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Abstract. This paper considers a multi-item inventory distribution problem moti-
vated by a practical case occurring in the logistic operations of an hospital. There, a
single warehouse supplies several nursing wards. The goal is to de�ne a weekly distri-
bution plan of medical products that minimizes the visits to wards, while respecting
inventory capacities and safety stock levels. A mathematical formulation is introduced
and several improvements such as tightening constraints, valid inequalities and an ex-
tended reformulation are discussed. In order to deal with real size instances, an hybrid
heuristic based on mathematical models is introduced and the improvements are dis-
cussed. A branch-and-cut algorithm using all the discussed improvements is proposed.
Finally, a computational experimentation is reported to show the relevance of the model
improvements and the quality of the heuristic scheme.

Keywords: Multi-item inventory; Hospital logistics; Branch-and-cut; Supply chain
management.

1 Introduction

We consider a Multi-Item Inventory Distribution (MIID) problem. The motivation for
this study is to investigate logistics activities in respect to supply chain management in an
hospital. There is a central warehouse that receives goods from suppliers and delivers those
goods to nursing wards regularly. The ward's demand comprise a wide variety of products
which include, amongst others, medicines, hospital supplies and medical devices. The main
focus of this work is the planning of the delivery scheme of goods to meet the demand while
keeping the stock levels between the desired bounds. The planning horizon is one week and
should be repeated every week. The MIID problem is to �nd the delivery plan that satis�es
the inventory and delivery capacity constraints that minimizes the number of visits to wards.

From the inventory management point of view, we consider a multi-item problem where
one warehouse supplies several locations (wards), which are typically retailers in literature.
Each location is visited at most once per day (except for extraordinary deliveries not consid-
ered here). As the number of time periods is small, inventory aspects are considered only at
the supplied locations, since the supply decisions for the warehouse are taken with months in
advance. Only a part of items (goods) are consumed at each location. For those items, safety
stocks are mandatory at each location. Furthermore, the stock level in the �rst and last period
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must coincide, in order to ensure that the delivery plan can be replicated in subsequent weeks.
A global stock upper bound is imposed at each location. Given the proximity of locations,
the routing aspects can be ignored. Only the capacity of the vehicle is considered to bound
the amount to be delivered in each time period.

Operations Research has been widely used in health care issues. Many operations research
papers on health care subjects have been published in both Operations Research and Health
Care journals. In [19] is presented a survey which points out a variety of studied problems in
health care using operational research techniques. They include, among others, health care
planning aspects, management and logistics health problems and the health care practices
with treatment planning and preventive care. In [23] is presented the state-of-the-art of the
research on material logistics management in an hospital. In [14,22] are considered pharma-
ceutical supply chain and inventory management issues in health care industry. The same
topic of research is covered in [9] where the tasks and management approaches of hospital
materials are considered. In [16] a case study is reported that looks into logistics activities of
hospitals in Singapore. From the point of view of inventory management, complex problems
combining inventory management and distribution decisions are receiving an increased atten-
tion in the last years. In [10] an overall introduction into inventory management is presented.
In [7] a review of replenishment policies for hospital inventory systems and two models to
deal with capacity limitations and service requirements are presented. In [18] inventory mod-
els are discussed for hospital problems. Practical complex inventory problems occur in other
industries, from maritime transportation [2,3] to land transportation [8]. A recent review on
complex inventory problems combined with production and distribution aspects is given in
[1]. In relation to other practical problems, the problem considered in this paper has the
particularity of including a huge number of variables and the distribution costs are negligible.

We provide a mixed integer formulation for MIID problem and discuss several approaches
to improve that formulation, such as, tightening of constraints; derivation of valid inequalities;
use of an extended reformulation. Several such techniques have been used for related inventory
management problems and are of main importance to allow the improved formulation to
solve practical problems through branch-and-cut and branch-and-bound algorithms. For exact
branch-and-cut approaches see [2,3,5,20]. The MIID problem is NP-hard, since it generalizes
well-known NP-hard problems, such as the capacitated lot-sizing problem [17]. Therefore we
also propose an heuristic scheme to �nd good feasible solutions. This scheme works in two
steps. In the �rst step we solve a relaxation obtained by aggregating all products and ignoring
some constraints. In the second step a local search is conducted in the neighborhood of the �rst
step solution. Finally, an exact branch-and-cut algorithm is proposed to the MIID problem.
This algorithm uses the improved formulation and it is feeded up with the upper bound given
by the heuristic scheme.

