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Abstract

In this paper we study harmonic analysis on the Proper Velocity (PV) gyrogroup
using the gyrolanguage of analytic hyperbolic geometry. PV addition is the relativis-
tic addition of proper velocities in special relativity and it is related with the hy-
perboloid model of hyperbolic geometry. The generalized harmonic analysis depends
on a complex parameter z and on the radius t of the hyperboloid and comprises the
study of the generalized translation operator, the associated convolution operator, the
generalized Laplace-Beltrami operator and its eigenfunctions, the generalized Poisson
transform and its inverse, the generalized Helgason-Fourier transform, its inverse and
Plancherel's Theorem. In the limit of large t, t → +∞, the generalized harmonic
analysis on the hyperboloid tends to the standard Euclidean harmonic analysis on Rn,
thus unifying hyperbolic and Euclidean harmonic analysis.

Keywords: PV gyrogroup, Laplace Beltrami operator, Eigenfunctions, Generalized Helgason-
Fourier transform, Plancherel's Theorem.

1 Introduction

Harmonic analysis is the branch of mathematics that studies the representation of functions
or signals as the superposition of basic waves called harmonics. It investigates and gen-
eralizes the notions of Fourier series and Fourier transforms. In the past two centuries, it
has become a vast subject with applications in diverse areas as signal processing, quantum
mechanics, and neuroscience (see [18] for an overview).

Noncommutative harmonic analysis appeared mainly in the context of symmetric spaces
where many Lie groups are locally compact and noncommutative. These examples are of
interest and frequently applied in mathematical physics and contemporary number theory,
particularly automorphic representations. The development of noncommutative harmonic
analysis was done by many mathematicians among which stand out the names of John von
Neumann, Harisch-Chandra and Sigurdur Helgason [10, 11, 12].

Fourier analysis on real Euclidean space is intimately connected with the action of the
group of translations. The group structure enters into the study of harmonic analysis by
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allowing the consideration of the translates of the object under study (functions, measures,
etc.). On real hyperbolic space the same approach can be done considering the gyrogroup
structure underlying hyperbolic space. In our recent papers [5, 6] we developed generalized
harmonic analysis on Möbius and Einstein gyrogroups which are related to the Poincaré
and Klein-Beltrami models of hyperbolic geometry. The gyrogroup structure is a natural
extension of the group structure, discovered in 1988 by A. A. Ungar in the context of
Einstein's velocity addition law [19]. It has been extensively studied by A. A. Ungar and
others see, for instance, [7, 20, 21, 23]. Gyrogroups provide a fruitful bridge between
nonassociative algebra and hyperbolic geometry, just as groups lay the bridge between
associative algebra and Euclidean geometry. Our aim in this paper is to present new
results connecting harmonic analysis on the hyperboloid model of real hyperbolic space
and its gyrogroup structure. This model is algebraically regulated by the Proper Velocity
(PV) addition of proper velocities in special relativity. PV addition plays a similar role
to that of vector addition in the Euclidean n-space Rn giving rise to the PV gyrogroup
[7, 21, 22]. Proper time is useful, for instance in the understanding of the twin paradox
and the mean life time of unstable moving particles. In quantum mechanics it is useful to
reformulate relativity physics in terms of proper time instead of coordinate time (see [9]).

In this paper we study several aspects of harmonic analysis on the PV gyrogroup
associated to the family of Laplace-Beltrami operators ∆z,t in Rn given by

∆z,t = ∆+

n∑
i,j=1

xixj
t2

∂2

∂xi∂xj
+ (n− 2z)

n∑
i=1

xi
t2

∂

∂xi
+

z(z + 1)

t2
(1− β2

x)

where z ∈ C, t ∈ R+, and βx is the relativistic beta factor. Eigenfunctions of this operator
are parameterized by the eigenvalues −λ2 − (n−1)2

4t2
+ nz

t2
, with λ ∈ C. For z = 0 and the

normalized case t = 1 we obtain the eigenvalues of the common Laplace-Beltrami operator
on the hyperboloid model considered e.g. in [2, 17] . Our approach extends some of the
results of these papers. Possible applications of our work comprises the study of generalized
coherent states on hyperbolic space and hamiltonian systems. In [1] the authors proposed
a Wigner quasiprobability distribution function for Hamiltonian systems on hyperboloids
based on the eigenfunctions of the Laplace-Beltrami on the hyperboloid.

The paper is organized as follows. In Section 2 we present the PV addition and its
properties. Sections 3 and 4 are dedicated to the study of the generalized translation oper-
ator and the associated convolution operator. In Section 5 we construct the eigenfunctions
of the generalized Laplace-Beltrami operator on the hyperboloid and we study the gener-
alized spherical functions. In Section 6 we de�ne the generalized Poisson transform and
we study the injectivity of this transform. Section 7 is devoted to the generalized Helgason
Fourier transform on the PV gyrogroup. In Section 8 we obtain the inversion formula for
the generalized Helgason Fourier transform and Plancherel's Theorem and we show that
in the limit t → +∞ we recover the inverse Fourier transform and Plancherel's Theorem
in Euclidean harmonic analysis. As an application, in Section 9 we solve the heat equation
on the proper velocity gyrogroup. Two appendices, A and B, concerning all necessary facts
on spherical harmonics and Jacobi functions, are found at the end of the paper.

2 Proper Velocity addition

Proper velocities in special relativity theory are velocities measured by proper time, that
is, by travelerâ��s time rather than by observerâ��s time [3]. The addition of proper
velocities was de�ned by A.A. Ungar in [3] giving rise to the proper velocity gyrogroup.
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De�nition 2.1. [21] Let (V,+, ⟨ , ⟩) be a real inner product space with addition +, and
inner product ⟨ , ⟩ . The PV (Proper Velocity) gyrogroup (V,⊕) is the real inner product
space V equipped with addition ⊕ given by

a⊕ x = x+

(
βa

1 + βa

⟨a, x⟩
t2

+
1

βx

)
a (1)

where t ∈ R+ and βa, called the relativistic beta factor, is given by the equation

βa =
1√

1 + ||a||2
t2

. (2)

PV addition is the relativistic addition of proper velocities rather than coordinate velocities
as in Einstein addition. PV addition satis�es the beta identity

βa⊕x =
βaβx

1 + βaβx
⟨a,x⟩
t2

(3)

or, equivalently,
βx

βa⊕x
=

1

βa
+ βx

⟨a, x⟩
t2

.

It is known that (V,⊕) is a gyrogroup (see [21]), i.e. it satis�es the following axioms:

(G1) There is at least one element 0 satisfying 0⊕ a = a, for all a ∈ V ;

(G2) For each a ∈ V there is an element ⊖a ∈ V such that ⊖a⊕ a = 0;

(G3) For any a, b, c ∈ V there exists a unique element gyr[a, b]c ∈ V such that the binary
operation satis�es the left gyroassociative law

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c; (4)

(G4) The map gyr[a, b] : V → V given by c 7→ gyr[a, b]c is an automorphism of (V,⊕);

(G5) The gyroautomorphism gyr[a, b] possesses the left loop property

gyr[a, b] = gyr[a⊕ b, b].

PV gyrations can be given in terms of the PV addition ⊕ by the equation (see [21])

gyr [a, b]c = ⊖(a⊕ b)⊕ (a⊕ (b⊕ c)).

The PV gyrogroup is gyrocommutative since PV addition satis�es

a⊕ b = gyr [a, b](b⊕ a). (5)

In the limit t → +∞, PV addition reduces to vector addition in (V,+) and, therefore, the
gyrogroup (V,⊕) reduces to the translation group (V,+). To see the connection between
proper velocity addition, proper Lorentz transformations, and real hyperbolic geometry let
us consider the one sheeted hyperboloid
Hn

t = {x ∈ Rn+1 : x2n+1 − x21 − . . . − x2n = t2 ∧ xn+1 > 0} in Rn+1 where t ∈ R+ is
the radius of the hyperboloid. The n−dimensional real hyperbolic space is usually viewed
as the rank one symmetric space G/K of noncompact type, where G = SOe(n, 1) is the
identity connected component of the group of orientation preserving isometries of Hn

t
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and K =SO(n) is the maximal compact subgroup of G which stabilizes the base point
O := (0, ..., 0, 1) in Rn+1. Thus, Hn

t
∼= SOe(1, n)/SO(n) and it is one model for real hyper-

bolic geometry with constant negative curvature. Restricting the semi-Riemannian metric
dx2n+1 − dx21 − . . . − dx2n on the ambient space we obtain the Riemannian metric on Hn

t

which is given by

ds2 =
(⟨x, dx⟩)2

t2 + ∥x∥2
− ∥dx∥2

with x = (x1, . . . , xn) ∈ Rn and dx = (dx1, . . . , dxn). This metric corresponds to the metric
tensor

gij(x) =
xixj

t2 + ∥x∥2
− δij , i, j ∈ {1, . . . , n}

whereas the inverse metric tensor is given by

gij(x) = −δij −
xixj
t2

, i, j ∈ {1, . . . , n}.

