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Abstract

Let H be an undirected simple graph with vertices v1, . . . , vk and G1, . . . , Gk be a

sequence formed with k disjoint graphs Gi, i = 1, . . . , k. The H-generalized composition

(or H-join) of this sequence is denoted by H [G1, . . . , Gk] . In this work, we characterize the

caterpillar graphs as a H-generalized composition and we study their spectra and Randić

spectra, respectively. As an application, we obtain an improved and tight upper bound for

the Energy and the Randić energy of these interesting trees.

1 Motivation and Preliminaries

We begin this section introducing the caterpillar tree and establishing some remarks

where these interesting trees can be used in Mathematical Chemistry. In this work,
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we deal with undirected simple graphs hereafter simply called graphs. For each graph

G, the vertex set is denoted by V(G) and its edge set by E (G) . A path with r

vertices, Pr, of a graph G is a sequence of r distinct vertices v1, . . . , vr, such that

vivi+1 ∈ E(G) for i = 1, . . . , r − 1. A tree is a connected graph without cycles. For

r ≥ 0, a star with r + 1 vertices, Sr+1, is a tree with a central vertex with degree

r and all remaining r vertices are pendant. A caterpillar is a tree of order n ≥ 5

(notice that a tree of order less than 5 is a path or a star) such that removing all

the pendant vertices produces a path with at least two vertices. In particular, the

caterpillar T (q1, . . . , qr) is obtained from a path Pr, with r ≥ 2, attaching the central

vertex of the star Sqi+1 (1 ≤ i ≤ r) to the i-th vertex of the path Pr. Then, the order

of the caterpillar is n = r+q1 + · · ·+qr. These trees are studied in detail in the theory

of graph spectra (see for instance, [12–14]) and there are some connections with it

in Mathematical Chemistry. Molecular graphs represent the structure of molecules.

They are generated, in general, using the following rule: vertices stand for atoms and

edges for bonds. There are two basic types of molecular graphs: those representing

saturated hydrocarbons and those representing conjugated π-electron systems. In the

second class, the molecular graph should have perfect matchings (called ”Kekulé

structure”). Below, a type of data reduction graph is exhibited. In the 1930s, the

German scholar Erich Hückel put forward a method for finding approximate solutions

of the Schrödinger equation of a class of organic molecules, the so-called conjugated

hydrocarbons (conjugated π-electron systems) which have a system of connected p-

orbitals with delocalized π-electrons (electrons in a molecule that are not associated

with a single atom or a covalent bond). Thus, the HMO (Hückel molecular orbital

model) enables to describe approximately the behavior of the so-called π-electrons

in a conjugated molecule, especially in conjugated hydrocarbons. For more details

see [11] and the references therein.

On the other hand, in Chemistry, resonance is a way of describing delocalized elec-

trons within certain molecules. The individual hexagons of a given benzenoid system

may or may not be resonant. Information on such resonance relations (among the

individual hexagons) are best described using caterpillar trees (see [8]). To illustrate

this fundamental relation we consider the two graphs in [8] presented below.



Figure 1: Benzenoid

Figure 2: Associated caterpillar T

The hexagons of B may be grouped into subsets, namely {1, 2, 3} ; {4, 5, 6, 7, 8} ;

{9, 10, 11, 12}. Two hexagons are resonant provided that they don’t belong to the

same subset. Similarly the edges of T can be subdivided into analogous three subsets

observing that in some cases only two edges of the two distinct subsets are adjacent.

Thus, the number of selections of k mutually resonant (non-adjacent) hexagons in

a benzenoid system (or polyhex graph) equals to the number of k-matchings of T

(number of sets of k non-adjacent edges). For more details see in [8] and the references

therein.

Returning to HMO theory, the total π-electron energy, Eπ, is a quantum-chemical

characteristic of conjugated molecules that agrees with their thermodynamic proper-

ties. For conjugated hydrocarbons in their ground electronic states, Eπ is calculated

from the eigenvalues of the adjacency matrix of the molecular graph:

Eπ = nα + Eβ,

where n is the number of carbon atoms, α and β are the HMO carbon-atom coulomb

and carbon-carbon resonance integrals, respectively. For the majority conjugated



π-electron systems

E =
n∑
i=1

|λi| , (1)

where λ1, . . . , λn are the eigenvalues of the adjacency matrix A of the underlying

molecular graph. For molecular structure researches, E is the only interesting quan-

tity. In fact, it is traditional to consider E as the total π-electron energy expressed

in β-units. The spectral invariant defined by (1) is called the energy of G. For more

details see [11] and the references therein.