The outline of the paper is as follows. In Section 2 we introduce a mixed integer formulation
to the MIID problem. In Section 3 we discuss the model improvements. In Section 4 we
introduce the heuristic scheme and in Section 5 a branch-and-cut algorithm based on the
improved model is proposed. In Section 6 the details of benchmark instances generation are
given, and computational results to test the model, the model improvements, the heuristic
scheme and the branch-and-cut algorithm are presented. Finally, the conclusions are stated
in Section 7.
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2 Mathematical model

In this section we introduce a mixed integer formulation to the MIID problem. Consider
the sets N = {1, . . . , n}, L = {1, . . . ,m}, and T = {1, . . . , r}, representing the set of items,
the set of locations (wards) to visit, and the set of time periods, respectively. Additionally, Nj

represents the set of items consumed in location j and Li represents the set of locations that
consume item i.We de�ne the following variables: xijt is the amount of item i to be delivered
at location j in time period t; sijt is the stock level of item i in location j at time period t;
and the binary variables yjt take value 1 if there is a delivery in location j at time period t,
and 0 otherwise. Additionally, we consider the following parameters. The demand for item i
in location j at time period t is represented by dijt. The minimum stock level (safety stock)
of item i in location j at time period t is Sijt. There is a single vehicle with capacity C, and
we assume item i uses ci units of that capacity. We also assume that only K locations can be
visited per time period, and each location has a limited stock capacity of Vj items. The initial
stock level of product i at location j is given by Sij . M is an upper-bound for the number of
items delivered at each location and each period. The MIID model is as follows:

min
∑
j∈L

∑
t∈T

yjt (1)

s.t. xijt + sij,t−1 = dijt + sijt, i ∈ N, j ∈ L, t ∈ T, (2)∑
i∈Nj

xijt ≤Myjt, j ∈ L, t ∈ T, (3)

∑
j∈M

yjt ≤ K, t ∈ T, (4)

∑
i∈N

∑
j∈Li

cixijt ≤ C, t ∈ T, (5)

∑
i∈Nj

sijt ≤ Vj , j ∈ L, t ∈ T, (6)

sijt ≥ Sijt, i ∈ N, j ∈ Li, t ∈ T, (7)

sij0 = Sij , i ∈ N, j ∈ Li, (8)

xijt ∈ Z+, i ∈ N, j ∈ Li, t ∈ T, (9)

yjt ∈ {0, 1}, j ∈ L, t ∈ T. (10)

The objective function (1) is to minimize the total number of visits to locations. Constraints
(2) are the inventory �ow balance at the locations. Constraints (3) ensure that if any item
is delivered to location j at period t, then variable yjt must be one. Constraints (4) and (5)
impose limits on the deliveries in each time period. Constraints (4) state that only a limited
number of locations can be visited while the vehicle capacity is guaranteed by constraints (5).
Constraints (6) impose a storage capacity limit at each location. Safety stocks are imposed
by the inventory lower bound constraints (7). Constraints (8), (9) and (10) are the variable
domain constraints.

In this practical case it is desirable that the distribution plan for the planning week could
be repeated for other weeks with similar demand rates. For this purpose, we need to ensure
that the stock at the end of the time horizon is equal to the initial stock, that is, Sijr = Sij .
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Example 1. In Table 1 we present an example having 5 items, 5 periods and 2 locations
(wards) with N1 = {1, 2, 3, 4} and N2 = {2, 4, 5}. The optimal delivery quantities are pre-
sented in the last �ve columns with y12 = y13 = y24 = y25 = 1 and the optimal value is 4.

