced in [17], the so-called Cresson’s quantum
calculus. In Section 3, we remind definitions and results
about classical and nondifferentiableHamiltonian systems. In
Section 4, we give a brief survey of the classical Helmholtz
Hamiltonian problem and then we prove the main result
of this paper—the nondifferentiable Hamiltonian Helmholtz
theorem. Finally, we give two applications of our results in
Section 5, and we end in Section 6 with conclusions and
future work.

2. Cresson’s Quantum Calculus

We briefly review the necessary concepts and results of the
quantum calculus [17].

2.1. Definitions. Let X𝑑 denote the set R𝑑 or C𝑑, 𝑑 ∈ N, and
let 𝐼 be an open set in R with [𝑎, 𝑏] ⊂ 𝐼, 𝑎 < 𝑏. We denote by
F(𝐼,X𝑑) the set of functions 𝑓 : 𝐼 → X𝑑 and by C0(𝐼,X𝑑)
the subset of functions ofF(𝐼,X𝑑) which are continuous.

Definition 1 (Hölderian functions [17]). Let 𝑓 ∈ C0(𝐼,R𝑑).
Let 𝑡 ∈ 𝐼. Function 𝑓 is said to be 𝛼-Hölderian, 0 < 𝛼 < 1, at
point 𝑡 if there exist positive constants 𝜖 > 0 and 𝑐 > 0 such
that |𝑡 − 𝑡

󸀠
| ⩽ 𝜖 implies ‖𝑓(𝑡) − 𝑓(𝑡

󸀠
)‖ ⩽ 𝑐|𝑡 − 𝑡

󸀠
|
𝛼 for all 𝑡󸀠 ∈ 𝐼,

where ‖ ⋅ ‖ is a norm on R𝑑.

The set of Hölderian functions of Hölder exponent 𝛼, for
some 𝛼, is denoted by 𝐻

𝛼
(𝐼,R𝑑). The quantum derivative is

defined as follows.

Definition 2 (the 𝜖-left and 𝜖-right quantum derivatives [17]).
Let 𝑓 ∈ C0(𝐼,R𝑑). For all 𝜖 > 0, the 𝜖-left and 𝜖-right

quantum derivatives of 𝑓, denoted, respectively, by 𝑑
−

𝜖
𝑓 and

𝑑
+

𝜖
𝑓, are defined by

𝑑
−

𝜖
𝑓 (𝑡) =

𝑓 (𝑡) − 𝑓 (𝑡 − 𝜖)

𝜖
,

𝑑
+

𝜖
𝑓 (𝑡) =

𝑓 (𝑡 + 𝜖) − 𝑓 (𝑡)

𝜖
.

(1)

Remark 3. The 𝜖-left and 𝜖-right quantum derivatives of a
continuous function 𝑓 correspond to the classical derivative
of the 𝜖-mean function 𝑓

𝜎

𝜖
defined by

𝑓
𝜎

𝜖
(𝑡) =

𝜎

𝜖
∫

𝑡+𝜎𝜖

𝑡

𝑓 (𝑠) 𝑑𝑠, 𝜎 = ±. (2)

The next operator generalizes the classical derivative.

Definition 4 (the 𝜖-scale derivative [17]). Let 𝑓 ∈ C0(𝐼,R𝑑).
For all 𝜖 > 0, the 𝜖-scale derivative of 𝑓, denoted by ◻𝜖𝑓/◻𝑡,
is defined by

◻𝜖𝑓

◻𝑡
=

1

2
[(𝑑
+

𝜖
𝑓 + 𝑑
−

𝜖
𝑓) + 𝑖𝜇 (𝑑

+

𝜖
𝑓 − 𝑑
−

𝜖
𝑓)] , (3)

where 𝑖 is the imaginary unit and 𝜇 ∈ {−1, 1, 0, −𝑖, 𝑖}.

Remark 5. If 𝑓 is differentiable, then one can take the limit of
the scale derivative when 𝜖 goes to zero. We then obtain the
classical derivative 𝑑𝑓/𝑑𝑡 of 𝑓.

We also need to extend the scale derivative to complex
valued functions.

Definition 6 (see [17]). Let 𝑓 ∈ C0(𝐼,C𝑑) be a continuous
complex valued function. For all 𝜖 > 0, the 𝜖-scale derivative
of 𝑓, denoted by ◻𝜖𝑓/◻𝑡, is defined by

◻𝜖𝑓

◻𝑡
=

◻𝜖Re (𝑓)
◻𝑡

+ 𝑖
◻𝜖 Im (𝑓)

◻𝑡
, (4)

where Re(𝑓) and Im(𝑓) denote the real and imaginary part
of 𝑓, respectively.

In Definition 4, the 𝜖-scale derivative depends on 𝜖,
which is a free parameter related to the smoothing order
of the function. This brings many difficulties in applications
to physics, when one is interested in particular equations
that do not depend on an extra parameter. To solve these
problems, the authors of [17] introduced a procedure to
extract information independent of 𝜖 but related with the
mean behavior of the function.

