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Abstract

In this paper we study harmonic analysis on the Proper Velocity (PV) gyrogroup
using the gyrolanguage of analytic hyperbolic geometry. PV addition is the relativis-
tic addition of proper velocities in special relativity and it is related with the hy-
perboloid model of hyperbolic geometry. The generalized harmonic analysis depends
on a complex parameter z and on the radius ¢ of the hyperboloid and comprises the
study of the generalized translation operator, the associated convolution operator, the
generalized Laplace-Beltrami operator and its eigenfunctions, the generalized Poisson
transform and its inverse, the generalized Helgason-Fourier transform, its inverse and
Plancherel’s Theorem. In the limit of large t, ¢ — 400, the generalized harmonic
analysis on the hyperboloid tends to the standard Euclidean harmonic analysis on R™,
thus unifying hyperbolic and Fuclidean harmonic analysis.

Keywords: PV gyrogroup, Laplace Beltrami operator, Eigenfunctions, Generalized Helgason-
Fourier transform, Plancherel’s Theorem.

1 Introduction

Harmonic analysis is the branch of mathematics that studies the representation of functions
or signals as the superposition of basic waves called harmonics. It investigates and gen-
eralizes the notions of Fourier series and Fourier transforms. In the past two centuries, it
has become a vast subject with applications in diverse areas as signal processing, quantum
mechanics, and neuroscience (see [18| for an overview).

Noncommutative harmonic analysis appeared mainly in the context of symmetric spaces
where many Lie groups are locally compact and noncommutative. These examples are of
interest and frequently applied in mathematical physics and contemporary number theory,
particularly automorphic representations. The development of noncommutative harmonic
analysis was done by many mathematicians among which stand out the names of John von
Neumann, Harisch-Chandra and Sigurdur Helgason [10, 11, 12].

Fourier analysis on real Euclidean space is intimately connected with the action of the
group of translations. The group structure enters into the study of harmonic analysis by
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allowing the consideration of the translates of the object under study (functions, measures,
etc.). On real hyperbolic space the same approach can be done considering the gyrogroup
structure underlying hyperbolic space. In our recent papers |5, 6] we developed generalized
harmonic analysis on M&bius and Einstein gyrogroups which are related to the Poincaré
and Klein-Beltrami models of hyperbolic geometry. The gyrogroup structure is a natural
extension of the group structure, discovered in 1988 by A. A. Ungar in the context of
Einstein’s velocity addition law [19]. It has been extensively studied by A. A. Ungar and
others see, for instance, [7, 20, 21, 23]. Gyrogroups provide a fruitful bridge between
nonassociative algebra and hyperbolic geometry, just as groups lay the bridge between
associative algebra and Euclidean geometry. Our aim in this paper is to present new
results connecting harmonic analysis on the hyperboloid model of real hyperbolic space
and its gyrogroup structure. This model is algebraically regulated by the Proper Velocity
(PV) addition of proper velocities in special relativity. PV addition plays a similar role
to that of vector addition in the Euclidean n-space R™ giving rise to the PV gyrogroup
[7, 21, 22]. Proper time is useful, for instance in the understanding of the twin paradox
and the mean life time of unstable moving particles. In quantum mechanics it is useful to
reformulate relativity physics in terms of proper time instead of coordinate time (see [9]).

In this paper we study several aspects of harmonic analysis on the PV gyrogroup
associated to the family of Laplace-Beltrami operators A, ; in R™ given by

L% B i 9 z(z41)
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where z € C, t € RT, and f3, is the relativistic beta factor. Eigenfunctions of this operator
are parameterized by the eigenvalues —\? — (n;t;)Q + %, with A € C. For z = 0 and the
normalized case ¢ = 1 we obtain the eigenvalues of the common Laplace-Beltrami operator
on the hyperboloid model considered e.g. in [2, 17] . Our approach extends some of the
results of these papers. Possible applications of our work comprises the study of generalized
coherent states on hyperbolic space and hamiltonian systems. In [1]| the authors proposed
a Wigner quasiprobability distribution function for Hamiltonian systems on hyperboloids
based on the eigenfunctions of the Laplace-Beltrami on the hyperboloid.

The paper is organized as follows. In Section 2 we present the PV addition and its
properties. Sections 3 and 4 are dedicated to the study of the generalized translation oper-
ator and the associated convolution operator. In Section 5 we construct the eigenfunctions
of the generalized Laplace-Beltrami operator on the hyperboloid and we study the gener-
alized spherical functions. In Section 6 we define the generalized Poisson transform and
we study the injectivity of this transform. Section 7 is devoted to the generalized Helgason
Fourier transform on the PV gyrogroup. In Section 8 we obtain the inversion formula for
the generalized Helgason Fourier transform and Plancherel’s Theorem and we show that
in the limit £ — 400 we recover the inverse Fourier transform and Plancherel’s Theorem
in Fuclidean harmonic analysis. As an application, in Section 9 we solve the heat equation
on the proper velocity gyrogroup. Two appendices, A and B, concerning all necessary facts
on spherical harmonics and Jacobi functions, are found at the end of the paper.

2 Proper Velocity addition

Proper velocities in special relativity theory are velocities measured by proper time, that
is, by traveleraAZs time rather than by observeraAZs time [3]. The addition of proper
velocities was defined by A.A. Ungar in [3] giving rise to the proper velocity gyrogroup.



Definition 2.1. [21] Let (V,+, (,)) be a real inner product space with addition +, and
inner product (,). The PV (Proper Velocity) gyrogroup (V,®) is the real inner product
space V equipped with addition & given by
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where t € R* and f,, called the relativistic beta factor, is given by the equation
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PV addition is the relativistic addition of proper velocities rather than coordinate velocities
as in Einstein addition. PV addition satisfies the beta identity
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or, equivalently,
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It is known that (V,@®) is a gyrogroup (see [21]), i.e. it satisfies the following axioms:
(G1) There is at least one element 0 satisfying 0 @ a = a, for all a € V;
(G2) For each a € V there is an element ©a € V such that Ga @ a = 0;

(G3) For any a,b,c € V there exists a unique element gyr|a, blc € V such that the binary
operation satisfies the left gyroassociative law

a® (bdc)=(a®b) D gyr|a,b|c; (4)

(G4) The map gyrla,b] : V — V given by c — gyrla,blc is an automorphism of (V,®);
(G5) The gyroautomorphism gyr|a,b] possesses the left loop property

gyrla,b] = gyrla @ b, b].