Table 1. Example of a supply scheme. For each item and each ward is displayed the initial stock, and
for each time period is displayed the safety stock, the demand and the optimal delivery quantities.

ward item
Sij

Sijt demand (dijt) deliver (xijt)

(j) (i) t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5

1

1 7 2 2 2 2 7 3 3 5 2 9 - 22 - - -
2 44 11 11 11 11 44 7 8 9 10 21 - 19 36 - -
3 27 7 7 7 7 27 4 7 6 4 12 - 33 - - -
4 25 6 6 6 6 25 4 2 4 3 18 - 31 - - -

2
2 37 9 9 9 9 37 5 6 8 10 18 - - - 2 45
4 27 7 7 7 7 27 5 3 5 2 18 - - - - 33
5 23 6 6 6 6 23 3 2 4 2 18 - - - 28 1

3 Model improvements

It is well-known that the performance of exact algorithms based on mathematical models,
such as the branch-and-bound and the branch-and-cut depend greatly on the quality of the
model, see [15] for general integer programming problems, and [17] for lot-sizing problems. In
this section we discuss model improvements that aim at tightening the formulation, that is,
deriving a formulation whose linear relaxation is closer to the convex hull of the set of feasible
solutions.

In order to ease the presentation we start with the introduction of the concept of net
demand (see [2] for a related use of this concept). The net demand of item i in location j at
time period t is denoted by ndijt and represents the minimum amount of item i that must
be delivered in location j at time period t taking into account the initial stock level and the
safety stocks (lower bound on the inventory levels). In this case it can be computed as follows:

ndijt = max{0,
t∑

`=1

dij` + Sijt − Sij −
t−1∑
`=1

ndij`}.

The net demand is computed iteratively for each time period. For time period t = 1, the net
demand is just the demand in period 1, dij1, plus the safety stock at the end of time period
1, Sij1, minus the initial inventory level. If the initial inventory level is enough to cover the
demand and the safety stock, then the net demand is zero. For the remaining periods, the
net demand is computed as the net demand until period t (

∑t
`=1 dij`+Sijt−Sij), minus the

accumulated net demand until the previous time period (
∑t−1

`=1 ndij`).

Example 2. Consider the case of item 1 and location 1 given in Example 1, where the initial
inventory level is S11 = 7, the safety stock vector for 5 periods is given by S11· = [2, 2, 2, 2, 7],
and the demand vector is d11· = [3, 3, 5, 2, 9]. The net demands are given by: nd111 =
max{0, 3+2− 7} = 0, nd112 = max{0, 6+2− 7− 0} = 1, nd113 = max{0, 11+2− 7− 1} = 5,
nd114 = max{0, 13 + 2− 7− 6} = 2, nd115 = max{0, 22 + 7− 7− 8} = 14.
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Net demands can be used to strengthen inequalities (3). Constant M can be replaced by

Mjt =
∑
i∈Nj

r∑
`=t

ndij`

which is the minimum upper bound on the delivery quantity at each location j and on the
time period t. The strengthened inequalities are∑

i∈Nj

xijt ≤Mjtyjt, j ∈ L, t ∈ T. (11)

Next, we discuss two types of approaches to further strengthen the model: the inclusion
of valid inequalities and the use of extended formulations.

3.1 Valid inequalities

A �rst family of valid inequalities can be derived by disaggregation of inequalities (11) (or
the weaker version (3)), as follows:

xijt ≤
r∑

`=t

ndij`yjt, i ∈ N, j ∈ Li, t ∈ T. (12)

As a large number of items may be considered, introducing all such inequalities can make the
model too large. Several approaches are possible. An approach is to add these inequalities
dynamically, that is, add each inequality when it is violated by the linear fractional solution.
Another approach is to consider only a representative item for each location and add these
inequalities for this item. For each location j ∈ L, we choose the representative item, denoted
by i(j), as follows:

i(j) = argmaxi∈Nj
{
∑
t∈T

ndijt }. (13)

Another family of valid inequalities is a type of cut set inequalities which have been intro-
duced for related, although simpler, lot-sizing problems with upper bounds on the inventory
levels, see [6]. For each j ∈ L de�ne the set Tj = {(t1, t2) ∈ (T, T ) |

∑
i∈Nj

∑t2
t=t1

ndijt > Vj}.
Thus (t1, t2) belongs to Tj if the accumulated net demand during the periods t1 to t2 is greater
than the upper stock capacity, which implies that this demand cannot be fully met using only
inventory. Thus, at least a delivery is necessary to the location j during the periods t1 to t2:

t2∑
t=t1

yjt ≥ 1, j ∈ L, (t1, t2) ∈ Tj . (14)

