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1 Introduction

We use potential theory and Fredholm theory to analyse wave diffraction
problems modelled by the Helmholtz equation in a half-plane interrupted
by a perpendicular crack, when considering different classes of Dirichlet and
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Neumann boundary conditions. The problems are reformulated as boundary
integral systems which are firstly analysed in view of obtaining conditions
for the existence and uniqueness of solutions within a scale of Bessel po-
tential spaces. Several recent works could be referred as being devoted to
present a mathematical analysis of wave diffraction problems governed by the
Helmholtz equation and which are somehow natural physical generalizations
of the original works of Sommerfeld (see [6]–[11], [17, 19, 22], [24]–[41] and
[43, 44]).

One important feature of the present work is that we will be able to ex-
plicitly identify the Fourier symbols of the pseudodifferential operators which
are deduced from the problems. In particular, this allows the possibility of
having representation formulas for the solutions. Interactions with the clas-
sical Wiener-Hopf technique can also be here recognized, where a crucial step
in the method consists in decomposing the so-called Fourier symbol into a
product of two factors with certain analyticity properties. Anyway, in the
present work, we will face semi-almost periodic Fourier symbols for which
corresponding factorizations in the appropriate sense are – in general – not
trivial. Moreover, due to the complexity of the boundary value problems,
the method we propose to deal with the problems do not directly lead to
a Wiener-Hopf operator but instead to somehow coupled Wiener-Hopf plus
Hankel and Wiener-Hopf minus Hankel operators. Then, a convenient pro-
cedure of explicit operator relations will allow us to find out some associated
matrix Wiener-Hopf equations and to derive the final conclusions based on
certain factorizations of associated matrix functions.

In the following section, we start by introducing some auxiliary notation
and present the mathematical formulation of the problems. In section 3,
a uniqueness result (for the solutions) is obtained for all the problems in
consideration. Then, in section 4, we revise the properties of some inte-
gral operators and consequent results from potential theory. Section 5 is
devoted to equivalently reformulate the problems under analysis by means
of integral equations characterized by Wiener-Hopf plus and minus Hankel
operators. Then, in section 6, we will consider explicit operator relations
for those operators – which will help us to derive their Fredholm properties
later on. In section 7 we will analyse the Fredholm properties of certain
Wiener-Hopf operators somehow related with the previously obtained oper-
ators. These Wiener-Hopf operators will be characterized by certain Fourier
symbols from the C∗−algebra of the semi-almost periodic four by four matrix
functions on the real line. Finally, in the last section, the main conclusion on
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the existence, uniqueness and integral representations of the solutions of the
problems are assembled in a unique result. We would like to point out that
the present paper is a continuation of the author’s work begun in [6, 7, 8, 9]
and that an alternative approach can be based upon the articles [18, 35].
The present approach has some advantages since e.g., in some cases, it also
allows the consideration of pure (non complex) real wave numbers [8] but
this will not be the case in the present work.

2 Mathematical formulation of the problems

In this section we will present the formulation of our problems from the
mathematical point of view. To this end, we start by introducing some useful
general notation. As usual, S(Rn) denotes the Schwartz space of all rapidly
decreasing functions and S ′(Rn) the dual space of tempered distributions on
R

n. The Bessel potential spaceHs(Rn), with s ∈ R, is formed by the elements

ϕ ∈ S ′(Rn) such that ‖ϕ‖Hs(Rn) = ‖F−1(1 + |ξ|2)
s/2

· Fϕ‖L2(Rn) is finite. As
the notation indicates, ‖ · ‖Hs(Rn) is a norm for the space Hs(Rn) which makes
it a Banach space. Here, F = Fx 7→ξ denotes the Fourier transformation in
R

n.
For a given Lipschitz domain D, on Rn, we denote by H̃s(D) the closed

subspace of Hs(Rn) whose elements have supports in D, and Hs(D) de-
notes the space of generalized functions on D which have extensions into
Rn that belong to Hs(Rn). The space H̃s(D) is endowed with the sub-
space topology, and on Hs(D) we introduce the norm of the quotient space

Hs(Rn)/H̃s(Rn\D). Throughout the paper we will use the notation Rn
± :=

{x = (x1, . . . , xn−1, xn) ∈ Rn : ±xn > 0}. Note that the spaces H0(Rn
+)

and H̃0(Rn
+) can be identified, and we will denote them by L2(R

n
+). For a

comprehensive treatment of Sobolev spaces we refer to [1], for unbounded
Lipschitz domains see also [34], and for domains with conical points, edges,
polyhedra, cuts (or cracks), slits or holes we cite [20].

Let Ω := {(x1, x2) ∈ R2 : x1 > 0, x2 ∈ R}, Γ1 := {(x1, 0) : x1 ∈ R},
and Γ2 := {(0, x2) : x2 ∈ R}. Let further C := {(x1, 0) : 0 < x1 < a} ⊂ Γ1

for a certain positive number a and ΩC := Ω\C. Clearly, ∂Ω = Γ2 and
∂ΩC = Γ2 ∪ C.

For our purposes below we introduce further notations: Ω1 := {(x1, x2) ∈
R2 : x1 > 0, x2 > 0} and Ω2 := {(x1, x2) ∈ R2 : x1 > 0, x2 < 0}, then
∂Ωj = Sj∪S, for j = 1, 2, where S := {(x1, 0) : x1 ≥ 0} ⊂ Γ1, S1 := {(0, x2) :
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x2 ≥ 0} ⊂ Γ2, and S2 := {(0, x2) : x2 ≤ 0} ⊂ Γ2. Finally, we introduce the

following unit normal vectors n1 =
−−−−→
(0,−1) on Γ1 and n2 =

−−−−→
(−1, 0) on Γ2.