The group of all orientation preserving isometries of Hn
t consists of elements of the group

SO(n) and proper Lorentz transformations acting on Hn
t . A simple way of working in Hn

t

is to consider its projection into Rn. Given an arbitray point (x,
√

t2 + ||x||2) ∈ Hn
t we

de�ne the mapping Π : Hn
t → Rn, such that Π(x,

√
t2 + ||x||2) = x.

A proper Lorentz boost in the direction ω ∈ Sn−1 and rapidity α acting in an arbitrary
point (x,

√
t2 + ||x||2) ∈ Hn

t yields a new point (x, xn+1)ω,α ∈ Hn
t given by (see [4])

(x, xn+1)ω,α =
(
x+

(
(cosh(α)− 1) ⟨ω, x⟩ − sinh(α)

√
t2 + ||x||2

)
ω,

cosh(α)
√

t2 + ||x||2 − sinh(α) ⟨ω, x⟩
)
. (6)

Since √
t2 +

∥∥∥x+
(
(cosh(α)− 1) ⟨ω, x⟩ − sinh(α)

√
t2 + ||x||2

)
ω
∥∥∥2 = xn+1

then the projection of (6) into Rn is given by

Π(x, xn+1)ω,α = x+
(
(cosh(α)− 1) ⟨ω, x⟩ − sinh(α)

√
t2 + ||x||2

)
ω. (7)

Rewriting the parameters of the Lorentz boost to depend on a point a ∈ Rn as

cosh(α) =

√
1 +

||a||2
t2

, sinh(α) = −||a||
t

, and ω =
a

||a||
. (8)

and replacing (8) in (7) we �nally obtain the relativistic addition of proper velocities in
Rn :

a⊕ x = x+


√

1 + ||a||2
t2

− 1

||a||2
⟨a, x⟩+

√
1 +

||x||2
t2

 a

= x+

(
βa

1 + βa

⟨a, x⟩
t2

+
1

βx

)
a

From now on we consider the PV gyrogroup (Rn,⊕). In this case ⊖a = −a. For R ∈ SO(n)
we have the homomorphism

R(a⊕ x) = (Ra)⊕ (Rx).
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Some useful gyrogroup identities ([21], pp. 48 and 68) that will be used in this paper are

(gyr [a, b])−1 = gyr [b, a] (9)

gyr [a⊕ b,⊖a] = gyr [a, b] (10)
gyr [⊖a,⊖b] = gyr [a, b] (11)

gyr [a, b](b⊕ (a⊕ c)) = (a⊕ b)⊕ c (12)
and (12) are valid only for gyrocommutative gyrogroups. Combining formulas (10) and
(12) with (9) we obtain the identities

gyr [⊖a, a⊕ b] = gyr [b, a]
b⊕ (a⊕ c) = gyr [b, a]((a⊕ b)⊕ c).

For n ≥ 2 the gyrosemidirect product of (R,⊕) and SO(n) (see [21]) gives the group
Rogyr SO(n) for the operation

(a,R)(b, S) = (a⊕Rb, gyr [a,Rb]RS) .

This group is a realization of the Lorentz group SOe(1, n). In the limit t → +∞ the group
Rogyr SO(n) reduces to the Euclidean group E(n) = RnoSO(n). This shows that (Rn,⊕)
is the appropriate algebraic structure to develop harmonic analysis on the hyperboloid.

3 The generalized translation

De�nition 3.1. For a function f de�ned on Rn, a ∈ Rn, and z ∈ C we de�ne the
generalized translation operator τaf by the complex-valued function

τaf(x) = ja(x) f((−a)⊕ x) (13)

with

ja(x) =

(
βa

1− βaβx
⟨a,x⟩
t2

)z

. (14)

The multiplicative factor ja(x) agrees with the Jacobian of the transformation (−a) ⊕ x
when z = 1. In the case z = 0 the translation reduces to τaf(x) = f((−a)⊕ x). Moreover,
for any z ∈ C, we obtain in the limit t → +∞ the Euclidean translation operator τaf(x) =

f(−a+ x) = f(x− a). By (14) and (3) we can write ja(x) as ja(x) =
(
β(−a)⊕x

βx

)z
.

Lemma 3.2. For any a, b, x, y ∈ Rn the following relations hold

(i) j−a(−x) = ja(x) (15)

(ii) ja(a)ja(0) = 1 (16)

(iii) ja(x) = jx(a)ja(0)jx(x) (17)

(iv) ja(a⊕ x) = (j−a(x))
−1 (18)

(v) j(−a)⊕x(0) = jx⊕(−a)(0) = jx(a)ja(0) = ja(x)jx(0) (19)

(vi) j(−a)⊕x((−a)⊕ x) = (ja(x))
−1jx(x) (20)

(vii) τajy(x) = [τ−ajx(y)]jx(x)jy(0) (21)

(viii) τ−aja(x) = 1 (22)

(ix) τajy(x) = ja⊕y(x) (23)

(x) τaf(x) = [τxf(−gyr [x, a]a)]ja(0)jx(x) (24)

(xi) τbτaf(x) = τb⊕af(gyr [a, b]x) (25)

(xii) τ−aτaf(x) = f(x) (26)

(xiii) τbτaf(x) = [τ−bτxf(−gyr [−b, x⊕ a] gyr [x, a] a)] ja(0)jx(x). (27)
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The proof of these relations uses the beta-identity (3) and the same techniques as in the
Einstein case (see [5]). To compute the generalized Laplace-Beltrami operator ∆z,t that
commutes with the generalized translation operator (13) we use the approach of Rudin
[16, Ch. 4] and we compute ∆(τ−af)(0), where ∆ is the Laplace operator in Rn.

Proposition 3.3. For each f ∈ C2(Rn) and a ∈ Rn

∆(τ−af)(0) = ja(0)

∆f(a) +
n∑

i,j=1

aiaj
t2

∂2f

∂xi∂xj
(a) + (n− 2z)

n∑
i=1

ai
t2

∂f

∂xi
(a) +

+
z(z + 1)

t2
(1− β2

a)f(a)

)
. (28)

Proof. Let a ∈ Rn and denote by T1, . . . , Tn the coordinates of the mapping a ⊕ x. Then
by the chain rule we have

∆(τ−af)(0) =

 n∑
j,k=1

∂2f

∂xj∂xk
(a)

n∑
i=1

∂Tk

∂xi
(0)

∂Tj

∂xi
(0) +

n∑
k=1

∂f

∂xk
(a)

n∑
i=1

∂2Tk

∂x2
i

(0)

 j−a(0)

+ 2

n∑
k=1

∂f

∂xk
(a)

n∑
i=1

∂Tk

∂xi
(0)

∂j−a

∂xi
(0) + f(a)

n∑
i=1

∂2j−a

∂x2
i

(0). (29)

Since Tk(x) = xk +

(
βa

1 + βa

⟨a, x⟩
t2

+
1

βx

)
ak, k ∈ {1, . . . , n} then

∂Tk

∂xi
(0) = δk,i +

βa
1 + βa

aiak
t2

and
∂2Tk

∂x2i
(0) =

ak
t2

, i, k ∈ {1, . . . , n}.

Moreover,
∂j−a

∂xi
(0) = −ja(0) z βa

ai
t2

and
∂2j−a

∂x2i
(0) = ja(0)

z(z + 1)

t2
β2
a

a2i
t2
.

Therefore, replacing these expressions in (29) and after straightforward computations we
obtain (28).

De�nition 3.4. Let Ω be an open subset of Rn and f ∈ C2(Ω). We de�ne the generalized
Laplace Beltrami-operator ∆z,t on Hn

t by

∆z,t = ∆+
n∑

i,j=1

xixj
t2

∂2

∂xi∂xj
+ (n− 2z)

n∑
i=1

xi
t2

∂

∂xi
+

z(z + 1)

t2
(1− β2

x).

By Proposition 3.3 we obtain a representation formula for ∆z,t:

∆z,tf(a) = (ja(0))
−1∆(τ−af)(0). (30)

Proposition 3.5. The operator ∆z,t commutes with generalized translations, i.e.

∆z,t(τbf) = τb(∆z,tf) ∀ f ∈ C2(Rn), ∀b ∈ Rn.
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Proof. By (30) we have

∆z,t(τbf)(a) = (ja(0))
−1∆(τ−aτbf)(0)

= (ja(0))
−1∆(f((−b)⊕ (a⊕ x))τ−ajb(x)) |x=0 .