When t1 = 1 we obtain a particular case since the initial inventory level can be used instead
of the upper bound capacity Vj . As we are already using this initial stock to compute the net
demands, we just need to check in which time period at least one net demand is positive in
order to enforce the �rst visit to that location. For each location j let t(j) denote the �rst time

period where the net demand is positive, that is, t(j) = min{t ∈ T |
∑

i∈Nj

∑t−1
`=1 ndij` =

0 ∧
∑

i∈Nj

∑t
`=1 ndij` > 0}. Then, the following inequalities are valid for the set of feasible

solutions of the MIID problem:

t(j)∑
`=1

yj` ≥ 1, j ∈ L. (15)
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3.2 Extended formulation

A common approach to derive tighter models in lot-sizing problems is to use extended
formulations that use additional variables, see for instance [11,20,21]. Here we consider ad-
ditional variables vijt` to indicate the fraction of the net demand for item i in location j at
time period ` that is delivered in time period t, for ` ≥ t.

The following constraints are added to the model MIID:

xijt =

r∑
`=t

ndij`vijt`, i ∈ N, j ∈ Li, t ∈ T, (16)

vijt` ≤ yjt, i ∈ N, j ∈ Li, t, ` ∈ T |t ≤ `, (17)∑̀
t=1

vijt` = 1, i ∈ N, j ∈ Li, ` ∈ T, (18)

vijt` ≥ 0, i ∈ N, j ∈ Li, t, ` ∈ T |t ≤ `. (19)

Constraints (16) relate the new variables with the xijt variables. Constraints (17) ensure that
if vijt` > 0 for at least one ` ≥ t, then yjt must be one. Constraints (18) ensure that demand
must be completely satis�ed, and constraints (19) de�ne the new variables as nonnegative.
Constraints (18) together with constraints (19) ensure vijt` ≤ 1.

The resulting model (with constraints (2)-(10), (16)-(19)), denoted by MIID-EF, can be-
come too large for practical size instances. In order to use such type of reformulation in
practical instances we tested two weaker approaches. One is to introduce constraints (16)-
(19) only for the representative item i(j) of each location j. The resulting model will be
denoted by MIID-EF-R. The other approach is to introduce the extended formulation for
the aggregated model. For the aggregated case we de�ne Vjt` to indicate the fraction of the
total net demand for period ` in location j delivered in time period t, for ` ≥ t. The extended
formulation for the aggregated model, denoted by MIID-A-EF, is given by (2)-(10), (20)-(23),
with: ∑

i∈Nj

xijt =
∑
i∈Nj

r∑
`=t

ndij`Vjt`, j ∈ L, t ∈ T, (20)

Vjt` ≤ yjt, j ∈ L, t, ` ∈ T |t ≤ `, (21)∑̀
t=1

Vjt` = 1, j ∈ L, ` ∈ T, (22)

Vjt` ≥ 0, j ∈ L, t, l ∈ T |t ≤ `. (23)

4 Heuristic Scheme

As the MIID problem is NP-hard it is important to derive heuristic schemes that provide
good quality solutions within reasonable amount of time. Here we describe an hybrid heuristic
scheme that uses mathematical models. Hybrid schemes have been successfully employed in
the past [4].

First we solve a relaxation of MIID-A-EF where the integrality of the x variables is re-
laxed (constraints (9)) and the vehicle capacity constraints (5) are ignored. This relaxation
is tightened with inequalities (15). This relaxation of the MIID problem is denoted RMIID.
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A feasible solution (x, y) to the RMIID problem may lead to an infeasible solution to the
MIID problem. That is, �xing yjt = yjt in model (2)-(10) may originate an infeasible solution.
Nevertheless such solution is expected to be �close� to a good solution of MIID. The next step
is a local search heuristic that searches for solutions in a neighborhood of y. In order to do
that search we add the following inequality,∑

j∈L,t∈T |yjt=0

yjt +
∑

j∈L,t∈T |yjt=1

(1− yjt) ≤ ∆. (24)

Inequality (24) counts the number of variables that are allowed to �ip their value from the
value taken in the solution.

We denote the Local Search model which is the MIID model with the additional constraint
(24) by LSP (∆). Notice that by increasing the value of ∆ the model becomes less restrictive,
that is, the neighborhood becomes larger. For larger values of ∆ the constraint (24) becomes
ine�ective and we obtain the original model MIID. This local search can be seen as a particular
case of the Local Branching approach introduced in [13].

