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Abstract. We consider a single item Production-Inventory-Routing problem with a
single producer/supplier and multiple retailers. Inventory management constraints are
considered both at the producer and at the retailers, following a vendor managed in-
ventory approach, where the supplier monitors the inventory at retailers and decides on
the replenishment policy for each retailer. We assume a constant production capacity.
Based on the mathematical formulation we discuss a classical Lagrangian relaxation
which allows to decompose the problem into four subproblems, and a new Lagrangian
decomposition which decomposes the problem into just a production-inventory sub-
problem and a routing subproblem. The new decomposition is enhanced with valid
inequalities. A computational study is reported to compare the bounds from the two
approaches.

Keywords: Inventory routing; Lagrangian relaxation; Lagrangian decomposition; Lower
bounds.

1 Introduction

We consider a single item Production-Inventory-Routing (PIR) problem with a single pro-
ducer/supplier and multiple clients/retailers. Such complex problems combining production,
inventory and routing decisions have been receiving a great attention in recent years with a
large increase of the number of publications. Applications to complex supply chain problems
can be found, for instance, in [3,4,6,10,13,16,19]. For surveys on complex inventory routing
problems covering theoretical and industrial aspects see [1,7,11]. The problem considered in
this paper �ts in the land transportation mode since for each time period a vehicle routing
problem is solved in order to �nd the low cost distribution plan for the deliveries assigned to
that period. This contrasts with maritime transportation where, in general, a route may take
several time periods [3,4,6,10].

In the past, such complex problems were typically decomposed and solved separately.
Lagrangian relaxations for related problems have been used in [9,15,23] where the problem is
decomposed into several simpler subproblems. Recent works have shown that there are gains
in considering the interrelated problems simultaneously in order to coordinate the di�erent
decisions [5,20,23]. There are a few papers reporting exact algorithms to solve these problems.
Such exact algorithms are based on branch-and-cut procedures. Some examples can be found
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in [3,4,8,20,22]. In order to solve e�ciently such problems by branch-and-cut it is important
to use good formulations [3,4]. Therefore, some relevant work has been done on the modeling
of complex problems, either by including valid inequalities or by using extended formulations,
see [2,3,4,5,13,20,22,24].

We consider a classical model for the PIR problem and discuss a Lagrangian relaxation
and a Lagrangian decomposition. First we adapt the Lagrangian relaxation given by Fumero
and Vercellis in [15], that decomposes the problem into (i) a trivial production subproblem
at the supplier, (ii) a trivial lotsizing problem at the supplier, (iii) a lotsizing problem at
each client, and (iv) a capacitated vehicle routing problem in each time period. Then we
propose a new Lagrangian decomposition that uses a duplication of variables. The problem
is decomposed into (i) a subproblem that considers the production at the supplier and the
inventory management at the supplier and clients, and (ii) several vehicle routing subproblems,
one for each time period. The Lagrangian decomposition is enhanced with the inclusion of
valid inequalities. Although the subproblems are more complex than the subproblems resulting
from the classical Lagrangian relaxation, computational tests show that by considering such
more complex subproblems (all of them are NP-hard) one obtains better bounds when the
subproblems can be solved to optimality.

The outline of the paper is as follows. In Section 2 we introduce a mixed integer formu-
lation to the PIR problem. In Section 3 we present a Lagrangian relaxation that is similar
to the one given in [15]. Then, in Section 4 we introduce a new Lagrangian decomposition
and discuss enhancements to tighten each subproblem resulting from the decomposition. In
Section 5 the details of benchmark instances generation are given, and computational results
to test the model and compare the Lagrangian relaxation with the Lagrangian decomposition
are presented. Finally, the conclusions are stated in Section 6.

2 Mathematical model

In this section we introduce a mixed integer formulation to the PIR problem.

Consider parameters n, nt, and m representing the number of clients, the number of peri-
ods, and the number of available vehicles, respectively. De�ne the sets Nc = {1, . . . , n}, and
T = {1, . . . , nt} representing the set of clients and the set of periods, respectively. Consid-
ering node 0 as the producer, N = {0} ∪ Nc is the set of nodes (producer and clients), and
A = {(i, j) : i, j ∈ N, i 6= j} is the set of arcs. Additionally, consider the following parameters:
dit is the demand of client i ∈ Nc in period t ∈ T ; S0

i is the initial stock at node i ∈ N ; Ii
is the inventory limit at node i ∈ N ; P t is the production capacity in period t ∈ T ; Q is the
capacity vehicles; Qit = min{Q,

∑
`∈t...nt di`, dit+Ii} is the delivery quantity limit in period

t ∈ T at client i ∈ Nc. For cost parameters, SC is the set up cost for producing in a period,
PC is the unit production cost, V C is the cost for using a vehicle, Hi is the unit holding cost
at node i ∈ N , and Cij is the traveling cost from node i to node j, (i, j) ∈ A.

