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1. Formulation of problems and main results

Given a proper open subset Σ ⊂ R2, we consider the domain Ω defined by

Ω = R
3 \ Γ (1.1)

Γ = Σ× 0 = {x = (x1, x2, 0) ∈ R
3 : x′ = (x1, x2) ∈ Σ}.

For convenience the boundary manifold Γ is closed (in R3) and the screen Σ
is open (a domain in R2). However, the two sets will be identified in some
sense (provided int clos Σ = Σ). As a rule we assume Σ 6= ∅, Σ 6= R2, if
nothing else is said.

Problems of diffraction from a plane screen Γ are often formulated in
terms of (or reduced to) the solution of the three-dimensional Helmholtz equa-
tion (HE) in Ω with Dirichlet or Neumann conditions on Γ, briefly written
as (

∆+ k2
)
u = 0 in Ω

Bu = g on Γ = ∂Ω.
(1.2)

Herein k is the wave number and we assume that ℑmk > 0 throughout
this paper (some parts are restricted to ℜek = 0). B stands for the boundary
operator, taking the trace or normal derivative of u on Γ. We think of the weak
formulation looking for u ∈ L2(Ω) with restrictions u± = u|Ω± to the upper
and lower half-space Ω± = {x ∈ R3 : ±x3 > 0} that satisfy u± ∈ H1(Ω±)
and the common transmission conditions across the complement of Σ:

Σ′ = R
2 \ Σ,

namely

u+0 − u−0 = [u+ − u−]|x3=0 = 0

u+1 − u−1 = [∂u+/∂x3 − ∂u−/∂x3]|x3=0 = 0
on Σ′ (1.3)

according to the trace theorem and by help of representation formulas, see
[20] and Section 2 for details. In a sense, this is equivalent to state that the
HE holds across the complementary screen Σ′ [26]. The boundary data g
are arbitrarily given in the corresponding data space H1/2(Σ) or H−1/2(Σ),
respectively (values of g in the boundary of Σ do not matter in this space
setting).

For convenience we study the (homogeneous) HE, since boundary value
problems for the inhomogeneous HE Au = (∆ + k2)u = f can be “equiva-
lently reduced” under the present assumptions, see [40]. Hence the operator
associated with the boundary value problem (BVP) can be written as

B0 = B|kerA : H1(Ω) → H±1/2(Σ) (1.4)

where H1(Ω) denotes the space of weak solutions of the HE in Ω and B0

denotes the restriction of B to this space. We are looking for the inverse
B−1

0 , the so-called resolvent operator.
Sometimes different data g± are prescribed on the two banks Σ± of the

screen corresponding to x3 = ±0. This generalization is not very important
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from the physical point of view (where g denotes the trace of the “incoming
field”, e.g.), but useful for understanding the structure of the problems. In
this case the BVPs can be briefly written in the form

u ∈ H1(Ω)

B0u =

(
B+

B−

)
u = g =

(
g+

g−

)
on Γ = ∂Ω

(1.5)

where now

• in case of the Dirichlet problem: g is given in the space H1/2(Σ)2 =
H1/2(Σ) × H1/2(Σ) with the compatibility condition that g+ − g− is
extensible by zero from Σ to the full plane (corresponding to x3 = 0)
within H1/2(R2),

• in case of the Neumann problem: g is given in the space H−1/2(Σ)2 =
H−1/2(Σ)×H−1/2(Σ) with the compatibility condition that g+−g− be
extensible by zero from Σ to the full plane (corresponding to x3 = 0)
within H−1/2(R2), see [20] for details.

We express these compatibility conditions briefly by writing

g ∈ H1/2(Σ)2∼ respectively g ∈ H−1/2(Σ)2∼. (1.6)

In several publications the second compatibility condition is written in the

form g+ + g− ∈ H̃−1/2(Σ) according to the convention that the normal
derivative is always taken with respect to the outer (or inner) normal, i.e.,
g− = −∂/∂x3u on Σ−, in contrast to the present situation.

The question of “low regularity”, i.e., u ∈ H1+ε, ε ∈]0, 1/2[, could be
included from the beginning, but will be answered only at the end of Section
5, to keep the notation short.

It is well known that all the above-mentioned BVPs are correctly posed
provided Σ is a strong Lipschitz domain (bounded) or special Lipschitz do-
main (unbounded) [20, 42]. This results from the use of Green’s formula (for
uniqueness), reduction to boundary integral or pseudo-differential equations,
their Fredholm property, an index formula and strong ellipticity (for exis-
tence). The fact that the associated operator B0 : H1(Ω) → H±1/2(Σ) is a
bounded, linear and bijective operator acting in Hilbert spaces, implies (by
the inverse mapping theorem) that B−1

0 is continuous.

The question is: Can we obtain an explicit formula of B−1
0 , not only

for very special screens like half-planes and certain cones [25]? In the present
article we shall admit solutions in closed analytical form or series expansion,
as well as infinite operator products which are strongly convergent. In this
sense, the answer will be positive for a surprisingly large class of problems
and possibly not useless in view of the capacity of modern computers.

Let us briefly look at the classes of domains Σ ⊂ R
2 under consideration.

The following domain properties are crucial in what follows.

• First we shall assume the strong extension property [20, 23], i.e., for
any s ∈ R, there exists a continuous extension operator which is left
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invertible by restriction:

ℓsΣ : Hs(Σ) → Hs(R2) (1.7)

rΣℓ
s
Σ = IHs(Σ).

Lipschitz domains (that are bounded and characterized by fulfilling the
uniform cone property [18, 20]) and (unbounded) special Lipschitz do-
mains in the sense of [42] (of the form Σ = {(x1, x2) ∈ R2 : x2 > ϕ(x1)}
where ϕ is uniformly Lipschitz continuous and rotations of this kind of
domain) fulfil the strong extension property. The existence of continuous
extension operators (1.7) guarantees the equivalence of B0 to operators
which have the form of a general Wiener-Hopf operator W (see Section
2), i.e., B0 = EWF where E and F are linear homeomorphisms.