PV gyrations can be given in terms of the PV addition @ by the equation (see [21])
gyra,blc = ©(a®b) ® (a @ (b ¢)).
The PV gyrogroup is gyrocommutative since PV addition satisfies
a®b=gyr|a,bl(b®da). (5)

In the limit ¢ — 400, PV addition reduces to vector addition in (V,+) and, therefore, the
gyrogroup (V, @) reduces to the translation group (V,+). To see the connection between
proper velocity addition, proper Lorentz transformations, and real hyperbolic geometry let
us consider the one sheeted hyperboloid
HY ={z e R" : 22, —a2f — ... — 22 = t* Azpyr > 0} in R™™! where t € R is
the radius of the hyperboloid. The n—dimensional real hyperbolic space is usually viewed
as the rank one symmetric space G/K of noncompact type, where G = SO.(n, 1) is the
identity connected component of the group of orientation preserving isometries of H}*



and K =SO(n) is the maximal compact subgroup of G which stabilizes the base point
O :=(0,...,0,1) in R*"!. Thus, H = SO.(1,n)/SO(n) and it is one model for real hyper-
bolic geometry with constant negative curvature. Restricting the semi-Riemannian metric

dx2 ., — da? — ... — dz? on the ambient space we obtain the Riemannian metric on H}'
which is given by
z,dx))?
d82 — <§ ’ >)2 _ ||dl‘||2
2+ ]
with x = (z1,...,2,) € R” and dz = (dzy, ..., dzy). This metric corresponds to the metric
tensor .
(7)) = 5 — 6y, 4,5 € {1, ..
g’lj(x) t2 + ”33H2 17 7’7.] { 9 ?n}

whereas the inverse metric tensor is given by

g7 (x) = —6ij — ;Tj, i,j €{1,...,n}.

The group of all orientation preserving isometries of H;* consists of elements of the group
SO(n) and proper Lorentz transformations acting on H{*. A simple way of working in H;"
is to consider its projection into R™. Given an arbitray point (z,+/t? + ||z|]?) € H}* we
define the mapping II : H}* — R", such that I(z, \/t? + ||z]|?) = .

A proper Lorentz boost in the direction w € $"~! and rapidity « acting in an arbitrary
point (z,\/t? + ||z||?) € H}* yields a new point (z,Zn+1)w,.a € H{" given by (see [4])

(, Zn41)wa = (m + ((cosh(a) — 1) (w, z) — sinh(a)/t2 + ‘|$H2> w,
cosh(a)y/t2 + ||z]|? — sinh(«) <w,x>> . (6)

Since

2
\/t2 + Hx + ((cosh(a) — 1) (w, x) — sinh(a)\/t2 + Htz) wH = Tpi1
then the projection of (6) into R™ is given by
Iz, pt1)wa = + ((cosh(a) — 1) {w, z) — sinh(a)\/t2 + |]:n||2> w. (7)

Rewriting the parameters of the Lorentz boost to depend on a point a € R” as

[lall?

t2

, sinh(a) = —W:H, and w= — (8)

cosh(a) =1/1+ :
lal]

and replacing (8) in (7) we finally obtain the relativistic addition of proper velocities in

R™ :
i+l -1 ]2
adbr = x+ W(a,x)—i— 1‘1‘7

= :z:+< o <a’x>+1>a

1+ B, 12 By

From now on we consider the PV gyrogroup (R", @). In this case ©a = —a. For R € SO(n)
we have the homomorphism

R(a® x) = (Ra) @ (Rz).



Some useful gyrogroup identities ([21], pp. 48 and 68) that will be used in this paper are

(gyr [a, b))~ = gyr b, d] 9)
gyrla @ b, Sal = gyr [a, ] (10)

gyr [Oa, ©b] = gyr [a, b] (11)
gyr[a,bj(b® (a®c)) =(adb) Dec (12)

and (12) are valid only for gyrocommutative gyrogroups. Combining formulas (10) and
(12) with (9) we obtain the identities

gyr[©a,a & b = gyr[b, a
b® (a®c)=gyrbal((a®b) @ c).
For n > 2 the gyrosemidirect product of (R,®) and SO(n) (see [21]) gives the group
R Xgyr SO(n) for the operation
(4, R)(b,8) = (4 ® Rb, ayr[a, RIRS).

This group is a realization of the Lorentz group SO¢(1,n). In the limit ¢ — +o00 the group
R X gyr SO(n) reduces to the Euclidean group E(n) = R™ x SO(n). This shows that (R", @)
is the appropriate algebraic structure to develop harmonic analysis on the hyperboloid.

3 The generalized translation

Definition 3.1. For a function f defined on R", ¢ € R", and z € C we define the
generalized translation operator 7, f by the complex-valued function

Taf(2) = ja(2) f((—a) ® ) (13)

. Ba ’
a = —7F—71 . 14
’ (x) (1 - 5aﬂw %’2@ ) ( )

The multiplicative factor j,(z) agrees with the Jacobian of the transformation (—a) ® z
when z = 1. In the case z = 0 the translation reduces to 7, f(z) = f((—a) ® ). Moreover,
for any z € C, we obtain in the limit ¢ — +oo the Euclidean translation operator 7, f(z) =

f(—a+z) = f(x —a). By (14) and (3) we can write j,(x) as jqo(z) = (%ﬂ)z

T

with

Lemma 3.2. For any a,b,z,y € R™ the following relations hold

(1) J-al-z ):ja( ) (15)
(i) Ja(a)ja(0) = (16)
(4ii) ~ ja(x) = jz(a ) a(0)jz(x) (17)
(iv) Ja(a ) (joala)™ (18)
(v) e2(0) = Joe(-a)(0) = Jz(a)ja(0) = ja(2)jz(0) (19)
(vi) z(( a) ® z) = (ja(2)) ™ ju () (20)
(vii) Tajy( ) = [T-aje(y)]1z(2)7y(0) (21)
(viid)  T-aja(x) =1 (22)
(ix)  Tajy(2) = Jawy(7) (23)
() 7af(x) = [r2f(—gyr [z, d]a)]ja(0)jz(z) (24)
(i) m7af(r) = Toeaf(gyr [0, b] 2) (25)
(zii)  T-aTaf(x) = f(2) (26)
(wiit)  myraf(x) = [Tp7e f(—gyr [=b, 2 @ a] gyr [z, a] a)] ja(0)jz (2)- (27)



The proof of these relations uses the beta-identity (3) and the same techniques as in the
Einstein case (see [5]). To compute the generalized Laplace-Beltrami operator A, ; that
commutes with the generalized translation operator (13) we use the approach of Rudin
[16, Ch. 4] and we compute A(7_,f)(0), where A is the Laplace operator in R".