Definition 7 (see [17]). Let C0conv(𝐼 × ]0, 1],R𝑑) ⊆ C0(𝐼 × ]0,

1],R𝑑) be such that for any function𝑓 ∈ C0conv(𝐼 × ]0, 1],R𝑑)

the lim𝜖→0𝑓(𝑡, 𝜖) exists for any 𝑡 ∈ 𝐼. We denote by 𝐸 a com-
plementary space ofC0conv(𝐼 × ]0, 1],R𝑑) inC0(𝐼 × ]0, 1],R𝑑).
We define the projection map 𝜋 by

𝜋 : C
0

conv (𝐼 × ]0, 1] ,R
𝑑
) ⊕ 𝐸 󳨀→ C

0

conv (𝐼 × ]0, 1] ,R
𝑑
)

𝑓conv + 𝑓𝐸 󳨃󳨀→ 𝑓conv

(5)
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and the operator ⟨⋅⟩ by

⟨⋅⟩ : C
0
(𝐼 × ]0, 1] ,R

𝑑
) 󳨀→ C

0
(𝐼,R
𝑑
)

𝑓 󳨃󳨀→ ⟨𝑓⟩ : 𝑡 󳨃󳨀→ lim
𝜖→0

𝜋 (𝑓) (𝑡, 𝜖) .

(6)

The quantum derivative of 𝑓 without the dependence of
𝜖 is introduced in [17].

Definition 8 (see [17]). The quantum derivative of 𝑓 in the
spaceC0(𝐼,R𝑑) is given by

◻𝑓

◻𝑡
= ⟨

◻𝜖𝑓

◻𝑡
⟩ . (7)

The quantum derivative (7) has some nice properties.
Namely, it satisfies a Leibniz rule and a version of the
fundamental theorem of calculus.

Theorem 9 (the quantum Leibniz rule [17]). Let 𝛼 + 𝛽 > 1.
For 𝑓 ∈ 𝐻

𝛼
(𝐼,R𝑑) and 𝑔 ∈ 𝐻

𝛽
(𝐼,R𝑑), one has

◻

◻𝑡
(𝑓 ⋅ 𝑔) (𝑡) =

◻𝑓 (𝑡)

◻𝑡
⋅ 𝑔 (𝑡) + 𝑓 (𝑡) ⋅

◻𝑔 (𝑡)

◻𝑡
. (8)

Remark 10. For 𝑓 ∈ C1(𝐼,R𝑑) and 𝑔 ∈ C1(𝐼,R𝑑), one
obtains from (8) the classical Leibniz rule: (𝑓 ⋅ 𝑔)

󸀠
= 𝑓
󸀠
⋅ 𝑔 +

𝑓 ⋅ 𝑔
󸀠.

Definition 11. We denote by C1
◻
the set of continuous func-

tions 𝑞 ∈ C0([𝑎, 𝑏],R𝑑) such that ◻𝑞/◻𝑡 ∈ C0(𝐼,R𝑑).

Theorem 12 (the quantum version of the fundamental theo-
rem of calculus [17]). Let 𝑓 ∈ C1

◻
([𝑎, 𝑏],R𝑑) be such that

lim
𝜖→0

∫

𝑏

𝑎

(
◻𝜖𝑓

◻𝑡
)

𝐸

(𝑡) 𝑑𝑡 = 0. (9)

Then,

∫

𝑏

𝑎

◻𝑓

◻𝑡
(𝑡) 𝑑𝑡 = 𝑓 (𝑏) − 𝑓 (𝑎) . (10)

2.2. Nondifferentiable Calculus of Variations. In [17] the
calculus of variations with quantum derivatives is introduced
and respective Euler-Lagrange equations derived without the
dependence of 𝜖.

Definition 13. An admissible Lagrangian 𝐿 is a continuous
function 𝐿 : R × R𝑑 × C𝑑 → C such that 𝐿(𝑡, 𝑥, V) is holo-
morphic with respect to V and differentiable with respect to
𝑥. Moreover, 𝐿(𝑡, 𝑥, V) ∈ R when V ∈ R𝑑; 𝐿(𝑡, 𝑥, V) ∈ C when
V ∈ C𝑑.

An admissible Lagrangian function 𝐿 : R×Rd
×C𝑑 → C

defines a functional onC1(𝐼,R𝑑), denoted by

L : C
1
(𝐼,R
𝑑
) 󳨀→ R

𝑞 󳨃󳨀→ ∫

𝑏

𝑎

𝐿 (𝑡, 𝑞 (𝑡) , 𝑞̇ (𝑡)) 𝑑𝑡.

(11)

Extremals of the functional L can be characterized by the
well-known Euler-Lagrange equation (see, e.g., [38]).