Now, since
(−b)⊕ (a⊕ x) = ((−b)⊕ a)⊕ gyr [−b, a]x (by (4))

and

τ−ajb(x) = j(−a)⊕b(x) (by (23))

= jb⊕(−a)(gyr [b,−a]x) (by (5), (9))

= jb⊕(−a)(gyr [−b, a]x) (by (11))

then together with the invariance of ∆ under the group SO(n), (19) and (15) we obtain

∆z,t(τbf)(a) = (ja(0))
−1∆(f(((−b)⊕ a)⊕ gyr [−b, a]x)jb⊕(−a)(gyr [−b, a]x)) |x=0

= (ja(0))
−1∆(τ−((−b)⊕a)f)(0)

= jb(a)(j(−b)⊕a(0))
−1∆(τ−((−b)⊕a)f)(0)

= jb(a)(∆z,tf)((−b)⊕ a)

= τb(∆z,tf)(a).

For studying some L2-properties of the invariant Laplace ∆z,t and the generalized
translation we consider the weighted Hilbert space L2(Rn, dµz,t) with

dµz,t(x) = (βx)
2z+1 dx =

(
1 +

∥x∥2

t2

)− 2z+1
2

dx,

where dx stands for the Lebesgue measure in Rn. For the special case z = 0 we recover the
invariant measure associated to a⊕ x.

Proposition 3.6. For f, g ∈ L2(Rn, dµz,t) and a ∈ Rn we have∫
Rn

τaf(x) g(x) dµz,t(x) =

∫
Rn

f(x) τ−ag(x) dµz,t(x). (31)

Corollary 3.7. For f, g ∈ L2(Rn, dµz,t) and a ∈ Rn we have

(i)

∫
Rn

τaf(x) dµz,t(x) =

∫
Rn

f(x)j−a(x) dµz,t(x); (32)

(ii) If z = 0 then

∫
Rn

τaf(x) dµz,t(x) =

∫
Rn

f(x) dµz,t(x);

(iii) ||τaf ||2 = ||f ||2.

From Corollary 3.7 we see that the generalized translation τa is an unitary operator in
L2(Rn, dµz,t) and the measure dµz,t is translation invariant only for the case
z = 0. There is an important relation between the operator ∆z,t and the measure dµz,t.
Up to a constant the Laplace-Beltrami operator ∆z,t corresponds to a weighted Laplace
operator on Rn for the weighted measure dµz,t in the sense de�ned in [8, Sec. 3.6]. From
Theorem 11.5 in [8] we know that the Laplace operator on a weighted manifold is essentially
self-adjoint if all geodesics balls are relatively compact. Therefore, ∆z,t can be extended
to a self adjoint operator in L2(Rn, dµz,t).

Proposition 3.8. The operator ∆z,t is essentially self-adjoint in L2(Rn, dµz,t).
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4 The generalized convolution

In this section we de�ne the generalized convolution of two functions, we study its prop-
erties and we establish the respective Young's inequality and gyroassociative law. In the
limit t → +∞ both de�nitions and properties tend to their Euclidean counterparts.

De�nition 4.1. The generalized convolution of two measurable functions f and g is given
by

(f ∗ g)(x) =
∫
Rn

f(y) τxg(−y) jx(x) dµz,t(y), x ∈ Rn.

By Proposition 3.6 we have

(f ∗ g)(x) =

∫
Rn

τ−xf(y) g(−y) jx(x) dµz,t(y)

=

∫
Rn

f(x⊕ y) j−x(y) g(−y) jx(x) dµz,t(y) (by (13))

=

∫
Rn

f(x⊕ (−y)) j−x(−y) g(y) jx(x) dµz,t(y) (y 7→ −y)

=

∫
Rn

τxf(−y) g(y) jx(x) dµz,t(y) (by (15), (13))

= (g ∗ f)(x).

Thus, the generalized convolution is commutative.

Lemma 4.2. Let ℜ(z) < n−1
2 . Then for any t > 0 and s > 0 we have∫
Sn−1

|jx(t sinh(s)ξ) jx(x)| dσ(ξ) ≤ Cz

with

Cz =


1, if ℜ(z) ∈]− 1, 0[

Γ
(
n
2

)
Γ
(
n−2ℜ(z)−1

2

)
Γ
(
n−ℜ(z)

2

)
Γ
(
n−ℜ(z)−1

2

) , if ℜ(z) ∈]−∞,−1] ∪ [0, n−1
2 [

.

Proof. Using (63) in Appendix A we obtain

∫
Sn−1

|jx(t sinh(s)ξ) jx(x)| dσ(ξ)

=

∫
Sn−1

∣∣∣∣∣∣
 βx

1− ⟨βx x,βt sinh(s)ξ t sinh(s)ξ⟩
t2

z (
1

βx

)z
∣∣∣∣∣∣ dσ(ξ)

=

∫
Sn−1

(
1

1− ⟨tanh(s)βxx,ξ⟩
t

)ℜ(z)

dσ(ξ)

= 2F1

(
ℜ(z)
2

,
ℜ(z) + 1

2
;
n

2
;
tanh2(s)(βx)

2∥x∥2

t2

)
.

Since (βx)
2 ∥x∥2

t2
= 1 − (βx)

2 < 1 we can consider for r ∈ [0, 1[ the function g(r) =

8



2F1

(
ℜ(z)
2 , ℜ(z)+1

2 ; n2 ; r
)
. Applying (67) and (65) in Appendix A we get

g′(r) =
ℜ(z)(ℜ(z) + 1)

2n
2F1

(
ℜ(z) + 2

2
,
ℜ(z) + 3

2
;
n

2
+ 1; r

)
.

=
ℜ(z)(ℜ(z) + 1)

2n︸ ︷︷ ︸
(I)

(1− r)
n−2ℜ(z)−3

2 2F1

(
n−ℜ(z)

2
,
n−ℜ(z)− 1

2
;
n

2
+ 1; r

)
︸ ︷︷ ︸

(II)

.

Since ℜ(z) < n−1
2 then the hypergeometric function (II) is positive for r > 0, and therefore,

positive on the interval [0, 1[. Studying the sign of (I) we conclude that the function
g is strictly increasing when ℜ(z) ∈] − ∞,−1] ∪ [0, n−1

2 [ and strictly decreasing when
ℜ(z) ∈] − 1, 0[. Since ℜ(z) < n−1

2 , then by (64) it exists the limit limr→1− g(r) which is
given by

g(1) =
Γ
(
n
2

)
Γ
(
n−2ℜ(z)−1

2

)
Γ
(
n−ℜ(z)

2

)
Γ
(
n−ℜ(z)−1

2

) .
Thus,

g(r) ≤ max{g(0), g(1)} = Cz

with g(0) = 1.

Proposition 4.3. Let ℜ(z) < n−1
2 and f, g ∈ L1(Rn, dµz,t). Then

||f ∗ g||1 ≤ Cz ||f ||1 ||g̃||1 (33)

where g̃(s) = ess sup
ξ∈Sn−1,y∈Rn

g(gyr [y, t sinh(s) ξ] t sinh(s) ξ) for any s, t > 0.

Proof. Using (24), (16), and (32) we have

I =

∫
Rn

|τxg(−y) jx(x)| dµz,t(x)

=

∫
Rn

|τyg(gyr [y, x]x) jx(0) jy(y) jx(x)| dµz,t(x)

=

∫
Rn

|g(gyr [y, x]x) j−y(x) jy(y)| dµz,t(x).

Using polar coordinates x = t sinh(s) ξ, with t, s > 0, ξ ∈ Sn−1, and the normalised surface
area dσ(ξ) = dξ/An−1, with An−1 being the surface area of Sn−1 we get

I=An−1

∫
R+

∫
Sn−1

|g1(s, y, ξ)| |j−y(t sinh(s) ξ) jy(y)| (cosh(s))−2z tn sinh(s)n−1 dσ(ξ) ds.

with g1(s, y, ξ) = g(gyr [y, t sinh(s) ξ] t sinh(s) ξ). For t > 0 we consider the radial function
g̃ de�ned by

g̃(s) = ess sup
ξ∈Sn−1,y∈Rn

g1(s, y, ξ).

Therefore, by Lemma 4.2 and (15) we have

I ≤ An−1

∫
R+

|g̃(s)| (cosh(s))−2z tn sinh(s)n−1 ds

×
∫
Sn−1

|j−y(t sinh(s) ξ) j−y(−y)| dσ(ξ)

≤ Cz||g̃||1.

9



Finally,

||f ∗ g||1 =

∫
Rn

∣∣∣∣∫
Rn

f(y) τxg(−y) jx(x) dµz,t(y)

∣∣∣∣ dµz,t(x)

≤
∫
Rn

∫
Rn

|f(y)| |τxg(−y) jx(x)| dµz,t(y) dµz,t(x)

=

∫
Rn

|f(y)|
(∫

Rn

|τxg(−y)| jx(x)| dµz,t(x)

)
dµz,t(y)

≤ Cz ||f ||1 ||g̃||1.