Proposition 3.3. For each f € C*(R") and a € R"

i "~ a; O
A(r-af)0) = 7ul0) §:a;q%ﬁ% @+ (023 G @+

<umﬂ0 (28)

Proof. Let a € R™ and denote by T1,...,T, the coordinates of the mapping a @ x. Then
by the chain rule we have

R Tk —~ If =T
A(r—af)(0) = jkzl 8xj8xk Z 8x, 8331 )+ Oz, (a); ox? (0)} J-a(0)
"9 OTi 0o QLR
+227J;<a> - O G 0410 3 ) (20)
k=1 i=1 4

Since Ty (x) = xp + (1 —Iﬂ-aﬁa <at,23:> + 52) ag, k€ {l,...,n} then

T, Ba  a;a O*Ty, ap .
0) = Ok d —(0) = —= kedl,... .
3:131() k’l—i_l—l-ﬁa 12 an 8x?() 2 b €{l,....n}
Moreover,
5j—a . a;
I-40) = —3al0) = i 73
and 52 ( ) )
_ . z(z+1 a;
Lo 0) = jul0) 2 52 5
7
Therefore, replacing these expressions in (29) and after straightforward computations we
obtain (28). O

Definition 3.4. Let Q be an open subset of R” and f € C?(£2). We define the generalized
Laplace Beltrami-operator A, ; on H;* by

Tx "z 0 z2(z4+1)
— A J —92 o vy § 2.
+;ﬂam@Wz@;ﬂM+ o (1= 52)

By Proposition 3.3 we obtain a representation formula for A, ;:

A 1f(a) = (ja(0)) " A(T-af)(0). (30)
Proposition 3.5. The operator A, ; commutes with generalized translations, i.e.

A i(f) =To(Asef) YV feCHRY), WbeR"



Proof. By (30) we have

Aci(mf)a) = (a(0)) T A(r—amf)(0)
= (Ja(0)) A ((=b) @ (a ® 2))T—ajjp (@) =0 -
Now, since
(=b) @ (a@z) = ((-b) @ a)®gyr[-balz  (by (4))
and
T-afpo(2) = Jjaes(®)  (by (23))

= Jeaw(-a)(8yr[b,—alx)  (by (5),(9))

= Jba(—a)(yr[=b,alz)  (by (11))
then together with the invariance of A under the group SO(n), (19) and (15) we obtain

Azi(mf)(a) = (ja(0)TTA(f(((=b) & a) & gyr [=b, a]z) b (—a) (8yT [D, a]2)) |2=0
= (Ja(0) ' A(T—(—t)@a) F)(0)
= Jb(a) (G—py@a(0)) T AT (—ty@a)f)(0)

Jb(@)(Az f)((—b) @ a)

= (A f)(a).

O]

For studying some L?-properties of the invariant Laplace A ; and the generalized
translation we consider the weighted Hilbert space L*(R", dpu. ) with

ER

T 2

dp,¢(x) = (556)22le dz = (1 + 252) dzx,

where dx stands for the Lebesgue measure in R™. For the special case z = 0 we recover the
invariant measure associated to a @ x.

Proposition 3.6. For f,g € L*(R", dp.+) and a € R™ we have

[ 7t @) @) dses(e) = [ (@) 7o) o) G

Corollary 3.7. For f,g € L*(R",du.+) and a € R" we have
O [ f@) dpes@) = [ F@i-ala) da(o) (32)

(“) If z =0 then / Taf(x) dﬂz,t(x) = f(x) dﬂz,t(x)§
R™ R»
(@) |mafll2 = [|f]l2-

From Corollary 3.7 we see that the generalized translation 7, is an unitary operator in
L*(R™, dp.¢) and the measure du,; is translation invariant only for the case
z = 0. There is an important relation between the operator A,; and the measure dpu, ;.
Up to a constant the Laplace-Beltrami operator A, ; corresponds to a weighted Laplace
operator on R™ for the weighted measure dyi,; in the sense defined in [8, Sec. 3.6]. From
Theorem 11.5 in [8] we know that the Laplace operator on a weighted manifold is essentially
self-adjoint if all geodesics balls are relatively compact. Therefore, A, ; can be extended
to a self adjoint operator in L2(R", dp. ).

Proposition 3.8. The operator A, ; is essentially self-adjoint in L*(R™, dpu. ).



4 The generalized convolution

In this section we define the generalized convolution of two functions, we study its prop-
erties and we establish the respective Young’s inequality and gyroassociative law. In the
limit ¢ — 400 both definitions and properties tend to their Euclidean counterparts.

Definition 4.1. The generalized convolution of two measurable functions f and g is given
by

(fx9g)(x) = - fW) 129(=Yy) ju(x) dpze(y), = €R"

By Proposition 3.6 we have
(F9)@ = [ 72l o(-0) dola) dia(v)

= L f@oy) j-2(y) 9(=y) ju(x) du-¢(y) (by (13))

= /|, f®(=y)) j-2(=y) 9(¥) Ju(x) dp=e(y) (y = —y)

— [ () 9l0) dx(w) dpeay) by (15),03)
= (9% (=)
Thus, the generalized convolution is commutative.

Lemma 4.2. Let R(z) < %5%. Then for any t >0 and s > 0 we have

[ litsinh(s)e) go(a)] do(e) < C.

with
1, if R(z) €] —1,0[

c.={ T(pr (=)
() ()

Proof. Using (63) in Appendix A we obtain

if R(2) €] —o0,~1] U [0, 251

[ litsinn(s)6) je(a)] do(e)
-/ . ) ( 1
Sn—1 1— (Bz .84 sinh(s)¢ t sinh(s)€) B

t2

) R(:)
- /Snl (1 N (tanh(S)Bzw,£>> do(¢)

t

=2, (3%(2) Rexl o, tanh?(s)(ﬁxvux\\?) .

) | aote

i 2 72) t2

|2

Since (B:)? le

- = 1 —(B:)* < 1 we can consider for r € [0,1[ the function g(r) =




o Fy (%(22), %(ZQ)H; g;r> . Applying (67) and (65) in Appendix A we get

J(r) = WQE (%(2)2+2, %(2)2+3;Z+ 1;?“) :
= TR e () noRE L)
~—_—

() (I1)

Since R(z) < 25 then the hypergeometric function (1) is positive for » > 0, and therefore,
positive on the interval [0,1[. Studying the sign of (I) we conclude that the function
g is strictly increasing when R(2) €] — oo, —1] U [0, 251[ and strictly decreasing when

R(2) €] — 1,0[. Since R(z) < 5%, then by (64) it exists the limit lim, ,;- g(r) which is

given by
P(5)r ()
g9(1) = :
r (n—iﬁ(z)) T (n—%éz)—l)
Thus,
g9(r) < max{g(0),9(1)} = C;
with ¢g(0) = 1. O

Proposition 4.3. Let R(z) < %5 and f,g € L*(R",dp. ). Then

1f gl < C: I fl11 [19]1h (33)

where g(s) = esssup g(gyr [y, tsinh(s)&] tsinh(s) &) for any s,t > 0.
£eSn—1 yeRn

Proof. Using (24), (16), and (32) we have
1= [ imot=w) k)| dpes(a)
= [ Inteely.ale) 1:0) 4,(0) dole)] dia(o)
= [ loteyrlyalo) iyfe) 4y(0)] dues(o).