Let ε ∈ [0, 1
2
). We are interested in studying the problem of existence and

uniqueness of an element u ∈ H1+ε(ΩC), such that
(
∆+ k2

)
u = 0 in ΩC , (2.1)

and u satisfies one of the following four representative mixed boundary con-
ditions:

[u]+C = g+0 , [∂n1
u]−C = g−1 on C, and [u]+Sj

= hj on Sj ,(2.2)

[u]+C = g+0 , [∂n1
u]−C = g−1 on C, and [∂n2

u]+Sj
= fj on Sj,(2.3)

{
[u]+C = g+0 on C,

[∂n1
u]−C = g−1 on C,

and

{
[∂n2

u]+S1
= f1 on S1,

[u]+S2
= h2 on S2,

(2.4)

{
[u]+C = g+0 on C,

[∂n1
u]−C = g−1 on C,

and

{
[u]+S1

= h1 on S1,

[∂n2
u]+S2

= f2 on S2,
(2.5)

for j = 1, 2. Here the wave number k ∈ C \ R is given. The elements [u]+Sj

and [∂n2
u]+Sj

denote the Dirichlet and the Neumann traces on Sj , respectively,

while by [u]±C we denote the Dirichlet traces on C from both sides of the screen
and by [∂n1

u]±C we denote the Neumann traces on C from both sides of the
crack.

Throughout the paper on the given data we assume that hj ∈ H1/2+ε(Sj),
fj ∈ H−1/2+ε(Sj), for j = 1, 2, and g±j ∈ H1/2−i+ε(C), for j = 0, 1. Further-
more, we suppose that they satisfy the following compatibility conditions:

χ0

(
g+0 − rCh1 ◦ e

iπ
2

)
∈ rCH̃

1/2+ε(C), (2.6)

χ0

(
g−1 − rCf2 ◦ e

−iπ
2

)
∈ rCH̃

−1/2+ε(C). (2.7)

Here, rC denotes the restriction operator to C and χ0 ∈ C∞([0, a]) is such
that χ0(x) ≡ 1 for x ∈ [0, a/3] and χ0(x) ≡ 0 for x ∈ [2a/3, a].

From now on we will refer to:

• Problem Pmixed−D as the problem characterized by (2.1), (2.2), and
(2.6);
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• Problem Pmixed−N as the one characterized by (2.1), (2.3), (2.7);

• Problem Pmixed as the one characterized by (2.1) and (2.4);

• Problem Pmixed∗ as the one characterized by (2.1), (2.5), (2.6), and
(2.7).

As about the just stated compatibility conditions, note that they are nec-
essary conditions for the well-posedness of the corresponding problems. Note
also that, the compatibility condition (2.7) included in Problems Pmixed−N

and Pmixed∗ is additional restrictions only for ε = 0.

3 Uniqueness of solutions

The uniqueness result for the solutions of problems in consideration is exhib-
ited in this section.

Theorem 3.1. Each one of the problems Pmixed−D, Pmixed−N , Pmixed, and
Pmixed∗ has at most one solution.

Proof. This proof may be considered standard and is based on the use of the
Green formula in convenient domains. It is sufficient to consider the case
ε = 0.

Let R be a sufficiently large positive number and B(R) be the disk cen-
tered at the origin with radius R. Set ΩR := ΩC ∩ B(R). Note that the
domain ΩR has a piecewise smooth boundary SR including both sides of C
and denote by n(x) the outward unit normal vector at the non-singular points
x ∈ SR.

We will assume u to be a solution of the homogeneous problem. Then,
the first Green identity for u and its complex conjugate ū in the domain ΩR,
together with zero boundary conditions on SR yields

∫

ΩR

[
|∇u|2 − k2|u|2

]
dx =

∫

∂B(R)∩Ω

(∂nu) ū dSR . (3.1)

Note that, since ℑm k 6= 0, the integral
∫
∂B(R)∩Ω

(∂nu) ū dS tends to zero as

R → ∞. Indeed, in (R, φ) polar coordinates we have

∫

∂B(R)∩Ω

(∂nu)ū dS = R

∫ π
2

−π
2

(∂nu) u dφ = R lim
δ1,δ2→0+

∫ π
2
−δ2

δ1−
π
2

(∂nu) u dφ
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and we take into account that the solution u ∈ H1(Ω) of the Helmholtz
equation exponentially decays at infinity in the corresponding sector (which
follows from the representation formula of a solution of the Helmholtz equa-
tion; cf. [45]). Therefore, passing to the limit as R→ ∞ in (3.1), it follows

∫

ΩC

[
|∇u|2 − k2|u|2

]
dx = 0.

From the real and imaginary parts of the last identity, we obtain




∫
ΩC

[
|∇u|2 +

(
(ℑm k)2 − (ℜe k)2

)
|u|2
]
dx = 0 ,

−2(ℜe k)(ℑm k)
∫
ΩC

|u|2 dx = 0 .

(3.2)

Thus, from the condition ℑm k 6= 0, it follows from (3.2) that u = 0 in
ΩC.

4 Potential theory

In the present section, we will recall some results from potential theory (as
well as some of their interactions with even and odd extension operators)
which will be useful in our future reasoning.

From now on, throughout the remaining part of the paper, and without
lost of generality, we assume that ℑm k > 0 (since the complementary case
ℑm k < 0 runs with obvious changes).

Let us denote the standard fundamental solution of the Helmholtz equa-
tion (in two dimensions) by

K(x) := −
i

4
H

(1)
0 (k|x|) ,

where H
(1)
0 (k|x|) is the Hankel function of the first kind of order zero (cf. [19,

§3.4] or [22, §2.1]). Furthermore, we introduce the single and double layer
potentials on Γj:

Vj(ψ)(x) =

∫

Γj

K(x− y)ψ(y)dyΓj , x /∈ Γj ,

Wj(ϕ)(x) =

∫

Γj

[∂nj(y)K(x− y)]ϕ(y)dyΓj , x /∈ Γj ,
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where j = 1, 2 and ψ, ϕ are density functions. Note that for j = 1 sometimes
we will write R instead of Γ1. In this case, for example, the single layer
potential defined above has the form

V1(ψ)(x1, x2) =

∫

R

K(x1 − y, x2)ψ(y)dy, x2 6= 0.

Set R2
± := {(x1, x2) ∈ R2 : x2 ≷ 0} and let us first consider the operators

V := V1 and W := W1.

Theorem 4.1 ([7]). The single and double layer potentials V and W are
continuous operators

V : Hs(R) → Hs+1+ 1

2 (R2
±), W : Hs+1(R) → Hs+1+ 1

2 (R2
±), (4.1)

for all s ∈ R.

