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ABSTRACT
An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solu-
tion is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler–
Lagrange equation. An implementation of the method is given using the computer algebra system
Maple. Our analytical solutions confirm the results recently reported in the literature using numerical
methods.

1. Introduction

The largest outbreak of Ebola virus ever recorded has been
ongoing since was first confirmed in March, 2014. Ebola
is a fatal disease that has claimed 7,000 lives by the end of
2014 in just Guinea, Liberia, and Sierra Lione. While the
Ebola outbreak has slowed down across West Africa by
June 2015, every new infection continues to threaten mil-
lions of lives and bringing fear to the world. With more
than 24,000 cases and almost 10,000 fatalities, this out-
break is already one of the biggest public health crises of
the XXI century. Overcoming Ebola is a complex emer-
gency, challenging not only governments and interna-
tional aid organizations but also computational and life
scientists and applied mathematicians [1, 3, 5–8].

In a recentwork byRachah andTorres, an optimal con-
trol problem of the 2014 Ebola outbreak in West Africa
was posed and numerically solved through Matlab and
the ACADO toolkit [6]. See also ref. [7] for a different
model and other Matlab numerical simulations. In con-
trast, here we address the problem by analytical meth-
ods. The results confirm the previous numerical results,
but nowwith a theoretical/analytical foundation. The new
method is simple but involves lengthy calculations. For
this reason, a computer algebra package with the pro-
posed method is developed inMaple.

The text is organized as follows. In Section 2, the
optimal control problem is formulated. Our method is
explained in Section 3 and illustrated with an example.
Then, in Section 4,we apply it to the Ebola optimal control
problem. We end with Section 5 of conclusions, whereas
Appendix 6 provides the developedMaple code.

CONTACT Delfim F. M. Torres delfim@ua.pt Center for Research & Development in Mathematics and Applications (CIDMA), Department of Mathematics,
University of Aveiro, - Aveiro, Portugal.

2. The problem

The Ebola problem of optimal control proposed in ref. [6]
consists to determine the control function u(·) in such a
way the objective functional given by

J (u) =
∫ T

0

[
I(t ) + 1

2
Au(t )2

]
dt (1)

is minimized, where A is a fixed non-negative constant,
when subject to the dynamic equations

d
dt

S(t ) = −β S(t )I(t ) − u(t )S(t ) (2)

d
dt

I(t ) = β S(t )I(t ) − μ I(t ) (3)

d
dt

R(t ) = μ I(t ) + u(t )S(t ) (4)

for all

t ∈ [0,T] (5)

the given initial conditions

S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, (6)

and where the control values are bounded in the interval
[0, 0.9], that is,

0 ≤ u(t ) ≤ 0.9 (7)

Here, T is the duration of the application of the con-
trol (duration of the vaccination program). The con-
stant 0.9 is a control value that is able to eliminate the
Ebola transmission according with R0 < 1, where R0 is
the basic reproductionnumber for the system (2)–(4), and
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control u is considered constant along all time. This con-
trol u(t ) ≡ 0.9 is, however, not optimal. For this reason,
we search for an optimal value of u(t ), t ∈ [0,T], subject
to the constraint given by Eq. (7). Note that the control
u(t ) represents the vaccination rate at time t . Being the
fraction of susceptible individuals vaccinated per unit of
time, the value 0.9 means that, at maximum, 90% of sus-
ceptible are vaccinated. In other words, what we assume
here is that the fraction of individuals who are not vac-
cinated takes at least the value of 10%. This is in agree-
ment with general experience in vaccination, where it is
well recognized the impossibility to vaccinate all popu-
lation. For more details on the description of the math-
ematical model and the meaning of the parameters, we
refer the reader to the work of Rachah and Torres [6, 7].
In particular, see the scheme of the susceptible-infected-
recovered model with vaccination found in Section 4.2 of
ref. [6] and the optimal control problem in Section 5 of ref.
[6], where the following parameters, initial conditions,
and time horizon are considered: infection rate β = 0.2;
recovery rateμ = 0.1; at the beginning 95%of population
is susceptible and 5% is already infected, that is, S(0) =
0.95, I(0) = 0.05, and R(0) = 0; and T = 100 days. Dif-
ferently from previous works [6, 7], which are exclusively
based on numericalmethods, we address the optimal con-
trol problem (1)–(7) by using an approximated analytic
method. For that, we make use of the computer algebra
systemMaple.