In the special case when g is a radial function we obtain that
||f ∗ g||1 ≤ Cz ||f ||1 ||g||1 since g̃ = g. We can also prove that for f ∈ L∞(Rn, dµz,t)
and g ∈ L1(Rn, dµz,t) we have the inequality

||f ∗ g||∞ ≤ Cz ||g̃||1 ||f ||∞. (34)

By (33), (34), and the Riesz-Thorin interpolation Theorem we further obtain for f ∈
Lp(Rn, dµz,t) and g ∈ L1(Rn, dµz,t) the inequality

||f ∗ g||p ≤ Cz ||g̃||1 ||f ||p.

To obtain a Young's inequality for the generalized convolution we restrict ourselves to the
case ℜ(z) ≤ 0.

Theorem 4.4. Let ℜ(z) ≤ 0, 1 ≤ p, q, r ≤ ∞, 1
p +

1
q = 1+ 1

r , s = 1− q
r , f ∈ Lp(Rn, dµz,t)

and g ∈ Lq(Rn, dµz,t). Then

||f ∗ g||r ≤ 2−ℜ(z)||g̃||1−s
q ||g||sq ||f ||p (35)

where g̃(x) := ess sup
y∈Rn

g(gyr [y, x]x), for any x ∈ Rn.

For the proof we use the following estimate

|jx(y)jx(x)| ≤ 2−ℜ(z), ∀x, y ∈ Rn, ∀ℜ(z) ≤ 0.

and the arguments given in [5].

Corollary 4.5. Let ℜ(z) ≤ 0, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , f ∈ Lp(Rn, dµz,t) and

g ∈ Lq(Rn, dµz,t) a radial function. Then,

||f ∗ g||r ≤ 2−ℜ(z)||g||q ||f ||p.

Remark 1. For ℜ(z) = 0 and taking the limit t → +∞ in (35) we recover the Young's
inequality for the Euclidean convolution in Rn since in the limit g̃ = g.

Another important property of the Euclidean convolution is the translation invariance and
the associativity. In the hyperbolic case it turns out that the convolution is gyro-translation
invariant and gyroassociative in the sense of the following theorems (cf. [5] and [6]).

Theorem 4.6. The generalized convolution is gyro-translation invariant:

τa(f ∗ g)(x) = (τaf(·) ∗ g(gyr [−a, x] · ))(x).

10



Corollary 4.7. If g is a radial function then the generalized convolution is translation
invariant:

τa(f ∗ g) = (τaf) ∗ g.

Theorem 4.8. If f, g, h ∈ L1(Rn, dµz,t) then

(f ∗a (g ∗x h))(a) = (((f(x) ∗y g(gyr [a,−(y ⊕ x)]gyr [y, x]x))(y)) ∗a h(y))(a).

Corollary 4.9. If f, g, h ∈ L1(Rn, dµz,t) and g is a radial function then the generalized
convolution is associative. i.e.,

f ∗ (g ∗ h) = (f ∗ g) ∗ h.

From Theorem 4.8 we see that the generalized convolution is associative up to a gyra-
tion of the argument of the function g. However, if g is a radial function then the corre-
sponding gyration is trivial (that is, it is the identity map) and therefore the generalized
convolution becomes associative. Moreover, in the limit t → +∞ gyrations reduce to the
identity and therefore, the convolution becomes associative in the Euclidean case. If we
denote by L1

R(Rn, dµz,t) the subspace of L1(Rn, dµz,t) consisting of radial functions then,
for ℜ(z) < n−1

2 the space L1
R(Rn, dµz,t) is a commutative associative Banach algebra under

the generalized convolution.

5 Eigenfunctions of ∆z,t

De�nition 5.1. For λ ∈ C, ξ ∈ Sn−1, and x ∈ Rn we de�ne the functions eλ,ξ;t by

eλ,ξ;t(x) =
(βx)

−z+n−1
2

+iλt(
1− ⟨βx x,ξ⟩

t

)n−1
2

+iλt
. (36)

The hyperbolic plane waves eλ,ξ;t(x) converge in the limit t → +∞ to the Euclidean plane
waves ei⟨x,λξ⟩. Since

eλ,ξ;t(x) =

(
1− ⟨βxx, ξ⟩

t

)−n−1
2

−iλt

(βx)
−z+n−1

2
+iλt

then we obtain

lim
t→+∞

eλ,ξ;t(x) . lim
t→+∞

[(
1− ⟨x, ξ⟩

t

)t
]−iλ

= ei⟨x,λξ⟩. (37)

In the Euclidean case the translation of the Euclidean plane waves ei⟨x,λξ⟩ decomposes
into the product of two plane waves one being a modulation. In the hyperbolic case,
the generalized translation of (36) factorizes also in a modulation and the hyperbolic plane
wave but it appears a Möbius transformation acting on Sn−1 as the next proposition shows.

Proposition 5.2. The translation of eλ,ξ;t(x) admits the factorization

τaeλ,ξ;t(x) = ja(0) eλ,ξ;t(−a) eλ,Ta(ξ);t(x) (38)

where

Ta(ξ) =
ξ + a

t +
βa

1+βa

⟨a,ξ⟩a
t2

1
βa

+ ⟨a,ξ⟩
t

. (39)

11



Proof. We have

τaeλ,ξ;t(x) = eλ,ξ;t((−a)⊕ x)ja(x)

=

(
β(−a)⊕x

)−z+n−1
2 +iλt(

1− ⟨β(−a)⊕x ((−a)⊕x),ξ⟩
t

)n−1
2 +iλt

(
βa

1− ⟨βa a,βx x⟩
t2

)z

=

1− βaβx

1− βaβx
⟨a,x⟩
t2

(
⟨x, ξ⟩+ βa

1+βa

⟨a,x⟩⟨a,ξ⟩
t2 − 1

βx
⟨a, ξ⟩

)
t

−n−1
2 −iλt

×

(
βaβx

1− βaβx
⟨a,x⟩
t2

)−z+n−1
2 +iλt(

βa

1− ⟨βa a,βx x⟩
t2

)z

, by (1) and (3)

=

(
1− βaβx

⟨a, x⟩
t2

− βaβx

t

(
⟨x, ξ⟩+ βa

1 + βa

⟨a, x⟩ ⟨a, ξ⟩
t2

− 1

βx
⟨a, ξ⟩

))−n−1
2 −iλt

× (βaβx)
−z+n−1

2 +iλt
(βa)

z

=

(1 + ⟨βa a, ξ⟩
t

)1−
βaβx

t

⟨
x, a

t + ξ + βa

1+βa

⟨a,ξ⟩a
t2

⟩
1 + βa

⟨a,ξ⟩
t

−n−1
2 −iλt

× (βaβx)
−z+n−1

2 +iλt
(βa)

z

=

((
1 +

⟨βa a, ξ⟩
t

)(
1− 1

t

⟨
βx x,

a
t + ξ + βa

1+βa

⟨a,ξ⟩a
t2

1
βa

+ ⟨a,ξ⟩
t

⟩))−n−1
2 −iλt

× (βaβx)
−z+n−1

2 +iλt
(βa)

z

= ja(0) eλ,ξ;t(−a) eλ,Ta(ξ)(x).

Remark 2. The fractional linear mappings Ta(ξ), with a ∈ Rn, ξ ∈ Sn−1 de�ned in (39)
map the unit sphere Sn−1 onto itself for any t > 0 and a ∈ Rn. Moreover, in the limit
t → +∞ they reduce to the identity mapping on Sn−1. It is interesting to observe that the
fractional linear mappings obtained from PV addition (1) making the formal substitutions
x
t = ξ and a⊕x

t = a⊕ ξ given by

a⊕ ξ = ξ +

(
βa

1 + βa

⟨a, ξ⟩
t

+
√
2

)
a

t

do not map Sn−1 onto itself. This is di�erent in comparison with the Möbius and Einstein
gyrogroups. It can be explained by the fact that the hyperboloid is tangent to the null
cone and therefore, the extension of PV addition to the the null cone is not possible by
the formal substitutions above. Surprisingly, by Proposition 5.2 we obtained the induced
PV addition on the sphere which is given by the fractional linear mappings Ta(ξ).

Formula (38) converges in the limit to the well-known formula in the Euclidean case

ei⟨−a+x,λξ⟩ = ei⟨−a,λξ⟩ei⟨x,λξ⟩, a, x, λξ ∈ Rn.

Proposition 5.3. The function eλ,ξ;t is an eigenfunction of ∆z,t with eigenvalue

−λ2 − (n− 1)2

4t2
+

nz

t2
.
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Proof. Applying ∆z,t to (38) as a function of y and using Proposition 3.5 we get

τ−x(∆z,teλ,ξ;t)(y) = ∆z,t(τ−xeλ,ξ;t)(y) = eλ,ξ;t(x) ∆z,teλ,T−x(ξ);t(y) j−x(0).