• Second we shall confine our considerations to domains with the prop-
erty int clos Σ = Σ, which is needed for a relaxed use of Sobolev
spaces. Note that this excludes “cracks” in the screen (also called “slit
domains”) with discontinuities across the cracks, which could be con-
sidered using more complicated notation than Hs(Σ) (in general, the
notion of Hs(Σ) with Lipschitz domains Σ is not suitable for that case,
see [20], p. 110, and the introduction of [15], for instance).

A domain Σ with these two properties is said to be an E-domain. The
properties are actually needed only for s = ±1/2 in the basic results.

Further we shall work with an algebra A2 of open subsets Σ ⊂ R2 which
contains open half-planes, finite intersections and the interior of complements
of elements of A2.

Therefore we introduce the following.

Definition 1.1. A convex polygonal-conical domain (convex PCD) in R2 is
given by

Σ =
⋂

j=1,...,m

Σj where Σj are open half-planes. (1.8)

A polygonal-conical domain (PCD) in R2 is given by

Σ = int
⋃

j=1,...,m

clos Σj (1.9)

where Σj are convex PCDs which do not meet in a corner.

Remark 1.2. The following observations are obvious:

1. Convex PCDs are simply connected, PCDs may be multiply connected,
both possibly unbounded (cones are included).

2. PCDs are E-domains.
3. The set of PCDs (including Σ = ∅ and Σ = R2) coincides with the min-

imal set algebra A2 described above, since they allow a representation

Σ = R
2 \


 ⋂

j=1,...,m

(R2 \ Σj)


 (1.10)
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where Σj are convex PCDs. This results from the De Morgan formulas
and some elementary topological consideration.

4. The set of Lipschitz domains does not form a set algebra, because the in-
tersection of two Lipschitz domains does not necessarily have the strong
extension property. Also special Lipschitz domains do not generate an
algebra of sets which have the strong extension property, for the same
reason.

In order to describe the spaces for the boundary data in more detail,
we recall the definition of the usual Sobolev spaces Hs = Hs(Rn) (some-
times named Bessel potential or fractional Sobolev spaces) and of the Sobolev

spaces Hs(Σ), Hs
Σ, H̃

s(Σ), as well (see, e.g., [16, 20]). Thus let

Hs = Hs(Rn) =

{
f ∈ S ′ : ‖f‖ =

(∫

Rn

∣∣∣f̂(ξ)
∣∣∣
2

(ξ2 + 1)sdξ

)1/2

<∞

}

(1.11)
where ξ2 stands for |ξ|2 and S ′ = S ′(Rn) denotes the Schwartz distribution

space and f̂(ξ) = Fx 7→ξf(x) =
∫
Rn e

ixξf(x)dx the (n-dimensional) Fourier
transform of f ∈ S extended to distributions f ∈ S ′. Hs is a Hilbert space
with inner product

〈ϕ, ψ〉s =

∫

Rn

ϕ̂(ξ) ψ̂(ξ) (ξ2 + 1)sdξ , ϕ, ψ ∈ Hs(Rn). (1.12)

The function λ(ξ) = (ξ2 +1)1/2, ξ ∈ R
n, will play a special role in what

follows, since it can be considered as a particular case of the square root of
the “Helmholtz symbol” t(ξ) = λk(ξ) = (ξ2 − k2)1/2 for k = i (the double
notation has historical reasons). We shall always choose branches, continuous
in Rn, such that λk(ξ) → +∞ as |ξ| → +∞. It may be useful to consider the
spaces Hs as the isometric images of the Bessel potential operators

Λ−s = F−1λ−s · F : L2 → Hs , s ∈ R. (1.13)

The restriction operator which restricts a function or distribution on Rn

to an open subset Σ will be denoted by rΣ. Thus H
s(Σ) = rΣ(H

s), and the
norm in Hs(Σ) is defined by

‖f‖Hs(Σ) = inf
ℓ
‖ℓf‖Hs

where ℓf stands for any extension of f to a distribution in Hs. An equivalent
norm can be defined via the Sobolev-Slobodetski norm for s > 0 and via a
duality for s < 0. Furthermore, we denote by Hs

Σ the (closed) subspace of
Hs which consists of all distributions with support in the closure of Σ. By

H̃s(Σ) we denote the space of all distributions which are the restrictions of

distributions in Hs
Σ, i.e., H̃

s(Σ) = rΣ(H
s
Σ). A norm is defined by

‖f‖H̃s(Σ) = inf
ℓ0

‖ℓ0f‖Hs

where ℓ0f stands for any extension of f to a distribution in Hs
Σ (which is

unique only for s ≥ −1/2, see [14], pages 4-5, in which case the last infimum
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is redundant). Notice that while H̃s(Σ) is always continuously embedded in
Hs(Σ), these two spaces coincide for s ∈]− 1/2, 1/2[. In various publications

H̃s(Σ) is defined as the set of Hs(Σ) function(al)s that are extendible by zero
to an element of Hs(Rn) [18, 20]. For E-domains this definition is equivalent
to the present one.

Now we are in a position to summarize the main result.

Theorem 1.3 (Main Theorem). Let Σ be a PCD. Then the resolvent operator
B−1

0 (see (1.4), (1.5)) for the Dirichlet or Neumann problem is explicitly
given in terms of infinite operator products (presented in Sections 4 and 5)
which strongly converge in the common (Bessel potential) norm of H±1/2(R2)
for k = i and in a modified equivalent norm for k ∈ iR+, respectively. In the
remaining cases of k ∈ C , ℑmk > 0 the resolvent operator can be explicitly
represented by (additional) use of Neumann series.

The principle steps are: (1) to show operator equivalence of B0 with a
boundary pseudo-differential operator that has the form of a general Wiener-
Hopf operator (WHO), (2) to represent B−1

0 in terms of a certain projector

acting in H±1/2(R2), which depends heavily on the form of Σ, (3) for screens
which are convex PCDs, to give an explicit formula for these kind of projec-
tors in case of k ∈ iR+, choosing a topology where they are orthogonal and
using a result of Halmos [19] for the representation of the orthogonal projec-
tor onto the intersection of closed Hilbert subspaces, (4) to reduce the case
of arbitrary k with ℑmk > 0 to the previous by approximation, and finally
(5) to reduce the case of non-convex screens to the case of convex screens by
matrical coupling of associated WHOs and the so-called geometric perspec-
tive of Ferreira dos Santos [30, 31] for general WHOs, noting that not only
complements of convex screens are admitted, but arbitrary PCDs.

