Spectra and Randić Spectra of Caterpillar Graphs and Applications to the Energy

Enide Andrade ${ }^{1}$, Helena Gomes ${ }^{1,2}$, María Robbiano ${ }^{3}$
${ }^{1}$ CIDMA - Centro de Investigação e Desenvolvimento em Matemática e Aplicações, Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, Portugal
enide@ua.pt, hgomes@ua.pt
${ }^{2}$ Departamento de Ciências Exatas e Naturais, Escola Superior de Educação de Viseu, Instituto Politécnico de Viseu, Portugal
${ }^{3}$ Departamento de Matemáticas, Universidad Católica del Norte, Av. Angamos, 0610 Antofagasta, Chile
mrobbiano@ucn.cl

(Received September 27, 2015)

Abstract

Let H be an undirected simple graph with vertices v_{1}, \ldots, v_{k} and G_{1}, \ldots, G_{k} be a sequence formed with k disjoint graphs $G_{i}, i=1, \ldots, k$. The H-generalized composition (or H-join) of this sequence is denoted by $H\left[G_{1}, \ldots, G_{k}\right]$. In this work, we characterize the caterpillar graphs as a H-generalized composition and we study their spectra and Randić spectra, respectively. As an application, we obtain an improved and tight upper bound for the Energy and the Randić energy of these interesting trees.

1 Motivation and Preliminaries

We begin this section introducing the caterpillar tree and establishing some remarks where these interesting trees can be used in Mathematical Chemistry. In this work,
we deal with undirected simple graphs hereafter simply called graphs. For each graph G, the vertex set is denoted by $\mathcal{V}(G)$ and its edge set by $\mathcal{E}(G)$. A path with r vertices, P_{r}, of a graph G is a sequence of r distinct vertices v_{1}, \ldots, v_{r}, such that $v_{i} v_{i+1} \in \mathcal{E}(G)$ for $i=1, \ldots, r-1$. A tree is a connected graph without cycles. For $r \geq 0$, a star with $r+1$ vertices, S_{r+1}, is a tree with a central vertex with degree r and all remaining r vertices are pendant. A caterpillar is a tree of order $n \geq 5$ (notice that a tree of order less than 5 is a path or a star) such that removing all the pendant vertices produces a path with at least two vertices. In particular, the caterpillar $T\left(q_{1}, \ldots, q_{r}\right)$ is obtained from a path P_{r}, with $r \geq 2$, attaching the central vertex of the star $S_{q_{i}+1}(1 \leq i \leq r)$ to the i-th vertex of the path P_{r}. Then, the order of the caterpillar is $n=r+q_{1}+\cdots+q_{r}$. These trees are studied in detail in the theory of graph spectra (see for instance, $[12-14]$) and there are some connections with it in Mathematical Chemistry. Molecular graphs represent the structure of molecules. They are generated, in general, using the following rule: vertices stand for atoms and edges for bonds. There are two basic types of molecular graphs: those representing saturated hydrocarbons and those representing conjugated π-electron systems. In the second class, the molecular graph should have perfect matchings (called "Kekulé structure"). Below, a type of data reduction graph is exhibited. In the 1930s, the German scholar Erich Hückel put forward a method for finding approximate solutions of the Schrödinger equation of a class of organic molecules, the so-called conjugated hydrocarbons (conjugated π-electron systems) which have a system of connected porbitals with delocalized π-electrons (electrons in a molecule that are not associated with a single atom or a covalent bond). Thus, the HMO (Hückel molecular orbital model) enables to describe approximately the behavior of the so-called π-electrons in a conjugated molecule, especially in conjugated hydrocarbons. For more details see [11] and the references therein.

On the other hand, in Chemistry, resonance is a way of describing delocalized electrons within certain molecules. The individual hexagons of a given benzenoid system may or may not be resonant. Information on such resonance relations (among the individual hexagons) are best described using caterpillar trees (see [8]). To illustrate this fundamental relation we consider the two graphs in [8] presented below.

Figure 1: Benzenoid

Figure 2: Associated caterpillar T
The hexagons of B may be grouped into subsets, namely $\{1,2,3\} ;\{4,5,6,7,8\}$; $\{9,10,11,12\}$. Two hexagons are resonant provided that they don't belong to the same subset. Similarly the edges of T can be subdivided into analogous three subsets observing that in some cases only two edges of the two distinct subsets are adjacent. Thus, the number of selections of k mutually resonant (non-adjacent) hexagons in a benzenoid system (or polyhex graph) equals to the number of k-matchings of T (number of sets of k non-adjacent edges). For more details see in [8] and the references therein.

Returning to HMO theory, the total π-electron energy, E_{π}, is a quantum-chemical characteristic of conjugated molecules that agrees with their thermodynamic properties. For conjugated hydrocarbons in their ground electronic states, E_{π} is calculated from the eigenvalues of the adjacency matrix of the molecular graph:

$$
E_{\pi}=n \alpha+E \beta,
$$

where n is the number of carbon atoms, α and β are the HMO carbon-atom coulomb and carbon-carbon resonance integrals, respectively. For the majority conjugated
π-electron systems

$$
\begin{equation*}
E=\sum_{i=1}^{n}\left|\lambda_{i}\right| \tag{1}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of the adjacency matrix A of the underlying molecular graph. For molecular structure researches, E is the only interesting quantity. In fact, it is traditional to consider E as the total π-electron energy expressed in β-units. The spectral invariant defined by (1) is called the energy of G. For more details see [11] and the references therein.

If G is a bipartite graph, then its characteristic polynomial is

$$
\phi(G, x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} b_{2 k} x^{n-2 k}
$$

where $b_{0}:=1$ and $b_{2 k} \geq 0$. If $G=T$ is a tree then $b_{2 k}:=m(T, k)$, for all $k=$ $1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$, where $m(T, k)$ equals to the number of k-matchings of T, (see [11]).