For the production and inventory decision we de�ne the following variables: yt is a binary
variable that indicates whether there is production in period t ∈ T or not; pt is the production
level in period t ∈ T ; sit is the stock level at node i ∈ N at the end of period t ∈ T ; qit indicates
the quantity delivered at node i ∈ Nc in period t ∈ T . For the routing decisions we de�ne
the variables: xijt indicates whether a vehicle travels in arc (i, j) ∈ A in period t ∈ T or not;
zit is a binary variable that is one if node i ∈ Nc is visited in period t ∈ T ; vt indicates the
number of vehicles leaving the producer in period t ∈ T , and fijt is the quantity of product
transported in arc (i, j) ∈ A in period t ∈ T .
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The PIR model is as follows:

min
∑
t∈T

SC yt +
∑
t∈T

PC pt +
∑
t∈T

∑
i∈N

Hisit +
∑
t∈T

∑
(i,j)∈A

Cijxijt +
∑
t∈T

V Cvt (1)

subject to S0
0 + pt =

∑
i∈Nc

qit + s0t t = 1 (2)

s0,t−1 + pt =
∑
i∈Nc

qit + s0t ∀t ∈ T, t > 1 (3)

S0
i + qit = dit + sit ∀i ∈ Nc, t = 1 (4)

si,t−1 + qit = dit + sit ∀i ∈ Nc,∀t ∈ T, t > 1 (5)

sit ≤ Ii ∀i ∈ N, ∀t ∈ T (6)

pt ≤ P t yt ∀t ∈ T (7)

qit ≤ Qit zit ∀i ∈ Nc,∀t ∈ T (8)∑
j∈N

xijt = zit ∀i ∈ Nc,∀t ∈ T (9)

∑
j∈N

xjit +
∑
j∈N

xijt = 2zit ∀i ∈ N, ∀t ∈ T (10)

∑
j∈N

x0jt = vt ∀t ∈ T (11)

vt ≤ m ∀t ∈ T (12)∑
i∈N

fijt −
∑
i∈Nc

fjit = qjt ∀j ∈ Nc,∀t ∈ T (13)

fijt ≤ Q xijt ∀(i, j) ∈ A,∀t ∈ T (14)

yt, zit, xijt ∈ {0, 1} ∀i, j ∈ N, ∀t ∈ T (15)

vt, fijt ∈ Z+ ∀i, j ∈ N, ∀t ∈ T (16)

sit, pt, qit ≥ 0 ∀i ∈ N, ∀t ∈ T (17)

The objective function (1) is to minimize the total cost which includes the production
set-up, the production, the holding, the traveling, and the vehicle usage costs. Constraints
(2) and (3) are the inventory conservation constraints at the producer, and (4) and (5) are
the inventory conservation constraints at clients. Constraints (6) impose a storage capacity
at the producer and at each client. Constraints (7) impose limits on the production at each
period, and constraints (8) impose limits on the delivery quantity at each client for each
period. Constraints (9) and (10) are the routing constraints. Constraints (11) together with
constraints (12) guarantee that the number of vehicles leaving the producer does not exceeds
the available number of vehicles. Constraints (13) are the �ow balance constraints at clients
and constraints (14) guarantee that the capacity of each vehicle is not exceeded. Constraints
(15), (16), and (17) are the variables domain constraints.

3 Lagrangian relaxation

Here we present a Lagrangian relaxation that follows the one from Fumero and Vercelis [15],
however in [15] constraints (8) are not considered. In order to derive the Lagrangian relaxation
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we associate multipliers λSt to constraints (2) (for t = 1) and (3) (for t > 1), nonnegative
multipliers λDit to constraints (8) and nonnegative multipliers λFijt to constraints (14) and
dualize these constraints in the usual Lagrangian way.