Clearly, a similar result holds true for the operators V2 and W2.
Let us now recall some properties of the above introduced potentials. The

following limit relations are well-known (cf. [7]):

[V (ψ)]+
R
= [V (ψ)]−

R
=: H(ψ), [∂nV (ψ)]

±
R
=: [∓

1

2
I](ψ) ,

(4.2)

[W (ϕ)]±
R
=: [±

1

2
I](ϕ), [∂nW (ϕ)]+

R
= [∂nW (ϕ)]−

R
=: L(ϕ) ,

where

H(ψ)(z) :=

∫

R

K(z − y)ψ(y)dy , z ∈ R , (4.3)

L(ϕ)(z) := lim
R2
+
∋x→z∈R

∂n(x)

∫

R

[∂n(y)K(y − x)]ϕ(y)dy , z ∈ R , (4.4)

and I denotes the identity operator.
In our further reasoning we will make a convenient use of the even and

odd extension operators defined by

ℓeϕ(y) =

{
ϕ(y), y ∈ R±

ϕ(−y), y ∈ R∓
and ℓoϕ(y) =

{
ϕ(y), y ∈ R±

−ϕ(−y), y ∈ R∓
,

respectively.
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Remark 4.2 ([17]). The following operators

ℓe : Hε+ 1

2 (R±) −→ Hε+ 1

2 (R), ℓo : rR±
H̃ε+ 1

2 (R±) −→ Hε+ 1

2 (R),

ℓo : Hε− 1

2 (R±) −→ Hε− 1

2 (R), ℓe : rR±
H̃ε− 1

2 (R±) −→ Hε− 1

2 (R),

are continuous for all ε ∈ [0, 1/2).

Lemma 4.3 ([7]). If 0 ≤ ε < 1/2, then

rΓ2
◦ V ◦ ℓoψ = 0, rΓ2

◦W ◦ ℓoϕ̃ = 0,

rΓ2
◦ ∂n2

V ◦ ℓeψ̃ = 0, rΓ2
◦ ∂n2

W ◦ ℓeϕ = 0

for all ψ ∈ Hε− 1

2 (S) , ψ̃ ∈ rSH̃
ε− 1

2 (S) , ϕ ∈ Hε+ 1

2 (S) , and ϕ̃ ∈ rSH̃
ε+ 1

2 (S).

We would like to point out that analogous results are valid for the oper-
ators V2 and W2.

5 The Wiener-Hopf plus/minus Hankel oper-

ators associated with the problems

The main goal of the present section is to equivalently reformulate the prob-
lems under analysis by means of integral equations characterized by Wiener-
Hopf plus and minus Hankel operators. To this end, we will make a conve-
nient use of the pseudodifferential operators introduced in the last section
together with some auxiliary operators based on the odd and even extension
operators and the reflection operator J , defined by the rule

Jψ(y) = ψ(−y) for all y ∈ R .

5.1 The mixed–D problem

The boundary value problem Pmixed−D can be equivalently rewritten [38] in
the following form: Find uj ∈ H1+ε(Ωj), j = 1, 2 such that

(
∆+ k2

)
uj = 0 in Ωj , (5.1)

[uj]
+
Sj

= hj on Sj, (5.2)

[u1]
+
C = g+0 , [∂n1

u2]
−
C = g−1 on C, (5.3)
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and
[u1]

+
Cc − [u2]

−
Cc = 0, [∂n1

u1]
+
Cc − [∂n1

u2]
−
Cc = 0 on Cc, (5.4)

where Cc = S\C, and assuming the compatibility condition (2.6).

Proposition 5.1. A function u ∈ H1+ε(ΩC) is a solution of Problem Pmixed−D

if and only if u can be represented by

u1 = 2W1

(
ℓo(ℓ+g

+
0 − [2W2(ℓ

eh1)]
+
S ) + ℓorSϕ0

)
+ 2W2(ℓ

eh1) in Ω1 (5.5)

and
u2 = 2V1

(
ℓo(ℓ+g

−
1 + rSϕ1)

)
+ 2W2(ℓ

eh2) in Ω2, (5.6)

where ϕ0 and ϕ1 are suitable elements of the spaces H̃
1

2
+ε(Cc) and H̃− 1

2
+ε(Cc),

respectively, while ℓ+g
+
0 ∈ H

1

2
+ε(S) is any fixed extension of g+0 ∈ H

1

2
+ε(C)

and ℓ+g
−
1 ∈ H− 1

2
+ε(S) is any fixed extension of g+1 ∈ H− 1

2
+ε(C).

Proof. From Theorem 3.1 we know already that Problem Pmixed−D has at
most one solution. Thus, we need only to prove that uj ∈ H1+ε(Ωj), j = 1, 2,
presented in (5.5)–(5.6) are solutions of (5.1)–(5.4) when considering the
compatibility condition (2.6).

We stress that the compatibility condition (2.6) ensures us that

ℓ+g
+
0 − [2W2(ℓ

eh1)]
+
S ∈ rSH̃

1

2
+ε(S)

and, therefore, we may apply the first extension operator ℓo in the construc-
tion (5.5) of u1. Here, it is also crucial to have ε ∈ [0, 1

2
).

Using the results from Section 4 it is direct to verify that uj belong to
the spaces H1+ε(Ωj) and satisfy equations (5.1)–(5.3). Therefore, it remains
to satisfy the conditions (5.4) which together with (5.5) and (5.6) lead us to
the following equation

rCcKℓorSΥ = FD, (5.7)

where

K :=

(
1 2H
2L 1

)
, Υ :=

(
ϕ0

−ϕ1

)
, (5.8)

and FD := (FD
0 , F

D
1 )⊤ is a known vector function, namely, we have

FD
0 := rCc

(
2H(ℓo(ℓ+g

−
1 )) + [2W2(ℓ

eh2)]
−
S − ℓ+g

+
0

)
∈ H

1

2
+ε(Cc)
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and

FD
1 := rCc

(
ℓ+g

−
1 − 2L(ℓo(ℓ+g

+
0 − [2W2(ℓ

eh1)]
+
S )
)
∈ H− 1

2
+ε(Cc).