3. Themethod

In this section, the approximated analytical method that
is used in Section 4 to solve the optimal control problem
(1)–(7) is explained and illustrated with an example. The
idea is to use the classical calculus of variations, specif-
ically the Euler–Lagrange equation, which is its main
tool. The Euler–Lagrange equation is used with the aim
to obtain a first-order approximation to the Pontryagin
Maximum Principle. Typically, the PontryaginMaximum
Principle is harder to solve analytically than the Euler–
Lagrange equation. In contrast, the Euler–Lagrange equa-
tions can be easily solved analytically in many interesting
cases. In our work, we perform an analytical experiment
consisting to solve analytically the optimal control prob-
lem (1)–(7), which was previously solved numerically in
ref. [6]. As we shall see in Section 4, our approach turns
out to be a good one.

Let us start with the dynamical control system

d
dt

y(t ) = F(y(t ), u(t )) (8)

where y(·) is the state vector that must be controlled and
u(·) is the control that must be applied to the system in

order to minimize the functional

I(u) =
∫ T

0

[(
d
dt

u(t )
)2

+ 1
2
Au(t )2

]
dt (9)

where A is the parameter that is determining the cost of
the control andT is the duration of application of the con-
trol. Comparing the objective functionals (1) and (9), we
are assuming that I(t ) = (du(t )/dt )2. This is a particular
case of the more general assumption

I(t ) = a1(t )u(t ) + a2(t )(du(t )/dt )2

+ a3(t )(du(t )/dt )4 + · · · (10)

From the epidemiological point of view, given that sys-
tem (2)–(4) can be considered as a black box, being the
input u(t ) and the output I(t ), it is possible to think
that I(t ) is approximately given by a series of the form
(10). Given that I(t ) is always positive, we use even pow-
ers of du(t )/dt . The simplest assumption is then I(t ) =
(du(t )/dt )2, which makes functional (9) to take the form
of the Lagrangian for the classical harmonic oscillator. It
is possible to use other forms for I(t ) as a function of u(t )
and its derivatives. For our purposes, the simplest expres-
sion I(t ) = (du(t )/dt )2 is enough. The Euler–Lagrange
equation (see, e.g., ref. [2]) associated with (9) is

Au(t ) − 2
d2

dt2
u(t ) = 0 (11)

and the solution of (11) with the conditions

{u(0) = U0, u(∞) = 0} (12)

is given by

u(t ) = U0e− 1
2

√
2
√
At (13)

In Eq. (11), we are assuming that u is of classC2: the clas-
sical Euler–Lagrange equation is a second-order differen-
tial equation. The exact solution u is not necessarily C2,
but it can always be approximated by aC2 function. Note
that our goal is to find an approximated analytical solu-
tion and not the exact one. Replacing Eq. (13) in Eq. (8),
we obtain that

d
dt

y(t ) = F
(
y(t ),U0e− 1

2

√
2
√
At
)

(14)

Now, we assume that Eq. (14) can be solved analytically
when subject to the initial condition y(0) = Y0. Then, for-
mally, it is possible to write that

y(t ) = G(t,A,U0,Y0) (15)

To determineU0, we minimize the following functional:

K(u) =
∫ T

0

[
y(t ) + 1

2
A(u(t ))2

]
dt (16)
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Substituting Eqs. (13) and (15) in Eq. (16), we obtain that

K(U0) =
∫ T

0
G(t,A,U0,Y0)dt

− 1
4

√
A
√
2U0

2
(
−1 + e−√

2
√
AT
)

(17)

Taking the derivative of Eq. (17) with respect to U0 and
equating the result to zero, we have∫ T

0

∂

∂U0
G(t,A,U0,Y0)dt

−1
2

√
A
√
2U0

(
−1 + e−√

2
√
AT
)

= 0 (18)

The parameter A is determined according to

U0e− 1
4

√
2
√
AT = U0

Q
(19)

that is, we assume that at the half of the duration of the
application of the control, the intensity of the control is
reduced by a factor Q with respect to the initial intensity.
Then, the solution of (19) is given by

A = 8
(ln(Q))2

T 2 (20)

Finally, solving Eq. (18) with respect toU0, using Eq. (20)
and the numerical values for the other parameters, the val-
ues forU0 and A are obtained and the explicit form of the
control u(t ) given by Eq. (13) is specified.