Theorem 14. The extremals 𝑞 ∈ C1(𝐼,R𝑑) ofL coincide with
the solutions of the Euler-Lagrange equation

𝑑

𝑑𝑡
[
𝜕𝐿

𝜕V
(𝑡, 𝑞 (𝑡) , 𝑞̇ (𝑡))] =

𝜕𝐿

𝜕𝑥
(𝑡, 𝑞 (𝑡) , 𝑞̇ (𝑡)) . (12)

The nondifferentiable embedding procedure allows us to
define a natural extension of the classical Euler-Lagrange
equation in the nondifferentiable context.

Definition 15 (see [17]). The nondifferentiable Lagrangian
functionalL◻ associated withL is given by

L◻ : C
1

◻
(𝐼,R
𝑑
) 󳨀→ R

𝑞 󳨃󳨀→ ∫

𝑏

𝑎

𝐿(𝑠, 𝑞 (𝑠) ,
◻𝑞 (𝑠)

◻𝑡
) 𝑑𝑠.

(13)

Let 𝐻𝛽
0

fl {ℎ ∈ 𝐻
𝛽
(𝐼,R𝑑), ℎ(𝑎) = ℎ(𝑏) = 0} and 𝑞 ∈

𝐻
𝛼
(𝐼,R𝑑) with 𝛼 + 𝛽 > 1. A 𝐻

𝛽

0
-variation of 𝑞 is a function

of the form 𝑞 + ℎ, where ℎ ∈ 𝐻
𝛽

𝑂
. We denote by 𝐷L◻(𝑞)(ℎ)

the quantity

lim
𝜖→0

L◻ (𝑞 + 𝜖ℎ) −L◻ (𝑞)

𝜖
(14)

if there exists the so-called Fréchet derivative ofL◻ at point
𝑞 in direction ℎ.

Definition 16 (nondifferentiable extremals). A 𝐻
𝛽

0
-extremal

curve of the functionalL◻ is a curve 𝑞 ∈ 𝐻
𝛼
(𝐼,R𝑑) satisfying

𝐷L◻(𝑞)(ℎ) = 0 for any ℎ ∈ 𝐻
𝛽

0
.

Theorem 17 (nondifferentiable Euler-Lagrange equations
[17]). Let 0 < 𝛼, 𝛽 < 1 with 𝛼 + 𝛽 > 1. Let 𝐿 be an admissible
Lagrangian of class C2. We assume that 𝛾 ∈ 𝐻

𝛼
(𝐼,R𝑑), such

that ◻𝛾/◻𝑡 ∈ 𝐻
𝛼
(𝐼,R𝑑). Moreover, we assume that 𝐿(𝑡, 𝛾(𝑡),

◻𝛾(𝑡)/◻𝑡)ℎ(𝑡) satisfies condition (9) for all ℎ ∈ 𝐻
𝛽

0
(𝐼,R𝑑).

A curve 𝛾 satisfying the nondifferentiable Euler-Lagrange
equation

◻

◻𝑡
[
𝜕𝐿

𝜕V
(𝑡, 𝛾 (𝑡) ,

◻𝛾 (𝑡)

◻𝑡
)] =

𝜕𝐿

𝜕𝑥
(𝑡, 𝛾 (𝑡) ,

◻𝛾 (𝑡)

◻𝑡
) (15)

is an extremal curve of functional (13).

3. Reminder about Hamiltonian Systems

We now recall the main concepts and results of both classical
and Cresson’s nondifferentiable Hamiltonian systems.

3.1. Classical Hamiltonian Systems. Let 𝐿 be an admissible
Lagrangian function. If 𝐿 satisfies the so-called Legendre
property, then we can associate to 𝐿 a Hamiltonian function
denoted by𝐻.
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Definition 18. Let 𝐿 be an admissible Lagrangian function.
TheLagrangian𝐿 is said to satisfy the Legendre property if the
mapping V 󳨃→ (𝜕𝐿/𝜕V)(𝑡, 𝑥, V) is invertible for any (𝑡, 𝑞, V) ∈

𝐼 ×R𝑑 × C𝑑.

If we introduce a new variable

𝑝 =
𝜕𝐿

𝜕V
(𝑡, 𝑞, V) (16)

and 𝐿 satisfies the Legendre property, then we can find a
function 𝑓 such that

V = 𝑓 (𝑡, 𝑞, 𝑝) . (17)

Using this notation, we have the following definition.

Definition 19. Let 𝐿 be an admissible Lagrangian function
satisfying the Legendre property. The Hamiltonian function
𝐻 associated with 𝐿 is given by

𝐻 : R ×R
𝑑
× C
𝑑
󳨀→ C

(𝑡, 𝑞, 𝑝) 󳨃󳨀→ 𝐻(𝑡, 𝑞, 𝑝) = 𝑝𝑓 (𝑡, 𝑞, 𝑝) − 𝐿 (𝑡, 𝑞, 𝑓 (𝑡, 𝑞, 𝑝)) .

(18)

We have the following theorem (see, e.g., [38]).