Putting y = 0 we have

∆z,teλ,ξ;t(x) j−x(0) = (∆z,teλ,T−x(ξ);t)(0) eλ,ξ;t(x) j−x(0).

Thus, we conclude that eλ,ξ;t(x) is an eigenfunction of ∆z,t with eigenvalue
∆z,teλ,T−x(ξ);t(0). Computing this value we �nd that the eigenvalue of eλ,ξ;t(x) is

−λ2 − (n− 1)2

4t2
+

nz

t2
.

In the limit t → +∞ the eigenvalues of ∆z,t reduce to the eigenvalues of ∆ in Rn. In
the Euclidean case given two eigenfunctions ei⟨x,λξ⟩ and ei⟨x,γω⟩, λ, γ ∈ R, ξ, ω ∈ Sn−1 of
the Laplace operator with eigenvalues −λ2 and −γ2 respectively, the product of the two
eigenfunctions is again an eigenfunction of the Laplace operator with eigenvalue −(λ2 +
γ2 + 2λγ ⟨ξ, ω⟩). Indeed,

∆(ei⟨x,λξ⟩ei⟨x,γω⟩)=−∥λξ + γω∥2ei⟨x,λξ+γω⟩=−(λ2 + γ2 + 2λγ ⟨ξ, ω⟩)ei⟨x,λξ+γω⟩.

Unfortunately, in the hyperbolic case this is no longer true in general. The only exception
is the case n = 1 and z = 0 as the next proposition shows.

Proposition 5.4. For n ≥ 2 the product of two eigenfunctions of ∆z,t is not an eigenfunc-
tion of ∆z,t and for n = 1 the product of two eigenfunctions of ∆z,t is an eigenfunction of
∆z,t only in the case z = 0.

Proof. Let eλ,ξ;t and eγ,ω;t be two eigenfunctions of ∆z,t with eigenvalues

−λ2 − (n−1)2

4t2
+ nz

t2
and −γ2 − (n−1)2

4t2
+ nz

t2
respectively. Since for n ≥ 1 and f, g ∈ C2(Rn)

∆z,t(fg)= (∆z,tf)g + f(∆z,tg) + 2 ⟨∇f,∇g⟩+ 2

t2
⟨x,∇f⟩ ⟨x,∇g⟩ − z(z + 1)

t2
(1− β2

x)fg

we obtain after straightforward computations

∆z,t(eλ,ξ;t(x)eγ,ω;t(x)) =

[
−λ2 − γ2 − (n− 1)2

2t2
+

2nz

t2
+

(
(n− 1 + 2iλt)(n− 1 + 2iγt)

t2
×(

1

βx
− ⟨x, ξ⟩

t

)−1 (
1

βx
− ⟨x, ω⟩

t

)−1(∥x∥2

t2
− ⟨x, ω⟩

tβx
− ⟨x, ξ⟩

tβx
+ ⟨ξ, ω⟩+ ⟨x, ω⟩ ⟨x, ξ⟩

t2

))

− z

t2

(
n− 1

2
+ iλt

)(
1

βx
− ⟨x, ξ⟩

t

)−1(∥x∥2

t2
βx − ⟨x, ξ⟩

t2

)
− z

t2

(
n− 1

2
+ iγt

)(
1

βx
− ⟨x, ω⟩

t

)−1(∥x∥2

t2
βx − ⟨x, ω⟩

t2

)
− z

t2
(1− β2

x)

]
eλ,ξ;t(x)eγ,ω;t(x).

Therefore, for n ≥ 2 and z ∈ C, the product of two eigenfunctions of ∆z,t is not an
eigenfunction of ∆z,t. For n = 1 the previous formula reduces to

∆z,t(eλ,ξ,t(x)eγ,ω;t(x)) =

[
−λ2 − γ2 − 2λγ +

2z

t2
− iλtz

(
1

βx
− xξ

t

)−1(
x2

t4βx
− xξ

t3

)

−iγtz

(
1

βx
− xω

t

)−1(
x2

t4βx
− xω

t3

)
− z

t2
(1− β2

x)

]
.

For z = 0, we obtain further

∆z,t(eλ,ξ;t(x)eγ,ω;t(x)) = −
(
λ2 + γ2 + 2λγξω

)
eλ,ξ;t(x)eγ,ω;t(x).

Therefore, only in the case n = 1 and z = 0 the product of two eigenfunctions of ∆z,t is
an eigenfunction of ∆z,t.
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In the case when n = 1 and z = 0 the hyperbolic plane waves (36) are independent of ξ
(we can consider ξ = 1) reducing to

eλ;t(x) =

(√
1 +

x2

t2
− x

t

)−iλt

and, therefore, the exponential law is valid, i.e., eλ;t(x)eγ;t(x) = eλ+γ;t(x). This explains
the special case in Proposition 5.4.

The radial eigenfunctions of ∆z,t are called generalized spherical functions and assume
a very important role in the theory.

De�nition 5.5. For each λ ∈ C, we de�ne the generalized spherical function ϕλ;t by

ϕλ;t(x) =

∫
Sn−1

eλ,ξ;t(x) dσ(ξ), x ∈ Rn. (40)

Using (63) and then (65) in Appendix A we can write this function as

ϕλ;t(x) =

(
1 +

∥x∥2

t2

)2z−n+1−2iλt
4

2F1

(
n− 1 + 2iλt

4
,
n+ 1 + 2iλt

4
;
n

2
; 1− β2

x

)
(41)

=

(
1 +

∥x∥2

t2

)2z−n+1+2iλt
4

2F1

(
n− 1− 2iλt

4
,
n+ 1− 2iλt

4
;
n

2
; 1− β2

x

)
.

Therefore, ϕλ;t is a radial function that satis�es ϕλ;t = ϕ−λ;t i.e., ϕλ;t is an even function
of λ ∈ C. Applying (66) in Appendix A we obtain further that

ϕλ;t(x) =

(
1 +

∥x∥2

t2

) z
2

2F1

(
n− 1− 2iλt

4
,
n− 1 + 2iλt

4
;
n

2
;−∥x∥2

t2

)
.

Finally, considering x = t sinh(s) ξ, with s ∈ R+ and ξ ∈ Sn−1 we have the following
relation between ϕλ;t and the Jacobi functions φλt (see (69) in Appendix B):

ϕλ;t(t sinh(s) ξ) = (cosh s)z φ
(n
2
−1,− 1

2)
λt (s). (42)

The following theorem characterizes all generalized spherical functions.

Theorem 5.6. The function ϕλ;t is a generalized spherical function with eigenvalue −λ2−
(n− 1)2

4t2
+

nz

t2
. Moreover, if we normalize spherical functions ϕλ;t such that ϕλ;t(0) = 1,

then all generalized spherical functions are given by ϕλ;t.

Proof. By Proposition 5.3 it is easy to see that ϕλ;t is an eigenfunction of ∆z,t with eigen-

value −λ2 − (n−1)2

4t2
+ nz

t2
. Moreover, ϕλ;t(0) = 1. Now let f be a spherical function with

eigenvalue −λ2 − (n−1)2

4t2
+ nz

t2
and consider

f(x) =

(
1 +

∥x∥2

t2

) z
2

F

(
−∥x∥2

t2

)
(43)

with F a function de�ned on Rn. Since f is a radial function of the form f(x) = f0(∥x∥)
then the operator ∆z,t can be written as

(∆z,tf)(x) =

(
1 +

∥x∥2

t2

)
f ′′
0 (∥x∥) + f ′

0(∥x∥)
(
n− 1

||x||
+ (n− 2z)

∥x∥
t2

)
+
z(z + 1)

t2
(1− β2

x)f0(∥x∥).
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Then, considering ∥x∥2 = r2 and after straightforward computations we see that if f given
by (43) is an eigenfunction of ∆z,t then F satis�es the following hypergeometric equation:(

−r2

t2

)(
1−

(
−r2

t2

))
F ′′
(
−r2

t2

)
+

(
n

2
−
(
n+ 1

2

)(
−r2

t2

))
F ′
(
−r2

t2

)
−
(
n− 1− 2iλt

4

)(
n+ 1 + 2iλt

4

)
F

(
−r2

t2

)
= 0.

The smooth solutions at 0 of the last equation are multiples of

2F1

(
n−1−2iλt

4 , n−1+2iλt
4 ; n2 ;−

∥x∥2
t2

)
. Therefore, by (41) f is a constant multiple of ϕλ;t.

Now we study the asymptotic behavior of ϕλ;t at in�nity to obtain the Harish-Chandra
c-function in our case.