To illustrate the method that was just explained, we
consider now a simple toy model.

Example 3.1. Let

d
dt

S(t ) = −β S(t )I(t ) (21)

and
d
dt

I(t ) = β S(t )I(t ) − u(t )I(t ) (22)

The problemhere is to control the variable I(t ) using u(t ).
We assume that the control u(t ) has the form given by
Eq. (13). The expression (13) is the solution of the differ-
ential equation (11), which is the Euler–Lagrange equa-
tion for the functional (9) with the assumption I(t ) =
(du(t )/dt )2. If the more general assumption (10) is used,
then the corresponding Euler–Lagrange equation will be
more complex and the explicit solution will involve spe-
cial functions, such as Airy, Bessel, Kummer, Whittaker,
and Heun functions. Replacing Eq. (13) in Eq. (22), we
obtain that

d
dt

I(t ) = β S(t )I(t ) −U0e− 1
2

√
2
√
At I(t ) (23)

An approximated analytical solution of Eq. (23) can
be obtained for the early stages of the outbreak when

S(t ) ≈ S0. With this approximation, Eq. (23) is reduced
to

d
dt

I(t ) = β S0I(t ) −U0e− 1
2

√
2
√
At I(t ) (24)

and the explicit solution of Eq. (24) with the initial condi-
tion I(0) = i0 is given by

I(t ) = i0e
−U0

√
2+β S0t

√
A+U0

√
2e−

1
2

√
2
√
At

√
A (25)

For the early stages of the outbreak, Eq. (25) takes the
form

I(t ) = i0(1 + β S0t − tU0) (26)

Using Eq. (16) with y(t ) = I(t ) and Eq. (26), we derive
that

K(U0) = i0T + 1
2
i0T 2β S0 − 1

2
i0T 2U0 + 1

4
√
2
√
AU0

2

− 1
4
√
2
√
AU0

2e−√
2
√
AT (27)

Taking the derivative of Eq. (27) with respect toU0, equat-
ing the result to zero and solving with respect to U0, we
have that

U0 = −1
2

i0T 2
√
2√

A(−1 + e−√
2
√
AT )

(28)

The control u(t ) is completely determined by replacing
Eqs. (28) and (20) in Eq. (13). All these computations are
easily done with the help of a computer algebra system
(see Appendix 6.1).

4. Main results

With the aim to apply the method explained in Section 3
to the Ebola problem (1)–(7), we assume that Eq. (2) can
be reduced to

d
dt

S(t ) = −U0e− 1
2

√
2
√
AtS(t ) (29)

at the very early stages of the outbreak. In other words,
we assume that βS(t )I(t ) 	 u(t )S(t ) for t near to zero,
that is, at the beginning of the outbreak the depletion in
the number of susceptible individuals is due to the vac-
cination, given that the reduction in the number of sus-
ceptible individuals due to infection is depreciated. Then,
the solution of Eq. (29) with initial condition S(0) = S0 is
given by

S(t ) = S0e
√
2U0 (−1+e−

1
2

√
2
√
At

)√
A (30)

At the beginning of the outbreak, Eq. (30) is reduced to

S(t ) = S0 − S0U0t + S0
(
1
4
√
2U0

√
A + 1

2
U0

2
)
t2 (31)
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Now, Eq. (3) with Eq. (30) takes the form

d
dt

I(t ) = β S0e
√
2U0 (−1+e−

1
2

√
2
√
At

)√
A I(t ) − μ I(t ) (32)

The solution of Eq. (32) with initial condition I(0) = i0 is
given by

I(t ) = i0e

(
β S0

√
2e

−
√
2U0√
A Ei

(
1,−

√
2U0e

− 1
2

√
2
√
At

√
A

)
−μ t

√
A

)
1√
A

eβ S0
√
2e

−
√
2U0√
A Ei

(
1,−

√
2U0√
A

)
1√
A

(33)
where Ei(x) is the exponential integral function defined
by

Ei(x) = −
∫ ∞

−x

e−t

t
dt (34)