Some similar ideas appeared already in special situations or different
settings, see [15, 24, 25, 37, 39] and will be pointed out in the corresponding
context. However, some of the cited results are presented here with a new,
more compact proof, e.g., Theorem 3.5 and parts of Theorem 3.8 and of
Theorem 3.10.

From the historical point of view, one can say, that the story started
with the solution of Sommerfeld’s half-plane problem [35] by modern Wiener-
Hopf methods [26], contributions to the diffraction by a quarter-plane [11,
12, 25, 44] and the discovery of relations with general WHOs [31, 37]. The
present paper could be regarded as an extension of [24] to non-convex, general
polynomial-conical screens, however with several new techniques that provide
a deeper insight into the structure of this kind of BVPs. Finally it should
be noticed that the present screen problems are quite different from wedge
diffraction problems in formulation and structure.
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2. Reduction to boundary pseudo-differential equations and
form of resolvent operators

For this step we need a precise notation of Wiener-Hopf operators in Sobolev
spaces. We shall use only a scalar version (the matrix analogue is evident).

Definition 2.1. A Wiener-Hopf operator in Sobolev spaces (briefly referred to
as classical WHO) is given by

Wφ,Σ = rΣAφ : Hr
Σ → Hs(Σ) (2.1)

where Σ ⊂ Rn is a domain, r, s ∈ R, Aφ = F−1φ · F is a convolution
(translation invariant) operator in Rn of order r − s, i.e., φ0 = φλr−s ∈
L∞(Rn).

Remark 2.2. Other popular notations of WHOs are the following. The “clas-
sical WHO” acting on L2(R+) (or on L

p(R+) etc. [22]) is given by

Wf(x) = af(x) +

∫ ∞

0

k(x− y)f(y)dy , x > 0 (2.2)

with a ∈ C, k ∈ L1(R). It can be briefly written as

W = r+Aφℓ0 : L2(R+) → L2(R+) (2.3)

where φ = a+Fk is the Fourier symbol ofW [17, 29] and ℓ0 the zero extension
from L2(R+) to L2(R). This is easily generalized to an operator acting on
L2(Σ), Σ ⊂ Rn by writing

W = rΣAφℓ0 : L2(Σ) → L2(Σ) (2.4)

and makes sense already, if Σ is measurable. The direct generalization to
Sobolev spaces makes sense if the extension ℓ0 : Hs(Σ) → Hs(Rn) is well
defined, e.g., for Lipschitz or special Lipschitz domains Σ. It can be written
as

W = rΣAφℓ0 : Hs(Σ) → Hs(Σ) (2.5)

defined by restriction (s > 0) or by continuous extension (s < 0), if s ∈
]− 1/2, 1/2[. In contrast, the “Eskin like notation” (2.1) makes sense for all
s ∈ R and arbitrary domains Σ [16, 28].

Another generalization will be important for our purposes, the notion
of “general WHOs”. That will be discussed in Section 3.

Now we come to the point where these operators appear in reality.

Theorem 2.3 (Representation Theorem for the Dirichlet problem). Assume
that Σ ⊂ R2 be any (proper) open subset of R2, Ω be given by (1.1) and
Ω± = {x ∈ R3 : ±x3 > 0}. Then the Dirichlet problem in Ω (see (1.5)) is
well-posed if and only if the following WHO is invertible:

Wt−1,Σ = rΣAt−1 : H
−1/2
Σ → H1/2(Σ). (2.6)

In this case, the solution of the Dirichlet problem is given by the formulas

u = KD,Ω(g1, g2) =

{
KD,Ω+ u+0 in Ω+

KD,Ω− u−0 in Ω− (2.7)
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KD,Ω+u+0 (x) = F−1
ξ′ 7→x′e

−t(ξ′)x3 û+0 (ξ
′)

=
1

(2π)2

∫

R2

e−iξ′x′
−t(ξ1,ξ2)x3 û+0 (ξ1, ξ2)dξ

′

KD,Ω−u−0 (x) = F−1
ξ′ 7→x′e

t(ξ′)x3 û−0 (ξ
′)

=
1

(2π)2

∫

R2

e−iξ′x′+t(ξ1,ξ2)x3 û−0 (ξ1, ξ2)dξ
′

(
u+0
u−0

)
= Υ−1

D

(
ℓ0 0
0 At−1W−1

t−1,Σ

)
ΥD

(
g+

g−

)
, ΥD =

(
I −I
I I

)

abbreviating ξ′ = (ξ1, ξ2) ∈ R2 , dξ′ = dξ1dξ2 , t(ξ′) = (ξ21 + ξ22 − k2)1/2 ,
x′ = (x1, x2) ∈ R

2 and ξ′x′ = ξ1x1 + ξ2x2.

Proof. (Sketch) Based on ideas from [24] and [15] we see that a possible
solution is represented by the trace data u±0 (in the entire plane x3 = 0),

where u+0 − u−0 is directly given and that u+0 + u−0 = A−1
t (u+1 − u−1 ) where

u+1 −u−1 satisfies a boundary pseudo-differential equation which has the form
of a (generalized) Wiener-Hopf equation on Σ. If the WHO is invertible,
the BVP is well-posed, since one can verify that the formulas represent linear
homeomorphisms between the data and the solution spaces. Conversely, if the
BVP is well-posed, the WHO must be bijective. As a bounded linear operator,
it is necessarily a homeomorphism according to the inverse mapping theorem.