Theorem 20 (Hamilton’s least-action principle). The curve
(𝑞, 𝑝) ∈ C(𝐼,R𝑑)×C(𝐼,C𝑑) is an extremal of the Hamiltonian
functional

H (𝑞, 𝑝) = ∫

𝑏

𝑎

𝑝 (𝑡) 𝑞̇ (𝑡) − 𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡)) 𝑑𝑡 (19)

if and only if it satisfies the Hamiltonian system associated with
𝐻 given by

𝑞̇ (𝑡) =
𝜕𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))

𝜕𝑝
,

𝑝̇ (𝑡) = −
𝜕𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))

𝜕𝑞

(20)

called the Hamiltonian equations.

A vectorial notation is obtained for the Hamiltonian
equations in posing 𝑧 = (𝑞, 𝑝)

⊤ and ∇𝐻 = (𝜕𝐻/𝜕𝑞, 𝜕𝐻/𝜕𝑝)
⊤,

where ⊤ denotes the transposition. The Hamiltonian equa-
tions are then written as

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝐽 ⋅ ∇𝐻 (𝑡, 𝑧 (𝑡)) , (21)

where

𝐽 = (
0 𝐼𝑑

−𝐼𝑑 0
) (22)

denotes the symplectic matrix with 𝐼𝑑 being the identity
matrix on R𝑑.

3.2. NondifferentiableHamiltonian Systems. Thenondifferen-
tiable embedding induces a change in the phase space with
respect to the classical case. As a consequence, we have to
work with variables (𝑥, 𝑝) that belong to R𝑑 × C𝑑 and not
only to R𝑑 ×R𝑑, as usual.

Definition 21 (nondifferentiable embedding of Hamiltonian
systems [17]). The nondifferentiable embedded Hamiltonian
system (20) is given by

◻𝑞 (𝑡)

◻𝑡
=

𝜕𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))

𝜕𝑝
,

◻𝑝 (𝑡)

◻𝑡
= −

𝜕𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))

𝜕𝑞

(23)

and the embedded Hamiltonian functionalH◻ is defined on
𝐻
𝛼
(𝐼,R𝑑) × 𝐻

𝛼
(𝐼,C𝑑) by

H◻ (𝑞, 𝑝) = ∫

𝑏

𝑎

(𝑝 (𝑡)
◻𝑞 (𝑡)

◻𝑡
− 𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))) 𝑑𝑡. (24)

The nondifferentiable calculus of variations allows us to
derive the extremals forH◻.

Theorem 22 (nondifferentiable Hamilton’s least-action prin-
ciple [17]). Let 0 < 𝛼, 𝛽 < 1 with 𝛼 + 𝛽 > 1. Let 𝐿 be an
admissible C2-Lagrangian. We assume that 𝛾 ∈ 𝐻

𝛼
(𝐼,R𝑑),

such that ◻𝛾/◻𝑡 ∈ 𝐻
𝛼
(𝐼,R𝑑). Moreover, we assume that

𝐿(𝑡, 𝛾(𝑡), ◻𝛾(𝑡)/◻𝑡)ℎ(𝑡) satisfies condition (9) for all ℎ ∈

𝐻
𝛽

0
(𝐼,R𝑑). Let 𝐻 be the corresponding Hamiltonian defined

by (18). A curve 𝛾 󳨃→ (𝑡, 𝑞(𝑡), 𝑝(𝑡)) ∈ 𝐼 × R𝑑 × C𝑑 solution of
the nondifferentiable Hamiltonian system (23) is an extremal
of functional (24) over the space of variations𝑉 = 𝐻

𝛽

0
(𝐼,R𝑑)×

𝐻
𝛽

0
(𝐼,C𝑑).

4. Nondifferentiable Helmholtz Problem

In this section, we solve the inverse problem of the nondif-
ferentiable calculus of variations in the Hamiltonian case. We
first recall the usual way to derive the Helmholtz conditions
following the presentation made by Santilli [28]. Two main
derivations are available:

(i) The first is related to the characterization of Hamilto-
nian systems via the symplectic two-differential form
and the fact that by duality the associated one-
differential form to a Hamiltonian vector field is
closed—the so-called integrability conditions.

(ii) The second uses the characterization of Hamiltonian
systems via the self-adjointness of the Fréchet deriva-
tive of the differential operator associated with the
equation—the so-called Helmholtz conditions.

Of course, we have coincidence of the two procedures in the
classical case. As there is no analogous of differential form
in the framework of Cresson’s quantum calculus, we follow
the second way to obtain the nondifferentiable analogue of
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the Helmholtz conditions. For simplicity, we consider a time-
independent Hamiltonian. The time-dependent case can be
done in the same way.