This leads to the following relaxation

L (λS , λD, λF ) = min
∑
t∈T

SCyt +
∑
t∈T

PCpt +
∑
t∈T

∑
i∈N

Hisit +
∑
t∈T

∑
(i,j)∈A

Cijxijt +
∑
t∈T

V Cvt+

+ λS1 (S
0
0 + p1 −

∑
i∈N

qi1 − s01) +
∑

t∈T, t>1

λSt (s0,t−1 + pt −
∑
i∈N

qit − s0t) +

+
∑
t∈T

∑
i∈Nc

λDijt(qit −Qit) +
∑
t∈T

∑
(i,j)∈A

λFijt(fijt −Q xijt)

subject to (4)− (13), (15)− (17).

This problem can be separated into four subproblems: a production subproblem (on variables
yt, pt), an inventory subproblem at the supplier (on variables s0t), an inventory subproblem
at the retailers (on variables sit, qit, fijt) and a routing subproblem (on variables xijt, zit, vt).
The �rst two subproblems can de solved by inspection.

For each set of multipliers (λS , λD, λF ), with λS ∈ R, λD ∈ R+
0 , and λ

F ∈ R+
0 , the value of

L (λS , λD, λF ) gives a lower bound on the optimum value of the PIR problem. To obtain the
best lower bound the following dual Lagrangian problem:maxλS∈R,λD≥0,λF≥0 L (λS , λD, λF ),
has to be solved.

A subgradient optimization procedure [17] is used to solve the dual Lagrangian problem.
This procedure starts by initializing the Lagrangian multipliers (λS , λD, λF ) to (λS0 , λ

D
0 , λ

F
0 ).

We set (λS0 )t = S0
0 , t ∈ T , (λS0 )nt+1 = 0, (λD0 )it = (S0

0 + n)/Qit, i ∈ Nc, t ∈ T and
(λF0 )ijt = 1/Q, (i, j) ∈ A, t ∈ T. Then, iteratively, at each iteration k, the relaxed prob-
lem L (λSk , λ

D
k , λ

F
k ) is solved and the Lagrangian multipliers are updated using a direction

(dSk , d
D
k , d

F
k ) and a step-size (sSk , s

D
k , s

F
k ) as follows:

λSk+1 = max{λSk + sSkd
S
k }, λDk+1 = max{λDk + sDk d

D
k }, and λFk+1 = max{λFk + sFk d

F
k }.

The direction, following Held, Wolfe and Crowder [17], is updated as follows:

dSk = ∇Sk , dDk = ∇Dk , and dFk = ∇Fk ,

considering the following subgradients: (∇Sk )t = S0
0 + pt −

∑
i∈Nc

qit − s0t, t = 1, (∇Sk )t =
s0,t−1 + pt −

∑
i∈Nc

qit − s0t, t ∈ T , t > 1, (∇Dk )it = qit −Qit, i ∈ Nc, t ∈ T and (∇Fk )ijt =
fijt −Q xijt, (i, j) ∈ A, t ∈ T. For the step-size, following Shor [21], we consider:

sSk =ρ
UB −L (λSk , λ

D
k , λ

F
k )

∇Sk dSk
, sDk =ρ

UB −L (λSk , λ
D
k , λ

F
k )

∇Dk dDk
, sFk =ρ

UB −L (λSk , λ
D
k , λ

F
k )

∇Fk dFk

with ρ ∈]0, 2[, and where UB is the best upper bound known.

4 Lagrangian decomposition

In this section a Lagrangian decomposition of the PIR model is considered, where variables
qit and zit are duplicated. New variables q1it replace qit in constraints (2)-(5), variables z2it
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replace zit in constraints (9)-(10), and variables q2it replace qit in constraints (13). Constraints
(8) are also duplicated and replaced by the following two sets of constraints

q1it ≤ Qit z1it, ∀i ∈ Nc,∀t ∈ T, (18)

q2it ≤ Qit z2it, ∀i ∈ Nc,∀t ∈ T. (19)

Additionally the following equalities are added

q1it = q2it ∀i ∈ Nc,∀t ∈ T (20)

z1it = z2it ∀i ∈ Nc,∀t ∈ T (21)

Associating multipliers λq to constraints (20) and multipliers λz to constraints (21), and
dualizing these constraints on the Lagrangian way, two separated subproblems are obtained:
a production-inventory subproblem, and a routing subproblem.