Here, we would like to point out that to obtain the just presented final form
of FD

1 we have used Lemma 4.3 for the operator W2, and that the operator
in (5.7) is defined in the appropriate sense:

rCcKℓorS :
H̃

1

2
+ε(Cc)
⊕

H̃− 1

2
+ε(Cc)

−→
H

1

2
+ε(Cc)
⊕

H− 1

2
+ε(Cc)

. (5.9)

As a consequence of the equation (5.7) just derived, in view to obtain
more information on the elements ϕ0 and ϕ1, we need to investigate the
invertibility of the operator (5.9).

With the help of the operator J and the shift convolution operators

Op(τ±a) := F−1τ±a · F

(where we recall that F denotes the Fourier transformation and τb(ξ) := eibξ,
ξ ∈ R), we equivalently reduce the problem to the invertibility of the operator

rR+
K−− :

H̃
1

2
+ε(R+)
⊕

H̃− 1

2
+ε(R+)

−→
H

1

2
+ε(R+)
⊕

H− 1

2
+ε(R+)

, (5.10)

in the sense that we relate the operators (5.9) and (5.10) by an operator
identity (of the type (6.1) explained below) so that K−− := Kdiag{I −
Op(τ−2a)J, I −Op(τ−2a)J}.

Let us note here that due to Theorem 3.1 and having in mind the exhibited
limit relations of the potentials, we already know that Ker rR+

K−− = {0}.

5.2 The mixed–N problem

The boundary value problem Pmixed−N can equivalently be rewritten [38] in
the following form: Find uj ∈ H1+ε(Ωj), j = 1, 2, such that

(
∆+ k2

)
uj = 0 in Ωj ,

[∂n2
uj]

+
Sj

= fj on Sj ,

[u1]
+
C = g+0 , [∂n1

u2]
−
C = g−1 on C,
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and
[u1]

+
Cc − [u2]

−
Cc = 0, [∂n1

u1]
+
Cc − [∂n1

u2]
−
Cc = 0 on Cc.

Proposition 5.2. A function u ∈ H1+ε(ΩC) is a solution of Problem Pmixed−N

if and only if u can be represented by

u1 = 2W1

(
ℓe(ℓ+g

+
0 + rSϕ0)

)
− 2V2(ℓ

of1) in Ω1 (5.11)

and

u2 = 2V1
(
ℓe(ℓ+g

−
1 − 2[∂n1

V2(ℓ
of2)]

−
S ) + ℓerSϕ1)

)
− 2V2(ℓ

of2) in Ω2, (5.12)

where ϕj are suitable elements of the spaces H̃
1

2
+ε−j(Cc), j = 0, 1, while ℓ+g

+
0

and ℓ+g
−
1 are above introduced extensions of g+0 and g−1 , respectively.

The proof of the last proposition (as well as the ones of the propositions
in the next two subsections) are identical to that of Proposition 5.1, and so
we shall not write them in a formal way but will simply indicate their main
steps. Namely, in the present case, the boundary conditions on Cc lead us to
the following equation

rCcKℓerSΥ = FN , (5.13)

for the same K and Υ as in (5.8), and where FN = (FN
1 , F

N
2 )⊤ is a known

function with

FN
0 := rCc

(
2H(ℓe(ℓ+g

−
1 − 2[∂n1

V2(ℓ
of2)]))− [2V2(ℓ

of2)]
−
S − ℓ+g

+
0

)
∈ H

1

2
+ε(Cc)

and

FN
1 := rCc

(
ℓ+g

−
1 − 2L(ℓe(ℓ+g

+
0 )) + 2[∂n1

V2(ℓ
of1)]

+
S

)
∈ H− 1

2
+ε(Cc).

Thus we need to investigate the invertibility of the operator

rCcKℓerS :
H̃

1

2
+ε(Cc)
⊕

H̃− 1

2
+ε(Cc)

−→
H

1

2
+ε(Cc)
⊕

H− 1

2
+ε(Cc)

.

As previously, with the help of the operators J and F−1τ±a · F , we are
able to equivalently transform this second problem into the problem of the
invertibility of the operator

rR+
K++ :

H̃
1

2
+ε(R+)
⊕

H̃− 1

2
+ε(R+)

−→
H

1

2
+ε(R+)
⊕

H− 1

2
+ε(R+)

, (5.14)
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where K++ := Kdiag{I +Op(τ−2a)J, I +Op(τ−2a)J}.
Again, let us note here that due to Theorem 3.1 and having in mind the

exhibited limit relations of the potentials, we already know that Ker rR+
K++ =

{0}.

5.3 The mixed problem

The boundary value problem Pmixed can equivalently be rewritten in the
following form: Find uj ∈ H1+ε(Ωj), j = 1, 2, such that

(
∆+ k2

)
uj = 0 in Ωj ,

[∂n2
u1]

+
S1

= f1 on S1, [u2]
+
S2

= h2 on S2,

[u1]
+
C = g+0 , [∂n1

u2]
−
C = g−1 on C,

and
[u1]

+
Cc − [u2]

−
Cc = 0, [∂n1

u1]
+
Cc − [∂n1

u2]
−
Cc = 0 on Cc,

where Cc = S\C.

Proposition 5.3. A function u ∈ H1+ε(ΩC) is a solution of Problem Pmixed

if and only if u can be represented by

u1 = 2W1

(
ℓe(ℓ+g

+
0 + rSϕ0)

)
− 2V2(ℓ

of1) in Ω1 (5.15)

and
u2 = 2V1

(
ℓo(ℓ+g

−
1 + rSϕ1)

)
+ 2W2(ℓ

eh2) in Ω2, (5.16)

where ϕj are suitable elements of the spaces H̃
1

2
+ε−j(Cc), j = 0, 1, while ℓ+g

+
0

and ℓ+g
−
1 are above introduced extensions of g+0 and g−1 , respectively.