Lemma 5.7. For Im(λ) < 0 we have

lim
s→+∞

ϕλ;t(t sinh s) e
(n−1

2
−z−iλt)s = c(λt)

where c(λt) is the Harish-Chandra c-function given by

c(λt) =
2n−2−z

√
π

Γ
(
n
2

)
Γ (iλt)

Γ
(
n−1
2 + iλt

) . (44)

Proof. Considering (42), (72) and (71) in Appendix B, and the limit

lim
s→+∞

es/ cosh(s) = 2

we obtain

lim
s→+∞

ϕλ;t(t sinh s) e
(n−1

2
−z−iλt)s = lim

s→∞
e−zs(cosh s)z φ

(n
2
−1,− 1

2)
λt (s) e(−iλt+n−1

2
)s

= 2−zcn
2
−1,− 1

2
(λt)

=
2

n−1
2

−z−iλt Γ
(
n
2

)
Γ(iλt)

Γ
(
n−1+2iλt

4

)
Γ
(
n+1+2iλt

4

) . (45)

Using the relation Γ(z)Γ
(
z + 1

2

)
= 21−2z√π Γ(2z) we can write

Γ

(
n+ 1 + 2iλt

4

)
= Γ

(
n− 1 + 2iλt

4
+

1

2

)
=

21−
n−1+2iλt

2
√
π Γ
(
n−1+2iλt

2

)
Γ
(
n−1+2iλt

4

)
and, therefore, (45) simpli�es to

c(λt) =
2n−2−z

√
π

Γ
(
n
2

)
Γ (iλt)

Γ
(
n−1
2 + iλt

) .

Finally, we prove the addition formula for spherical functions.

Proposition 5.8. For every λ ∈ C, t ∈ R+, and a, x ∈ Rn

τaϕλ;t(x) = ja(0)

∫
Sn−1

e−λ,ξ;t(a) eλ,ξ;t(x) dσ(ξ)

= ja(0)

∫
Sn−1

eλ,ξ;t(a) e−λ,ξ;t(x) dσ(ξ). (46)
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Proof. By (38) we have

τaϕλ;t(x) =

∫
Sn−1

τaeλ,ξ;t(x) dσ(ξ)

= ja(0)

∫
Sn−1

eλ,ξ;t(−a) eλ,Ta(ξ);t(x) dσ(ξ).

Making the change of variables Ta(ξ) = ξ′ ⇔ ξ = T−a(ξ
′) the measure becomes

dσ(ξ) =

 1
1
βa

− ⟨a,ξ′⟩
t

n−1

dσ(ξ′).

Thus,

τaϕλ;t(x) = ja(0)

∫
Sn−1

eλ,T−a(ξ′);t(−a) eλ,ξ′;t(x)

 1
1
βa

− ⟨a,ξ′⟩
t

n−1

dσ(ξ′).

From (36) and (39) we obtain

eλ,T−a(ξ′);t(−a) =
(βa)

−z+n−1
2

+iλt

(βa)n−1+2iλt
(
1− ⟨βa a,ξ′⟩

t

)−n−1
2

−iλt
.

Since

eλ,T−a(ξ′);t(−a)

 1
1
βa

− ⟨a,ξ′⟩
t

n−1

=
(βa)

−z+n−1
2

+iλt

(βa)n−1+2iλt
(
1− ⟨βa a,ξ′⟩

t

)−n−1
2

−iλt

× (βa)
n−1(

1− ⟨βa a,ξ′⟩
t

)n−1

=
(βa)

−z+n−1
2

−iλt(
1− ⟨βa a,ξ′⟩

t

)n−1
2

−iλt

= e−λ,ξ′;t(a)

we �nally obtain

τaϕλ;t(x) = ja(0)

∫
Sn−1

e−λ,ξ′;t(a) eλ,ξ′;t(x) dσ(ξ
′).

The second equality follows from the fact that ϕλ;t is an even function of λ, i.e., ϕλ;t = ϕ−λ;t.

6 The generalized Poisson transform

De�nition 6.1. Let f ∈ L2(Sn−1). Then the generalized Poisson transform is de�ned by

Pλ,tf(x) =

∫
Sn−1

eλ,ξ;t(x) f(ξ) dσ(ξ), x ∈ Rn.
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For a spherical harmonic Yk of degree k and applying (62) in Appendix A we obtain:

(Pλ,tYk)(x) = Ck,ν(βx)
−z+n−1

2 +iλt ×

2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
; 1− β2

x

)
Yk

(
βx

x

t

)
(47)

with ν = n−1
2 + iλt, and Ck,ν = 2−k (ν)k

(n/2)k
. For f =

∑∞
k=0 akYk ∈ L2(Sn−1) then we have

Pλ,tf(x)=
∞∑
k=0

akCk,ν(βx)
−z+n−1

2 +iλt
2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
; 1− β2

x

)
Yk

(
βx

x

t

)
.

Now we prove a result about the injectivity of the generalized Poisson transform which is
important later on.

Proposition 6.2. The Poisson transform Pλ,t is injective in L2(Sn−1) if and only if
λ ̸= i

(
2k+n−1

2t

)
for all k ∈ Z+.

Proof. Let λ = i
(
2k0+n−1

2t

)
for some k0 ∈ Z+. Then by (47) we have that Pλ,tYk = 0, for

all k > k0 since ((n − 1)/2 + iλt)k is zero. Conversely, if λ ̸= i
(
2k+n−1

2t

)
for all k ∈ Z+,

then all the coe�cients ((n− 1)/2+ iλt)k are not vanishing for k ∈ Z+. Hence, by (47) we
have that Pλ,tf = 0 if and only if f = 0. Thus, Pλ,t is injective for every λ ̸= i

(
2k+n−1

2t

)
,

k ∈ Z+.

Corollary 6.3. Let λ ̸= i
(
2k+n−1

2t

)
, k ∈ Z+. Then for f in C∞

0 (Rn) the space of functions

f̂(λ, ξ) is dense in L2(Sn−1).

Proof. Let g ∈ L2(Sn−1) be such that∫
Sn−1

g(ξ) f̂(λ, ξ) dσ(ξ) = 0

for all f ∈ C∞
0 (Rn). Therefore,∫

Rn

f(x)

(∫
Sn−1

g(ξ) e−λ,ξ;t(x) dσ(ξ)

)
dµz,t(x) = 0

for all f ∈ C∞
0 (Rn), which implies that for every x ∈ Rn

P−λ,tg(x) =

∫
Sn−1

g(ξ) e−λ,ξ;t(x) dσ(ξ) = 0.

Finally, by Proposition 6.2 we have g = 0.

7 The generalized Helgason Fourier transform

De�nition 7.1. For f ∈ C∞
0 (Rn), λ ∈ C and ξ ∈ Sn−1 we de�ne the generalized Helgason

Fourier transform of f as

f̂(λ, ξ; t) =

∫
Rn

e−λ,ξ;t(x) f(x) dµz,t(x).
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Remark 3. If f is a radial function i.e., f(x) = f(∥x∥), then f̂(λ, ξ; t) is independent of ξ
and reduces by (40) to the spherical transform of f de�ned by

f̂(λ; t) =

∫
Rn

ϕ−λ;t(x) f(x) dµz,t(x). (48)

Moreover, by (37) we recover in the Euclidean limit the usual Fourier transform in Rn.

From Propositions 3.8 and 5.3 we obtain the following result.

Proposition 7.2. If f ∈ C∞
0 (Rn) then

∆̂z,tf(λ, ξ; t) = −
(
λ2 +

(n− 1)2

4t2
− nz

t2

)
f̂(λ, ξ; t).

Now we study the hyperbolic convolution theorem with respect to the generalized Helgason
Fourier transform. We begin with the following lemma.

Lemma 7.3. For a ∈ Rn and f ∈ C∞
0 (Rn)

τ̂af(λ, ξ; t) = ja(0) e−λ,ξ;t(a) f̂(λ, T−a(ξ); t). (49)

Proof. By (31) and (38) we have

τ̂af(λ, ξ; t) =

∫
Rn

e−λ,ξ;t(x) τaf(x) dµz,t(x)

=

∫
Rn

τ−ae−λ,ξ;t(x) f(x) dµz,t(x)

= ja(0) e−λ,ξ;t(a)

∫
Rn

e−λ,T−a(ξ);t(x) f(x) dµz,t(x)

= ja(0) e−λ,ξ;t(a) f̂(λ, T−a(ξ); t).

Theorem 7.4 (Generalized Hyperbolic Convolution Theorem). Let f, g ∈ C∞
0 (Rn). Then

f̂ ∗ g(λ, ξ) =
∫
Rn

f(y) e−λ,ξ;t(y) ̂̃gy(λ, T−y(ξ); t) dµz,t(y) (50)

where g̃y(x) = g(gyr [y, x]x).