The production-inventory subproblem corresponds to the relaxation

L PI(λq, λz) = min
∑
t∈T

SCyt +
∑
t∈T

PCpt +
∑
t∈T

∑
i∈N

Hisit +
∑
t∈T

∑
i∈Nc

(λqitq
1
it + λzitz

1
it)

subject to the modi�ed constraints (2)-(7) and (18), with variables zit and qit replaced by z1it
and q1it, respectively. While the routing subproblem corresponds to the relaxation

L R(λq, λz) = min
∑
t∈T

∑
(i,j)∈A

Cijxijt +
∑
t∈T

V Cvt −
∑
t∈T

∑
i∈Nc

(λqitq
2
it + λzitz

2
it)

subject to the modi�ed constraints (9)-(14) and (19), with variables zit and qit replaced by
z2it and q2it, respectively. This routing subproblem can be further separated into nt routing
subproblems, one for each period.

All these subproblems are NP-hard but can be solved in general for reasonable size in-
stances. For each set of multipliers (λq, λz) the value of L PI(λq, λz) + L R(λq, λz) gives a
lower bound on the optimum value of the PIR problem. To obtain the best lower bound the
corresponding dual Lagrangian problem has to be solved. A subgradient optimization proce-
dure [17] as described above is used. The multipliers are initialized as follows: (λz0)it = C0i, i ∈
Nc, t ∈ T , (λq0)it = (S0

i + n)/Qit, i ∈ Nc, t ∈ T.
To improve the Lagrangian decomposition each subproblem is tightened. For the production-

inventory subproblem the following valid inequalities are considered.

t∑
`=1

y` ≥

⌈
1

P t
(
∑
i∈Nc

t∑
`=1

di` −
∑
i∈N

S0
i )

⌉
∀t ∈ T, t > 1 (22)

t∑
`=1

z1i` ≥

⌈
1

min{Ii, Q}

t∑
`=1

(di` − S0
i )

⌉
∀i ∈ Nc,∀t ∈ T (23)

Inequalities (22) impose a minimum number of production periods, while inequalities (23)
impose a minimum number of visits to each client i.

For the routing subproblems we consider the Miller-Tucker-Zemlin [18] reformulation. We
introduce new variables wit indicating the load on the vehicle when client i ∈ Nc is visited in
period t ∈ T (before delivering), and include the classical set of constraints,

wit ≥ wjt + qit −Q(1− xijt), ∀(i, j) ∈ A,∀t ∈ T, (24)

wit ≤ Qzit, ∀i ∈ Nc,∀t ∈ T, (25)

wit ≥ 0, ∀i ∈ Nc,∀t ∈ T. (26)
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Inequalities (24)-(26) are added to each routing subproblem.

5 Computational Results

A computational experimentation was conducted to test the bounds provided by the two
Lagrangian approaches. The computational tests were conducted using the Xpress-Optimizer
28.01.04 solver with the default options.

First we provide details on the generation of benchmark instances. The coordinates of the
clients are randomly generated in a 100 by 100 square grid, and the producer is located in the
center of the grid. For the number of clients two values are considered: n = 10, and n = 20.
For the number of periods three values are considered: nt = 5, nt = 10, and nt = 15. For each
pair of values n, nt, three instances are generated, giving a total of 18 instances.

For each value of n, a complete graph with a symmetric traveling cost matrix associated
to the set of arcs is considered. The traveling costs Cij and Cji are the Euclidean distance
between the nodes i and j in the grid. The demand values, dit, are randomly generate between
40 and 80 units. The initial stock at producer S0

0 is zero, and the initial stock S0
i at client

i is randomly generated between 0 and three times the average demand of client i. The
holding cost Hi is one for all i ∈ N . The maximum inventory level Ii is 500 for all i ∈ N .
The production capacity P t is 50% of the average demand. The production set up cost and
the unit production cost are given by SC = 100 and PC = 1, respectively. The number of
available vehicles is m = 3. The vehicle usage cost is V C = 50, and the vehicle capacity is
Q = 500.

Table 1 reports the instance data and the bounds obtained through the computational
experiments. First column displays the number n of clients, the second column displays the
number nt of periods, and the third column is the instance identi�er number for each pair
n, nt. The next columns report the results obtained with the linear programming relaxation
of model PIR (columns LP), the Lagrangian relaxation given in Section 3 (columns LR), the
Lagrangian decomposition given in Section 4 with all enhancements (columns ILD) and the
best upper bound obtained using the branch and bound procedure from the solver Xpress to
solve the PIR model given in Section 2 with a time limit of 2 hours (column UB). None of
the tested instances could be solved to optimality within the given running time limit. For
columns LP we report the value of the lower bound (LB) and the running time (Time). For
columns LR and ILD we report the value of the lower bound (LB), the number of iterations
of the subgradient algorithm (Iter), and the running time (Time).