4.1. Helmholtz Conditions for Classical Hamiltonian Systems.
In this section we work on R2𝑑, 𝑑 ≥ 1, 𝑑 ∈ N.

4.1.1. Symplectic Scalar Product. The symplectic scalar product
⟨⋅, ⋅⟩𝐽 is defined by

⟨𝑋, 𝑌⟩𝐽 = ⟨𝑋, 𝐽 ⋅ 𝑌⟩ (25)

for all 𝑋,𝑌 ∈ R2𝑑, where ⟨⋅, ⋅⟩ denotes the usual scalar
product and 𝐽 is the symplectic matrix (22). We also consider
the 𝐿2 symplectic scalar product induced by ⟨⋅, ⋅⟩𝐽 defined for
𝑓, 𝑔 ∈ C0([𝑎, 𝑏],R2𝑑) by

⟨𝑓, 𝑔⟩
𝐿2 ,𝐽

= ∫

𝑏

𝑎

⟨𝑓 (𝑡) , 𝑔 (𝑡)⟩
𝐽
𝑑𝑡. (26)

4.1.2. Adjoint of a Differential Operator. In the following, we
consider first-order differential equations of the form

𝑑

𝑑𝑡
(
𝑞

𝑝
) = (

𝑋𝑞 (𝑞, 𝑝)

𝑋𝑝 (𝑞, 𝑝)
) , (27)

where the vector fields 𝑋𝑞 and 𝑋𝑝 are C
1 with respect to 𝑞

and 𝑝. The associated differential operator is written as

𝑂𝑋 (𝑞, 𝑝) = (

𝑞̇ − 𝑋𝑞 (𝑞, 𝑝)

𝑝̇ − 𝑋𝑝 (𝑞, 𝑝)
) . (28)

A natural notion of adjoint for a differential operator is then
defined as follows.

Definition 23. Let 𝐴 : C1([𝑎, 𝑏],R2𝑑) → C1([𝑎, 𝑏],R2𝑑). We
define the adjoint 𝐴∗

𝐽
of 𝐴 with respect to ⟨⋅, ⋅⟩𝐿2 ,𝐽 by

⟨𝐴 ⋅ 𝑓, 𝑔⟩
𝐿2,𝐽

= ⟨𝐴
∗

𝐽
⋅ 𝑔, 𝑓⟩

𝐿2 ,𝐽
. (29)

An operator 𝐴 will be called self-adjoint if 𝐴 = 𝐴
∗

𝐽
with

respect to the 𝐿2 symplectic scalar product.

4.1.3. Hamiltonian Helmholtz Conditions. The Helmholtz
conditions in the Hamiltonian case are given by the following
result (see Theorem 3.12.1, p. 176-177 in [28]).

Theorem 24 (Hamiltonian Helmholtz theorem). Let𝑋(𝑞, 𝑝)

be a vector field defined by 𝑋(𝑞, 𝑝)
⊤

= (𝑋𝑞(𝑞, 𝑝), 𝑋𝑝(𝑞, 𝑝)).
The differential equation (27) is Hamiltonian if and only if the
associated differential operator 𝑂𝑋 given by (28) has a self-
adjoint Fréchet derivative with respect to the 𝐿

2 symplectic
scalar product. In this case the Hamiltonian is given by

𝐻(𝑞, 𝑝) = ∫

1

0

[𝑝 ⋅ 𝑋𝑞 (𝜆𝑞, 𝜆𝑝) − 𝑞 ⋅ 𝑋𝑝 (𝜆𝑞, 𝜆𝑝)] 𝑑𝜆. (30)

The conditions for the self-adjointness of the differential
operator can bemade explicit.They coincide with the integra-
bility conditions characterizing the exactness of the one-form
associated with the vector field by duality (see [28], Theorem
2.7.3, p. 88).

Theorem 25 (integrability conditions). Let 𝑋(𝑞, 𝑝)
⊤

=

(𝑋𝑞(𝑞, 𝑝), 𝑋𝑝(𝑞, 𝑝)) be a vector field. The differential operator
𝑂𝑋 given by (28) has a self-adjoint Fréchet derivative with
respect to the 𝐿2 symplectic scalar product if and only if

𝜕𝑋𝑞

𝜕𝑞
+ (

𝜕𝑋𝑝

𝜕𝑝
)

⊤

= 0,
𝜕𝑋𝑞

𝜕𝑝
,
𝜕𝑋𝑝

𝜕𝑞
𝑎𝑟𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐. (31)

4.2. Helmholtz Conditions for Nondifferentiable Hamiltonian
Systems. The previous scalar products extend naturally to
complex valued functions. Let 0 < 𝛼 < 1 and let (𝑞, 𝑝) ∈

𝐻
𝛼
(𝐼,R𝑑) × 𝐻

𝛼
(𝐼,C𝑑), such that ◻𝑞/◻𝑡 ∈ 𝐻

𝛼
(𝐼,C𝑑) and

◻𝑝/◻𝑡 ∈ 𝐻
𝛼
(𝐼,C𝑑). We consider first-order nondifferential

equations of the form

◻

◻𝑡
(
𝑞

𝑝
) = (

𝑋𝑞 (𝑞, 𝑝)

𝑋𝑝 (𝑞, 𝑝)
) . (32)

The associated quantum differential operator is written as

𝑂◻,𝑋 (𝑞, 𝑝) = (

◻𝑞

◻𝑡
− 𝑋𝑞 (𝑞, 𝑝)

◻𝑝

◻𝑡
− 𝑋𝑝 (𝑞, 𝑝)

) . (33)

A natural notion of adjoint for a quantum differential opera-
tor is then defined.