Using polar coordinates z = ¢sinh(s) &, with ¢,5 > 0, £ € S"~1, and the normalised surface
area do(£) = d€/A,_1, with A,,_1 being the surface area of S*~! we get

T [ oo €01 iy (rsinh(5)€) )] (cosh(s) ™2 ¢ sinh(s)"~" dor() .

with g1(s,y,&) = g(gyr [y, t sinh(s) &] tsinh(s) £). For t > 0 we consider the radial function
g defined by

g(s) = esssup gi(s,y,8).
£eSn—1 yeRn

Therefore, by Lemma 4.2 and (15) we have
I < Anl/ 19(s)| (cosh(s))™2* t" sinh(s)"! ds
R+

X/Sn_l |j—y(tSinh(s) €) j_y(_y)’ do(€)
C:llgllr-

IN



Finally,

Ieal = [

[ 10) 7e0(-) 32(0) dies()| dea(o

< [ 1 ra0) )] i) dicao)
= [ 11 ([ ot dx0)] i) it
SR AN

O]

In the special «case when ¢ is a radial function we obtain that
1f*glli < C.If|l1llgllh since g = g. We can also prove that for f € L®(R", dpu.4)
and g € L'(R",dp. +) we have the inequality

1 glloo < C= |91 [1F]oo- (34)

By (33), (34), and the Riesz-Thorin interpolation Theorem we further obtain for f €
LP(R™ dy, ) and g € LY (R™, dp, ) the inequality

1+ glly < C- gl 111l

To obtain a Young’s inequality for the generalized convolution we restrict ourselves to the
case R(z) < 0.

1,1 1
Theorem 4.4. Let R(z) <0, 1 <p,q,r < oo, sty =1+, s=1- 1 f e LP(R™, dpu.y)
and g € LY(R",dp,+). Then

[1£ * gl < 2771g1157* llgll5 [1./1], (35)

where g(x) := esssup g(gyr [y, xz]z), for any x € R™.
yeR”

For the proof we use the following estimate
dx ()da(@)] < 2777, vy € R”, YR(2) 0.
and the arguments given in [5].

Corollary 4.5. Let R(z) < 0, 1 < p,q, 7 < 0,
g € LY(R",du,+) a radial function. Then,

+2=1+ %, f e LP(R",dp, ) and

1,1
P q

1f % gllr < 27" |gllg 11f1]p-

Remark 1. For R(z) = 0 and taking the limit ¢ — +oo in (35) we recover the Young’s
inequality for the Euclidean convolution in R"™ since in the limit g = g.

Another important property of the Euclidean convolution is the translation invariance and
the associativity. In the hyperbolic case it turns out that the convolution is gyro-translation
invariant and gyroassociative in the sense of the following theorems (cf. [5] and [6]).

Theorem 4.6. The generalized convolution is gyro-translation invariant:

Ta(f * g) () = (Taf () * g(gyr [—a, 2] -))(z).

10



Corollary 4.7. If g is a radial function then the generalized convolution is translation
mvariant:

To(f % 9) = (Taf) x 9.
Theorem 4.8. If f,g,h € LY(R", du, ) then

(f *a (9 %2 h))(a) = (((f (x) *y g(gyr [a, = (y © @)]gyr [y, 2]2)) (1)) *a h(y))(a).

Corollary 4.9. If f,g,h € L*(R",dp.+) and g is a radial function then the generalized
convolution is associative. 1i.e.,

frlgxh)=(fg)h.

From Theorem 4.8 we see that the generalized convolution is associative up to a gyra-
tion of the argument of the function g. However, if g is a radial function then the corre-
sponding gyration is trivial (that is, it is the identity map) and therefore the generalized
convolution becomes associative. Moreover, in the limit £ — 400 gyrations reduce to the
identity and therefore, the convolution becomes associative in the Euclidean case. If we
denote by LL(R™, du,) the subspace of L'(R",dpu. ) consisting of radial functions then,
for R(z) < %51 the space LL(R", dp ;) is a commutative associative Banach algebra under
the generalized convolution.

5 Eigenfunctions of A

Definition 5.1. For A € C, £ € S"!, and € R™ we define the functions exgt by

=l
(,Bx) z+ 5 +iAt

exe(r) = T (36)
(]_ <thx7§>) 2

The hyperbolic plane waves e ¢.:(x) converge in the limit ¢ = +o0o to the Euclidean plane
waves e/(*A8)  Since

—n=Lixt L
eAaf;t(x) = <1 - <Bxf,£>> (Bx)fz+T+1/\t

then we obtain

i
: : z,§) i
| . < ] 1_< ) — ol®A)
Jim e o) < lim_ [( : ) ] ¢ (37)
In the Euclidean case the translation of the Euclidean plane waves ei{@A8) decomposes
into the product of two plane waves one being a modulation. In the hyperbolic case,
the generalized translation of (36) factorizes also in a modulation and the hyperbolic plane
wave but it appears a Mobius transformation acting on S*~! as the next proposition shows.

Proposition 5.2. The translation of ey ¢.+(x) admits the factorization
Talr£(7) = Ja(0) exgi(—a) exm, (o) () (38)

where b ()
. (a,6)a
T(g):§+%+1+6a t2
@ 14 (@
Ba t

(39)
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Proof. We have

Taeret(t) = exgl(=a) ® @)ju(x)

—z4 251 ixt .
_ (/6(*11)6990) 2 < ﬂa )
- 23N (Ba 0,82 @)
(1 _ (B-wes ((a)®m)’5>> SEHiae | ] %
i

s (st - g )
- L — Bufe %2 t

8.3 —z4 251 ix 8 R
N\ hs 22 —%—— . by (1)and (3)
<16aﬁz<t’2>> <1W>

L —ixt

_ a fL' ﬁa/Bm ﬂa <a’ .’L'> <a/’ §-> 1 7n;1 —iMt
— ( — BaBe i (<$,§>+ 55 7 _ﬂx<a7§>>>
X (Bafle) 2T TN (3,)2
-2l ixt
( <5aa,§)> afe (2,8 +¢+ 1l Logle)
= 1+ 2222 )1 —
t L.l
(BaBa)™” FHxE (Ba)?
nolixt

X
a Ba _(a,)a -
_ ﬂaag 1 ﬁ ;+§+mt72
- AN N Y]
Ba t

x (BafB) T M ()7
= Ja(0) 6/\gt( )6,\Ta(§)($)~

O]

Remark 2. The fractional linear mappings T,(¢), with a € R™,¢ € S"~! defined in (39)

map the unit sphere S"~! onto itself for any ¢ > 0 and a € R™. Moreover, in the limit

t — +oo they reduce to the identity mapping on S"~!. It is interesting to observe that the

fractional linear mappings obtained from PV addition (1) making the formal substitutions
=¢ and “E'% = a @ & given by

a@€=§+<5am’§>+\/§>a

1+8, ¢t t

do not map S™ ! onto itself. This is different in comparison with the Mébius and Einstein
gyrogroups. It can be explained by the fact that the hyperboloid is tangent to the null
cone and therefore, the extension of PV addition to the the null cone is not possible by
the formal substitutions above. Surprisingly, by Proposition 5.2 we obtained the induced
PV addition on the sphere which is given by the fractional linear mappings T,(&).