If G is a bipartite graph, then its characteristic polynomial is

φ (G, x) =

bn2 c∑
k=0

(−1)k b2kx
n−2k,

where b0 := 1 and b2k ≥ 0. If G = T is a tree then b2k := m (T, k), for all k =

1, . . . ,
⌊
n
2

⌋
, where m (T, k) equals to the number of k -matchings of T , (see [11]).

For two bipartite graphs G1 and G2, we define G1 � G2 if and only if b2k (G1) ≤

b2k (G2) for all k = 1, . . . ,
⌊
n
2

⌋
. Moreover, if there exists a k such that b2k (G1) <

b2k (G2) we write G1 ≺ G2. The following result was proven. See [11].

G1 � G2 ⇒ E (G1) ≤ E (G2)

G1 ≺ G2 ⇒ E (G1) < E (G2) .

By using these results the following other ones were obtained (see [11]). These

results are consequence of previous observations, namely the order relation established

above.

Here, a tree is called double star Sp,q if it is obtained by joining the center of two

stars Sp and Sq by an edge and a comet is a tree composed by a star and an appended

path. For any number n and 2 ≤ k ≤ n − 1 the comet of order n with k pendant

vertices is denoted by Pn,k. Note that it is formed by a path Pn−k of which one end

vertex coincides with a pendant vertex of a star Sk+1 of order k + 1.

1. Let Sn and Pn denote the n vertices star and path, respectively. For any tree

T with n vertices

E (Sn) ≤ E (T ) ≤ E (Pn) .



2. Let S (n− 2, 2) and S (n− 3, 3) denote two double stars of order n and Pn,n−3

denotes a comet of order n. If T � Sn then

E (Sn) < E (S (n− 2, 2)) < E (S (n− 3, 3)) < E (Pn,n−3) < E (T ) .

From the above it is clear that there exists a correlation among the resonance

relations of a given benzenoid system and the energy of its associated caterpillar.

This was a motivation for the study of the energy of the caterpillars.

Now, we introduce some more specific notation used throughout the text. We deal

with graphs G of order n, and we set V(G) = {v1, . . . , vn}. An edge with end vertices

vi and vj is denoted by vivj and then we say that the vertices vi and vj are adjacent

or neighbors. Sometimes, by convenience, the edge vivj is represented by ij. The set

of neighbors of vi, NG(vi), is called the neighborhood of vi and its cardinality, di is

the degree of vi. The maximum and minimum degree of the vertices of G are denoted

by ∆ = ∆(G) and δ = δ(G), respectively. A graph G is called p-regular whenever

∆ = δ = p.

We denote the adjacency matrix of G by AG. The Laplacian matrix of G is

L = LG = DG −AG, where DG is the diagonal matrix of vertex degrees of G. For

spectral properties of these matrices see e.g. [6].

For a matrix M we denote its spectrum (the multiset of the eigenvalues of M)

by σM. The multiplicities of the eigenvalues are represented in the multiset σM as

powers in square brackets. For instance, σM = {α[m1]
1 , α

[m2]
2 , . . . , α

[mq ]
q } denotes that

α1 has multiplicity m1, α2 has multiplicity m2, and so on. If α is an eigenvalue of

M and x one of its eigenvectors, the pair (α,x) is an eigenpair of M. The spectrum

of the adjacency matrix of a graph G, is just denoted by σG and the eigenvalues of

AG, λ1(G) ≥ · · · ≥ λn(G) are also called the eigenvalues of G.

Here, Kp is the complete graph of order p and the complement of a graph G is

denoted by Ḡ. We denote the square zero matrix, the all ones vector and the identity

matrix of order n by O, en and In , respectively. For the remaining basic terminology

and notation used throughout the paper we refer the book [6].