Definition 26. Let 𝐴 : C1
◻
([𝑎, 𝑏],C2𝑑) → C1

◻
([𝑎, 𝑏],C2𝑑). We

define the adjoint 𝐴∗
𝐽
of 𝐴 with respect to ⟨⋅, ⋅⟩𝐿2 ,𝐽 by

⟨𝐴 ⋅ 𝑓, 𝑔⟩
𝐿2 ,𝐽

= ⟨𝐴
∗

𝐽
⋅ 𝑔, 𝑓⟩

𝐿2 ,𝐽
. (34)

An operator 𝐴 will be called self-adjoint if 𝐴 = 𝐴
∗

𝐽
with

respect to the 𝐿
2 symplectic scalar product. We can now

obtain the adjoint operator associated with 𝑂◻,𝑋.

Proposition 27. Let 𝛽 be such that 𝛼 + 𝛽 > 1. Let (𝑢, V) ∈

𝐻
𝛽

0
(𝐼,R𝑑) × 𝐻

𝛽

0
(𝐼,C𝑑), such that ◻𝑢/◻𝑡 ∈ 𝐻

𝛼
(𝐼,C𝑑) and

◻V/◻𝑡 ∈ 𝐻
𝛼
(𝐼,C𝑑). The Fréchet derivative 𝐷𝑂◻,𝑋 of (33) at

(𝑞, 𝑝) along (𝑢, V) is then given by

𝐷𝑂◻,𝑋 (𝑞, 𝑝) (𝑢, V) = (

◻𝑢

◻𝑡
−

𝜕𝑋𝑞

𝜕𝑞
⋅ 𝑢 −

𝜕𝑋𝑞

𝜕𝑝
⋅ V

◻V
◻𝑡

−
𝜕𝑋𝑝

𝜕𝑞
⋅ 𝑢 −

𝜕𝑋𝑝

𝜕𝑝
⋅ V

). (35)
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Assume that 𝑢 ⋅ ℎ and V ⋅ ℎ satisfy condition (9) for any ℎ ∈

𝐻
𝛽

0
(𝐼,C𝑑). In consequence, the adjoint 𝐷𝑂

∗

◻,𝑋
of 𝐷𝑂◻,𝑋(𝑞, 𝑝)

with respect to the 𝐿2 symplectic scalar product is given by

𝐷𝑂
∗

◻,𝑋
(𝑞, 𝑝) (𝑢, V)

= (

◻𝑢

◻𝑡
+ (

𝜕𝑋𝑝

𝜕𝑝
)

⊤

⋅ 𝑢 − (
𝜕𝑋𝑞

𝜕𝑝
)

⊤

⋅ V

◻V
◻𝑡

− (
𝜕𝑋𝑝

𝜕𝑞
)

⊤

⋅ 𝑢 + (
𝜕𝑋𝑞

𝜕𝑞
)

⊤

⋅ V

).

(36)

Proof. The expression for the Fréchet derivative of (33) at
(𝑞, 𝑝) along (𝑢, V) is a simple computation. Let (𝑤, 𝑥) ∈

𝐻
𝛽

0
(𝐼,R𝑑) × 𝐻

𝛽

0
(𝐼,C𝑑) be such that ◻𝑤/◻𝑡 ∈ 𝐻

𝛼
(𝐼,C𝑑) and

◻𝑥/◻𝑡 ∈ 𝐻
𝛼
(𝐼,C𝑑). By definition, we have

⟨𝐷𝑂◻,𝑋 (𝑞, 𝑝) (𝑢, V) , (𝑤, 𝑥)⟩
𝐿2 ,𝐽

= ∫

𝑏

𝑎

[
◻𝑢

◻𝑡
⋅ 𝑥

− (
𝜕𝑋𝑞

𝜕𝑞
⋅ 𝑢) ⋅ 𝑥 − (

𝜕𝑋𝑞

𝜕𝑝
⋅ V) ⋅ 𝑥 −

◻V
◻𝑡

⋅ 𝑤

+ (
𝜕𝑋𝑝

𝜕𝑞
⋅ 𝑢) ⋅ 𝑤 + (

𝜕𝑋𝑝

𝜕𝑝
⋅ V) ⋅ 𝑤]𝑑𝑡.

(37)

As 𝑢 ⋅ ℎ and V ⋅ ℎ satisfy condition (9) for any ℎ ∈ 𝐻
𝛽

0
(𝐼,C𝑑),

using the quantum Leibniz rule and the quantum version of
the fundamental theorem of calculus, we obtain

∫

𝑏

𝑎

◻𝑢

◻𝑡
⋅ 𝑏 𝑑𝑡 = ∫

𝑏

𝑎

−𝑢 ⋅
◻𝑏

◻𝑡
𝑑𝑡,

∫

𝑏

𝑎

◻V
◻𝑡

⋅ 𝑎 𝑑𝑡 = ∫

𝑏

𝑎

−𝑢 ⋅
◻𝑏

◻𝑡
𝑑𝑡.