Formula (38) converges in the limit to the well-known formula in the Euclidean case
el{—atz,A) _ ei(—a)\f)ei(x,)\f)’ a, 7, \¢ € R™,
Proposition 5.3. The function exgy; is an eigenfunction of A.; with eigenvalue

e (1P nz
4¢2 2

12



Proof. Applying A, ; to (38) as a function of y and using Proposition 3.5 we get

T—x(Az,tek,E;t)(y) = Az,t(T—ze)\,ﬁ;t)(y) = e)\,ﬁ;t(x) AZJB/\,T_;E(&);t(y) ]—z(o)
Putting y = 0 we have

Az ienet(T) j-2(0) = (Azent_,(e):4)(0) exee(w) j—2(0).

Thus, we conclude that ey¢((x) is an eigenfunction of A.; with eigenvalue
Az iexr . )(0). Computing this value we find that the eigenvalue of ey¢;(z) is
(n—12 nz

4¢2 12

In the limit ¢ — 400 the eigenvalues of A, ; reduce to the eigenvalues of A in R". In
the FEuclidean case given two eigenfunctions @A) and ellzw) Ay ER, &we SV of
the Laplace operator with eigenvalues —\? and —v? respectively, the product of the two

eigenfunctions is again an eigenfunction of the Laplace operator with eigenvalue —(\? +
Y2 42Xy (€, w)). Indeed,

A(ei(x,)\§>ei<ac,7w)) _ _H)\g + ,yw||2ei<x,>\§+7w) :_()\2 + 72 + 2)\,7 <£’ w>)ei<x,>\§+7w>.

—\? - 0

Unfortunately, in the hyperbolic case this is no longer true in general. The only exception
is the case n = 1 and z = 0 as the next proposition shows.

Proposition 5.4. Forn > 2 the product of two eigenfunctions of A is not an eigenfunc-
tion of A, and for n =1 the product of two eigenfunctions of A, is an eigenfunction of
A+ only in the case z = 0.

Proof. Let ex¢: and ey be two eigenfunctions of A.; with -eigenvalues

—A2 — (n;t%)Q + % and N (n;t%)Q + %5 respectively. Since for n > 1 and f,g € C?(R™)

2(z+1)

2 (1 - ﬁi)fg

2
Az,t(fg) = (AZ,tf)g + f(Az,tg) + 2 <vf7 v9> + 1?2 <J3, Vf> <$7 vQ) -
we obtain after straightforward computations

—1)2 2 — 14 2iMt)(n — 1+ 2iyt
Az,t(e)\,g;t(m)ew,w;t(l‘)) _ |:_)\2 _72 - (n2t2) + % +((n + 21 2571 + 217y )

(2 <a:7£>>‘1 (L- <x,w>>‘1 (B ) _f20 (), G0 <x,§>>>

X

B, ¢ B t t2 the  the 2

(o) (-4 (59

_Z <" -1, ifyt) <1 -~ <x’w>)_l< HIHQBx - <x’w>) - 21— 53)] ex gt () €y wit (7).

Ba t 12 12 2

Therefore, for n > 2 and z € C, the product of two eigenfunctions of A,; is not an
eigenfunction of A, ;. For n = 1 the previous formula reduces to

2z . 1 x€ L2 x€
B ilorgi(@)ea(e)) = [v e e (o) (R

. 1 zw\ b/ 22 Tw z 9
(%) (%) -0 M] '
For z = 0, we obtain further

Az,t(e)\7§;t($)e’y,w;t($)) = - (>\2 + 72 + 2)\75&)) e/\,f;t(x)e%w;t(x)'

Therefore, only in the case n = 1 and z = 0 the product of two eigenfunctions of A, ; is
an eigenfunction of A, ;. O

13



In the case when n = 1 and z = 0 the hyperbolic plane waves (36) are independent of &
(we can consider £ = 1) reducing to

—ixt
2
ext(w) = (\/1+ Foln

and, therefore, the exponential law is valid, i.e., ex(2)eqy;t(2) = exyq:¢(x). This explains
the special case in Proposition 5.4.

The radial eigenfunctions of A, ; are called generalized spherical functions and assume
a very important role in the theory.

Definition 5.5. For each A € C, we define the generalized spherical function ¢y;; by

orila) = [ engola) dof). aeR (10)

Using (63) and then (65) in Appendix A we can write this function as
T
¢)\;t($) = <1+ HtQH)

2
- (1 + tT

Therefore, ¢y, is a radial function that satisfies ¢y, = ¢_»; i.e., ¢, is an even function
of A € C. Applying (66) in Appendix A we obtain further that

2\ 2 —1—2iM n— 14 20\ 2
o= (1 ) (2 )

2z—n+1—2i\t
4

n—1+2\ n+1+2iXt n )
2F1< 4 ) 4 7271_Bx>

(41)

2z—n+142iXt
4

n—1—2iAXt n+1—-2iXt n
2F1< "1—5;%)-

4 ’ 4 "2’

T4 e
Finally, considering # = tsinh(s)&, with s € RT and ¢ € S" ! we have the following
relation between ¢y and the Jacobi functions ¢y (see (69) in Appendix B):

®ait(tsinh(s) &) = (cosh s)® gogtg_l’_%)(s). (42)

The following theorem characterizes all generalized spherical functions.

Theorem 5.6. The function ¢y, is a generalized spherical function with eigenvalue N2
(n—1)°

4¢2
then all generalized spherical functions are given by ¢y..

nz
+ 7z Moreover, if we normalize spherical functions ¢y such that ¢x.(0) = 1,

Proof. By Proposition 5.3 it is easy to see that ¢, is an eigenfunction of A, ; with eigen-

value —\? — % + % . Moreover, ¢,+(0) = 1. Now let f be a spherical function with
eigenvalue —\? — (n;t%)z} + %5 and consider

po = (1 1) (el (43

with F' a function defined on R™. Since f is a radial function of the form f(x) = fo(||z||)
then the operator A, ; can be written as

T 2 n — xT
@@ = (1B g+ sigie (57 + -2 121
z(z+1)

(1= B fo(lll])-

t2
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Then, considering ||z||? = r? and after straightforward computations we see that if f given
by (43) is an eigenfunction of A, ; then F satisfies the following hypergeometric equation:

() (E) (D) (-3 (D) ()
() (222 ()

The smooth solutions at 0 of the last equation are multiples of

. . 2
o F1 (”_14_21’\t, ”_11'21)‘t; ot —H‘f%) . Therefore, by (41) f is a constant multiple of ¢y;. [

Now we study the asymptotic behavior of ¢y, at infinity to obtain the Harish-Chandra
c-function in our case.