For the early stages of the outbreak, equality (33) is
reduced to

I(t ) = i0 + i0(β S0 − μ)t +C2t2 + i0
12

C3t3 − i0
48

C4t4

(35)
where

C2 = i0
(

−1
2
β S0U0 + 1

2
β2S02 − β S0μ + 1

2
μ2
)
(36)

C3 = β S0U0
√
2
√
A + 2β S0U0

2 − 6β2S02U0

+ 6β S0U0μ + 2β3S03 − 6β2S02μ

+ 6β S0μ2 − 2μ3 (37)

and

C4 = β S0U0A + 3β S0U0
2
√
2
√
A + 2β S0U0

3

− 4β2S02U0
√
2
√
A − 14β2S02U0

2

+ 4β S0U0μ
√
2
√
A + 8β S0U0

2μ

+ 12β3S03U0 − 24β2S02U0μ

+ 12β S0U0μ
2 − 2β4S04 + 8β3S03μ − 12β2S02μ2

+ 8β S0μ3 − 2μ4 (38)

Replacing Eqs. (35)–(38) and (13) into the functional
(16), with y(t ) = I(t ), we obtain that

K(U0) = i0T + E2T 2 + E3T 3 + 1
48

i0E4T 4 − 1
240

i0E5T 5

+ 1
4
U0

2
√
2
√
A − 1

4
√
2
√
AU0

2e−√
2
√
AT (39)

where

E2 = 1
2
i0(β S0 − μ) (40)

E3 = 1
3
i0
(

−1
2
β S0U0 + 1

2
β2S02 − β S0μ + 1

2
μ2
)

(41)

E4 = β S0U0
√
2
√
A + 2β S0U0

2 − 6β2S02U0

+ 6β S0U0μ+2β3S03− 6β2S02μ+6β S0μ2−2μ3

(42)

and

E5 = βS0U0A + 3β S0U0
2
√
2
√
A + 2β S0U0

3

− 4β2S02U0
√
2
√
A − 14β2S02U0

2

+ 4β S0U0μ
√
2
√
A + 8β S0U0

2μ + 12β3S03U0

− 24β2S02U0μ + 12β S0U0μ
2

− 2β4S04+8β3S03μ−12β2S02μ2+8β S0μ3−2μ4

(43)

Taking the derivative of Eq. (39) with respect toU0, using
Eqs. (40)–(43), and equating the result to zero, we have
that

−1
6
i0β S0T 3 + F4T 4 − 1

240
i0F5T 5 + 1

2
√
2U0

√
A

− 1
2
√
2
√
AU0e−√

2
√
AT = 0 (44)

where

F4 = 1
48

i0
(
β S0

√
2
√
A + 4β S0U0 − 6β2S02 + 6β S0μ

)
(45)

and

F5 = βS0A + 6β S0U0
√
2
√
A + 6β S0U0

2

− 4β2S02
√
2
√
A − 28β2S02U0

+ 4β S0μ
√
2
√
A + 16β S0U0μ

+ 12β3S03 − 24β2S02μ + 12β S0μ2 (46)

SolvingEq. (44)with respect toU0 and taking into account
Eqs. (45) and (46), we derive that

U0 = −V − √
W

6i0T 5β S0
(47)

where

V = −14 i0T 5β2S02 + 3 i0T 5β S0
√
2
√
A + 8 i0T 5β S0μ

−60
√
2
√
A + 60

√
2
√
Ae−√

2
√
AT − 10 i0T 4β S0

(48)

and

W = 960i0T 5β S0μ
√
2
√
Ae−√

2
√
AT + 20 i02T 9β2S02μ

− 1200
√
2
√
Ae−√

2
√
AT i0T 4β S0

+ 12 i02T 10β2S02A + 124 i02T 10β4S04

+ 100 i02T 9β3S03 − 140 i02T 8β2S02 + 7200A

+ 1200 i0T 4β S0
√
2
√
A + 1680 i0T 5β2S02

√
2
√
A

− 960 i0T 5β S0μ
√
2
√
A

− 14400Ae−√
2
√
AT + 7200A

(
e−√

2
√
AT)2
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Figure . Analytical optimal control u(t ) () for problem ()–().