2 Randić and Normalized Laplacian matrices

We start this section introducing a nonnegative graph matrix R = RG = (rij),

where rij = 1/
√
di dj if vivj ∈ E(G), and zero otherwise. The proposed name for

R was Randić matrix of the graph (see e.g. [2]). If di = 0, for some i, then the

corresponding vertex is said isolated. By simplicity, we consider only graphs without

isolated vertices, then the diagonal matrix D−1/2 exists (recall that D−1/2 is the

diagonal matrix whose i-th diagonal entry is 1/
√
di) and the matrix L = LG =

D−1/2 LG D−1/2 is the Normalized Laplacian matrix. For spectral properties of this

matrix, see e.g. [5]. It is easy to see that

LG = In −RG (2)

implying there is an obvious relation between the eigenvalues of RG and LG. Notice

that the Normalized Laplacian matrix has the same inertia than LG, (see e.g. [9]),

and then it is a positive semidefinite matrix. This fact and equality in (2) imply that

1 is the greatest Randić eigenvalue of any graph. Moreover, a standard verification

shows that D1/2 e is an eigenvector of the Randić matrix for the eigenvalue 1.

In [2], the concept of Randić energy of the graphG, ER (G), was defined as the sum

of the absolute values of the eigenvalues of the Randić matrix and some properties,

namely lower and upper bounds for it were established. See more literature related

with this concept for instance in [2, 3, 7, 10] and in the references therein. Recently,

lower and upper bounds for the Randić energy in terms of the number of the vertices,

maximum degree, minimum degree and the determinant of the adjacency matrix of

graphs were also presented, [7].

A generalization of the join operation was introduced in [4] as follows:

Consider a family of k graphs, F = {G1, . . . , Gk}, where each graph Gi has order

ni, for i = 1 . . . k, and a graph H such that V(H) = {v1, . . . , vk}. Each vertex

vi ∈ V(H) is assigned to the graph Gi ∈ F . The H-join of G1, . . . , Gk is the graph

G = H[G1, . . . , Gk] such that V(G) =
k⋃
i=1

V(Gi) and edge set:

E(G) =

(
k⋃
i=1

E(Gi)

)
∪

 ⋃
uw∈E(H)

{ij : i ∈V(Gu), j ∈V(Gw)}

 .



This operation, where H is an arbitrary graph of order k, is the same as the so

called generalized composition, considered in [16] with the notation H[G1, . . . , Gk].

For better understanding we present here an example from [4].
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Figure 3: The H-join of F = {K3, K2, C4}, with H = P3.

This paper is organized as follows: in Section 1 and 2 we present the motivation,

notation and some concepts used throughout the text. In Section 3, we give the

Adjacency and Randić spectra of H-join of graphs and, using these results, in Section

4, we characterize the non-zeros Randić eigenvalues of some caterpillars. Finally in

Section 5, we obtain an explicit formula for an improved and tight upper bound for

the energy and the Randić energy of a caterpillar.

3 Spectra and Randić spectra of H-join of graphs

The spectrum of the H-join of regular graphs was characterized in [4, Theorem 3].

Let H be a graph with k vertices without isolated vertices. Let G1, . . . , Gk be a

sequence of k disjoint arbitrary pj-regular graphs of orders nj, j = 1, . . . , k. Let

G = H [G1, . . . , Gk] . For j = 1, . . . , k we use Aj to denote the adjacency matrices of

Gj, respectively. Let AH = (δij) be the k × k adjacency matrix of H. Define

Ĉ =


p1 δ12

√
n1n2 . . . δ1k

√
n1nk

δ12
√
n1n2 p2 δ2k

√
n2nk

...
. . . δk−1,k

√
nk−1nk

δ1k
√
n1nk δk−1,k

√
nk−1nk pk

 . (3)

Theorem 1. [4] For j = 1, . . . , k , let Gj be a pj-regular graph of order nj, with

spectrum σGj
. If G = H [G1, . . . , Gk] , and Ĉ as in (3), then

σ(G) = σĈ ∪

(
k⋃
j=1

(σGj
�{pj})

)
.



Remark 1. From (3) note that if pj = 0, for all j = 1, . . . , k, then Γk = ΛAHΛ,

where Λ2 = diag (n1, . . . , nk).