For two bipartite graphs G_{1} and G_{2}, we define $G_{1} \preceq G_{2}$ if and only if $b_{2 k}\left(G_{1}\right) \leq$ $b_{2 k}\left(G_{2}\right)$ for all $k=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$. Moreover, if there exists a k such that $b_{2 k}\left(G_{1}\right)<$ $b_{2 k}\left(G_{2}\right)$ we write $G_{1} \prec G_{2}$. The following result was proven. See [11].

$$
\begin{aligned}
G_{1} & \preceq G_{2} \Rightarrow E\left(G_{1}\right) \leq E\left(G_{2}\right) \\
G_{1} & \prec G_{2} \Rightarrow E\left(G_{1}\right)<E\left(G_{2}\right)
\end{aligned}
$$

By using these results the following other ones were obtained (see [11]). These results are consequence of previous observations, namely the order relation established above.

Here, a tree is called double star $S_{p, q}$ if it is obtained by joining the center of two stars S_{p} and S_{q} by an edge and a comet is a tree composed by a star and an appended path. For any number n and $2 \leq k \leq n-1$ the comet of order n with k pendant vertices is denoted by $P_{n, k}$. Note that it is formed by a path P_{n-k} of which one end vertex coincides with a pendant vertex of a star S_{k+1} of order $k+1$.

1. Let S_{n} and P_{n} denote the n vertices star and path, respectively. For any tree T with n vertices

$$
E\left(S_{n}\right) \leq E(T) \leq E\left(P_{n}\right)
$$

2. Let $S(n-2,2)$ and $S(n-3,3)$ denote two double stars of order n and $P_{n, n-3}$ denotes a comet of order n. If $T \not \not S_{n}$ then

$$
E\left(S_{n}\right)<E(S(n-2,2))<E(S(n-3,3))<E\left(P_{n, n-3}\right)<E(T) .
$$

From the above it is clear that there exists a correlation among the resonance relations of a given benzenoid system and the energy of its associated caterpillar. This was a motivation for the study of the energy of the caterpillars.

Now, we introduce some more specific notation used throughout the text. We deal with graphs G of order n, and we set $\mathcal{V}(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. An edge with end vertices v_{i} and v_{j} is denoted by $v_{i} v_{j}$ and then we say that the vertices v_{i} and v_{j} are adjacent or neighbors. Sometimes, by convenience, the edge $v_{i} v_{j}$ is represented by $i j$. The set of neighbors of $v_{i}, N_{G}\left(v_{i}\right)$, is called the neighborhood of v_{i} and its cardinality, d_{i} is the degree of v_{i}. The maximum and minimum degree of the vertices of G are denoted by $\Delta=\Delta(G)$ and $\delta=\delta(G)$, respectively. A graph G is called p-regular whenever $\Delta=\delta=p$.

We denote the adjacency matrix of G by \mathbf{A}_{G}. The Laplacian matrix of G is $\mathbf{L}=\mathbf{L}_{G}=\mathbf{D}_{G}-\mathbf{A}_{G}$, where \mathbf{D}_{G} is the diagonal matrix of vertex degrees of G. For spectral properties of these matrices see e.g. [6].

For a matrix \mathbf{M} we denote its spectrum (the multiset of the eigenvalues of \mathbf{M}) by σ_{M}. The multiplicities of the eigenvalues are represented in the multiset σ_{M} as powers in square brackets. For instance, $\sigma_{\mathrm{M}}=\left\{\alpha_{1}^{\left[m_{1}\right]}, \alpha_{2}^{\left[m_{2}\right]}, \ldots, \alpha_{q}^{\left[m_{q}\right]}\right\}$ denotes that α_{1} has multiplicity m_{1}, α_{2} has multiplicity m_{2}, and so on. If α is an eigenvalue of \mathbf{M} and \mathbf{x} one of its eigenvectors, the pair (α, \mathbf{x}) is an eigenpair of \mathbf{M}. The spectrum of the adjacency matrix of a graph G, is just denoted by σ_{G} and the eigenvalues of $\mathbf{A}_{G}, \lambda_{1}(G) \geq \cdots \geq \lambda_{n}(G)$ are also called the eigenvalues of G.

Here, K_{p} is the complete graph of order p and the complement of a graph G is denoted by \bar{G}. We denote the square zero matrix, the all ones vector and the identity matrix of order n by $\mathbf{O}, \mathbf{e}_{n}$ and I_{n}, respectively. For the remaining basic terminology and notation used throughout the paper we refer the book [6].

2 Randić and Normalized Laplacian matrices

We start this section introducing a nonnegative graph matrix $\mathbf{R}=\mathbf{R}_{G}=\left(r_{i j}\right)$, where $r_{i j}=1 / \sqrt{d_{i} d_{j}}$ if $v_{i} v_{j} \in \mathcal{E}(G)$, and zero otherwise. The proposed name for \mathbf{R} was Randic matrix of the graph (see e.g. [2]). If $d_{i}=0$, for some i, then the corresponding vertex is said isolated. By simplicity, we consider only graphs without isolated vertices, then the diagonal matrix $\mathbf{D}^{-1 / 2}$ exists (recall that $\mathbf{D}^{-1 / 2}$ is the diagonal matrix whose i-th diagonal entry is $1 / \sqrt{d_{i}}$) and the matrix $\mathcal{L}=\mathcal{L}_{G}=$ $\mathbf{D}^{-1 / 2} \mathbf{L}_{G} \mathbf{D}^{-1 / 2}$ is the Normalized Laplacian matrix. For spectral properties of this matrix, see e.g. [5]. It is easy to see that

$$
\begin{equation*}
\mathcal{L}_{G}=I_{n}-\mathbf{R}_{G} \tag{2}
\end{equation*}
$$

implying there is an obvious relation between the eigenvalues of \mathbf{R}_{G} and \mathcal{L}_{G}. Notice that the Normalized Laplacian matrix has the same inertia than \mathbf{L}_{G}, (see e.g. [9]), and then it is a positive semidefinite matrix. This fact and equality in (2) imply that 1 is the greatest Randić eigenvalue of any graph. Moreover, a standard verification shows that $\mathbf{D}^{1 / 2} \mathbf{e}$ is an eigenvector of the Randić matrix for the eigenvalue 1.