− 60 i02T 10β3S03
√
2
√
A − 80 i02T 10β3S03μ

− 1680 i0T 5β2S02
√
2
√
Ae−√

2
√
AT

+ 24 i02T 10β2S02
√
2
√
Aμ − 720 i0T 5β S0A

+ 720 i0T 5β S0Ae−√
2
√
AT − 30 i02T 9β2S02

√
2
√
A

− 8 i02T 10β2S02μ2 (49)

Now, we use the following numerical values for the rele-
vant parameters:

{Q = 500,T = 100, μ = 0.1, β = 0.2, S0 = 0.95,
i0 = 0.05} (50)

These values are used here for numerical experimenta-
tion. It is, however, possible to consider other values (the
concrete values are not critical for the experiments). We
obtain from Eq. (20) that

A = 0.03089708305 (51)

Using Eq. (51), Eq. (50) and the expression for U0 given
by Eqs. (47)–(49), we obtain that

U0 = 0.3796479517 (52)

Figure . Susceptible individuals S(t ) in case of optimal control () versus without control.
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Figure . Infected individuals I(t ) in case of optimal control () versus without control.

Figure . Recovered individuals R(t ) in case of optimal control () versus without control.

Replacing Eqs. (51) and (52) in Eq. (13), we obtain that
the optimal control is given by

u(t ) = 0.3796479517 e−0.1242921619 t (53)

Now, the system (2)–(4) is numerically solved with Eq.
(53) and the initial conditions

{S(0) = 0.95, I(0) = 0.05,R(0) = 0} (54)

We obtain the curves of Figures 1–4 (for all the details see
the Maple code in Appendix 6.2). Our results reproduce
the numerical results of Rachah and Torres [6] using the
simplest assumption I(t ) = (du(t )/dt )2. Note that this
assumption is not directly linked to the numerical results
of [6]: the assumption I(t ) = (du(t )/dt )2 is a particular
case of (10). In the case we do not have the numerical
results in advance, we can use the general form (10) and

experiment with different terms of such series to get the
best possible results.

5. Conclusions

The analytical expression (53) for the optimal control
drawn at Figure 1 is very similar to the optimal control
numerically depicted in ref. [6]. Similarly, Figures 2, 3, and
4, respectively, for the susceptible, infected, and recovered
individuals, are identical to the corresponding numerical
results of ref. [6]. We conclude that the numerical solu-
tions found in ref. [6] provide a good approximation to
our analytical expressions.

We claim that the analytical method proposed here can
also be applied with success to other problems of opti-
mal control inmathematical epidemiology such as vector-
borne, air-borne, and water-borne diseases. This question
is under investigation and will be addressed elsewhere.
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6. Maple code

We have used the computer algebra system Maple for all the computations. The reader interested in this computer
algebra system is referred, e.g., to ref. [4].

6.1. Maple code for Example 3.1

> restart:
> with(Physics):
> eq10:=J=Intc(diff(u(tau),tau)^(2)+1/2*A*u(tau)^2, tau);
> eq20:=Fundiff(eq10,u(t));
> eq20A:=dsolve({eq20,u(0)=U[0]});
> eq20B:=subs(_C2=U[0],eq20A);
> nas:=diff(S(t),t)=-beta*S(t)*i(t);
> nasB:=diff(i(t),t)=beta*S(t)*i(t)-u(t)*i(t);
> eq:=diff(i(t),t)=beta*S[0]*i(t)-rhs(eq20B)*i(t);
> eq1:=simplify(dsolve({eq,i(0)=iota[0]}),power,symbolic);
> eq2:=simplify(int(convert(series(rhs(eq1),t=0,2),polynom),t=0..T)

+ int((rhs(eq20B))^2*A/2,t=0..T),power,symbolic);
> eq3:=simplify(isolate(diff(eq2,U[0])=0,U[0]));

6.2. Maple code for the Ebola optimal control problem (1)–(7)

> restart:
> with(Physics):
> eq1:=J=Intc(diff(u(tau),tau)^(2)+1/2*A*u(tau)^2, tau);
> J(u) = Int([diff(u(tau),tau)^2+1/2*A*u(tau)^2],tau = 0 .. T);
> nis:=K(U[0])=Int(G(tau,A,U[0],Y[0]),tau=0..T)