Next, we present similar results concerning the Randić spectra of the H-join of a

family of regular graphs.

It is clear that

Rj =

{ 1
pj

Aj, if pj > 0

O, if pj = 0

is the Randić matrix of the regular graph Gj. Define

Nj =
∑

vi∈NH(vj)

ni, j = 1, . . . , k. (4)

and the k(k−1)
2

-tuple of scalars

ρ = (ρ12, ρ13, . . . , ρ1k, ρ23, . . . , ρ2k, . . . , ρ(k−1)k),

such that

ρij =
δij
√
ninj√

(Ni+pi)(Nj+pj)
, (5)

i = 1, . . . , k − 1, j = i+ 1, . . . , k. Then

RG =



1
N1+p1

A1
ρ12en1eT

n2√
n1n2

· · · · · · ρ1ken1eT
nk√

n1nk

ρ12en2eT
n1√

n1n2

1
N2+p2

A2
ρ23en2eT

n3√
n2n3

· · · ρ2ken2eT
nk√

n2nk

.

.

.

ρ23en3eT
n2√

n2n3

. .
.

. .
.

.

.

.

.

.

.

.

.

.
.
. .

.
. .

ρ(k−1)kenk−1
eT
nk√

nk−1nk

ρ1kenk
eT
n1√

n1nk

ρ2kenk
eT
n2√

n2nk
· · ·

ρ(k−1)kenk
eT
nk−1√

nk−1nk

1
Nk+pk

Ak


(6)

is the Randić matrix of the H-join G = H [G1, . . . , Gk]. Let Γk be the k×k symmetric

matrix

Γk =


p1

N1+p1
ρ12 . . . ρ1(k−1) ρ1k

ρ12
p2

N2+p2
. . . ρ2(k−1) ρ2k

...
...

. . .
...

...
ρ1k ρ2k . . . ρ(k−1)k

pk
Nk+pk

 . (7)

The following result characterizes the Randić spectra of the H -joins.

Theorem 2. Let H be a graph on k vertices. Let Gi be a pj -regular graph on nj

vertices with pj ≥ 0, nj ≥ 1, for j = 1, . . . , k and G = H [G1, . . . , Gk]. Let RG be the

Randić matrix of G. Then

σRG
= σΓk

∪
k⋃
j=1

{
λ

Nj+pj
: λ ∈ σGj

\ {pj}
}
.



Proof. This follows directly from Theorem 3 in [4] due to the construction of the

matrix in (6).

Remark 2. From the formula of the entries (5) note that if pj = 0, for all j =

1, . . . , k, then Γk = ΣAHΣ where Σ2 = diag
(
n1

N1
, . . . , nk

Nk

)
.

4 An application to some spectrums of special cater-

pillars

For the caterpillar T (q1, . . . , qr), where r ≥ 3 and qi ≥ 1, with i = 1, . . . , r, we label

its vertices as follows:

1. We start labeling, from left to right, the vertices of Pr,

2. then, (and again from left to right) we use the labels r + i for the pendant

vertices at i, for all 1 ≤ i ≤ n− r.

Let H0 = T (1, . . . , 1) be the caterpillar with 2r vertices obtained from a path Pr,

with r ≥ 2, attaching the central vertex of the star S2 to the i-th vertex of the path

Pr, 1 ≤ i ≤ r. Using the described labeling of the vertices, the adjacency matrix of

H0, takes the form

AH0 =

(
APr Ir
Ir O

)
, (8)

recall that APr is the adjacency matrix of the path Pr.

Using the notation in the above section

T (q1, . . . , qr) = H0

[
K1, . . . , K1, Kq1 , . . . , Kqr

]
. (9)

By the identification in (9), the cardinality ni is

ni =

{
1, if i = 1, . . . , r
qi−r, if i = r + 1, . . . , 2r,

the regularity pi is equal to zero, for 1 ≤ i ≤ 2r. Hence by applying Theorem 1 to

T (q1, . . . , qr) we obtain.

enide
Highlight



Theorem 3. Let H0 = T (1, . . . , 1) be the caterpillar with 2r vertices. Let G =

T (q1, . . . , qr) the caterpillar with n = r+
∑r

i=1 qi vertices as described above. Let AG

be the adjacency G. Then

σAG
=
{

0[
∑r

i=1(qi−1)]
}
∪ σC2r ,

where C2r is the 2r × 2r matrix

C2r =

(
APr Λr

Λr O

)
, (10)

with Λ2
r = diag (q1, . . . , qr) .