The boundary conditions on Cc lead us to the following equation

rCcKdiag{ℓe, ℓo}rSΥ = FM , (5.17)

where FM := (FD
0 , F

N
1 )⊤ is a known function directly obtained from (5.15)–

(5.15) and (4.2)–(4.4). Thus, we need to investigate the invertibility of the
operator

rCcKdiag{ℓe, ℓo}rS :
H̃

1

2
+ε(Cc)
⊕

H̃− 1

2
+ε(Cc)

−→
H

1

2
+ε(Cc)
⊕

H− 1

2
+ε(Cc)

.
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As previously, with the help of the operators J and F−1τ±a · F , we are
able to equivalently transform this second problem into the invertibility of
the operator

rR+
K+− :

H̃
1

2
+ε(R+)
⊕

H̃− 1

2
+ε(R+)

−→
H

1

2
+ε(R+)
⊕

H− 1

2
+ε(R+)

, (5.18)

where K+− := Kdiag{I +Op(τ−2a)J, I −Op(τ−2a)J}.
Again we stress that due to Theorem 3.1 and having in mind the exhibited

limit relations of the potentials, we already know that Ker rR+
K+− = {0}.

5.4 The mixed ∗ problem

The boundary value problem Pmixed∗ can equivalently be rewritten in the
following form: Find uj ∈ H1+ε(Ωj), j = 1, 2, such that

(
∆+ k2

)
uj = 0 in Ωj ,

[u1]
+
S1

= h1 on S1, [∂n2
u2]

+
S2

= f2 on S2,

[u1]
+
C = g+0 , [∂n1

u2]
−
C = g−1 on C,

and
[u1]

+
Cc − [u2]

−
Cc = 0, [∂n1

u1]
+
Cc − [∂n1

u2]
−
Cc = 0 on Cc.

Proposition 5.4. A function u ∈ H1+ε(ΩC) is a solution of Problem Pmixed∗

if and only if u can be represented by

u1 = 2W1

(
ℓo(ℓ+g

+
0 − [2W2(ℓ

eh1)]
+
S ) + ℓorSϕ0

)
+ 2W2(ℓ

eh1) in Ω1 (5.19)

and

u2 = 2V1
(
ℓe(ℓ+g

−
1 − 2[∂n1

V2(ℓ
of2)]

−
S ) + ℓerSϕ1)

)
− 2V2(ℓ

of2) in Ω2, (5.20)

where ϕj are suitable elements of the spaces H̃
1

2
+ε−j(Cc), j = 0, 1, while ℓ+g

+
0

and ℓ+g
−
1 are above introduced extensions of g+0 and g−1 , respectively.

The boundary conditions on Cc lead us to the following equation

rCcKdiag{ℓo, ℓe}rSΥ = FM∗

, (5.21)
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where FM∗

:= (FN
0 , F

D
1 )⊤ is a known function which is directly constructed

from (5.19)–(5.20) and (4.2)–(4.4). Consequently, we need to investigate the
invertibility of the operator

rCcKdiag{ℓo, ℓe}rS :
H̃

1

2
+ε(Cc)
⊕

H̃− 1

2
+ε(Cc)

−→
H

1

2
+ε(Cc)
⊕

H− 1

2
+ε(Cc)

.

As previously, with the help of the operators J and F−1τ±a · F , we are
able to equivalently transform this second problem into the question of the
invertibility of the operator

rR+
K−+ :

H̃
1

2
+ε(R+)
⊕

H̃− 1

2
+ε(R+)

−→
H

1

2
+ε(R+)
⊕

H− 1

2
+ε(R+)

, (5.22)

where K−+ := Kdiag{I −Op(τ−2a)J, I +Op(τ−2a)J}.
Again, let us note here that due to Theorem 3.1 and having in mind the

exhibited limit relations of the potentials, we already know that Ker rR+
K−+ =

{0}.

6 Operator relations and Fredholm theory

Now, we will exhibit operator relations for the operators which appeared in
the last section, and which will help us in obtaining their Fredholm properties
at the end of the present section.

In order to make this happen, we start by recalling that two bounded
linear operators T : X1 → X2 and S : Y1 → Y2, acting between Banach
spaces, are said to be (toplinear) equivalent after extension if there are Banach
spaces Z1 and Z2 and invertible bounded linear operators E and F such that

[
T 0
0 IZ1

]
= E

[
S 0
0 IZ2

]
F, (6.1)

where IZ1
and IZ2

represent the identity operators in Z1 and Z2, respectively.
In particular, in case we will simply have T = ESF for some boundedly in-
vertible operators E and F , we will say that T and S are equivalent operators.
In such a case, we will write T ∼ S. These operator relations between two

14



operators T and S, if obtained, allow several consequences on the properties
of these two operators. Namely, T and S will have the same Fredholm regu-
larity properties (i.e., the properties that directly depend on the kernel and
on the image of the operator). Cf. [2, 16] for a detailed description about
such operator relations and their properties.

Let us define

Λs
±(ξ) := (ξ ± i)s = (1 + ξ2)

s
2 exp

{
s i arg(ξ ± i)

}
,

with a branch chosen in such a way that arg(ξ±i) → 0 as ξ → +∞, i.e., with
a cut parallel to the negative real axis (see Example 1.7 in [21] for additional
information about the properties of these functions). In addition, we will
also use the notation

ζ(ξ) :=
Λ−(ξ)

Λ+(ξ)
=
ξ − i

ξ + i
, ξ ∈ R .

Lemma 6.1. [21, §4] Let s, r ∈ R, and consider the operators

Λs
+(D) = (D + i)s

Λs
−(D) = rR+

(D − i)sℓ(r) ,

where (D ± i)±s = F−1(ξ ± i)±s · F , and ℓ(r) : Hr(R+) → Hr(R) is any
bounded extension operator in these spaces (which particular choice does not
change the definition of Λs

−(D)).
These operators arrange isomorphisms in the following space settings

Λs
+(D) : H̃r(R+) → H̃r−s(R+),

Λs
−(D) : Hr(R+) → Hr−s(R+)

for any s, r ∈ R.

Bearing in mind the purpose of this section, let Aij = Op(aij) = F−1aij ·F
and Bij = Op(bij) be pseudodifferential operators of order µij ∈ R; thus,

〈·〉−µijaij , 〈·〉
−µijbij ∈ L∞(R), where 〈ξ〉 := (1+ ξ2)

1

2 and i, j = 1, 2. Since the
operators rR+

(Aij +BijJ) arrange continuous maps

rR+
(Aij +BijJ) : H̃

s(R+) → Hs−µij(R+)
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for all s ∈ R, then the 2× 2 matrix operator

A+BJ =

(
A11 +B11J A12 +B12J

A21 +B21J A22 +B22J

)
, A = (Aij)i,j=1,2, B = (Bij)i,j=1,2

arranges a continuous map

rR+
(A +BJ) :

H̃
1

2
+ε(R+)
⊕

H̃− 1

2
+ε(R+)

→
H

1

2
+ε(R+)
⊕

H− 1

2
+ε(R+)

(6.2)

where A11 = A22 = I, A12 = 2H, A21 = 2L, and Bij = AijOp(τ−2a), for
i, j = 1, 2.