More details can be found in the context of Sommerfeld potentials
(where Σ is a half-plane) [14, 15]. Also BVPs for the Lamé equation have
been solved in a similar way already in [13]. �

Theorem 2.4 (Representation Theorem for the Neumann problem). Assume
that Σ ⊂ R2 be any (proper) open subset of R2, Ω be given by (1.1) and
Ω± = {x ∈ R3 : ±x3 > 0}. Then the Neumann problem in Ω (see (1.5)) is
well-posed if and only if the following WHO is invertible:

Wt,Σ = rΣAt : H
1/2
Σ → H−1/2(Σ). (2.8)

In this case, the solution of the Neumann problem is given by the formulas

u = KN,Ω(g1, g2) =

{
KN,Ω+ u+1 in Ω+

KN,Ω− u−1 in Ω− (2.9)

KN,Ω+u+1 (x) = F−1
ξ′ 7→x′e

−t(ξ′)x3
−1

t(ξ′)
û+1 (ξ

′)

=
1

(2π)2

∫

R2

e−iξ′x′
−t(ξ1,ξ2)x3

−1

t(ξ1, ξ2)
û+1 (ξ1, ξ2)dξ1dξ2

KN,Ω−u−1 (x) = F−1
ξ′ 7→x′e

t(ξ′)x3
1

t(ξ′)
û−1 (ξ

′)

=
1

(2π)2

∫

R2

e−iξ′x′+t(ξ1,ξ2)x3
1

t(ξ1, ξ2)
û−1 (ξ1, ξ2)dξ1dξ2
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(
u+1
u−1

)
= Υ−1

N

(
AtW

−1
t,Σ 0

0 ℓ0

)
ΥN

(
g+

g−

)
, ΥN =

(
I I
I −I

)
.

Proof. Conclusions are similar as before. �

Remark 2.5. Existence and uniqueness of a solution are known from [18, 43]
in case of Lipschitz domains and from [25, 38] in case of half-planes. Hence
uniqueness is trivial for convex PCDs and obvious for PCDs from (1.9).

The uniqueness result follows also directly from the Green formula, while
existence can be shown with the Lax-Milgram Lemma (see, e.g., [9], Section
6.3).

On the other hand, by using the representation formulas of solutions
with layer potentials and Plemelji-Sokhotskii formulas, one reduces both, the
Dirichlet and the the Neumann BVPs to boundary integral equations with
positive definite symbol in the Bessel potential spaces where the operators

act in the spaces H̃1/2(Σ) → H−1/2(Σ) or H̃−1/2(Σ) → H1/2(Σ) (cf. (2.6)
and (2.8)). Those can also be studied with the help of results from [12] (lifting
in the Bessel potential spaces and pseudo-differential operators with locally
sectorial symbols).

We shall see later (in the proof of Theorem 5.1) that the crucial terms in
these formulas At−1W−1

t−1,Σ and AtW
−1
t,Σ can be interpreted as very particular

extension operators or operators of the form of a composition Πℓ where Π
is a particular projector and ℓ an arbitrary extension of a functional from
H±1/2(Σ) to a functional in H±1/2.

3. Some results on general Wiener-Hopf operators

A general Wiener-Hopf operator (also abbreviated by WHO) is given by

W = P2A|P1X (3.1)

where A : X → Y is a bounded linear operator acting in Banach spaces and
P1 ∈ L(X), P2 ∈ L(Y ) are projectors, i.e., P 2

j = Pj , j = 1, 2. By convention,
W is regarded as an operator from P1X = imP1 into P2Y = imP2, although,
P2 acts into Y , i.e., strictly speaking, not into P2Y (cf. [27, Chapter III]). This
convention will be applied and referred to in the sequel for convenience (and
following the tradition). For practical reasons we enlarge the convention by
identifying in some formulas W with P2AP1 as an operator acting between
the full spaces. Occasionally we will also consider W−1 as acting on the full
space, i.e., we consider P1W

−1P2 = P1(P2A|P1X)−1P2. This makes some
formulas more compact.

The notation (3.1) was introduced in [10, 33], first in a symmetric set-
ting where X = Y and P1 = P2 = P for operators in Hilbert spaces, and
later in the asymmetric setting of (3.1) [36, 37]. Main objective in those pub-
lications was the (generalized) inversion of W by an operator factorization
of A (assuming that A is invertible). Here we study a completely different
(abstract) idea, presented by A.F. dos Santos [30, 31], originally connected
to more special applications [24, 25, 39].
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3.1. Identification of general Wiener-Hopf operators

The connection between classical WHOs (2.1) and general WHOs (3.1) is
given via a continuous extension operator

Es
Σ : Hs(Σ) → Hs(Rn) (3.2)

provided it exists for Σ ⊂ R
n (see Section 1), namely by the identification

X = Hr , Y = Hs

P1X = Hr
Σ , P2 = Es

Σ rΣ (3.3)

A = F−1 φ · F : Hr → Hs.

We observe, in the identification of a general WHO, that not the full
definitions of P1 and P2 are relevant but only imP1 and kerP2. The domain
domW of W is a complemented subspace of X and can be seen as the image
of any projector P with the same image imP = domW = imP1 (and
arbitrary complement for the kernel), i.e.,

PP1 = P1 , P1P = P. (3.4)

Further, if P2 and Π are projectors with the same kernel, then the following
two WHOs are equivalent:

W = P2A|P1X ∼ W̃ = ΠA|P1X = ΠA|PX (3.5)

because

ΠP2 = Π , P2Π = P2. (3.6)

In the classical case, Π reflects the variety of possible extension operators. In
Hilbert spaces we conclude easily the following interesting result:

Proposition 3.1. Let W = P2A|P1X be a general WHO (see (3.1)) where X,Y
are Hilbert spaces. Then

W ∼ W̃ = ΠA|PX (3.7)

where P and Π are orthogonal projectors.

Proof. It is well known that the orthogonal projectors P onto P1X and Π
along (I − P2)Y exist. Hence we have the equivalence relation

W = P2A|P1X = P2 ΠA|PX P |P1X = P2|ΠY W̃ P |P1X

between W and W̃ where the outer factors are bijective in the sense of the
above-mentioned convention. �

The foregoing result will be used in Section 4 for the construction of cer-
tain non-orthogonal projectors (in the case k /∈ iR) based upon the knowledge
of corresponding orthogonal projectors with the same image (resulting from
Lemma 4.2), by an approximation argument.