+(A/2)*int((U[0]*exp(-1/2*2^(1/2)*A^(1/2)*tau))^2,tau=0..T);
> nas:=diff(rhs(nis),U[0])=0;
> eq2:=Fundiff(eq1,u(t));
> eq4:=subs(_C2=U[0],dsolve({eq2,u(0)=U[0]}));
> restart:
> auxi:=u(t) = U[0]*exp(-1/2*2^(1/2)*A^(1/2)*t);
> aux0:=diff(s(t),t)=-rhs(auxi)*s(t);
> aux0A:=simplify(dsolve({aux0,s(0)=S[0]}),power,symbolic);
> aux0B:=s(t)=convert(series(rhs(aux0A),t=0,3),polynom);
> aux:=diff(i(t),t)=beta*s(t)*i(t)-mu*i(t);
> auxA:=subs(aux0A,aux);
> aux1:=dsolve({auxA,i(0)=iota[0]});
> aux1A:=i(t)=simplify(convert(series(rhs(aux1),t=0,5),polynom),power,

symbolic);
> aux1B:=int(rhs(aux1A),t=0..T)+int(A*(rhs(auxi))^2/2,t=0..T);
> plas:=K(U[0])=subs(iota[0]=i[0],aux1B);
> plas1:=K(U[0])=i[0]*T+E[2]*T^2+E[3]*T^3

+i[0]/48*E[4]*T^4-i[0]/240*E[5]*T^5
+1/4*U[0]^2*2^(1/2)*A^(1/2)
-1/4*2^(1/2)*A^(1/2)*U[0]^2*exp(-2^(1/2)*A^(1/2)*T);

> aux1C:=diff(aux1B,U[0])=0;
> aux1D:=isolate(aux1C,U[0]);
> yiyi:=U[0]*exp(-1/2*2^(1/2)*A^(1/2)*T/2)=U[0]/Q;
> isolate(U[0]*exp(-1/2*2^(1/2)*A^(1/2)*T/2)=U[0]/Q,A);
> param:={mu=0.1,beta=0.2,iota[0]=0.05,S[0]=0.95,T=100,Q=500};
> solu:=evalf(subs(param,aux1D));
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> plot(rhs(solu),A=0.001..0.1);
> solu1:=evalf(isolate(U[0]*exp(-1/2*2^(1/2)*A^(1/2)*100/2)=U[0]/500,A));
> solu2:=evalf(subs(solu1,solu));
> plot(subs(solu2,solu1,rhs(auxi)),t=0..100);
> u:=subs(solu2,solu1,rhs(auxi));
> plot(u,t=0..100);
> with(plots):
> beta:=0.2;
> mu:=0.1;
> sysnc := diff(s(t),t)=-beta*s(t)*i(t),diff(i(t),t)=beta*s(t)*i(t)-mu*i(t),

diff(r(t),t)=mu*i(t):
> fcns := {s(t),i(t),r(t)}:
> p:= dsolve({sysnc,s(0)=0.95,i(0)=0.05,r(0)=0},fcns,type=numeric,method=

classical):
> odeplot(p, [[t,s(t)],[t,i(t)],[t,r(t)]],0..100);
> g:=odeplot(p, [[t,r(t)]],0..100,color=blue):
> gA:=odeplot(p, [[t,s(t)]],0..100,color=blue):
> gB:=odeplot(p, [[t,i(t)]],0..100,color=blue):
> sysc := diff(s(t),t)=-beta*s(t)*i(t)-u*s(t),

diff(i(t),t)=beta*s(t)*i(t)-mu*i(t),
diff(r(t),t)=mu*i(t)+u*s(t):

> fcns := {s(t),i(t),r(t)}:
> pc:= dsolve({sysc,s(0)=0.95,i(0)=0.05,r(0)=0},fcns,type=numeric,method=

classical):
> sysc;
> odeplot(pc, [[t,s(t)],[t,i(t)],[t,r(t)]],0..50);
> g1:=odeplot(pc, [[t,r(t)]],0..100,color=red):
> g1A:=odeplot(pc, [[t,s(t)]],0..100,color=red):
> g1B:=odeplot(pc, [[t,i(t)]],0..100,color=red):
> display(g,g1);
> display(gA,g1A);
> display(gB,g1B);
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