Recall that the complete symbol of the pseudodifferential operators H
and L are (cf. [7, 10]):

σ(H)(ξ) = −
i

2w(ξ)
and σ(L)(ξ) = −

iw(ξ)

2
, (6.3)

where w = w(ξ) := (̺2 + ρ2)
1

4 (cos α
2
+ i sin α

2
), with

̺ = ̺(ξ) := (ℜe k)2 − (ℑm k)2 − ξ2 ,

ρ := 2(ℜe k)(ℑm k)

and

α :=





arctan ρ
|̺|

if ̺ > 0, ρ > 0
π
2

if ̺ = 0, ρ > 0
π − arctan ρ

|̺|
if ̺ < 0, ρ > 0

π if ρ = 0

2π − arctan |ρ|
|̺|

if ̺ > 0, ρ < 0
3π
2

if ̺ = 0, ρ < 0

π + arctan |ρ|
|̺|

if ̺ < 0, ρ < 0

. (6.4)

Lemma 6.1 allows us to construct an equivalence relation between rR+
(A+

BJ) and

rR+
(A+ BJ) : [L2(R+)]

2 → [L2(R+)]
2, (6.5)

which is explicitly given by the following identity

rR+
(A+ BJ) := diag{Λ

1

2
+ε

− ,Λ
− 1

2
+ε

− } rR+
(A +BJ) diag{Λ

− 1

2
−ε

+ ,Λ
1

2
−ε

+ } ,(6.6)
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where A := (Aij)i,j=1,2, B := (Bij)i,j=1,2, with

Aij := (D − i)riAij(D + i)−rj , Bij := (D − i)riBijJ(D + i)−rjJ, (6.7)

for r1 :=
1
2
+ε, r2 := −1

2
+ε. Due to the fact that Λs−µ

− : Hs−µ(R+) → L2(R+)

and Λ−s
+ : L2(R+) → H̃s(R+) are invertible operators (cf. Lemma 6.1), the

identity (6.6) shows that

rR+
(A+BJ) ∼ rR+

(A+ BJ) . (6.8)

Note that

Λs
+(−ξ) = Λs

−(ξ) e
sπi, Λs

−(−ξ) = Λs
+(ξ) e

−sπi

which in particular allow us to describe the operators Aij and Bij and their
symbols in the following way

Aij = Op(ãij) , ãij(ξ) = Λri
−(ξ) aij(ξ) Λ

−rj
+ (ξ) ,

Bij = Op(b̃ij) , b̃ij(ξ) = Λri
−(ξ) bij(ξ) Λ

−rj
+ (−ξ) = Λ

ri−rj
− (ξ) bij(ξ) e

−rjπi .

In particular, we have σ(A)(ξ) = (ãij(ξ))i,j=1,2 with

ã11(ξ) = ζ
1

2
+ε(ξ), ã12(ξ) = 2 ζε(ξ) 〈ξ〉σ(H)(ξ),

ã21(ξ) = 2 ζε(ξ) 〈ξ〉−1σ(L)(ξ), ã22(ξ) = ζ−
1

2
+ε(ξ),

and σ(B)(ξ) = (b̃ij(ξ))i,j=1,2, where

b̃11(ξ) = −i τ−2a(ξ) e
−επi, b̃12(ξ) = 2i ( ξ − i) τ−2a(ξ) σ(H)(ξ) e−επi,

b̃21(ξ) = −2i (ξ − i)−1τ−2a(ξ) σ(L)(ξ) e
−επi, b̃22(ξ) = iτ−2a(ξ) e

−επi.

Thus

rR+
K++ ∼ rR+

(A+ BJ) and rR+
K−− ∼ rR+

(A− BJ). (6.9)

Similarly, we obtain

rR+
K+− ∼ rR+

(A+ B′J) and rR+
K−+ ∼ rR+

(A− B′J), (6.10)

where B′ := diag{1,−1}B.

17



From now on we provide detailed arguments for the operators given in
(6.9), while the operators in (6.10) can be treated analogously with obvious
changes in the corresponding places.

Further, let us consider a pseudodifferential operator Op(Ξ) with 4 × 4
matrix symbol Ξ(ξ) partitioned into four 2× 2 blocks αij , i, j = 1, 2:

Ξ(ξ) =

(
α11(ξ) α12(ξ)
α21(ξ) α22(ξ)

)
(6.11)

with

α11(ξ) = σ(A)(ξ)− σ(B)(ξ)[σ(A)(−ξ)]−1σ(B)(−ξ) , (6.12)

α12(ξ) = −σ(B)(ξ) [σ(A)(−ξ)]−1 ,

α21(ξ) = [σ(A)(−ξ)]−1 σ(B)(−ξ) ,

α22(ξ) = (σ(A)(−ξ))−1 . (6.13)

The direct calculation shows that α11 is the null matrix, i.e., α11(ξ) ≡ 0,
while

α12(ξ) =

(
−i τ−2a(ξ) e

επiζ
1

2
+ε(ξ) 0

0 i τ−2a(ξ) e
επiζ−

1

2
+ε(ξ)

)
,

α21(ξ) =

(
i τ2a(ξ) e

επiζ
1

2
+ε(ξ) 0

0 −i τ2a(ξ) e
επiζ−

1

2
+ε(ξ)

)
,

α22(ξ) =

(
−1

2
e2επiζ

1

2
+ε(ξ) −e2επi 〈ξ〉σ(H) ζε(ξ)

−e2επi 〈ξ〉−1σ(L) ζε(ξ) −1
2
e2επiζ−

1

2
+ε(ξ)

)
.

Under the above conditions it is straightforward to conclude that

rR+
Op(Ξ) : [L2(R+)]

4 → [L2(R+)]
4 (6.14)

is a continuous operator. Moreover, it is easy to see that the determinant of
the symbol of this operator is always nonzero, for all ξ ∈ R.