In [2], the concept of Randić energy of the graph $G, E_{\mathbf{R}}(G)$, was defined as the sum of the absolute values of the eigenvalues of the Randić matrix and some properties, namely lower and upper bounds for it were established. See more literature related with this concept for instance in $[2,3,7,10]$ and in the references therein. Recently, lower and upper bounds for the Randić energy in terms of the number of the vertices, maximum degree, minimum degree and the determinant of the adjacency matrix of graphs were also presented, [7].

A generalization of the join operation was introduced in [4] as follows:
Consider a family of k graphs, $\mathcal{F}=\left\{G_{1}, \ldots, G_{k}\right\}$, where each graph G_{i} has order n_{i}, for $i=1 \ldots k$, and a graph H such that $\mathcal{V}(H)=\left\{v_{1}, \ldots, v_{k}\right\}$. Each vertex $v_{i} \in \mathcal{V}(H)$ is assigned to the graph $G_{i} \in \mathcal{F}$. The H-join of G_{1}, \ldots, G_{k} is the graph $G=H\left[G_{1}, \ldots, G_{k}\right]$ such that $\mathcal{V}(G)=\bigcup_{i=1}^{k} \mathcal{V}\left(G_{i}\right)$ and edge set:

$$
\mathcal{E}(G)=\left(\bigcup_{i=1}^{k} \mathcal{E}\left(G_{i}\right)\right) \cup\left(\bigcup_{u w \in \mathcal{E}(H)}\left\{i j: i \in \mathcal{V}\left(G_{u}\right), j \in \mathcal{V}\left(G_{w}\right)\right\}\right)
$$

This operation, where H is an arbitrary graph of order k, is the same as the so called generalized composition, considered in [16] with the notation $H\left[G_{1}, \ldots, G_{k}\right]$. For better understanding we present here an example from [4].

G_{1}

Figure 3: The H-join of $\mathcal{F}=\left\{K_{3}, K_{2}, C_{4}\right\}$, with $H=P_{3}$.

This paper is organized as follows: in Section 1 and 2 we present the motivation, notation and some concepts used throughout the text. In Section 3, we give the Adjacency and Randić spectra of H-join of graphs and, using these results, in Section 4, we characterize the non-zeros Randić eigenvalues of some caterpillars. Finally in Section 5, we obtain an explicit formula for an improved and tight upper bound for the energy and the Randic energy of a caterpillar.

3 Spectra and Randić spectra of H-join of graphs

The spectrum of the H-join of regular graphs was characterized in [4, Theorem 3]. Let H be a graph with k vertices without isolated vertices. Let G_{1}, \ldots, G_{k} be a sequence of k disjoint arbitrary p_{j}-regular graphs of orders $n_{j}, j=1, \ldots, k$. Let $G=H\left[G_{1}, \ldots, G_{k}\right]$. For $j=1, \ldots, k$ we use \mathbf{A}_{j} to denote the adjacency matrices of G_{j}, respectively. Let $\mathbf{A}_{H}=\left(\delta_{i j}\right)$ be the $k \times k$ adjacency matrix of H. Define

$$
\widehat{C}=\left(\begin{array}{cccc}
p_{1} & \delta_{12} \sqrt{n_{1} n_{2}} & \cdots & \delta_{1 k} \sqrt{n_{1} n_{k}} \tag{3}\\
\delta_{12} \sqrt{n_{1} n_{2}} & p_{2} & & \delta_{2 k} \sqrt{n_{2} n_{k}} \\
\vdots & & \ddots & \delta_{k-1}, k \sqrt{n_{k-1} n_{k}} \\
\delta_{1 k} \sqrt{n_{1} n_{k}} & & \delta_{k-1, k} \sqrt{n_{k-1} n_{k}} & p_{k}
\end{array}\right)
$$

Theorem 1. [4] For $j=1, \ldots, k$, let G_{j} be a p_{j}-regular graph of order n_{j}, with spectrum $\sigma_{G_{j}}$. If $G=H\left[G_{1}, \ldots, G_{k}\right]$, and \widehat{C} as in (3), then

$$
\sigma(G)=\sigma_{\widehat{C}} \cup\left(\bigcup_{j=1}^{k}\left(\sigma_{G_{j}} \backslash\left\{p_{j}\right\}\right)\right)
$$

Remark 1. From (3) note that if $p_{j}=0$, for all $j=1, \ldots, k$, then $\boldsymbol{\Gamma}_{k}=\Lambda A_{H} \Lambda$, where $\Lambda^{2}=\operatorname{diag}\left(n_{1}, \ldots, n_{k}\right)$.

Next, we present similar results concerning the Randić spectra of the H-join of a family of regular graphs.

It is clear that

$$
\mathbf{R}_{j}=\left\{\begin{array}{cl}
\frac{1}{p_{j}} \mathbf{A}_{j}, & \text { if } p_{j}>0 \\
\mathbf{O}, & \text { if } p_{j}=0
\end{array}\right.
$$

is the Randić matrix of the regular graph G_{j}. Define

$$
\begin{equation*}
N_{j}=\sum_{v_{i} \in N_{H}\left(v_{j}\right)} n_{i}, \quad j=1, \ldots, k \tag{4}
\end{equation*}
$$

and the $\frac{k(k-1)}{2}$-tuple of scalars

$$
\rho=\left(\rho_{12}, \rho_{13}, \ldots, \rho_{1 k}, \rho_{23}, \ldots, \rho_{2 k}, \ldots, \rho_{(k-1) k}\right)
$$

such that

$$
\begin{equation*}
\rho_{i j}=\frac{\delta_{i j} \sqrt{n_{i} n_{j}}}{\sqrt{\left(N_{i}+p_{i}\right)\left(N_{j}+p_{j}\right)}}, \tag{5}
\end{equation*}
$$