Focusing on (generalized) inverses, we obtain in a similar way:



Diffraction from Polygonal-Conical Screens 11

Proposition 3.2. Let W , W̃ be general WHOs related by (3.4)–(3.6) and let

W̃− : ΠY → PX be a generalized inverse of W̃ . Then a generalized inverse
of W is given by

W− = P1|PXW̃
−Π|P2Y . (3.8)

Proof. By verification WW−W =W . �

Clearly the statement includes the cases of one-sided invertibility, Fred-
holmness, and invertibility that is needed in this paper.

Now, the identification of the general WHO W = P2Aφ|P1X with the
Eskin type WHO is given by the equivalence relations

Es
ΣWφ,Σ =W , Wφ,Σ = rΣW.

Consequently, in case of invertible WHOs

W−1
φ,Σ =W−1Es

Σ , AφW
−1
φ,Σ = AφW

−1Es
Σ

which makes the connection with Theorems 2.3 and 2.4.
Another relationship between WHOs turns out to be very important

in what follows. Given a general WHO (3.1), where now A is assumed to
be boundedly invertible, and let the complemented projectors be denoted by
Q1 = IX − P1 and Q2 = IY − P2, respectively, we call

W∗ = Q1A
−1|Q2Y : Q2Y → Q1X (3.9)

the WHO associated with W . This notation was introduced in [10] for sym-
metric and in [36] for asymmetric setting, respectively. In a different context
(realization theory, minimal factorization) it was called an “indicator” of W ,
thinking of various possibilities of extending W to an operator matrix

A =

(
W ∗
∗ ∗

)
, (3.10)

see [1, 2] for details.

3.2. A geometric perspective

Following an idea of A.F. dos Santos [30, 31] (which has roots in [10, 34] and
[24]) we study a “geometric relation” between AP1X and Q2Y . In contrast
to the existing literature we shall base this consideration upon the following
result, which seems to be still unpublished [2] but very efficient.

Lemma 3.3. Given two pairs of complementary projectors in Banach spaces,
P1, Q1 = I −P1 ∈ L(X), P2, Q2 = I −P2 ∈ L(Y ) and an invertible operator
A ∈ L(X,Y ), the following operator factorization is valid:

(
P2AP1 0

0 Q2

)
=

(
P2AP1 0
Q2AP1 Q2

) (
P1 0

−Q2AP1 Q2

)

=

(
P2AP1 P2AQ1

Q2AP1 Q2AQ1

)(
P1 0
0 Q1A

−1Q2

)

(
P1 P1A

−1Q2

0 Q2

)(
P1 0

−Q2AP1 Q2

)
(3.11)
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Proof. The formula can be verified easily. �

Remark 3.4. Note that the matrix operator on the left of (3.11) acts as

M : P1X ⊕Q2Y → P2Y ⊕Q2Y ∼= Y,

i.e., not from X into Y in contrast to the first factor of the second line. For
the first line of (3.11) we do not need the invertibility of A. It would be more
adequate to write P2A|P1X instead of P2AP1 etc. We avoided this just for
cosmetic reasons (see the convention).

Theorem 3.5 (Ferreira dos Santos 1988). Let W be a general WHO, given
by (3.1) where A is injective. Then W is invertible if and only if AP1X and
Q2Y are complemented subspaces of Y , in brief

AP1X ⊕ Q2Y = Y. (3.12)

If A is invertible we equivalently have

P1X ⊕ A−1Q2Y = X. (3.13)

Proof. Formula (3.12) is an interpretation of the first part of (3.11) if one
takes into account that P2AP1 + Q2AP1 = AP1 and that the last factor
in the first line of (3.11) is invertible. The second conclusion (3.13) is then
evident. �

Corollary 3.6. Let W = P2A|P1X : P1X → P2Y be a general WHO with
A : X → Y being invertible. Assume that W is invertible (or, equivalently
(3.12) holds). Then the inverse W−1 : P2Y → P1X can be represented by

W−1 = A−1Π|P2Y where Π projects ontoAP1X along Q2Y (3.14)

= PA−1|P2Y where P projects ontoP1X along A−1Q2Y .

Moreover, in this case these projectors are given by

Π = AW−1 P2 , P = W−1 P2A (3.15)

as operators acting in Y and X, respectively.

Remark 3.7. For the symmetric setting (X = Y, P1 = P2 = P ) Theorem
3.5 was proved in [10]. There are further generalizations to the case where
W is Fredholm, e.g., see [30, 31]. Another generalization to the case where
W is generalized invertible might be possible by ideas of [37], we suppose.
However, they are not needed here.

The formulas (3.14) imply that P = A−1ΠA, i.e., it obviously suffices
to construct one of the two projectors P and Π in order to invert W .

3.3. Matrical coupling

Let us recall two definitions and a few known results. Two bounded linear
operators in Banach spaces S ∈ L(X1, Y1) , T ∈ L(X2, Y2) are said to be
matrically coupled, if there is an invertible operator matrix (with suitable
entries ∗) such that

(
S ∗
∗ ∗

)
=

(
∗ ∗
∗ T

)−1

. (3.16)
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Two bounded linear operators in Banach spaces S and T are said to be
equivalent after extension, in brief

S ∼∗ T, (3.17)

if there exist Banach spaces Z1, Z2 and linear homeomorphisms E,F such
that (

S 0
0 IZ1

)
= E

(
T 0
0 IZ2

)
F. (3.18)

Example. Looking at Lemma 3.3 and Remark 3.4 we can interpret the first
line of (3.11) as

W ∼∗ (AP1|Q2) : P1X ⊕Q2Y → Y. (3.19)

In fact, the relation presented in the first line of (3.11) may be viewed as
a particular form of an equivalence after extension relation since the extension
is made from one side only. Namely, we have there

W ⊕ IQ2
∼ (AP1|Q2), (3.20)

which is a so-called equivalence after one-sided extension. The equivalence
after one-sided extension concept, being stronger than the equivalence af-
ter extension, is intimately related with the Schur coupling notion [5, 32].
Schur coupled operators allow even more direct relationships between their
null spaces and range spaces than in the equivalence after extension relation
(cf. [3, §2–3] for extra details and still existing open problems within the
Schur coupling theory).