The importance of the operator rR+
Op(Ξ) is clarified by the next result.

Theorem 6.2. (i) The operators

rR+
A± rR+

BJ : [L2(R+)]
2 → [L2(R+)]

2

(defined in (6.5)–(6.7)) are both invertible if and only if the operator
rR+

Op(Ξ) (given in (6.14)) is invertible.
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(ii) The operators rR+
A+ rR+

BJ and rR+
A− rR+

BJ have both the Fred-
holm property if and only if rR+

Op(Ξ) has the Fredholm property. In
addition, when in the presence of the Fredholm property for these three
operators, their Fredholm indices satisfy the identity

Ind (rR+
A+ rR+

BJ) + Ind (rR+
A− rR+

BJ) = Ind rR+
Op(Ξ) . (6.15)

In fact, this theorem is a consequence of a stronger fact which basi-
cally states that rR+

Op(Ξ) is (toplinear) equivalent after extension with a
diagonal block matrix operator whose diagonal entries are the operators
rR+

A+ rR+
BJ and rR+

A− rR+
BJ . Moreover, it is interesting to clarify that

all the necessary operators to identify such (toplinear) equivalence after ex-
tension relation can be built in an explicit way (see [13, 14, 15, 16]).

7 Associated Wiener-Hopf operators: their

Fredholm properties and factorization

In this section we would like to investigate the Wiener-Hopf operator obtained
in the previous section

rR+
Op(Ξ) : [L2(R+)]

4 → [L2(R+)]
4. (7.1)

We have that Ξ belongs to the very general C∗−algebra of the semi-almost
periodic four by four matrix functions on the real line ([SAP (R)]4×4); see [42].
We recall that [SAP (R)]4×4 is the smallest closed subalgebra of [L∞(R)]4×4

that contains the (classical) algebra of (two by two) almost periodic elements
([AP ]4×4) and the (four by four) continuous matrices with possible jumps at
infinity.

Due to a known characterization of the structure of [SAP (R)]4×4 (see
[3, 4, 42]), we can choose a continuous function on the real line, say γ, such
that γ(−∞) = 0, γ(+∞) = 1 and

Ξ = (1− γ)Ξl + γΞr + Ξ0

where Ξ0 is a continuous four by four matrix function with zero limit at
infinity, and Ξl and Ξr are matrices with almost periodic elements, uniquely
determined by Ξ, and that in our case have the following form (due to the
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behavior of Ξ at ±∞):

Ξl =




0 0 i τ−2a e
−επi 0

0 0 0 −i τ−2a e
−επi

−i τ2a e
−επi 0 1

2
1
2

0 i τ2a e
−επi −1

2
1
2



,

Ξr =




0 0 −i τ−2a e
επi 0

0 0 0 i τ−2a e
επi

i τ2a e
επi 0 −1

2
e2επi 1

2
e2επi

0 −i τ2a e
επi −1

2
e2επi −1

2
e2επi



.

Here, it is worth noting that we had in consideration that ω(ξ) → i|ξ| as
ξ → ±∞ (cf. (6.3)–(6.4)), and

ζν(ξ) → 1 as ξ → ∞,

and

ζν(ξ) → e−2πνi as ξ → −∞.

For a given unital Banach algebra M, by GM we will denote the group
of all invertible elements of M.

Definition 7.1 (See, e.g., [23] or §6.3 in [5]). An invertible almost periodic
matrix function Φ ∈ G[AP ]4×4 admits a canonical right AP -factorization if

Φ = Φ−Φ+ , (7.2)

where Φ± ∈ G[AP±]
4×4

, with AP± denoting the intersection of AP with the
non-tangential limits of functions in H∞(C±) (the set of all bounded and
analytic functions in C±).

Proposition 7.2. (cf., e.g., [5, Proposition 2.22]) Let A ⊂ (0,∞) be an
unbounded set and let

{Iα}α∈A = {(xα, yα)}α∈A
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be a family of intervals Iα ⊂ R such that |Iα| = yα − xα → ∞ as α → ∞. If
ϕ ∈ AP , then the limit

M(ϕ) := lim
α→∞

1

|Iα|

∫

Iα

ϕ(x) dx

exists, is finite, and is independent of the particular choice of the family {Iα}.

Definition 7.3. (i) For any ϕ ∈ AP , the number that has just been intro-
duced in Proposition 7.2, M(ϕ), is called the Bohr mean value (or simply
the mean value) of ϕ. In the matrix case the Bohr mean value is defined
entry-wise.

(ii) For a matrix function Φ ∈ G[AP ]4×4 admitting a canonical right AP
factorization (7.2), we may define the new matrix

d(Φ) :=M(Φ−)M(Φ+) , (7.3)

which is known as the geometric mean of Φ.

It is worth mentioning that (7.3) is independent of the particular choice
of the (canonical) right AP factorization of Φ, and that this definition is con-
sistent with the corresponding one for the scalar case (which can be defined
in a somehow more global way).

Theorem 7.4. For 0 ≤ ε < 1/4, the operator rR+
Op(Ξ) : [L2(R+)]

4 →
[L2(R+)]

4 is a Fredholm operator with zero Fredholm index.

Proof. The matrices Ξl and Ξr admit the following right canonical AP -
factorizations:

Ξl = (Ξl)l(Ξl)r, and Ξr = (Ξr)l(Ξr)r, (7.4)

where

(Ξl)l =




e−2επi e−2επi i τ−2a e
−επi 0

0 e−2επi −i τ−2a e
−επi −2i τ−2a e

−επi

0 0 1 1

0 0 0 1



,

(Ξl)r =




−2 0 0 0

1 −1 0 0

−i τ2a e
−επi −i τ2a e

−επi 1 0

0 i τ2a e
−επi −1

2
1
2



,
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(Ξr)l =




1 1 i τ−2a e
−επi 0

0 1 −i τ−2a e
−επi 2i τ−2a e

−επi

0 0 −1 1

0 0 0 −1



,

(Ξr)r =




−2 0 0 0

1 1 0 0

−i τ2a e
επi i τ2a e

επi e2επi 0

0 i τ2a e
επi 1

2
e2επi 1

2
e2επi




(in which the necessary factor properties are evident; cf. Definition 7.1).
Having built the factorizations (7.4), we can now apply Theorem 3.2

in [23] or Theorem 10.11 in [5] in view of proving the Fredholm property
for rR+

Op(Ξ). Indeed, within our case of Ξ ∈ G[SAP (R)]4×4 and whose
local representatives at infinity admit canonical right AP -factorizations (7.4),
applying that theorems we have that rR+

Op(Ξ) is a Fredholm operator if and
only if

sp
[
d−1(Ξr)d (Ξl)

]
∩ (−∞, 0] = ∅ ,

where sp [d−1(Ξr)d (Ξl)] stands for the set of eigenvalues of the matrix

d−1(Ξr)d (Ξl) := [d (Ξr)]
−1 d (Ξl) .