$i=1, \ldots, k-1, j=i+1, \ldots, k$. Then

$$
\mathbf{R}_{G}=\left(\begin{array}{ccccc}
\frac{1}{N_{1}+p_{1}} \mathbf{A}_{1} & \frac{\rho_{12} \mathbf{e}_{n_{1}} \mathbf{e}_{n_{2}}^{T}}{\sqrt{n_{1}}} & \ldots & \ldots & \frac{\rho_{1 k} \mathbf{e}_{n_{1}} \mathbf{e}_{n_{k}}^{T}}{\sqrt{n_{1} n_{k}}} \tag{6}\\
\frac{\rho_{12} \mathbf{e}_{n_{2}}}{} \mathbf{e}_{n_{1}}^{T} \\
\sqrt{n_{1} n_{2}} & \frac{1}{N_{2}+p_{2}} \mathbf{A}_{2} & \frac{\rho_{23} \mathbf{e}_{n_{2}} \mathbf{e}_{n_{3}}^{T}}{\sqrt{n_{2} n_{3}}} & \ldots & \frac{\rho_{2 k} \mathbf{e}_{2} \mathbf{e}_{n_{k}}^{T}}{\sqrt{n_{2} n_{k}}} \\
\vdots & \frac{\rho_{23} \mathbf{e}_{3} \mathbf{e}_{n_{2}}^{T}}{\sqrt{n_{2} n_{3}}} & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \frac{\rho_{(k-1) k} \mathbf{e}_{n_{k-1}} \mathbf{e}_{n_{k}}^{T}}{\sqrt{n_{k-1} n_{k}}} \\
\frac{\rho_{1 k} \mathbf{e}_{n_{k}} \mathbf{e n}_{1}^{T}}{\sqrt{n_{1} n_{k}}} & \frac{\rho_{2 k} \mathbf{e}_{n_{k}} \mathbf{e}_{n_{2}}^{T}}{\sqrt{n_{2} n_{k}}} & \cdots & \frac{\rho_{(k-1) k} \mathbf{e}_{n_{k}} \mathbf{e}_{n_{k-1}}^{T}}{\sqrt{n_{k-1} n_{k}}} & \frac{1}{N_{k}+p_{k}} \mathbf{A}_{k}
\end{array}\right)
$$

is the Randić matrix of the H-join $G=H\left[G_{1}, \ldots, G_{k}\right]$. Let $\boldsymbol{\Gamma}_{k}$ be the $k \times k$ symmetric matrix

$$
\boldsymbol{\Gamma}_{k}=\left(\begin{array}{ccccc}
\frac{p_{1}}{N_{1}+p_{1}} & \rho_{12} & \ldots & \rho_{1(k-1)} & \rho_{1 k} \tag{7}\\
\rho_{12} & \frac{p_{2}}{N_{2}+p_{2}} & \ldots & \rho_{2(k-1)} & \rho_{2 k} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\rho_{1 k} & \rho_{2 k} & \ldots & \rho_{(k-1) k} & \frac{p_{k}}{N_{k}+p_{k}}
\end{array}\right)
$$

The following result characterizes the Randić spectra of the H-joins.
Theorem 2. Let H be a graph on k vertices. Let G_{i} be a p_{j}-regular graph on n_{j} vertices with $p_{j} \geq 0, n_{j} \geq 1$, for $j=1, \ldots, k$ and $G=H\left[G_{1}, \ldots, G_{k}\right]$. Let \mathbf{R}_{G} be the Randić matrix of G. Then

$$
\sigma_{\mathbf{R}_{G}}=\sigma_{\Gamma_{k}} \cup \bigcup_{j=1}^{k}\left\{\frac{\lambda}{N_{j}+p_{j}}: \lambda \in \sigma_{G_{j}} \backslash\left\{p_{j}\right\}\right\}
$$

Proof. This follows directly from Theorem 3 in [4] due to the construction of the matrix in (6).

Remark 2. From the formula of the entries (5) note that if $p_{j}=0$, for all $j=$ $1, \ldots, k$, then $\boldsymbol{\Gamma}_{k}=\Sigma A_{H} \Sigma$ where $\Sigma^{2}=\operatorname{diag}\left(\frac{n_{1}}{N_{1}}, \ldots, \frac{n_{k}}{N_{k}}\right)$.

4 An application to some spectrums of special caterpillars

For the caterpillar $T\left(q_{1}, \ldots, q_{r}\right)$, where $r \geq 3$ and $q_{i} \geq 1$, with $i=1, \ldots, r$, we label its vertices as follows:

1. We start labeling, from left to right, the vertices of P_{r},
2. then, (and again from left to right) we use the labels $r+i$ for the pendant vertices at i, for all $1 \leq i \leq n-r$.

Let $H_{0}=T(1, \ldots, 1)$ be the caterpillar with $2 r$ vertices obtained from a path P_{r}, with $r \geq 2$, attaching the central vertex of the star S_{2} to the i-th vertex of the path $P_{r}, 1 \leq i \leq r$. Using the described labeling of the vertices, the adjacency matrix of H_{0}, takes the form

$$
\mathbf{A}_{H_{0}}=\left(\begin{array}{cc}
\mathbf{A}_{P_{r}} & \mathbf{I}_{r} \tag{8}\\
\mathbf{I}_{r} & \mathbf{O}
\end{array}\right)
$$

recall that $\mathbf{A}_{P_{r}}$ is the adjacency matrix of the path P_{r}.

Using the notation in the above section

$$
\begin{equation*}
T\left(q_{1}, \ldots, q_{r}\right)=H_{0}\left[K_{1}, \ldots, K_{1}, \bar{K}_{q_{1}}, \ldots, \bar{K}_{q_{r}}\right] \tag{9}
\end{equation*}
$$

By the identification in (9), the cardinality n_{i} is

$$
n_{i}= \begin{cases}1, & \text { if } i=1, \ldots, r \\ q_{i-r}, & \text { if } i=r+1, \ldots, 2 r\end{cases}
$$

the regularity p_{i} is equal to zero, for $1 \leq i \leq 2 r$. Hence by applying Theorem 1 to $T\left(q_{1}, \ldots, q_{r}\right)$ we obtain.