Proof. Let I = f̂ ∗ g(λ, ξ). We have

I =

∫
Rn

(∫
Rn

f(y) τxg(−y) jx(x) dµz,t(y)

)
e−λ,ξ;t(x) dµz,t(x)

=

∫
Rn

f(y)

(∫
Rn

τxg(−y) e−λ,ξ;t(x) jx(x) dµz,t(x)

)
dµz,t(y) (Fubini)

=

∫
Rn

f(y)

(∫
Rn

τyg(gyr [x, y]x) e−λ,ξ;t(x) jy(y) dµz,t(x)

)
dµz,t(y)

(by (24), (16))

=

∫
Rn

f(y) τ̂y g̃y(λ, ξ; t) jy(y) dµz,t(y)

=

∫
Rn

f(y) e−λ,ξ;t(y) ̂̃gy(λ, T−y(ξ); t) dµz,t(y) (by (49), (16)).
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Since in the limit t → +∞ gyrations reduce to the identity and (−y) ⊕ ξ reduces to
ξ, formula (50) converges in the Euclidean limit to the well-know Convolution Theorem:
f̂ ∗ g = f̂ · ĝ. By Remark 3 if g is a radial function we obtain the pointwise product of the
generalized Helgason Fourier transforms.

Corollary 7.5. Let f, g ∈ C∞
0 (Rn) and g radial. Then

f̂ ∗ g(λ, ξ; t) = f̂(λ, ξ; t) ĝ(λ; t).

8 Inversion of the generalized Helgason Fourier transform

and Plancherel's Theorem

First we obtain an inversion formula for the radial case, that is, for the generalized spherical
transform.

Lemma 8.1. The generalized spherical transform denoted by H can be written as

H = Jn
2
−1,− 1

2
◦Mz

where Jn
2
−1,− 1

2
is the Jacobi transform (see (68) in Appendix B) with parameters α = n

2 −1

and β = −1
2 and

(Mz,tf)(s) := 21−nAn−1t
n(cosh s)−zf(t sinh s). (51)

Proof. Integrating (48) in polar coordinates x = t sinh(s) ξ s > 0, ξ ∈ Sn−1 we obtain

f̂(λ; t) = An−1

∫ +∞

0
f(t sinh(s)ξ) ϕ−λ;t(t sinh(s)ξ) (cosh(s))

−2z tn(sinh(s))n−1 ds

Applying (42) yields

f̂(λ; t) = 21−nAn−1t
n

∫ +∞

0
f(t sinh s)(cosh s)−zφ

(n
2
−1,− 1

2)
λt (s) (2 sinh s)n−1ds

= (Jn
2
−1,− 1

2
◦Mz,tf)(λt).

Lemma 8.1 allow us to obtain a Paley-Wiener Theorem for the generalized Helgason
Fourier transform by using the Paley-Wiener Theorem for the Jacobi transform (Theorem
B.1). Let C∞

0,R(Rn) denotes the space of all radial C∞ functions on Rn with compact
support and E(C×Sn−1) the space of functions g(λ, ξ) on C×Sn−1, even and holomorphic
in λ and of uniform exponential type, i.e., there is a positive constant Ag such that for all
n ∈ N

sup
(λ,ξ)∈C×Sn−1

|g(λ, ξ)|(1 + |λ|)n eAg |Im(λ)| < ∞

where Im(λ) denotes the imaginary part of λ.

Corollary 8.2. (Paley-Wiener Theorem) The generalized Helgason Fourier transform is
bijective from C∞

0,R(Rn) onto E(C × Sn−1).

From now on we denote Cn,t,z =
1

22z−n+2tn−1πAn−1
.
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Theorem 8.3. For all f ∈ C∞
0,R(Rn) we have the inversion formula

f(x) = Cn,t,z

∫ +∞

0
f̂(λ; t) ϕλ;t(x) |c(λt)|−2 dλ. (52)

Proof. Applying formula (70) in Appendix B for the Jacobi transform and Lemma 6.7 we
obtain

Mz,tf(s) =
1

2π

∫ +∞

0
f̂(λ; t) φ

(n
2
−1,− 1

2)
λt (s)

∣∣∣cn
2
−1,− 1

2
(λt)

∣∣∣−2
t dλ

=
1

2π

∫ +∞

0
f̂(λ; t) (cosh s)−z ϕλ;t(x)

|c(λt)|−2

22z
t dλ.

In the last equality we use (42) and (45). Applying (51) we obtain

f(t sinh s) = Cn,t,z

∫ +∞

0
f̂(λ; t) ϕλ;t(x) |c(λt)|−2 dλ.

Since f is radial and ∥x∥ = t sinh s we obtain the desired result.

Remark 4. The inversion formula (52) can be written as

f(x) =
Cn,t,z

2

∫
R
f̂(λ; t) ϕλ;t(x) |c(λt)|−2 dλ (53)

since the integrand is an even function of λ ∈ R. Note that f is radial and therefore f̂(λ; t)
is an even function of λ, ϕλ;t = ϕ−λ;t, and |c(−λt)| = |c(λt)| = |c(λt)|, for λ ∈ R.
Now that we have an inversion formula for the radial case we present our main results,
the inversion formula for the generalized Helgason Fourier transform and the associated
Plancherel's Theorem.

Proposition 8.4. For f ∈ C∞
0 (Rn) and λ ∈ C holds

f ∗ ϕλ;t(x) =

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) dσ(ξ). (54)

Proof. By (46), (16), Fubini's Theorem, and the fact that ϕ is a radial function we have

f ∗ ϕλ;t(x) =

∫
Rn

f(y) τxϕλ;t(y) jx(x) dµz,t(y)

=

∫
Rn

f(y)

(∫
Sn−1

eλ,ξ;t(x) e−λ,ξ;t(y)jx(0)jx(x) dσ(ξ)

)
dµz,t(y)

=

∫
Sn−1

(∫
Rn

f(y) e−λ,ξ;t(y) dµz,t(y)

)
eλ,ξ;t(x) dσ(ξ)

=

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) dσ(ξ).

Theorem 8.5. (Inversion formula) If f ∈ C∞
0 (Rn) then

f(x) = Cn,t,z

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ. (55)
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Proof. Given f ∈ C∞
0 (Bt

n) and x, y ∈ Rn we consider the radial function

fx(y) =

∫
SO(n)

τK−1xf(−Ky) jx(x) dK,

whereK ∈ SO(n) and dK is the normalised Haar measure on SO(n).Applying the inversion
formula (52) we get

fx(y) = Cn,t,z

∫ +∞

0
f̂x(λ; t) ϕλ;t(y) |c(λt)|−2 dλ. (56)

By (48) and Fubini's Theorem we have

f̂x(λ; t) =

∫
Rn

(∫
SO(n)

τK−1xf(−Ky) jx(x) dK

)
ϕ−λ;t(y) dµz,t(y)

=

∫
SO(n)

(∫
Rn

f(x⊕ (−Ky)) jK−1x(y) jx(x) ϕ−λ;t(y) dµz,t(y)

)
dK.

Considering the change of variables Ky 7→ z we see that the inner integral is independent
on K. Then we obtain

f̂x(λ; t) =

∫
Rn

τxf(−z) ϕ−λ;t(z) jx(x) dµz,t(z)

= (f ∗ ϕλ;t)(x). (57)

Since f(x) = fx(0) it follows from (56), (57), and (54) that

f(x) = Cn,t,z

∫ +∞

0
f̂x(λ; t) ϕλ;t(0) |c(λt)|−2 dλ

= Cn,t,z

∫ +∞

0
(f ∗ ϕλ;t)(x) |c(λt)|−2 dλ

= Cn,t,z

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ.

Remark 5. Applying the inversion formula (53) in the proof of Theorem 8.5 we can write
the inversion formula (55) as

f(x) =
Cn,t,z

2

∫
R

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ.

Theorem 8.6. (Plancherel's Theorem)
The generalized Helgason Fourier transform extends to an isometry from
L2(Rn, dµz,t) onto L2(R+ × Sn−1, Cn,t,z|c(λt)|−2 dλ dσ), i.e.,∫

Rn

|f(x)|2 dµz,t(x) = Cn,t,z

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ; t)|2 |c(λt)|−2 dσ(ξ) dλ. (58)
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Proof. For f, g ∈ C∞
0 (Rn) we obtain Parseval's relation by the inversion formula (55) and

Fubini's Theorem:

Cn,t,z

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) ĝ(λ, ξ; t) |c(λt)|−2 dσ(ξ) dλ

= Cn,t,z

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t)

∫
Rn

g(x) eλ,ξ;t(x) dµz,t(x) |c(λt)|−2 dσ(ξ) dλ

=

∫
Rn

[
Cn,t,z

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ

]
g(x) dµz,t(x)

=

∫
Rn

f(x) g(x) dµz,t(x).