We can see that the linear relaxation is fast. The lower bounds obtained using the La-
grangian relaxation are lower than the lower bounds obtained using the linear relaxation. In
theory one should observe the opposite relation between bounds when the optimal multipliers
are used. This means that we could not identify near optimal multipliers. The Lagrangian
decomposition provides always the best lower bounds. The Lagrangian relaxation terminates
when the maximum number of iterations (500) was attained, while the Lagrangian decompo-
sition terminates, in most of the cases, when the time limit of 20 minutes was attained. Thus,
one may conclude that solving the Lagrangian decomposition at each iteration of the subgra-
dient algorithm requires high running times (as expected, since more complex subproblems
are solved in each iteration) but provides better lower bounds.
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Table 1: Comparison of bounds obtained via Lagrangian approaches.
LP LR IDL UB

n nt Inst. LB Time LB Iter Time LB Iter Time

10 5 1 1736.5 0 1496.0 500 19.5 2338.8 41 56.3 2754
10 5 2 1491.6 0 1236.4 500 19.4 1690.2 16 37.9 2637
10 5 3 1491.9 0 1240.5 500 19.2 1910.8 25 34.7 2835
10 10 1 2864.2 0 2531.9 500 72.2 4604.7 33 167.8 5603
10 10 2 2730.3 0 2247.6 500 74.0 3618.9 13 89.0 5464
10 10 3 2673.0 0 2215.5 500 71.9 3678.9 20 111.0 5692
10 15 1 3452.2 0.1 3070.6 500 251.3 6640.9 27 202.8 8261
10 15 2 3603.6 0.1 2855.9 500 250.5 5294.8 17 169.5 7828
10 15 3 3928.7 0.1 3262.2 500 251.2 5588.3 18 151.3 8729
20 5 1 2504.5 0.1 1630.8 500 122.5 2805.6 14 451.6 3919
20 5 2 2670.6 0.1 1952.7 500 124.4 2618.4 15 550.5 4252
20 5 3 2917.4 0.1 2123.5 500 118.0 2970.2 17 336.6 4438
20 10 1 4535.9 0.3 2809.9 500 239.4 5665.7 17 1213.3 7914
20 10 2 4116.7 0.3 2514.2 500 238.7 4791.9 15 1283.2 7644
20 10 3 4571.8 0.3 2788.3 500 241.7 5676.0 22 683.2 8805
20 15 1 6230.2 0.4 3749.2 500 493.8 7578.9 8 1253.5 12067
20 15 2 5917.3 0.5 3403.5 500 498.3 6890.4 10 1235.4 11785
20 15 3 6739.8 0.4 4091.3 500 494.9 8464.0 18 1066.3 13335

6 Conclusions

We consider a complex production-inventory-routing problem. For this problem two La-
grangian approaches are tested. One is a classical Lagrangian relaxation that allows to split
the problem into several small subproblems, where two of them can be solved by inspection.
The other approach decomposes the problem into two main subproblems (one is a production-
inventory problem and the other is a routing problem). Such subproblems are still complex
and NP-hard. Nevertheless, they can be solved for reasonable size instances using a commer-
cial solver. The computational tests indicate that keeping a higher degree of complexity in
the subproblems leads to harder subproblems, requiring larger running times to solve to op-
timality, but allow us to derive better lower bounds. Also, as the quality of the lower bounds
obtained through Lagrangian approaches depend greatly on the quality of the Lagrangian
multipliers, the computational results show that �nding near optimal multipliers is a chal-
lenging task when we consider the classical approach that uses many multipliers. Overall
we may conclude that, when the subproblems can be solved to optimality, then it may be
preferable to consider such complex subproblems and perform less iterations of a subgradient
method using a few number of Lagrangian multipliers, than to consider simpler subproblems
which allow to perform more iterations, but require the tuning of an high number of La-
grangian multipliers. As future research we aim to investigate decomposition approaches that
are based on similar decomposition ideas as the one we tested here, but where no computation
of Lagrangian multipliers is required.
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