Next, using Theorem 2 we characterize the Randić spectrum of T (q1, . . . , qr). Let

AH0 = (δij) the 2r × 2r adjacency matrix of H0 as in (8). The value of Ni in (4)

becomes

Ni =


qi + 1, if i ∈ {1, r}
qi + 2, if i ∈ {2, . . . , r − 1}
1, if i ∈ {r + 1, . . . , 2r} .

Here we consider Remark 2. For convenience, let us consider the following diagonal

matrix,

Σ2 = diag
(
n1

N1
, . . . , n2r

N2r

)
= diag

(
1

q1+1
, . . . , 1

qj+2
, . . . , 1

qr+1
, q1, . . . , qr

)
and define

Γ2r = ΣAH0Σ = (νij)1≤i,j≤2r (11)

where

νij =



1√
(qi+1)(qj+2)

, (i, j) ∈ {(1, 2)} ∪ {(r, r − 1)} ,
1√

(qi+2)(qj+1)
, (i, j) ∈ {(2, 1)} ∪ {(r − 1, r)} ,

1√
(qi+2)(qj+2)

, (i, j) ∈ {(t, t+ 1)}r−2
t=2 ∪ {(t, t− 1)}r−1

t=3 ,√
qi

qj−r+1
, (i, j) ∈ {(1, r + 1) , (r, 2r)} ,√

qi−r

qj+1
, (i, j) ∈ {(r + 1, 1) , (2r, r)} ,√

qi
qj−r+2

, (i, j) ∈ {(t, t+ r)}r−1
t=2 ,√

qi−r

qj+2
, (i, j) ∈ {(t+ r, t)}r−1

t=2 ,

0, otherwise.

(12)

As a consequence of Theorem 2 we obtain the next result.

σRT (q1,...,qr)
=
{

0[
∑r

i=1(qi−1)]
}
∪ σΓ2r .



Example 1. For the caterpillar T (3, 2, 4) = H0

[
K1, K1, K1, K3, K2, K4

]
, the matrix

in (11) becomes

Γ6=



0 1
4

0
√

3
4

0 0

1
4

0 1√
20

0
√

2
4

0

0 1√
20

0 0 0
√

4
5√

3
4

0 0 0 0 0

0
√

2
4

0 0 0 0

0 0
√

4
5

0 0 0


Then σRT (3,2,4)

=
{

0[6]
}
∪ σΓ6 =

{
0[6]
}
∪ {±1.0000,±0.8808,±0.6218}.

5 Bounds for the energy and Randić energy of

some caterpillars

In what follows we use a result in [1] to give bounds for the energy and the Randić

energy of some caterpillars.

A symmetric imprimitive matrix M (see [15, Chap. 3]) must have index 2. By the

Frobenius Form of an Irreducible Matrix [15, Theorem 3.1], in this case there exists

a permutation matrix P such that

M = Pt

(
0 M12

M21 0

)
P. (13)

Let |P| be the Frobenius matrix norm of a square matrix P. Considering a

consequence of the Cauchy-Schwarz inequality in [1], among others results, a sharp

upper bound of the energy of a symmetric imprimitive matrix M was obtained. As

a consequence, an improved upper bound for the energy of a bipartite graph was

obtained.

Theorem 4. [1] Let M be an imprimitive symmetric matrix whose Frobenius form

is given in Eq. (13). If M12 has order m1 ×m2, and M21 has order m2 ×m1 and

m̃ = min {m1,m2}, then

E (M) ≤ 2λ1 (M) + 2
√

(m̃− 1)
(
|M|2 /2− λ2

1 (M)
)
.



Equality holds if and only if m̃ = 1 or if M has 2 (m̃− 1) eigenvalues distinct of

±λ1 (M) with the same modulus, namely

√
|M|2/2−λ21(M)

m̃−1
and |m2 − m1| eigenvalues

equal to 0.