Lemma 5.7. For Im(\) < 0 we have

lim ¢y (¢ sinh s) ez —2miM)s c(At)

S—+00
where c(At) is the Harish-Chandra c-function given by
2n=2== ' (%) I (ixt)

At) = . 44
) =~/ T (251 +ixt) (4)
Proof. Considering (42), (72) and (71) in Appendix B, and the limit
sl}]foo e’/ cosh(s) =2
we obtain
- - nol_ s i L (5-1-3) —int st
slg_noo ®xt(t sinh s) elfz —2As Slggoe “(cosh s)® @5/ 2/ (5) elmNFET)s
= 27 0%7177%()\15)
2"7 —F M T (2) T(iAr)
-7 (B=LEZX) T (nELE2e) (45)
Using the relation I'(z)T" (z + §) = 2172/ '(2z) we can write
. . 1-n=1t2ixt n—1+2iXt
n+ 1+ 2it n—1+2ix 1 2 v /rl (A
T f =T f—i_i = T n—14+2i\t
(=)
and, therefore, (45) simplifies to
on—2=z T (2) T (i\t
c(Mt) = (2)1 (1. ) .
VT T (25 +iXe)
O
Finally, we prove the addition formula for spherical functions.
Proposition 5.8. For every A € C, t € R, and a,z € R"
TaPat(T) = ja(o)/S B e_rgt(a) exgr(w) do(§)
= 50 [ ererla) ergala) do(e). (16)
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Proof. By (38) we have
noni(e) = [ mergala) do(©
= 0 [ erneel=0) exmala) do(e).

Making the change of variables T,(§) = &' < £ = T_,(¢’) the measure becomes

n—1
A0© = |+ gy | (@)
Ba t
Thus,
n—1
Ta®rt(2) = Ja(0) /Sn_1 eAT_q(e:t(—a) exgrt(T) 511<at€l> do(&").

From (36) and (39) we obtain

PV Vet SN
(ﬁa) 2+ 5=+

GA,Tfa(s’);t(*a) =

AN — Bt it
(Ba)n—1+2ixt (1 _ (Ba ?,5 >) 2
Since

n—1_:
1 (Ba)_Z+T+l>\t
et~ | T e | T -
7. ’ n— 1 </Bu.a’£/> 2 !
Ba I (Ba) 1421t (1_ 7 )
(Ba)"""
(Baag) )"
(- e
(Ba)fer"T*lfi)\t

nolint
(Baal’) ) 2
(1= 5)

= e—A,f’;t(a)

X

we finally obtain

TaPait(T) = ja(U)/ e_nest(a) exge(x) do(€').

Sn—1

The second equality follows from the fact that ¢y, is an even function of A, i.e., ¢y = ¢_x;.
O

6 The generalized Poisson transform

Definition 6.1. Let f € L?(S"!). Then the generalized Poisson transform is defined by

Praf@ = [ eralo) 1(6) dof). a R

16



For a spherical harmonic Y of degree k and applying (62) in Appendix A we obtain:

(PriYi)(@) = Cro(Be) 75 T2 x
v+k v+k+1 n 2 x
2F1( 5 T k+§ 1_6:1;>Yk<ﬁ$t) (47)
with v = "T_l +iMt, and Cy, = 2_k(fl7)2§k. For f =372 garYy € L2(S™1) then we have
S vtk v+k+1 n. 9 T
P)\tf Zakcku a: 2F1< 2 7T7k+§71_61 Yk (ﬁw;)

Now we prove a result about the injectivity of the generalized Poisson transform which is
important later on.

Proposition 6.2. The Poisson transform Py is injective in L*(S"™1) if and only if
A #1 (=) for all k € Z*.

Proof. Let A\ =1 (%ﬁ) for some ko € Z". Then by (47) we have that P);Y) = 0, for

all k > ko since ((n — 1)/2 + i\t), is zero. Conversely, if A # i (Z42=1) for all k € Z7,
then all the coefficients ((n — 1)/2 4 i\t)g are not vanishing for k € Z*. Hence, by (47) we
have that Py;f = 0 if and only if f = 0. Thus, Py, is injective for every A\ # i (2k+" 1) )
kelZt. O

gorollary 6.3. Let A #1i (2]”27?*1) k€ Z*. Then for f in C§°(R™) the space of functions
FN€) s dense in L2(S™1).

Proof. Let g € L?(S"™!) be such that

99 e dote) -

for all f € C§°(R™). Therefore,
[0 ([ 90 eneato) do©) duesta) =0
for all f € C§°(R™), which implies that for every z € R"

Poa(e) = [ a(6) eoreela) do(e) 0.

Finally, by Proposition 6.2 we have g = 0. U

7 The generalized Helgason Fourier transform

Definition 7.1. For f € C§°(R"), A € C and ¢ € S"~! we define the generalized Helgason
Fourier transform of f as

Fuet) = [ eongalo) £(@) dins(o).

17



~

Remark 3. If f is a radial function i.e., f(z) = f(||z]]), then f(X,&;t) is independent of &
and reduces by (40) to the spherical transform of f defined by

Fsty = | donel@) f(2) dpze(@). (48)
Rn
Moreover, by (37) we recover in the Euclidean limit the usual Fourier transform in R™.

From Propositions 3.8 and 5.3 we obtain the following result.

Proposition 7.2. If f € C°(R") then

— — 2 e
Aafnet = - (4 O 2 oo,

Now we study the hyperbolic convolution theorem with respect to the generalized Helgason
Fourier transform. We begin with the following lemma.

Lemma 7.3. For a € R" and f € C°(R")

-~

Taf (N E51) = Ga(0) e_rgn(a) FON T-a(€)s1). (49)
Proof. By (31) and (38) we have

06D = [ encalo) muf(@) dia(o)
— [ raese®) £(a) dieao)

= Gl0) ereala) [ enr (o) Fla) dueola)
= Ja(0) e-rgula) FOLT-a(9):1).
O

Theorem 7.4 (Generalized Hyperbolic Convolution Theorem). Let f,g € Cg°(R™). Then

—

P& = | Fw) eoxenv) Gy Ty (€)58) dnea(y) (50)

where gy(x) = g(gyr [y, z]x).
Proof. Let I = f/*\g()\,f). We have

F= [ (L 10) mat9) 0a0) dnesl)) eorgale) diesto)
= [ 100 ([ ) eoneele) le) dies(@)) dil) (Fabini

= /R ) ( /R 1yg(gyr [z, yla) e—xnge(@) Jy(y) duz,t(x)) Az (y)
(by (24), (16))
= [ 1) RO 30) dualy)

= | W) eoxeuly) 5Ty (€):) dpsaly) - (by (49),(16).

18



Since in the limit ¢ — 400 gyrations reduce to the identity and (—y) @ £ reduces to
13 §, fo formula (50) converges in the Euclidean limit to the well-know Convolution Theorem:

f *x g = f g. By Remark 3 if g is a radial function we obtain the pointwise product of the
generalized Helgason Fourier transforms.