We also would like to point out that in [46], Chapter 0 by S. Puntanen
and G.P.H. Styan, we may find a very pleasant historical introduction about
the Schur complement. There, the last formula of page 4 presents in fact an
equivalence after one-sided extension which yields a very direct proof of the
famous Schur (determinant) lemma [32].

Theorem 3.8 (Bart-Tsekanovsky 1991). Let S and T be bounded linear oper-

ators in Banach spaces. Then S
∗
∼ T if and only if S and T are matrically

coupled.

Remark 3.9. The importance of this theorem for us consists in the conse-
quence, that an inverse of T can be computed from an inverse of S (and vice
versa, if E−1 and F−1 are known). This is obvious from (3.18) but not from
(3.16) – and was a celebrated fact in the 1980s [1].

The sufficiency (“if”) part was already proved in [1], the necessity part
(“only if”) later in [4].

However it was observed in [2] that the sufficiency part in the symmetric
case (where X = Y, P1 = P2) is an interpretation of a well known formula,
see, e.g., [17, 29]

PAP +Q = (AP +Q)(I −QAP ) = A(P +A−1Q)(I −QAP )

= A(P +QA−1Q)(I + PA−1Q)(I −QAP ). (3.21)
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In the asymmetric case, it is a consequence of the formula (3.11), which can
be regarded as a direct generalization of (3.21).

At the end, the second (necessity) part of Theorem 3.8 is not so evident,
particularly the construction of a coupling relation from an equivalence after
extension relation, see [4]. However the conclusion that is most important in
our applications can be proved independently and more directly as follows.

Theorem 3.10 (Speck 1985). Let S and T be bounded linear operators in
Banach spaces which are matrically coupled, i.e., S = W = P2A|P1X and
T = W∗ = Q1A

−1|Q2Y in the above notation. Further let V be a generalized
inverse of W , i.e., WVW = W . Then a generalized inverse of W∗ is given
by

V∗ = Q2(A−AP1V P2A)|Q1X . (3.22)

Proof. Formula (3.22) is a consequence of the first part of Theorem 3.8 (ma-
trically coupled operators are equivalent after extension) and formula (3.11)
that implies: a generalized inverse of W yields a generalized inverse of the
matrix on the left which yields a generalized inverse of the second factor of
the second line which yields a generalized inverse of W∗. �

An earlier detailed and independent proof can be found in [37], p. 21-22.
Note that the present proof is constructive. In [37] the formula (3.22) was just
guessed and verified. Clearly it includes the cases of one-sided invertibility,
Fredholmness, and invertibility that is needed here.

4. Construction of the projectors P and Π onto/along H
±1/2
Σ

In order to determine the WHO inverses needed in Theorem 2.3 and 2.4, we
are now going to calculate the corresponding projectors (related by Corollary
3.6). Clearly all these operators exist and are unique as seen before in the
introduction and in Theorem 3.5.

For convenience let us recall the relevant notation. Actually there ap-
pear various sceneries: (1) The abstract setting (with orthogonal and non-
orthogonal projectors), (2) the concrete realizations (of Section 3.1) where Σ
is an E-domain (with two cases concerning the Dirichlet and the Neumann
problem, respectively), and (3) the special situations where Σ has particular
form (half-plane, convex PCD, etc.). In the abstract setting we continue to
consider the projectors

Π onto AP1X along Q2Y (4.1)

P onto P1X along A−1Q2Y

where A ∈ L(X,Y ) is boundedly invertible, P1 ∈ L(X), P2 ∈ L(Y ) arbitrary
projectors and Q1 = IX − P1, Q2 = IY − P2. Using partly the same letters
(for identification) we further consider the following realization where Σ is
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an E-domain, s ∈ R and

A = At2s = F−1 t2s · F : Hs(R2) → H−s(R2)

P1 is any projector in Hs(R2) onto Hs
Σ (4.2)

P2 is any projector in H−s(R2) along H−s
Σ′ .

For the Dirichlet problem we have A = At−1 , i.e. s = −1/2, for the Neumann
problem A = At, i.e., s = 1/2. However, many of the following considerations
work for general s ∈ R.

The simplest case appears when Σ is a half-plane and k = i. Here we
obtain formulas in closed analytical form and orthogonal projectors as follows:

Example. Consider the half-plane Σ = R2
1+ = {x ∈ R2 : x1 > 0}, the

(orthogonal) projectors P+ = ℓ0r+ : L2(R2) → L2(R2) onto L2
Σ = L2

R
2
1+

,

P− = I − P+ and the Bessel potential operators [11, 12, 16] of order s ∈ R:

Λs
+ = Aλs

+
, λs+(ξ) =

(
ξ1 + i

√
ξ22 + 1

)s

, ξ ∈ R
2

Λs
− = Aλs

−
, λs−(ξ) =

(
ξ1 − i

√
ξ22 + 1

)s

, ξ ∈ R
2.

For any s ∈ R we find the orthogonal projectors [7]

P s
+ = Λ−s

+ P+ Λs
+ onto Hs

Σ

P s
− = Λ−s

− P− Λs
− onto Hs

Σ′

Πs
+ = Λ−s

− P+ Λs
− along Hs

Σ′

Πs
− = Λ−s

+ P− Λs
+ along Hs

Σ.

Hence P s
+ +Πs

− = IHs and P s
− +Πs

+ = IHs .

If we specify Σ = R2
1+ = {x ∈ R2 : x1 > 0} and k = i in the second

scenery, then P1 = P s
+ and P2 = Π−s

+ satisfy (4.2). If we specify moreover

A = At2s in the first scenery, then P = P1 = P s
+ and Π = P2 = Π−s

+ satisfy
(4.1).