The heuristic scheme is given in Algorithm 1.

Algorithm 1 An hybrid heuristic scheme for the MIID problem.

1: Solve the RMIID model through branch-and-cut, using a solver, for α seconds.
2: Let yjt denote the best solution found.
3: Set ∆← β.
4: repeat
5: do a local search by solving the LSP (∆) for α seconds;
6: ∆← ∆+ 1;
7: until a feasible solution is found.

In the computational tests we used α = 100 and β = 5.

5 Branch and cut algorithm

The discussed model improvements to tighten the formulation and the proposed heuris-
tic were used together within a branch and cut algorithm. Several combinations were tested.
For completeness, the exact approach that provided best results is given below in Algorithm 2.

Algorithm 2 The Branch and Cut algorithm.

1: Solve the heuristic described in Algorithm 1.
2: Set BFS to the value obtained in Step 1.
3: Solve the improved model (1)-(2),(4)-(10), (11), (12) for the representative item only, (14)-(15)

with a solver and with the inclusion of the cuto� point BFS.

6 Computational Results

In order to test the performance of the heuristic and the exact approaches, in this section
we report some computational experiments. All the computational tests were performed using
a processor Intel(R) Core(TM) i7-4750HQ CPU @ 2.00 GHz with 8GB of RAM and using the
software Xpress 7.6 (Xpress Release July 2015 with Xpress-Optimizer 28.01.04 and Xpress-
Mosel 3.10.0) [12].
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First we provide details on the generation of benchmark instances. We generated 12 in-
stances with n = 4200 items and m = 20 wards that resemble the dimensions of the real
problem. The demands were randomly generated following patterns of some representative
items. Except in special cases, there are no deliveries on weekends and holidays. Thus we
considered r = 5 time periods. The �rst four periods are a single week day, corresponding to
Monday, Tuesday, Wednesday and Thursday. The last one, Friday, is deemed to correspond
to three days, Friday, Saturday and Sunday. There are items required in all nursing wards
and there are speci�c items that are only required in some nursing wards. The data was
generated such that approximately 0.6% of the items are required in all the nursing wards
and each ward requires about 10% of the items. The demand of each item, at each ward on
the �rst four periods are randomly generated between 0 and 60 and in the �fth period can
be up to 180. The capacity ci of each item i is a random number between 1 and 5 and the
capacity C of the vehicle is approximately 30% of the capacity of the total demand during
all the �ve periods. The safety stock Sijt is obtained by rounding up the average demand
by period. For the initial stock level Sij of each product i at location j two cases were con-
sidered. In case 1 this value is approximately four times the corresponding average demand
per period while in case 2 this value is approximately three times of the average demand.
The value of stock capacity Vj is a randomly generated number between 30% and 80% of the
total demand at this nursing ward plus the initial stock level. These instances can be found
in http://www.cerveira.utad.pt/datamod2016.

In the computational experiments were considered two values for parameter K, K = 15
and K = 12, which bounds the number of locations that can be visited per time period,
constraints (4). The instances A11, A21, A31, A12, A22, A32 consider parameter K = 15
while instances B11, B21, B31, B12, B22, B32 consider parameter K = 12. Instances ending
with 1 correspond to case 1 of the initial stock level while instances ending with 2 correspond
to case 2 of the initial stock level. For each pair of these parameters we have three instances.
The middle number of the name of the instance di�erentiates these three instances.