Theorem 3. Let $H_{0}=T(1, \ldots, 1)$ be the caterpillar with $2 r$ vertices. Let $G=$ $T\left(q_{1}, \ldots, q_{r}\right)$ the caterpillar with $n=r+\sum_{i=1}^{r} q_{i}$ vertices as described above. Let \mathbf{A}_{G} be the adjacency G. Then

$$
\sigma_{\mathbf{A}_{G}}=\left\{0\left[\sum_{i=1}^{r}\left(q_{i}-1\right)\right]\right\} \cup \sigma_{\mathbf{C}_{2 r}}
$$

where $\mathbf{C}_{2 r}$ is the $2 r \times 2 r$ matrix

$$
\mathbf{C}_{2 r}=\left(\begin{array}{cc}
\mathbf{A}_{P_{r}} & \Lambda_{r} \tag{10}\\
\Lambda_{r} & \mathbf{O}
\end{array}\right)
$$

with $\Lambda_{r}^{2}=\operatorname{diag}\left(q_{1}, \ldots, q_{r}\right)$.
Next, using Theorem 2 we characterize the Randić spectrum of $T\left(q_{1}, \ldots, q_{r}\right)$. Let $\mathbf{A}_{H_{0}}=\left(\delta_{i j}\right)$ the $2 r \times 2 r$ adjacency matrix of H_{0} as in (8). The value of N_{i} in (4) becomes

$$
N_{i}= \begin{cases}q_{i}+1, & \text { if } i \in\{1, r\} \\ q_{i}+2, & \text { if } i \in\{2, \ldots, r-1\} \\ 1, & \text { if } i \in\{r+1, \ldots, 2 r\}\end{cases}
$$

Here we consider Remark 2. For convenience, let us consider the following diagonal matrix,

$$
\begin{aligned}
\Sigma^{2} & =\operatorname{diag}\left(\frac{n_{1}}{N_{1}}, \ldots, \frac{n_{2 r}}{N_{2 r}}\right) \\
& =\operatorname{diag}\left(\frac{1}{q_{1}+1}, \ldots, \frac{1}{q_{j}+2}, \ldots, \frac{1}{q_{r}+1}, q_{1}, \ldots, q_{r}\right)
\end{aligned}
$$

and define

$$
\begin{equation*}
\boldsymbol{\Gamma}_{2 r}=\Sigma \mathbf{A}_{H_{0}} \Sigma=\left(\nu_{i j}\right)_{1 \leq i, j \leq 2 r} \tag{11}
\end{equation*}
$$

where

$$
\nu_{i j}= \begin{cases}\frac{1}{\sqrt{\left(q_{i}+1\right)\left(q_{j}+2\right)}}, & (i, j) \in\{(1,2)\} \cup\{(r, r-1)\}, \tag{12}\\ \frac{1}{\sqrt{\left(q_{i}+2\right)\left(q_{j}+1\right)}}, & (i, j) \in\{(2,1)\} \cup\{(r-1, r)\}, \\ \frac{1}{\sqrt{\left(q_{i}+2\right)\left(q_{j}+2\right)}}, & (i, j) \in\{(t, t+1)\}_{t=2}^{r-2} \cup\{(t, t-1)\}_{t=3}^{r-1}, \\ \sqrt{\frac{q_{i}}{q_{j-r}}}, & (i, j) \in\{(1, r+1),(r, 2 r)\}, \\ \sqrt{\frac{q_{i-r}}{q_{j}+1}}, & (i, j) \in\{(r+1,1),(2 r, r)\}, \\ \sqrt{\frac{q_{i}}{q_{j-r}}}, & (i, j) \in\{(t, t+r)\}_{t=2}^{r-1}, \\ \sqrt{\frac{q_{i-r}}{q_{j}+2}}, & (i, j) \in\{(t+r, t)\}_{t=2}^{r-1}, \\ 0, & \text { otherwise. }\end{cases}
$$

As a consequence of Theorem 2 we obtain the next result.

$$
\sigma_{\mathbf{R}_{T\left(q_{1}, \ldots, q_{r}\right)}}=\left\{0^{\left[\sum_{i=1}^{r}\left(q_{i}-1\right)\right]}\right\} \cup \sigma_{\boldsymbol{\Gamma}_{2 r}} .
$$

Example 1. For the caterpillar $T(3,2,4)=H_{0}\left[K_{1}, K_{1}, K_{1}, \bar{K}_{3}, \bar{K}_{2}, \bar{K}_{4}\right]$, the matrix in (11) becomes

$$
\boldsymbol{\Gamma}_{6}=\left(\begin{array}{cccccc}
0 & \frac{1}{4} & 0 & \sqrt{\frac{3}{4}} & 0 & 0 \\
\frac{1}{4} & 0 & \frac{1}{\sqrt{20}} & 0 & \sqrt{\frac{2}{4}} & 0 \\
0 & \frac{1}{\sqrt{20}} & 0 & 0 & 0 & \sqrt{\frac{4}{5}} \\
\sqrt{\frac{3}{4}} & 0 & 0 & 0 & 0 & 0 \\
0 & \sqrt{\frac{2}{4}} & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{\frac{4}{5}} & 0 & 0 & 0
\end{array}\right)
$$

Then $\sigma_{\mathbf{R}_{T(3,2,4)}}=\left\{0^{[6]}\right\} \cup \sigma_{\Gamma_{6}}=\left\{0^{[6]}\right\} \cup\{ \pm 1.0000, \pm 0.8808, \pm 0.6218\}$.

5 Bounds for the energy and Randic energy of some caterpillars

In what follows we use a result in [1] to give bounds for the energy and the Randić energy of some caterpillars.

A symmetric imprimitive matrix \mathbf{M} (see [15, Chap. 3]) must have index 2. By the Frobenius Form of an Irreducible Matrix [15, Theorem 3.1], in this case there exists a permutation matrix \mathbf{P} such that

$$
\mathbf{M}=\mathbf{P}^{t}\left(\begin{array}{cc}
\mathbf{0} & \mathbf{M}_{12} \tag{13}\\
\mathbf{M}_{21} & \mathbf{0}
\end{array}\right) P
$$

Let $|\mathbf{P}|$ be the Frobenius matrix norm of a square matrix \mathbf{P}. Considering a consequence of the Cauchy-Schwarz inequality in [1], among others results, a sharp upper bound of the energy of a symmetric imprimitive matrix \mathbf{M} was obtained. As a consequence, an improved upper bound for the energy of a bipartite graph was obtained.