The projector ℓ0r+ in L2(R2) coincides with the multiplication by the
characteristic functions χ+ of the half space R2

1,+. This observation can be

generalized to ℓ0rΣ acting in the spaces Hs(R2) if |s| < 1/2 provided Σ is a
Lipschitz domain or an E-domain in R2, e.g., instead of the half space R2

1,+.

4.1. Preliminaries

First we mention two facts which are independent of the choice of Σ. The
first is a consequence of (1.12), the second is known from [19].

Lemma 4.1. The projectors Π, P of (4.1) in the situation (4.2) are orthogonal
with respect to the inner product (1.12) if k = i.

Proof. Orthogonality of the two projectors is equivalent to the fact that

〈Atϕ, ψ〉−s = 0 for ϕ ∈ Hs
Σ , ψ ∈ H−s

Σ′ .
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It suffices to consider smooth, rapidly decreasing functions, which are dense
in these spaces, ϕ ∈ SΣ =

{
ϕ ∈ S : suppϕ ⊂ Σ

}
and ψ ∈ SΣ′ . These must

satisfy
∫

R2

Aφϕ(ξ)ψ(ξ)dξ = 0 where φ =

(
t(ξ)

λ(ξ)

)2s

=
(ξ2 − k2)s

(ξ2 + 1)s
.

Now suppAφϕ ⊂ Σ for all ϕ ∈ SΣ with suppϕ ⊂ Σ obviously holds if k = i,
i.e., t = λ. �

Lemma 4.2 (Halmos 1982, Problem 96). Given any Hilbert space H and
orthogonal projectors p1, p2, ..., pm ∈ L(H), the orthogonal projector onto
im p1 ∩ im p2 is given by the so-called infimum of the two projectors:

p1 ∧ p2 =
∞∏

j=1

(p1p2)
j = lim

N→∞

N∏

j=1

(p1p2)
j (4.3)

which converges strongly. The orthogonal projector p onto im p1 ∩ ...∩ im pm
is given by

p = p1 ∧ ... ∧ pm = ∧m
j=1 pj (4.4)

that is defined by iteration and represents an associative operation.

4.2. Case k = i , convex PCDs

In this section we assume At = Λ = Aλ, i.e., k = i (see (1.13)) and use the
following brief notation. For any open half-plane Σ ⊂ R2 let

MΣ : Σ → R
2
1+ = {x ∈ R

2 : x1 > 0} (4.5)

be the canonical linear transformation that transforms Σ onto R2
1+ , i.e., by

a minimal dilation plus a rotation in the mathematical positive sense, say.
Moreover let

JΣf(x) = f(MΣ x) , x ∈ Σ or x ∈ R
2, (4.6)

for functions and distributions defined on Σ or defined on R2, as well.

Theorem 4.3. Let Σ be a convex PCD, i.e., Σ = ∩m
j=1Σj with half-planes

Σj ⊂ R2, j = 1, ...,m and s ∈ R. Then the orthogonal projector P s
Σ onto

P1X = Hs
Σ projects along Λ−2sH−s

Σ′ and is given by

P s
Σ = ∧m

j=1P
s
Σj

(4.7)

P s
Σj

= J−1
Σj

P s
+ JΣj , j = 1, ...,m.

The orthogonal projector Π onto Λ2sHs
Σ projects along Q2Y = H−s

Σ′ and is
given by

Π−s
Σ = Λ2s P s

Σ Λ−2s. (4.8)

Proof. AsHs
Σ is a closed subspace of the Hilbert spaceHs, it is complemented

and the orthogonal projector ontoHs
Σ exists and is unique. Lemma 4.2 implies

that the orthogonal projector onto Hs
Σ is given by formula (4.7).
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Every projector P s
Σj

projects along Λ−2sH−s
Σ′

j
. Since Σ =

⋂
Σj , the or-

thogonal projector onto Hs
Σ projects along Λ−2sH−s

Σ′ , because Σ′ = int
⋃
Σ′

j .

The second part of the theorem with formula (4.8) is a consequence of
the first part, exchanging the roles of Σ and Σ′, of s and −s, and thinking of
the complementary projector (exchanging ”onto” and ”along”). �

4.3. Case k = i , arbitrary PCDs

Theorem 4.4. Let Σ ⊂ A2, i.e., Σ = int
⋃

j=1,...,n closΣj where Σj are
convex PCDs, and assume that s ∈ R. Then the orthogonal projector P s

Σ

onto Hs
Σ projects along Λ−2sH−s

Σ′ , i.e., P s
Σ = I −Πs

Σ′ and is given by

P s
Σ = I − ∧m

j=1Π
s
Σ′

j
= I − ∧m

j=1(I − P s
Σj
) (4.9)

with P s
Σj

taken from Theorem 4.3 (representing each Σj as intersection of

half-planes).

Proof. The assumption Σ ⊂ A2 implies that Σ′ =
⋂m

j=1 Σ
′
j where Σ′

j =

R2 \ Σj . Looking at (4.9), P s
Σj

projects onto Hs
Σj

along Λ−2sH−s
Σ′

j
. Hence

I − P s
Σj

projects along Hs
Σj

onto Λ−2sH−s
Σ′

j
and ∧(I − P s

Σj
) is the orthogonal

projector onto
⋂
(Λ−2sH−s

Σ′
j
) = Λ−2s

⋂
H−s

Σ′
j
, thus projecting along Hs

Σ. This

implies that P s
Σ as given by (4.9) projects orthogonally onto Hs

Σ. �

4.4. Case k ∈ iR+ , i.e., ℜek = 0 , ℑmk > 0

In this section we show that the previous results remain valid for k ∈ iR+ if
we change the topology to another equivalent one. I.e., we remain in the same
Hilbert spaces but infinite series and infinite products converge in a different
sense, with respect to a modified norm.

Definition 4.5. Let Hs,k(Rn) be the space that coincides with Hs(Rn) as a
linear space equipped with the form

〈ϕ, ψ〉s,k = 〈As
tϕ , A

s
tψ〉0 (4.10)

=

∫

Rn

As
tϕ(x) · As

tψ(x) dx

=

∫

Rn

ϕ̂(ξ) ψ̂(ξ) |ξ2 − k2|s dξ.