Table 2. Optimal supply scheme

case 1 case 2

ward t=1 t=2 t=3 t=4 t=5 # visits t=1 t=2 t=3 t=4 t=5 # visits

w1 X X 2 X X 2

w2 X X 2 X X 2

w3 X 1 X X 2

w4 X 1 X 1

w5 X X 2 X X 2

w6 X 1 X X 2

w7 X 1 X 1

w8 X X 2 X X 2

w9 X X 2 X X 2

w10 X 1 X X 2

w11 X X 2 X X 2

w12 X X 2 X X 2

w13 X X 2 X X 2

w14 X X 2 X X 2

w15 X X 2 X X 2

w16 X 1 X X 2

w17 X X 2 X X 2

w18 X X 2 X X 2

w19 X X 2 X X 2

w20 X X 2 X X 2

Total delivers=34 Total delivers=38
Average of Sij= 124.46 Average of Sij=93.36
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In Table 2 are shown the days when there are deliveries for an optimal solution considering
the two cases for initial stock level. This illustrates how the initial stock levels in�uence the
weekly number of deliveries. In this instance, the number of items required at each nursing
ward ranges between 409 and 477, being 436 on average. Amongst the 4200 items, 28 are
required in all wards and approximately 45% are speci�c items of a nursing ward. In case 1,
the initial stock Sij on average is equal to 124.46 and the optimal value is 34 while, in case 2,
the average initial stock is equal to 93.36 and the optimal value decreased to 38. With higher
values of initial stock, case 1, there are more wards visited only once. By a detailed analysis
of the solutions it can be seen that even in the cases with two delivers per week, there are
some products delivered once.

The computational results obtained for the 12 instances of the MIID problem are displayed
in Tables 3, 5, 6, and 7. All the computational times are given in seconds.

Table 3 displays the computational results for the model with no improvements (model (1)-
(10)) solved using the branch-and-cut procedure from the Xpress solver, with a time limit of
7200 seconds. Column �bb� indicates the value of the best bound found when the algorithm
terminates. The corresponding gap, gap = mip−bb

mip × 100, is displayed in column �gap�, and
the value of the best integer solution found is indicated in column �mip�. We can see that for
all the instances the algorithm has stopped without proving optimality.

Table 3. Computational results for the model (1)-(10) solved using the branch-and-cut procedure.

instance bb gap mip instance bb gap mip
A11 29.0 12.0 33.0 B11 31.2 8.2 34.0
A21 30.2 18.3 37.0 B21 31.2 15.7 37.0
A31 29.1 17.0 35.0 B31 30.0 16.6 36.0
A12 26.5 30.1 38.0 B12 28.3 25.6 38.0
A22 30.4 21.9 39.0 B22 32.2 17.3 39.0
A32 27.6 25.4 37.0 B32 38.0 4.9 40.0

Tables 5 and 6 display the computational results for the linear relaxation of model (1)-
(10), denoted by lp, and its improvements from Section 3. For readability, in Table 4 the
tested relaxations are summarized and characterized in terms of their constraints.

Table 4. List of relaxed models with indication of the constraints added to the linear relaxation lp.

relaxed model added constraints

lp-A (11)
lp-D (12)
lp-R (12) for the representative item given by (13)
lp-I (14)-(15)

lp-MIID-EF (16)-(19)
lp-MIID-EF-R (16)-(19) for the representative item
lp-MIID-A-EF (20)-(23)

Table 5 displays the computational results obtained for lp, lp-A, lp-D, lp-R and lp-I. Each
pair of columns (except the �rst one) give the value of the linear relaxation and running time.
The best linear programming relaxation values were obtained for lp-D and lp-I relaxations.
However lp-D has the disadvantage of using more execution time since it adds many more
inequalities.
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Table 5. Computational results for the linear relaxation of the model (1)-(10) and the improvements
from Section 3.1.

lp lp-A lp-D lp-R lp-I
instance value time value time value time value time value time

A11 1.4 0.9 20.0 1.4 20.9 91.1 20.0 0.9 20.5 0.9
A21 1.4 0.8 20.0 1.3 21.0 97.7 20.0 0.9 20.5 1.0
A31 1.4 0.9 20.0 1.4 20.9 109.3 20.0 0.9 20.5 0.9
A12 1.4 0.7 20.3 3.7 22.7 79.8 20.1 0.8 25.7 0.7
A22 1.4 0.7 20.2 3.4 22.5 101.1 20.0 0.6 25.8 0.7
A32 1.4 0.7 20.2 3.7 22.7 101.2 20.0 0.6 23.9 0.7
B11 1.4 0.9 20.0 1.4 20.9 93.6 20.0 0.9 20.5 0.9
B21 1.4 0.8 20.0 1.3 21.0 106.7 20.0 0.8 20.5 1.0
B31 1.4 0.9 20.0 1.4 20.9 120.1 20.0 0.9 20.5 0.9
B12 1.4 0.7 20.3 3.7 22.7 79.1 20.1 0.8 25.7 0.7
B22 1.4 0.7 20.2 3.3 22.5 91.6 20.0 0.6 25.9 0.7
B32 1.4 0.7 20.3 3.3 22.7 105.3 20.0 0.6 29.6 0.7

Table 6 displays the computational results for the linear relaxation of the extended for-
mulations lp-MIID-EF, lp-MIID-EF-R, and lp-MIID-A-EF, see Table 4. As for Table 5, each
pair of columns give the value of the linear relaxation of the improved model and the corre-
sponding running time. The best value was obtained when considering model MIID-EF.