(38)

Then,

⟨𝐷𝑂◻,𝑋 (𝑞, 𝑝) (𝑢, V) , (𝑤, 𝑥)⟩
𝐿2 ,𝐽

= ∫

𝑏

𝑎

[−𝑢

⋅ (
◻𝑥

◻𝑡
− (

𝜕𝑋𝑝

𝜕𝑞
)

⊤

⋅ 𝑤 + (
𝜕𝑋𝑞

𝜕𝑞
)

⊤

⋅ 𝑥) + V

⋅ (
◻𝑤

◻𝑡
+ (

𝜕𝑋𝑝

𝜕𝑝
)

⊤

⋅ 𝑤 − (
𝜕𝑋𝑞

𝜕𝑝
)

⊤

⋅ 𝑥)]𝑑𝑡.

(39)

By definition, we obtain the expression of the adjoint 𝐷𝑂
∗

◻,𝑋

of 𝐷𝑂◻,𝑋(𝑞, 𝑝) with respect to the 𝐿
2 symplectic scalar

product.

In consequence, from a direct identification, we obtain
the nondifferentiable self-adjointess conditions called Helm-
holtz’s conditions. As in the classical case, we call these con-
ditions nondifferentiable integrability conditions.

Theorem 28 (nondifferentiable integrability conditions). Let
𝑋(𝑞, 𝑝)

⊤
= (𝑋𝑞(𝑞, 𝑝), 𝑋𝑝(𝑞, 𝑝)) be a vector field. The differ-

ential operator 𝑂◻,𝑋 given by (33) has a self-adjoint Fréchet

derivative with respect to the symplectic scalar product if and
only if

𝜕𝑋𝑞

𝜕𝑞
+ (

𝜕𝑋𝑝

𝜕𝑝
)

⊤

= 0, (HC1)

𝜕𝑋𝑞

𝜕𝑝
,
𝜕𝑋𝑝

𝜕𝑞
𝑎𝑟𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐. (HC2)

Remark 29. One can see that the Helmholtz conditions are
the same as in the classical, discrete, time-scale, and stochastic
cases. We expected such a result because Cresson’s quantum
calculus provides a quantum Leibniz rule and a quantum
version of the fundamental theorem of calculus. If such
properties of an underlying calculus exist, then theHelmholtz
conditions will always be the same up to some conditions on
the working space of functions.

We now obtain the main result of this paper, which is the
Helmholtz theorem for nondifferentiable Hamiltonian systems.

Theorem 30 (nondifferentiable Hamiltonian Helmholtz the-
orem). Let 𝑋(𝑞, 𝑝) be a vector field defined by 𝑋(𝑞, 𝑝)

⊤
=

(𝑋𝑞(𝑞, 𝑝), 𝑋𝑝(𝑞, 𝑝)). The nondifferentiable system of (32) is
Hamiltonian if and only if the associated quantum differential
operator𝑂◻,𝑋 given by (33) has a self-adjoint Fréchet derivative
with respect to the 𝐿2 symplectic scalar product. In this case, the
Hamiltonian is given by

𝐻(𝑞, 𝑝) = ∫

1

0

[𝑝 ⋅ 𝑋𝑞 (𝜆𝑞, 𝜆𝑝) − 𝑞 ⋅ 𝑋𝑝 (𝜆𝑞, 𝜆𝑝)] 𝑑𝜆. (40)

Proof. If 𝑋 is Hamiltonian, then there exists a function 𝐻 :

R𝑑 × C𝑑 → C such that𝐻(𝑞, 𝑝) is holomorphic with respect
to V and differentiable with respect to 𝑞 and𝑋𝑞 = 𝜕𝐻/𝜕𝑝 and
𝑋𝑝 = −𝜕𝐻/𝜕𝑞.The nondifferentiable integrability conditions
are clearly verified using Schwarz’s lemma. Reciprocally, we
assume that 𝑋 satisfies the nondifferentiable integrability
conditions. We will show that 𝑋 is Hamiltonian with respect
to the Hamiltonian

𝐻(𝑞, 𝑝) = ∫

1

0

[𝑝 ⋅ 𝑋𝑞 (𝜆𝑞, 𝜆𝑝) − 𝑞 ⋅ 𝑋𝑝 (𝜆𝑞, 𝜆𝑝)] 𝑑𝜆; (41)

that is, we must show that

𝑋𝑞 (𝑞, 𝑝) =
𝜕𝐻 (𝑞, 𝑝)

𝜕𝑝
,

𝑋𝑝 (𝑞, 𝑝) = −
𝜕𝐻 (𝑞, 𝑝)

𝜕𝑞
.