Theorem 4. [1] Let \mathbf{M} be an imprimitive symmetric matrix whose Frobenius form is given in Eq. (13). If \mathbf{M}_{12} has order $m_{1} \times m_{2}$, and \mathbf{M}_{21} has order $m_{2} \times m_{1}$ and $\widetilde{m}=\min \left\{m_{1}, m_{2}\right\}$, then

$$
E(\mathbf{M}) \leq 2 \lambda_{1}(\mathbf{M})+2 \sqrt{(\widetilde{m}-1)\left(|\mathbf{M}|^{2} / 2-\lambda_{1}^{2}(\mathbf{M})\right)}
$$

Equality holds if and only if $\widetilde{m}=1$ or if \mathbf{M} has $2(\widetilde{m}-1)$ eigenvalues distinct of $\pm \lambda_{1}(\mathbf{M})$ with the same modulus, namely $\sqrt{\frac{|\mathbf{M}|^{2} / 2-\lambda_{1}^{2}(\mathbf{M})}{\tilde{m}-1}}$ and $\left|m_{2}-m_{1}\right|$ eigenvalues equal to 0 .

Let now $H_{0}=T(1, \ldots, 1)$ defined as before. Using the described above labeling of the vertices for H_{0}, one can see that the set of vertices of H_{0} can be split into two set X and Y such that X is formed with vertices of the path whose label is odd and the pendent vertices which are neighbors of the vertices of the path whose label is even. In consequence, both sets X and Y have the same cardinality, $\widetilde{m}=r$. The following theorems will be proved by replacing the matrix \mathbf{M} in Theorem 4 by the matrix in (10) (at Theorem 5) and by the matrix in (11) (at Theorem 6). In consequence, these theorems have essentially the same proof and therefore only the proof of Theorem 6 will be given.

Theorem 5. Let $T\left(q_{1}, \ldots, q_{r}\right)$ be the caterpillar obtained from a path P_{r}, with $r \geq 3$, identifying the central vertex of the star $S_{q_{i}+1}(i=1 \ldots, r)$ to the i-th vertex of the path P_{r}. Then

$$
\begin{equation*}
E\left(T\left(q_{1}, \ldots, q_{r}\right)\right) \leq 2 \lambda_{1}\left(\mathbf{C}_{2 r}\right)+2 \sqrt{(r-1)\left(\frac{\left|\mathbf{C}_{2 r}\right|^{2}}{2}-\lambda_{1}^{2}\left(\mathbf{C}_{2 r}\right)\right)} \tag{14}
\end{equation*}
$$

Equality holds if and only if $\mathbf{C}_{2 r}$ has $2(r-1)$ eigenvalues distinct from $\pm \lambda_{1}\left(\mathbf{C}_{2 r}\right)$ with the same modulus, namely $\sqrt{\frac{\frac{\left|\mathbf{C}_{2 r}\right|^{2}}{2}-1}{r-1}}$.

The next theorem gives an upper bound for the Randić energy of $T\left(q_{1}, \ldots, q_{r}\right)$.
Theorem 6. Let $T\left(q_{1}, \ldots, q_{r}\right)$ be the caterpillar obtained from a path P_{r}, with $r \geq 3$, identifying the central vertex of the star $S_{q_{i}+1}(i=1 \ldots, r)$ to the i-th vertex of the path P_{r}. Then

$$
\begin{equation*}
E_{\mathbf{R}}\left(T\left(q_{1}, \ldots, q_{r}\right)\right) \leq 2+2 \sqrt{(r-1)\left(\frac{\left|\boldsymbol{\Gamma}_{2 r}\right|^{2}}{2}-1\right)} . \tag{15}
\end{equation*}
$$

Equality holds if and only if $\boldsymbol{\Gamma}_{2 r}$ has $2(r-1)$ eigenvalues distinct from ± 1 with the same modulus, namely $\sqrt{\frac{\left|\boldsymbol{\Gamma}_{2 r}\right|^{2}}{2}-1}$ r-1.

Proof. The adjacency matrix, $\mathbf{A}_{H_{0}}$ and so $\boldsymbol{\Gamma}_{2 r}$, have the Frobenius form

$$
\left(\begin{array}{cc}
0 & \mathbf{V}_{12} \\
\mathbf{V}_{21} & 0
\end{array}\right)
$$

where both matrices \mathbf{V}_{12} and \mathbf{V}_{21} have order r. By the results in the above section, the nonzero eigenvalues of $T\left(q_{1}, \ldots, q_{r}\right)$ are the eigenvalues of $\boldsymbol{\Gamma}_{2 r}$ in (11). By a direct application of Theorem 4, replacing \mathbf{M} by $\boldsymbol{\Gamma}_{2 r}$, where $\widetilde{m}=r$, the result follows.

Remark 3. With the next develoments we find a new upper bound for the energy of caterpillars. For $0<x<\frac{\left|\mathbf{C}_{2 r}\right|}{\sqrt{2}}$, let $f(x)=x+\sqrt{(r-1)\left(\frac{\left|\mathbf{C}_{2 r}\right|^{2}}{2}-x^{2}\right)}$. Then $f^{\prime}(x)=1-\frac{(r-1) x}{\sqrt{(r-1)\left(\frac{\left|\mathbf{C}_{2 r}\right|^{2}}{2}-x^{2}\right)}}<0$ if and only if

$$
(r-1)\left(\frac{\left|\mathbf{C}_{2 r}\right|^{2}}{2}-x^{2}\right)<(r-1)^{2} x^{2} \Leftrightarrow \frac{\left|\mathbf{C}_{2 r}\right|}{\sqrt{2 r}}<x .
$$