Let now H0 = T (1, . . . , 1) defined as before. Using the described above labeling of

the vertices for H0, one can see that the set of vertices of H0 can be split into two set

X and Y such that X is formed with vertices of the path whose label is odd and the

pendent vertices which are neighbors of the vertices of the path whose label is even.

In consequence, both sets X and Y have the same cardinality, m̃ = r. The following

theorems will be proved by replacing the matrix M in Theorem 4 by the matrix in

(10) (at Theorem 5) and by the matrix in (11) (at Theorem 6). In consequence, these

theorems have essentially the same proof and therefore only the proof of Theorem 6

will be given.

Theorem 5. Let T (q1, . . . , qr) be the caterpillar obtained from a path Pr, with r ≥ 3,

identifying the central vertex of the star Sqi+1 (i = 1 . . . , r) to the i-th vertex of the

path Pr. Then

E (T (q1, . . . , qr)) ≤ 2λ1 (C2r) + 2

√
(r − 1)

(
|C2r|2

2
− λ2

1 (C2r)
)
. (14)

Equality holds if and only if C2r has 2 (r − 1) eigenvalues distinct from ±λ1 (C2r)

with the same modulus, namely

√
|C2r |2

2
−1

r−1
.

The next theorem gives an upper bound for the Randić energy of T (q1, . . . , qr).

Theorem 6. Let T (q1, . . . , qr) be the caterpillar obtained from a path Pr, with r ≥ 3,

identifying the central vertex of the star Sqi+1 (i = 1 . . . , r) to the i-th vertex of the

path Pr. Then

ER (T (q1, . . . , qr)) ≤ 2 + 2

√
(r − 1)

(
|Γ2r|2

2
− 1
)
. (15)

Equality holds if and only if Γ2r has 2 (r − 1) eigenvalues distinct from ±1 with the

same modulus, namely

√
|Γ2r |2

2
−1

r−1
.

Proof. The adjacency matrix, AH0 and so Γ2r, have the Frobenius form(
0 V12

V21 0

)
,



where both matrices V12 and V21 have order r. By the results in the above section,

the nonzero eigenvalues of T (q1, . . . , qr) are the eigenvalues of Γ2r in (11). By a direct

application of Theorem 4, replacing M by Γ2r, where m̃ = r, the result follows.

Remark 3. With the next develoments we find a new upper bound for the energy

of caterpillars. For 0 < x < |C2r|√
2

, let f (x) = x +

√
(r − 1)

(
|C2r|2

2
− x2

)
. Then

f ′ (x) = 1− (r−1)x√
(r−1)

(
|C2r |2

2
−x2

) < 0 if and only if

(r − 1)
(
|C2r|2

2
− x2

)
< (r − 1)2 x2 ⇔ |C2r|√

2r
< x.

Therefore, f (x) is a non-increasing function in the open interval I =
(
|C2r|√

2r
, |C2r|√

2

)
.

Let e and ‖·‖denote the 2r-dimensional all ones vector and the Euclidean vector norm

of R2r, respectively. By the Rayleigh quotient

λ2
1 (C2r) ≥ e∗C2

2re

e∗e
≥ trace(C2

2r)
2r

= |C2r|2
2r
⇒ λ1 (C2r) ≥ |C2r|√

2r

and

|C2r|2 ≥ 2λ2
1 (C2r)⇒ |C2r|√

2
≥ λ1 (C2r) .

Hence, λ1 (C2r) ∈ I. On the other hand,

trace
(
C2

2r

)
≤ e∗C2

2re ≤ 2rλ2
1 ⇒ |C2r| ≤ ‖C2re‖ ≤

√
2rλ1.

Hence, ‖C2re‖√
2r
∈ I and

f
(
‖C2re‖√

2r

)
≥ f (λ1) ,

and by (14) we arrive at

E (T (q1, . . . , qr)) ≤ 2f
(
‖C2re‖√

2r

)
= 2

(
‖C2re‖√

2r
+

√
(r − 1)

(
|C2r|2

2
− ‖C2re‖2

2r

))
.

Now, by the computation of |C2r|2
2

, we obtain the following result.