(42)

We have

𝜕𝐻 (𝑞, 𝑝)

𝜕𝑞
= ∫

1

0

[𝑝 ⋅ 𝜆
𝜕𝑋𝑞 (𝜆𝑞, 𝜆𝑝)

𝜕𝑞
− 𝑋𝑝 (𝜆𝑞, 𝜆𝑝)

− 𝑞 ⋅ 𝜆
𝜕𝑋𝑝 (𝜆𝑞, 𝜆𝑝)

𝜕𝑞
] 𝑑𝜆,
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𝜕𝐻 (𝑞, 𝑝)

𝜕𝑝
= ∫

1

0

[𝑋𝑝 (𝜆𝑞, 𝜆𝑝) + 𝑝 ⋅ 𝜆
𝜕𝑋𝑞 (𝜆𝑞, 𝜆𝑝)

𝜕𝑝

− 𝑞 ⋅ 𝜆
𝜕𝑋𝑝 (𝜆𝑞, 𝜆𝑝)

𝜕𝑝
] 𝑑𝜆.

(43)

Using the nondifferentiable integrability conditions, we
obtain

𝜕𝐻 (𝑞, 𝑝)

𝜕𝑞
= ∫

1

0

−
𝜕 (𝜆𝑋𝑝 (𝜆𝑞, 𝜆𝑝))

𝜕𝜆
𝑑𝜆 = −𝑋𝑝 (𝑞, 𝑝) ,

𝜕𝐻 (𝑞, 𝑝)

𝜕𝑞
= ∫

1

0

𝜕 (𝜆𝑋𝑞 (𝜆𝑞, 𝜆𝑝))

𝜕𝜆
𝑑𝜆 = 𝑋𝑞 (𝑞, 𝑝) ,

(44)

which concludes the proof.

5. Applications

We now provide two illustrative examples of our results: one
with the formulation of dynamical systems with linear parts
and another with Newton’s equation, which is particularly
useful to study partial differentiable equations such as the
Navier-Stokes equation. Indeed, the Navier-Stokes equation
can be recovered from a Lagrangian structure with Cresson’s
quantum calculus [17]. For more applications see [34].

Let 0 < 𝛼 < 1 and let (𝑞, 𝑝) ∈ 𝐻
𝛼
(𝐼,R𝑑) × 𝐻

𝛼
(𝐼,C𝑑) be

such that ◻𝑞/◻𝑡 ∈ 𝐻
𝛼
(𝐼,C𝑑) and ◻𝑞/◻𝑡 ∈ 𝐻

𝛼
(𝐼,C𝑑).

5.1. The Linear Case. Let us consider the discrete nondiffer-
entiable system

◻𝑞

◻𝑡
= 𝛼𝑞 + 𝛽𝑝,

◻𝑝

◻𝑡
= 𝛾𝑞 + 𝛿𝑝,

(45)

where 𝛼, 𝛽, 𝛾, and 𝛿 are constants. The Helmholtz condition
(HC2) is clearly satisfied. However, system (45) satisfies the
condition (HC1) if and only if 𝛼 + 𝛿 = 0. As a consequence,
linear Hamiltonian nondifferentiable equations are of the
form

◻𝑞

◻𝑡
= 𝛼𝑞 + 𝛽𝑝,

◻𝑝

◻𝑡
= 𝛾𝑞 − 𝛼𝑝.

(46)

Using formula (40), we compute explicitly the Hamiltonian,
which is given by

𝐻(𝑞, 𝑝) =
1

2
(𝛽𝑝
2
− 𝛾𝑞
2
) + 𝛼𝑞 ⋅ 𝑝. (47)

5.2. Newton’s Equation. Newton’s equation (see [38]) is given
by

𝑞̇ =
𝑝

𝑚
,

𝑝̇ = −𝑈
󸀠
(𝑞) ,

(48)

with𝑚 ∈ R+ and 𝑞, 𝑝 ∈ R𝑑.This equation possesses a natural
Hamiltonian structure with the Hamiltonian given by

𝐻(𝑞, 𝑝) =
1

2𝑚
𝑝
2
+ 𝑈 (𝑞) . (49)

Using Cresson’s quantum calculus, we obtain a natural non-
differentiable system given by

◻𝑞

◻𝑡
=

𝑝

𝑚
,

◻𝑝

◻𝑡
= −𝑈
󸀠
(𝑞) .

(50)

The Hamiltonian Helmholtz conditions are clearly satisfied.

Remark 31. Itmust be noted thatHamiltonian (49) associated
with (50) is recovered by formula (40).

6. Conclusion

We proved a Helmholtz theorem for nondifferentiable equa-
tions, which gives necessary and sufficient conditions for the
existence of a Hamiltonian structure. In the affirmative case,
the Hamiltonian is given. Our result extends the results of
the classical case when restricting attention to differentiable
functions. An important complementary result for the non-
differentiable case is to obtain the Helmholtz theorem in the
Lagrangian case. This is nontrivial and will be subject of
future research.
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