Therefore, $f(x)$ is a non-increasing function in the open interval $I=\left(\frac{\left|\mathbf{C}_{2 r}\right|}{\sqrt{2 r}}, \frac{\left|\mathbf{C}_{2 r}\right|}{\sqrt{2}}\right)$. Let \mathbf{e} and $\|\cdot\|$ denote the $2 r$-dimensional all ones vector and the Euclidean vector norm of $\mathbb{R}^{2 r}$, respectively. By the Rayleigh quotient

$$
\lambda_{1}^{2}\left(\mathbf{C}_{2 r}\right) \geq \frac{\mathbf{e}^{*} \mathbf{C}_{2 r}^{2} \mathrm{e}}{\mathbf{e}^{*} \mathrm{e}} \geq \frac{\operatorname{trace}\left(\mathbf{C}_{2 r}^{2}\right)}{2 r}=\frac{\left|\mathbf{C}_{2 r}\right|^{2}}{2 r} \Rightarrow \lambda_{1}\left(\mathbf{C}_{2 r}\right) \geq \frac{\left|\mathbf{C}_{2 r}\right|}{\sqrt{2 r}}
$$

and

$$
\left|\mathbf{C}_{2 r}\right|^{2} \geq 2 \lambda_{1}^{2}\left(\mathbf{C}_{2 r}\right) \Rightarrow \frac{\left|\mathbf{C}_{2 r}\right|}{\sqrt{2}} \geq \lambda_{1}\left(\mathbf{C}_{2 r}\right)
$$

Hence, $\lambda_{1}\left(\mathbf{C}_{2 r}\right) \in I$. On the other hand,

$$
\operatorname{trace}\left(\mathbf{C}_{2 r}^{2}\right) \leq \mathbf{e}^{*} \mathbf{C}_{2 r}^{2} \mathbf{e} \leq 2 r \lambda_{1}^{2} \Rightarrow\left|\mathbf{C}_{2 r}\right| \leq\left\|\mathbf{C}_{2 r} \mathbf{e}\right\| \leq \sqrt{2 r} \lambda_{1} .
$$

Hence, $\frac{\left\|\mathbf{C}_{2 r} \mathbf{e}\right\|}{\sqrt{2 r}} \in I$ and

$$
f\left(\frac{\left\|\mathbf{C}_{2 r} \mathbf{e}\right\|}{\sqrt{2 r}}\right) \geq f\left(\lambda_{1}\right)
$$

and by (14) we arrive at

$$
E\left(T\left(q_{1}, \ldots, q_{r}\right)\right) \leq 2 f\left(\frac{\left\|\mathbf{C}_{2 r} \boldsymbol{e}\right\|}{\sqrt{2 r}}\right)=2\left(\frac{\left\|\mathbf{C}_{2 r} \mathbf{e}\right\|}{\sqrt{2 r}}+\sqrt{(r-1)\left(\frac{\left|\mathbf{C}_{2 r}\right|^{2}}{2}-\frac{\left\|\mathbf{C}_{2 r} \mathbf{e}\right\|^{2}}{2 r}\right)}\right) .
$$

Now, by the computation of $\frac{\left|\mathbf{C}_{2 r}\right|^{2}}{2}$, we obtain the following result.
Theorem 7. Let $T\left(q_{1}, \ldots, q_{r}\right)$ be the caterpillar obtained from a path P_{r}, with $r \geq 2$, attaching the central vertex of the star $S_{q_{i}+1}(i=1, \ldots, r)$ to the i-th vertex of the path P_{r}. Then

$$
E\left(T\left(q_{1}, \ldots, q_{r}\right)\right) \leq
$$

$$
2 \lambda_{1}\left(\mathbf{C}_{2 r}\right)+2 \sqrt{(r-1)\left(n-1-\lambda_{1}^{2}\left(\mathbf{C}_{2 r}\right)\right)} \leq \sqrt{\frac{2}{r}}\left\|\mathbf{C}_{2 r} \mathbf{e}\right\|+\sqrt{\frac{2}{r}} \sqrt{(r-1)\left(2 r(n-1)-\left\|\mathbf{C}_{2 r} \mathbf{e}\right\|^{2}\right)}
$$

Equality holds if and only if $\mathbf{C}_{2 r}$ has $2(r-1)$ eigenvalues distinct from $\pm \lambda_{1}\left(\mathbf{C}_{2 r}\right)$ with the same modulus and $\left(\lambda_{1}\left(\mathbf{C}_{2 r}\right)\right.$, $\left.\mathbf{e}\right)$ is an eigenpair of $\mathbf{C}_{2 r}$.

Next, from the calculation of $\left|\frac{\Gamma_{2 k}}{2}\right|^{2}$, an explicit formula of the above upper bound for the Randic energy is obtained.

Theorem 8. Let $T\left(q_{1}, \ldots, q_{r}\right)$ be the caterpillar obtained from a path P_{r}, with $r \geq 2$, attaching the central vertex of the star $S_{q_{i}+1}(1 \leq i \leq r)$ to the i-th vertex of the path P_{r}. Then

$$
E_{\mathbf{R}}\left(T\left(q_{1}, \ldots, q_{r}\right)\right) \leq \Upsilon,
$$

where

$$
\begin{equation*}
\Upsilon=2+2 \sqrt{(r-1)\left(\frac{1+q_{1} q_{2}+2 q_{1}}{\left(q_{1}+1\right)\left(q_{2}+2\right)}+\frac{1+q_{r} q_{r-1}+2 q_{r}}{\left(q_{r}+1\right)\left(q_{r-1}+2\right)}+\frac{q_{r-1}}{q_{r-1}+2}+\sum_{i=2}^{r-2} \frac{1+q_{i} q_{i+1}+2 q_{i}}{\left(q_{i}+2\right)\left(q_{i+1}+2\right)}-1\right)} . \tag{16}
\end{equation*}
$$