Noticing that directly from the definition of the Bohr mean value we have
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M(±1/2) = ±1/2, M(±1) = ±1, M(−2) = −2, and M(τ±2a) = 0, it follows

d (Ξl) = M [(Ξl)l]M [(Ξl)r]

=




e−2επi e−2επi 0 0

0 e−2επi 0 0

0 0 1 1

0 0 0 1







−2 0 0 0

1 −1 0 0

0 0 1 0

0 0 −1
2

1
2




=




−e−2επi −e−2επi 0 0

e−2επi −e−2επi 0 0

0 0 1
2

1
2

0 0 −1
2

1
2



, (7.5)

d (Ξr) = M [(Ξr)l]M [(Ξr)r] =




−1 1 0 0

1 1 0 0

0 0 −1
2
e2επi 1

2
e2επi

0 0 −1
2
e2επi −1

2
e2επi



. (7.6)

As a consequence,

d−1(Ξr)d (Ξl) =




e−2επi 0 0 0

0 −e−2επi 0 0

0 0 0 −e−2επi

0 0 e−2επi 0




and

sp
[
d−1(Ξr)d (Ξl)

]
∩ (−∞, 0] = {±e−2επi,±i e−2επi} ∩ (−∞, 0] = ∅ , (7.7)

which allows us to conclude that rR+
Op(Ξ) : [L2(R+)]

4 → [L2(R+)]
4 is a

Fredholm operator (for the case in consideration of 0 ≤ ε < 1/4).
The zero Fredholm index is obtained from the formula (cf. Theorem 10.21

in [5])

Ind rR+
Op(Ξ) = −ind [det Ξ]−

4∑

j=1

(1
2
−
{1
2
−

1

2π
arg ξj

})
,
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where ind [det Ξ] denotes the Cauchy index of the determinant of Ξ, the
numbers ξj ∈ C\(−∞, 0], j = 1, ..., 4 are the eigenvalues of the matrix
d−1(Ξr)d (Ξl) and {·} stands for the fractional part of a real number.

Remark 7.5. From the proof of the last result, and in particular from (7.7),
we realize that if we would allow the case ε = 1/4 then our operators would not
have the Fredholm property (and therefore would not be invertible operators).

Corollary 7.6. Let 0 ≤ ε < 1
4
. The Wiener-Hopf plus and minus Han-

kel operators (5.10), (5.14), (5.18), and (5.22) (which characterize our four
problems) are invertible operators.

Proof. Bearing in mind the equivalence relations (6.9), we have:

dimCoKer rR+
K++ = dimCoKer rR+

(A+ BJ), (7.8)

dimKer rR+
K++ = dimKer rR+

(A+ BJ). (7.9)

and

dimCoKer rR+
K−− = dimCoKer rR+

(A− BJ), (7.10)

dimKer rR+
K−− = dimKer rR+

(A− BJ). (7.11)

From Theorem 6.2 and Theorem 7.4, we obtain that rR+
(A + BJ) and

rR+
(A−BJ) are Fredholm operators. Moreover, recalling that Ker rR+

K++ =
{0} and Ker rR+

K−− = {0}, from identities (6.15), (7.8)–(7.11) and Theo-
rem 7.4 it follows

0 = Ind rR+
(A+ BJ) + Ind rR+

(A− BJ) = Ind rR+
K++ + Ind rR+

K−−

= (0− dimCoKer rR+
K++) + (0− dimCoKer rR+

K−−) .

Thus, we have

dimCoKer rR+
K++ = dimCoKer rR+

K−− = 0

and so we reach to the conclusion that both operators in (5.10) and (5.14)
are invertible.

Similarly, we obtain the invertibility results for the operators (5.18) and
(5.22).
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8 Final conclusion

Due to a direct combination of the results of sections 3–7 and, in particular,
Corollary 7.6, we now obtain the main conclusion of the present work for the
problems under analysis.

Theorem 8.1. Let 0 ≤ ε < 1
4
.

(i) The Problem Pmixed−D has a unique solution which is representable
as a pair (u1, u2) defined by the formulas (5.5) and (5.6), where the
components ϕ0 and −ϕ1 of the unique solution Υ of the equation (5.7)
are used.

(ii) The Problem Pmixed−N has a unique solution which is representable
as a pair (u1, u2) defined by the formulas (5.11) and (5.12), where the
components ϕ0 and −ϕ1 of the unique solution Υ of the equation (5.13)
are used.

(iii) The Problem Pmixed has a unique solution which is representable as
a pair (u1, u2) defined by the formulas (5.15) and (5.16), where the
components ϕ0 and −ϕ1 of the unique solution Υ of the equation (5.17)
are used.

(iv) The Problem Pmixed∗ has a unique solution which is representable as
a pair (u1, u2) defined by the formulas (5.19) and (5.20), where the
components ϕ0 and −ϕ1 of the unique solution Υ of the equation (5.21)
are used.

Moreover all these problems are well-posed (since the resolvent operators are
continuous).

To conclude, we would like to point out that although from the natural
assumptions in the formulation of the problems (cf. section 2) we were looking
for the eventual possibilities for ε ∈ [0, 1

2
), we now realize that the last result

is optimal from the point of view of the possible variability of the Bessel
potential spaces smoothness orders (in view to have corresponding well-posed
problems); cf. Remark 7.5. It is also worth to mention that this effect is due
to the mixed conditions given on the obstacle, while mixed conditions given
only on the boundary lead us to the result ε ∈ [0, 1

2
); cf. [12].
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