By taking f = g we obtain (58) for f ∈ C∞
0 (Rn) and the result can be extended to

L2(Rn, dµz,t) since C∞
0 (Rn) is dense in L2(Rn, dµz,t). It remains to prove the surjectivity

of the generalized Helgason Fourier transform. This can be done in a similar way as in
([15], Theorem 6.14) and therefore we omit the details.

Having obtained the main results we now study the limit t → +∞ of the previous
results. It is anticipated that in the Euclidean limit we recover the usual inversion formula
for the Fourier transform and Plancherel's Theorem on Rn. To see that this is indeed the
case, we observe that from (44)

1

|c(λt)|2
=

(An−1)
2

πn−122n−2z−2

∣∣∣∣∣Γ
(
n−1
2 + iλt

)
Γ (iλt)

∣∣∣∣∣
2

, (59)

with An−1 =
2π

n
2

Γ
(
n
2

) being the surface area of Sn−1. Finally, using (59) the generalized

Helgason inverse Fourier transform (55) simpli�es to

f(x) =
An−1

(2π)ntn−1

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)

∣∣∣∣∣Γ
(
n−1
2 + iλt

)
Γ (iλt)

∣∣∣∣∣
2

dσ(ξ) dλ

=
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)
λn−1

N (n)(λt)
dξ dλ (60)

with

N (n)(λt) =

∣∣∣∣∣ Γ(iλt)

Γ
(
n−1
2 + iλt

)∣∣∣∣∣
2

(λt)n−1 .

Some particular values are N (1)(λt) = 1, N (2)(λt) = coth (λt) , N (3) = 1, and N (4)(λt) =
(2λt)2 coth(πλt)

1+(2λt)2
. Since lim

t→+∞
N (n)(λt) = 1, for any n ∈ N and λ ∈ R+ (see [1]), we con-

clude that in the Euclidean limit the generalized Helgason inverse Fourier transform (60)
converges to the usual inverse Fourier transform in Rn written in polar coordinates:

f(x) =
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λξ) ei⟨x,λξ⟩ λn−1 dξ dλ, x, λξ ∈ Rn.

Finally, Plancherel's Theorem (58) can be written as∫
Rn

|f(x)|2 dµz,t(x) =
1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ)|2 λn−1

N (n)(λt)
dξ dλ (61)

22



and, therefore, we have an isometry between the spaces L2(Rn, dµz,t)

and L2
(
R+ × Sn−1, λn−1

(2π)nN(n)(λt)
dλ dξ

)
. Applying the limit t → +∞ to (61) we recover

Plancherel's Theorem in Rn :∫
Rn

|f(x)|2 dx =
1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λξ)|2 λn−1 dξ dλ.

9 Heat kernel associated to the proper velocity gyrogroup

We consider the following initial value problem for the heat equation associated to the
generalized Laplace Beltrami operator ∆z,t :

{
∂τu(x, τ) = ∆z,tu(x, τ)
u(x, 0) = f(x)

where (x, τ) ∈ Rn × R+, f ∈ C∞
0 (Rn), and u(x, t) is assumed to be C∞ and compactly

supported in the spatial variable, for simplicity. Applying the generalized Helgason Fourier
transform in the spatial variable and using Proposition 7.2 we have{

∂τ û(λ, ξ, τ) = −
(
λ2 + (n−1)2

4t2
− nz

t2

)
û(λ, ξ, τ)

û(λ, ξ, 0) = f̂(λ, ξ)
, τ > 0.

Therefore, we obtain

û(λ, ξ, τ) = e
−τ

(
λ2+

(n−1)2

4t2
−nz

t2

)
f̂(λ, ξ).

Applying the inverse Helgason Fourier transform and using Corollary 7.5 we get

u(x, τ) = (pτ ∗ f)(x),

where pτ is given by applying the inversion formula (52)

pτ (x) = Cn,t,z

∫ ∞

0
e
−τ

(
λ2+

(n−1)2

4t2
−nz

t2

)
Φλ;t(x) |c(λt)|−2 dλ.

A Spherical harmonics

A spherical harmonic of degree k ≥ 0 denoted by Yk is the restriction to Sn−1 of a ho-
mogeneous harmonic polynomial in Rn. The set of all spherical harmonics of degree k is
denoted by Hk(Sn−1). This space is a �nite dimensional subspace of L2(Sn−1) and we have
the direct sum decomposition

L2(Sn−1) =

∞⊕
k=0

Hk(Sn−1).

The following integrals are obtained from the generalisation of Proposition 5.2 in [24].
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Lemma A.1. Let ν ∈ C, k ∈ N0, t ∈ R+, and Yk ∈ Hk(Sn−1). Then∫
Sn−1

(
1

1− ⟨x,ξ⟩
t

)ν

Yk(ξ) dσ(ξ) =

2−k (ν)k
(n/2)k

× 2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
;
∥x∥2

t2

)
Yk

(x
t

)
(62)

where x ∈ Rn, (ν)k denotes the Pochhammer symbol, and dσ is the normalised surface
measure on Sn−1. In particular, when k = 0, we have∫

Sn−1

(
1

1− ⟨x,ξ⟩
t

)ν

dσ(ξ) = 2F1

(
ν

2
,
ν + 1

2
;
n

2
;
∥x∥2

t2

)
. (63)

The Gauss Hypergeometric function 2F1 is an analytic function for |z| < 1 de�ned by

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!

with c /∈ −N0. If Re(c − a − b) > 0 and c /∈ −N0 then exists the limit
lim
t→1−

2F1(a, b; c; t) and equals

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
. (64)

Some useful properties of this function are

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z) (65)

2F1(a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z

z − 1

)
(66)

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z). (67)

B Jacobi functions

The classical theory of Jacobi functions involves the parameters α, β, λ ∈ C (see [13,
14]). Here we introduce the additional parameter t ∈ R+ since we develop our hyperbolic
harmonic analysis on a ball of arbitrary radius t. For α, β, λ ∈ C, t ∈ R+, and α ̸=
−1,−2, . . . , we de�ne the Jacobi transform as

Jα,βg(λt) =

∫ +∞

0
g(r) φ

(α,β)
λt (r) ωα,β(r) dr (68)

for all functions g de�ned on R+ for which the integral (68) is well de�ned. The weight
function ωα,β is given by

ωα,β(r) = (2 sinh(r))2α+1(2 cosh(r))2β+1

and the function φ
(α,β)
λt (r) denotes the Jacobi function which is de�ned as the even C∞

function on R that equals 1 at 0 and satis�es the Jacobi di�erential equation(
d2

dr2
+ ((2α+ 1) coth(r) + (2β + 1) tanh(r))

d

dr
+ (λt)2 + (α+ β + 1)2

)
φ
(α,β)
λt (r) = 0.
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The function φ
(α,β)
λt (r) can be expressed as an hypergeometric function

φ
(α,β)
λt (r) = 2F1

(
α+ β + 1 + iλt

2
,
α+ β + 1− iλt

2
;α+ 1;− sinh2(r)

)
. (69)

Since φ(α,β)
λt are even functions of λt ∈ C then Jα,βg(λt) is an even function of λt. Inversion

formulas for the Jacobi transform and a Paley-Wiener Theorem are found in [14]. We
denote by C∞

0,R(R) the space of even C∞-functions with compact support on R and E
the space of even and entire functions g for which there are positive constants Ag and
Cg,n, n = 0, 1, 2, . . . , such that for all λ ∈ C and all n = 0, 1, 2, . . .

|g(λ)| ≤ Cg,n(1 + |λ|)−n eAg |Im(λ)|

where Im(λ) denotes the imaginary part of λ.

Theorem B.1. ([14],p.8) (Paley-Wiener Theorem) For all α, β ∈ C with α ̸= −1,−2, . . .
the Jacobi transform is bijective from C∞

0,R(R) onto E .

The Jacobi transform can be inverted under some conditions [14]. Here we only refer
to the case which is used in this paper.

Theorem B.2. ([14],p.9) Let α, β ∈ R such that α > −1, α ± β + 1 ≥ 0. Then for every
g ∈ C∞

0,R(R) we have

g(r) =
1

2π

∫ +∞

0
(Jα,βg)(λt) φ

(α,β)
λt (r) |cα,β(λt)|−2 t dλ, (70)

where cα,β(λt) is the Harish-Chandra c-function associated to Jα,β(λt) given by

cα,β(λt) =
2α+β+1−iλtΓ(α+ 1)Γ(iλt)

Γ
(
α+β+1+iλt

2

)
Γ
(
α−β+1+iλt

2

) . (71)

This theorem provides a generalisation of Theorem 2.3 in [14] for arbitrary t ∈ R+. From
[14] and considering t ∈ R+ arbitrary we have the following asymptotic behavior of ϕα,β

λt

for Im(λ) < 0 :

lim
r→+∞

φ
(α,β)
λt (r)e(−iλt+α+β+1)r = cα,β(λt). (72)
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