Equality holds if and only if $\boldsymbol{\Gamma}_{2 r}$ has $2(r-1)$ eigenvalues distinct of ± 1 with the same modulus, namely

$$
\sqrt{\frac{\left(\frac{1+q_{1} q_{2}+2 q_{1}}{\left(q_{1}+1\right)\left(q_{2}+2\right)}+\frac{1+q_{r} q_{r-1}+2 q_{r}}{\left(q_{r}+1\right)\left(q_{r-1}+2\right)}+\frac{q_{r-1}}{q_{r-1}+2}+\sum_{i=2}^{r-2} \frac{1+q_{i} q_{i+1}+2 q_{i}}{\left(q_{i}+2\right)\left(q_{i+1}+2\right)}\right)-1}{r-1}} .
$$

Proof. Using the entries of $\boldsymbol{\Gamma}_{2 r}$ in (12) and by a direct computation we see that

$$
\begin{gathered}
\frac{\left|\boldsymbol{\Gamma}_{2 r}\right|^{2}}{2}= \\
\frac{1}{\left(q_{1}+1\right)\left(q_{2}+2\right)}+\frac{1}{\left(q_{r}+1\right)\left(q_{r-1}+2\right)}+\frac{q_{1}}{q_{1}+1}+\frac{q_{r}}{q_{r}+1}+\sum_{i=2}^{r-2} \frac{1}{\left(q_{i}+2\right)\left(q_{i+1}+2\right)}+\sum_{i=2}^{r-1} \frac{q_{i}}{q_{i}+2} \\
=\frac{1}{\left(q_{1}+1\right)\left(q_{2}+2\right)}+\frac{1}{\left(q_{r}+1\right)\left(q_{r-1}+2\right)}+\frac{q_{1}}{q_{1}+1}+\frac{q_{r}}{q_{r}+1}+\sum_{i=2}^{r-2}\left(\frac{1}{\left(q_{i}+2\right)\left(q_{i+1}+2\right)}+\frac{q_{i}}{q_{i}+2}\right)+\frac{q_{r-1}}{q_{r-1}+2} \\
=\frac{1+q_{1} q_{2}+2 q_{1}}{\left(q_{1}+1\right)\left(q_{2}+2\right)}+\frac{1+q_{r} q_{r-1}+2 q_{r}}{\left(q_{r}+1\right)\left(q_{r-1}+2\right)}+\frac{q_{r-1}}{q_{r-1}+2}+\sum_{i=2}^{r-2} \frac{1+q_{i} q_{i+1}+2 q_{i}}{\left(q_{i}+2\right)\left(q_{i+1}+2\right)} .
\end{gathered}
$$

By a direct replacement of the last formula in (15) the result is obtained.

Below, a table with some values for the largest upper bound in Theorem 7 is presented.

r	$\left(q_{1}, \ldots, q_{r}\right)$	$E\left(T\left(q_{1}, \ldots, q_{r}\right)\right)$	T. 7
4	$(5,5,5,5)$	18.5410	18.8769
6	$(9,9,8,9,10,9)$	36.8012	37.3700
7	$(11,9,12,12,12,10,13)$	47.8409	48.5471.

Again, a table with some values for the upper bound in (16) is presented.

r	$\left(q_{1}, \ldots, q_{r}\right)$	$E_{\mathbf{R}}\left(T\left(q_{1}, \ldots, q_{r}\right)\right)$	(16)
4	$(5,5,5,5)$	7.0711	7.0950
6	$(8,9,9,7,10,7)$	10.9906	11.0106
7	$(10,9,7,9,10,11,9)$	12.8792	12.9027.

Remark 4. We remark that if $q_{j}=0$, for some j, the matrix Γ_{k} in (7) becomes of order $k=2 r-s$, where s is the number of vertices of the path without pendent vertices. Moreover, the set of vertices can, again, be split into two sets of vertices X and Y, where X is formed with the vertices of the path with odd label and the pendant vertices that are neighbors to the vertices of the path with even label. In this case, by Theorem 4, 0 is an eigenvalue of $\Gamma_{2 r-s}$ with multiplicity at least $\| X|-|Y||$.

Acknowledgement. The first two authors are partially supported by CIDMA - Center for Research and Development in Mathematics and Applications, University of Aveiro, Portugal and the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), within project PEst-OE/MAT/UI4106/2013. M. Robbiano was supported by Project VRIDT-UCN 2014 N. 220202-10301403 and also thanks the hospitality of Math Department of University of Aveiro where this research was initiated.

References

[1] M. Aguieiras, M. Robbiano, A. Bonifácio, An improved upper bound of the energy of some graphs and matrices, MATCH Commun. Math. Comput. Chem. 74 (2015) 307-320.
[2] Ş. B. Bozkurt, A. D. Güngör, I. Gutman, A. S. Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 239-250.
[3] Ş. B. Bozkurt, D. Bozkurt, Sharp upper bounds for energy and Randić energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 669-680.
[4] D. M. Cardoso, M. A. de Freitas, E. A. Martins, M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, Discr. Math. 313 (2013) 733-741.
[5] F. Chung, Spectral Graph Theory, Am. Math. Soc., Providence, 1997.
[6] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[7] K. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 227-238.
[8] S. El-Basil, Novel applications of Randić molecular connectivity in index on data reduction graphs, Chem. Phys. Lett., 137 N6 (1987) 543-547.
[9] E. V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl. 1 (1968) 73-81.
[10] I. Gutman, E. A. Martins, M. Robbiano, B. San Martín, Ky Fan theorem applied to Randić energy, Lin. Algebra Appl. 459 (2014) 23-42.
[11] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York (2012).
[12] O. Rojo, L. Medina, N. M. M. Abreu, C. Justel, Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars, Electron. J. Linear Algebra 20 (2010) 136-157.
[13] O. Rojo, L. Medina, N. M. M. Abreu, C. Justel, On the algebraic connectivity of some caterpillars: a sharp upper bound and total ordering, Linear Algebra Appl. 432 (2010) 586-605.
[14] O. Rojo, Line graph eigenvalues and line energy of caterpillars, Linear Algebra Appl. 435 (2011) 2077-2086.
[15] H. Minc, Nonnegative Matrices, Wiley, New York, 1988.
[16] A. J. Schwenk, Computing the characteristic polynomial of a graph, in: R. A. Bari, F. Harary (Eds.), Graphs and Combinatorics, Springer, Berlin, 1974, pp. 153-172.