Theorem 7. Let T (q1, . . . , qr) be the caterpillar obtained from a path Pr, with r ≥ 2,

attaching the central vertex of the star Sqi+1 (i = 1, . . . , r) to the i-th vertex of the

path Pr. Then

E (T (q1, . . . , qr)) ≤



2λ1(C2r)+2
√

(r−1)(n−1−λ21(C2r))≤
√

2
r
‖C2re‖+

√
2
r

√
(r−1)(2r(n−1)−‖C2re‖2).

Equality holds if and only if C2r has 2 (r − 1) eigenvalues distinct from ±λ1 (C2r)

with the same modulus and (λ1 (C2r) , e) is an eigenpair of C2r.

Next, from the calculation of |Γ2k

2
|2, an explicit formula of the above upper bound

for the Randić energy is obtained.

Theorem 8. Let T (q1, . . . , qr) be the caterpillar obtained from a path Pr, with r ≥ 2,

attaching the central vertex of the star Sqi+1 (1 ≤ i ≤ r) to the i-th vertex of the path

Pr. Then

ER (T (q1, . . . , qr)) ≤ Υ,

where

Υ = 2 + 2

√√√√(r − 1)

(
1+q1q2+2q1

(q1+1)(q2+2)
+ 1+qrqr−1+2qr

(qr+1)(qr−1+2)
+ qr−1

qr−1+2
+

r−2∑
i=2

1+qiqi+1+2qi
(qi+2)(qi+1+2)

− 1

)
.

(16)

Equality holds if and only if Γ2r has 2 (r − 1) eigenvalues distinct of ±1 with the

same modulus, namely

√√√√( 1+q1q2+2q1
(q1+1)(q2+2)

+ 1+qrqr−1+2qr
(qr+1)(qr−1+2)

+ qr−1

qr−1+2
+
∑r−2

i=2
1+qiqi+1+2qi

(qi+2)(qi+1+2)

)
− 1

r − 1
.

Proof. Using the entries of Γ2r in (12) and by a direct computation we see that

|Γ2r|2

2
=

1
(q1+1)(q2+2)

+ 1
(qr+1)(qr−1+2)

+ q1
q1+1

+ qr
qr+1

+
r−2∑
i=2

1
(qi+2)(qi+1+2)

+
r−1∑
i=2

qi
qi+2

= 1
(q1+1)(q2+2)

+ 1
(qr+1)(qr−1+2)

+ q1
q1+1

+ qr
qr+1

+
r−2∑
i=2

(
1

(qi+2)(qi+1+2)
+ qi

qi+2

)
+ qr−1

qr−1+2

= 1+q1q2+2q1
(q1+1)(q2+2)

+ 1+qrqr−1+2qr
(qr+1)(qr−1+2)

+ qr−1

qr−1+2
+

r−2∑
i=2

1+qiqi+1+2qi
(qi+2)(qi+1+2)

.

By a direct replacement of the last formula in (15) the result is obtained.



Below, a table with some values for the largest upper bound in Theorem 7 is

presented.

r (q1, . . . , qr) E (T (q1, . . . , qr)) T. 7
4 (5, 5, 5, 5) 18.5410 18.8769
6 (9, 9, 8, 9, 10, 9) 36.8012 37.3700
7 (11, 9, 12, 12, 12, 10, 13) 47.8409 48.5471.

Again, a table with some values for the upper bound in (16) is presented.

r (q1, . . . , qr) ER (T (q1, . . . , qr)) (16)
4 (5, 5, 5, 5) 7.0711 7.0950
6 (8, 9, 9, 7, 10, 7) 10.9906 11.0106
7 (10, 9, 7, 9, 10, 11, 9) 12.8792 12.9027.

Remark 4. We remark that if qj = 0, for some j, the matrix Γk in (7) becomes

of order k = 2r − s, where s is the number of vertices of the path without pendent

vertices. Moreover, the set of vertices can, again, be split into two sets of vertices X

and Y , where X is formed with the vertices of the path with odd label and the pendant

vertices that are neighbors to the vertices of the path with even label. In this case, by

Theorem 4, 0 is an eigenvalue of Γ2r−s with multiplicity at least ||X| − |Y ||.
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