Corollary 7.5. Let f,g € C§°(R™) and g radial. Then

o~

Frg\&1) = FINED) Gx ).

8 Inversion of the generalized Helgason Fourier transform
and Plancherel’s Theorem

First we obtain an inversion formula for the radial case, that is, for the generalized spherical
transform.

Lemma 8.1. The generalized spherical transform denoted by H can be written as

H jnl IOM

where jn 1 1 is the Jacobi transform (see (68) in Appendiz B) with parameters o = 5 —1

and B = —= and
(M, +f)(s) := 27" A, _1t"(cosh s)* f(t sinh s). (51)

Proof. Integrating (48) in polar coordinates # = tsinh(s) ¢ s > 0, £ € S~ we obtain

-~ +OO
ft) = Ap ; f(tsinh(s)€) ¢_x.(tsinh(s)§) (cosh(s)) 2% t"(sinh(s))" ' ds
Applying (42) yields
f(/\;t) = 274, " +O§”(t sinh s)(cosh s)~ cpgz b 2)(s) (2sinh s)" " tds
0

= (»7%_1’_% o Mz,tf)()\t)
]

Lemma 8.1 allow us to obtain a Paley-Wiener Theorem for the generalized Helgason
Fourier transform by using the Paley-Wiener Theorem for the Jacobi transform (Theorem
B.1). Let C§%R(R™) denotes the space of all radial C*° functions on R" with compact
support and £(C x S~ 1) the space of functions g(\,€) on C x S*!, even and holomorphic
in A and of uniform exponential type, i.e., there is a positive constant A, such that for all
neN

sup  Jg(0)I(1+ A" eAmO < o
(A,£)ECxSn—1

where Im(A) denotes the imaginary part of A.

Corollary 8.2. (Paley-Wiener Theorem) The generalized Helgason Fourier transform is
bijective from C3%R(R™) onto £(C x sr=1).

1
222—n+2tn—1ﬂ.An_1 :

From now on we denote Cj,;, =

19



Theorem 8.3. For all f € C§%(R") we have the inversion formula

G [ 7 " F00) dna(a) ()] dn (52)

Proof. Applying formula (70) in Appendix B for the Jacobi transform and Lemma 6.7 we
obtain

L[ 20ep ol37173) -
Mef(s) = oo | TR0 e fey 0| e
1 +O° ~ . c(Mt)| 72
= o [T ot ) U v
In the last equality we use (42) and (45). Applying (51) we obtain
+oo
f(tsinhs) = Crse [ FND) dna(a) [cA0)] # an
0
Since f is radial and ||z|| = ¢sinh s we obtain the desired result. O
Remark 4. The inversion formula (52) can be written as
Cn,t,z N )
fla) =—= Rf(A; t) dxie(x) (ML) dA (53)

since the integrand is an even function of A € R. Note that f is radial and therefore f()\; t)
is an even function of A, ¢x; = ¢_xy, and |c(=At)| = |e(Mt)| = |c(At)], for A € R.

Now that we have an inversion formula for the radial case we present our main results,
the inversion formula for the generalized Helgason Fourier transform and the associated
Plancherel’s Theorem.

Proposition 8.4. For f € C3°(R™) and A € C holds
from@) = [ F0E0 ergalo) dote) (54
Proof. By (46), (16), Fubini’s Theorem, and the fact that ¢ is a radial function we have
Feon@) = [ 10) mebnals) da(o) i)
- / s / | el eonge0)iz0)ia(o) do(©) ) duesly

L (L 700 eonats) dueat)) enote) dote
= /S FE) exgala) do(e).
O
Theorem 8.5. (Inversion formula) If f € C5°(R™) then
+o0 .
F@) = Cure [ [ FOu&i0) ergela) eI do(e)an (5)
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Proof. Given f € C§°(Bl) and z,y € R™ we consider the radial function
folo) = [ micrnf(Ky) dale) dE.
SO(n)

where K € SO(n) and dK is the normalised Haar measure on SO(n). Applying the inversion
formula (52) we get

+oo
Fo(y) = Crs.e /0 F0it) dra(y) lc(M)|~2 da, (56)

By (48) and Fubini’s Theorem we have

Eovy = [ ( Lo, 7K 32 dK) 6 naly) A= (9)
= [ (50 ) desa0) da0) 0-sal) des(0))
SO(n) VR™

Considering the change of variables Ky — z we see that the inner integral is independent
on K. Then we obtain

F0st) = [ mef(=2) 6oals) dule) dines(2)
= (f *oap)(@). (57)
Since f(x) = f»(0) it follows from (56), (57), and (54) that

+oo
f(:L') = Cht. ) fz(A5t) (Z))\;t(o) ’C(/\t)‘_Q dA

+oo
— Cuyn /0 (f % dre) (&) |eMD)| 2 dA

~

+oo
— Coes / FOLE1) exea(@) |eM)| 2 do(€) dA.
0 sn—1

O

Remark 5. Applying the inversion formula (53) in the proof of Theorem 8.5 we can write
the inversion formula (55) as

fla) =952 [ [ Fonen) enalo) 102 do(e)an

Theorem 8.6. (Plancherel’s Theorem,)
The generalized Helgason  Fourier transform extends to an isometry from

LA(R", dpu) onto L2(RT x "1 Cpp2|c(At)|72 dX do), i.e.,

+oo
L@ i) = Core [ [ TGO kOO o) arn 69
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Proof. For f,g € C§°(R"™) we obtain Parseval’s relation by the inversion formula (55) and
Fubini’s Theorem:

" A ) g\ E:1) e 2 do
Cn,t,z/o /S”—l f()\,f,t) g()\,f,t) | ()‘t)‘ d (g) dA
= o f ; g(x) x) |c 2 do
= Core [ [ T [ 5 ergala) dusala) [N do(e) dn
= o i it) e z) |c 2 do
- / o [T et encata) 1631 o) ax] @) dct)
[ @) 3] duao)

By taking f = ¢ we obtain (58) for f € C§°(R"™) and the result can be extended to
L*(R", dp,) since C$°(R™) is dense in L?(R"™, du, ;). It remains to prove the surjectivity
of the generalized Helgason Fourier transform. This can be done in a similar way as in
(]15], Theorem 6.14) and therefore we omit the details. O

Having obtained the main results we now study the limit ¢ — 400 of the previous
results. It is anticipated that in the Euclidean limit we recover the usual inversion formula
for the Fourier transform and Plancherel’s Theorem on R"™. To see that this is indeed the
case, we observe that from (44)

T (25 +ixt) |
T (irt)

1 _ (An—1)2
’C()\t) ’2 - 7rn—122n—2z—2

; (59)

n

272
r(3)