Table 6. Computational results for the linear relaxations of the extended formulations from Sec-
tion 3.2.

lp-MIID-EF lp-MIID-EF-R lp-MIID-A-EF
instance value time value time value time

A11 23.3 3.9 20.0 0.9 20.0 0.9
A21 23.7 3.8 20.0 0.9 20.0 0.9
A31 23.4 5.6 20.0 0.9 20.0 0.9
A12 25.7 8.3 20.3 1.0 20.3 1.0
A22 26.2 7.6 20.4 1.1 20.4 1.1
A32 26.4 7.4 20.4 1.0 20.4 1.0
B11 23.3 3.9 20.0 0.8 20.0 0.8
B21 23.7 3.8 20.0 0.8 20.0 0.9
B31 23.4 5.5 20.0 0.8 20.0 0.9
B12 25.6 8.1 20.4 1.0 20.4 1.0
B22 26.2 6.7 20.4 1.2 20.4 1.2
B32 25.7 9.5 20.4 1.1 20.4 1.0

Overall, one can verify that the best approaches to improve the linear relaxation bound are
the inclusion of the extended formulation, the disaggregated inequalities (12), lp-D relaxation,
and the addition of inequalities (14) and (15), lp-I relaxation. While the two �rst cases imply
a large increase on the size of the model, with inequalities (14) and (15) the size is kept under
control.

Table 7 displays the computational results for Algorithm 1 and for the improved branch-
and-cut algorithm introduced in Section 5. The second and third columns give the objective
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value and running time of the �rst part of the heuristic scheme, that is, solving the relaxation
model RMIID as described in Step 1 of Algorithm 1. The fourth column gives the value of
the best solution found with the second part of the heuristic scheme as described in Steps 2 to
7 of Algorithm 1 and the corresponding running time is given in column �ve. The last three
columns give the best solution value, the running time, and the �nal gap of the improved
branch-and-cut procedure, Algorithm 2, solved with the Xpress solver and imposing a time
limit of 1200 seconds.

Table 7. Computational results for the heuristic procedure, and for the improved branch-and-cut.

Heuristic
Improved branch-and-cut

instance
Relaxation RMIID Local branching
value time value time value time gap

A11 34 100.4 34 57.7 34 5.9 0.0
A21 37 99.6 37 100.0 37 6.5 0.0
A31 35 19.6 35 80.2 35 59.9 0.0
A12 38 99.9 38 100.2 38 218.9 0.0
A22 39 71.9 39 100.5 39 1200 8.3
A32 37 38.0 37 103.2 37 204.8 0.0
B11 34 99.5 34 26.2 34 5.7 0.0
B21 37 100.3 37 101.4 37 6.1 0.0
B31 35 20.4 35 72.3 35 47.9 0.0
B12 39 99.4 38 100.0 38 366.7 0.0
B22 39 40.7 39 100.4 39 1200 8.5
B32 41 99.5 40 100.1 40 136.2 0.0

With the improved branch-and-cut, the optimal value is obtained for 10 out of 12 instances.
Only for the instances A22 and B22, the obtained solutions have a lower bound gap of 8.3 and
8.5, respectively. These results con�rm both the quality of the heuristic and the importance
of the improvements to derive optimal or near optimal solutions within reasonable running
times.

7 Conclusions

The paper presents exact and heuristic approaches for a multi-item problem that com-
bines lot-sizing and distribution decisions, occurring in the logistics of an hospital. All the
approaches are based on a mathematical formulation which is improved with valid inequalities
and an extended formulation. The heuristic scheme combines the resolution of a relaxation
with a local search. The exact approach is a branch-and-cut algorithm based on the improved
model and using as cut-o� the upper bound provided with the heuristic scheme. Computa-
tional results show the heuristic and the exact approach are e�cient in solving the tested
instances.

For future research we intend to integrate the current weekly distribution planning models
into a larger horizon planning problem where the orders from suppliers and the inventory
management at the warehouse are considered.
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