Helgason inverse Fourier transform (55) simplifies to

with A,—1 = being the surface area of S"~!. Finally, using (59) the generalized

T (25 4 ixt) |

Tany | dole) dA

271' ntn (9 \nin—1

400 . n—1

L T ED @) Jras

+oo
1@ = oo [ [ Fst et)

d¢ dx (60)

with
T(iXt)
L (25 +iAt)

2
N (£ = (At)" L.

Some particular values are N (Xt) = 1, N®(\t) = coth (At), N®) =1, and NW(\t) =

W. Since tl}inoo N™(Xt) = 1, for any n € N and A € RT (see [1]), we con-

clude that in the Euclidean limit the generalized Helgason inverse Fourier transform (60)
converges to the usual inverse Fourier transform in R™ written in polar coordinates:

1 400 R e .
flz) = (277)"/0 09 M) AL e dX, z, N\ € R™

Finally, Plancherel’s Theorem (58) can be written as

LR dute) = i [ [ F0oR s e o
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and, therefore, we have an isometry between the spaces L2(R", dpizy)
and L? <R+ x S, WE)W) dA df) . Applying the limit ¢ — +o0 to (61) we recover
Plancherel’s Theorem in R™ :

2 gy = o Y 2 yn—1
/n|f(x)| do = (QW)"/O /Sn1 IFOE) 2 AL de d.

9 Heat kernel associated to the proper velocity gyrogroup

We consider the following initial value problem for the heat equation associated to the
generalized Laplace Beltrami operator A, ; :

{ Oru(z,7) = A u(x, T)
u(x,0) = f(x)

where (z,7) € R" x Rt, f € C°(R"), and u(z,t) is assumed to be C* and compactly
supported in the spatial variable, for simplicity. Applying the generalized Helgason Fourier
transform in the spatial variable and using Proposition 7.2 we have

~ o (nfl)Q nz o~
{ aTu()\7€7T) _A_<)‘2+T_t72) U(A7£77_> . T>0.

u(X,€,0) = f(A¢€)

Therefore, we obtain

e (peries?ong)

RN,

Applying the inverse Helgason Fourier transform and using Corollary 7.5 we get

u(z,7) = (pr * f)(x),

u(\ &) =e

where p; is given by applying the inversion formula (52)

o _(x2y =D n:
pr(z) = Chis / e ( tz)q))\;t(x) le(A8)| 72 dA.
0

A Spherical harmonics

A spherical harmonic of degree & > 0 denoted by Y} is the restriction to S"~! of a ho-
mogeneous harmonic polynomial in R™. The set of all spherical harmonics of degree k is
denoted by H;(S"!). This space is a finite dimensional subspace of L?(S"~!) and we have
the direct sum decomposition

LQ(Sn—l) — é /Hk(Sn—l)
k=0

The following integrals are obtained from the generalisation of Proposition 5.2 in [24].
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Lemma A.l. Let v € C,k € Ng,t € RT, and Y}, € Hi(S*1). Then

/Sn_l <1_1<mg>> Yi(§) do(§) =

_r (Vi v+k v+k+1 n, |z||? T
2 (n/2)kX2F1< 3 2 FTeiTh Yk(t) (62)

where x € R™, (v)g denotes the Pochhammer symbol, and do is the normalised surface
measure on S"L. In particular, when k = 0, we have

1’ B v v+l n |z)?
| (1_%@> in(©) = o (5. 5 sl ). (63)

The Gauss Hypergeometric function 9F} is an analytic function for |z| < 1 defined by

oo
a)r(b

oF1(a,b;c; z) :E
Ck

k=0

with ¢ ¢ —No. If Re(c —a —b) > 0 and ¢ ¢ —Npy then exists the limit
lirln oFi(a,b; c;t) and equals
t—1-

I'(e)l'(c—a—Db)

oFi(a,byc; 1) = T(e—aT(c—b)’ (64)

Some useful properties of this function are
oFi(a,b;c;2) = (1 — z)eab oFi(c—a,c—b;c;2) (65)
JFi(a,bici ) = (1— 2) %5, ( b 1) (66)

d ab
$2F1(a,b;c;2):?QFl(CL‘F].,b‘F Lic+1;2). (67)

B Jacobi functions

The classical theory of Jacobi functions involves the parameters «, 5,A\ € C (see [13,
14]). Here we introduce the additional parameter ¢ € R since we develop our hyperbolic
harmonic analysis on a ball of arbitrary radius t. For a, 5,A € C, t € R", and o #
—1,—2,..., we define the Jacobi transform as

+o0
Topg(At) = /0 9(r) G0 (1) wap(r) dr (68)

for all functions g defined on R™ for which the integral (68) is well defined. The weight
function w, g is given by

Wa,5(r) = (2sinh(r))2*F1(2 cosh(r))?PH1

and the function cpf\t”g )( ) denotes the Jacobi function which is defined as the even C'*°
function on R that equals 1 at 0 and satisfies the Jacobi differential equation

(;fz + (2 + 1) coth(r) + (26 + 1) tanh(r))% F O+ (ot B+ 1)2> £@) (r) = 0.
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The function cpf\?;’ﬁ ) (r) can be expressed as an hypergeometric function

a a+B+1+iM a+B+1—ilt
A = Fl( > 2

a+1;— sinhQ(r)> . (69)

Since gogi’ﬁ ) are even functions of Mt € C then Ja,39(At) is an even function of At. Inversion

formulas for the Jacobi transform and a Paley-Wiener Theorem are found in [14]. We
denote by C5%(R) the space of even C*°-functions with compact support on R and &
the space of even and entire functions g for which there are positive constants A, and
Cyn,n=0,1,2,..., such that for al A€ Cand all n =0,1,2,...

9] < Cy(L+[A) 7" el

where Im(A) denotes the imaginary part of A.

Theorem B.1. ([1/],p.8) (Paley-Wiener Theorem) For all o, 5 € C with v # —1,—-2,. ..
the Jacobi transform is bijective from C§%(R) onto E.

The Jacobi transform can be inverted under some conditions [14]. Here we only refer
to the case which is used in this paper.

Theorem B.2. (/14/,p.9) Let o, B € R such that « > —1,a =+ 1 > 0. Then for every
9 € CgR(R) we have

1

g(r) = by

+oo
/O (T 0) M) 652 (1) Leap (M) 2 ¢ A, (70)

where cq g(At) is the Harish-Chandra c-function associated to Jo g(At) given by

20HAHI=INT (o 4 1)T (i)

Cag(/\t) = - - .
’ +B8+14iXt —B+14it
T (a - i ) T (a B E 7 )

(71)

This theorem provides a generalisation of Theorem 2.3 in |14] for arbitrary ¢t € R*. From
[14] and considering ¢ € RT arbitrary we have the following asymptotic behavior of gb';f
for Im(\) < 0:

lim 90&(;”8) (r)e(fi)\t+a+ﬁ+l)r — Ca,ﬁ()\t)‘ (72)

r—+400
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