Proposition 4.6. For any k ∈ C \ R, Hs,k(Rn) is a Hilbert space with norm

‖ϕ‖s,k = 〈ϕ, ϕ〉
1/2
s,k (4.11)

that is equivalent to the norm of Hs(Rn).

Proof. It is a consequence of the fact that As
t : Hs(Rn) → L2(Rn) is a linear

homeomorphism. �

Remark 4.7. Obviously we have Hs,i(Rn) = Hs(Rn). The spaces Hs,k(Σ),

H̃s,k(Σ),Hs,k
Σ may be defined by analogy to the spaces where k = i. Evidently

the analogue of Proposition 4.6 holds for these spaces, as well.
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Remark 4.8. The spaces Hs(Rn) = Hs,i(Rn) and Hs,k(Rn) are isomorphic
for all k ∈ iR and the norms in these spaces are equivalent, because both of
them are isomorphic to L2(Rn). The isomorphism is performed by the Fourier
convolution operator Aωs,k

= F−1ωs,kF with the symbol

ωs,k(ξ) :=

(
ξ2 − k2

ξ2 + 1

)s

which is invertible by Aω−1

s,k
.

Proposition 4.9. For any domain Σ, any number n = 2, 3, ... and s ∈ R the

subspaces A2s
t Hs,k

Σ and H−s,k
Σ′ where Σ′ = int (R2 \Σ) are orthogonal to each

other if k ∈ iR+.

Proof. The algebraic decomposition

A2s
t Hs,k

Σ +̇H−s,k
Σ′ = H−s,k (4.12)

is clear from the case k = i, see Section 3.2. By definition Hs,k
Σ and H−s,k

Σ′

are closed subspaces and, for ϕ ∈ Hs,k
Σ , ψ ∈ H−s,k

Σ′ , we have

〈A2s
t ϕ , ψ〉−s,k = 〈As

tϕ , A
−s
t ψ〉0 (4.13)

=

∫

Rn

ϕ̂(ξ)(ξ2 − k2)s/2 ψ̂(ξ) (ξ2 − k2)−s/2 dξ

which disappears for any such pair ϕ, ψ if k2 is real. �

Evidently, the analogue of Theorem 4.4 for k ∈ iR+ instead of k = i is
valid, as well.

Corollary 4.10. Let Σ be a PCD, k ∈ iR+ and s ∈ R. Then the following
orthogonal projectors can be presented explicitly:

P s
Σ = I − ∧m

j=1Π
s
Σ′

j
= I − ∧m

j=1(I − P s
Σj
) onto Hs

Σ

P s
Σ′ = I − A−2s

t P−s
Σ A2s

t onto Hs
Σ′

Πs
Σ = A−2s

t P−s
Σ A2s

t along Hs
Σ′

Πs
Σ′ = I − P s

Σ along Hs
Σ

where the decomposition of Σ from Theorem 4.3 is used and the infinite prod-
ucts converge in the sense of the norm (4.11).

4.5. Case ℜek 6= 0 , ℑmk > 0

Now a modification of the scalar product (4.10) does not help anymore.
Thus we shall use a different idea coming up from [24] to present the (non-

orthogonal) projectors Π
±1/2
Σ etc. by Neumann series approximation using the

orthogonal projectors constructed before. Therefore we extend the notation
by

Πs
Σ,k − the projector onto At−2sH−s

Σ along Hs
Σ′

Πs
Σ,i − the projector onto Λ−2sH−s

Σ along Hs
Σ′

(4.14)
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where the latter coincides with the first for k = i and is orthogonal. Further
projectors can be defined and treated by analogy. So we have:

P s
Σ,k − the projector onto Hs

Σ along At−2sH−s
Σ′

P s
Σ,k = I − Πs

Σ′,k

(4.15)

which we employ basically for s = ±1/2 and call them briefly Π-projectors
and P-projectors.

Proposition 4.11. Abbreviate Π = Π
1/2
Σ,i . Then the projector Π

1/2
Σ,k is given by

Π
1/2
Σ,k = At−1 ΛW−1

0 Π , W0 = ΠAt−1 Λ|ΠH1/2 (4.16)

(using the convention) where the inverse W−1
0 is given by a Neumann series.

Proof. The operator W0 = ΠAt−1 Λ|ΠH1/2 is invertible by a Neumann series,
since ℜeAt−1 Λ > 0 and Π is orthogonal, see [10, 24, 37].

The operator Π
1/2
Σ,k in (4.16) is obviously linear, bounded and idem-

potent, hence it is a projector. W−1
0 maps onto ΠH1/2 = Λ−1H

−1/2
Σ , thus

At−1 ΛW−1
0 Π maps onto At−1H

−1/2
Σ . Finally its kernel is obviously H−s

Σ′ and
the proof is complete. �

The following result is analogous.

Proposition 4.12. Abbreviate Π = Π
−1/2
Σ,i . Then the projector Π

−1/2
Σ,k is given

by

Π
−1/2
Σ,k = At Λ

−1W−1
0 Π , W0 = ΠAt Λ

−1|ΠH−1/2 (4.17)

(using the convention) where the inverse W−1
0 is given by a Neumann series.

4.6. Equivalent constructions

Here we show that the construction of various involved operators is equiva-
lent, i.e., they can be obtained easily from each other. As a matter of fact,
this has nothing to do with the form of Σ nor with Wiener-Hopf factoriza-
tion, but with the features exposed in Sections 3.2 and 3.3: the geometric
perspective and matrical coupling.

Theorem 4.13. Let Σ be an E-domain. Consider the Dirichlet problem for
Σ (as described in (1.3)–(1.5)) and the Neumann problem for Σ′ (by anal-
ogy). Then the two resolvent operators (see (2.7), (2.9)), the WHOs therein,
and corresponding P-projectors and Π-projectors (see (4.14), (4.15)) can be
computed from each other.

Proof. Clearly each of the P-projectors yield the corresponding Π-projector
by definition, see (4.15), and the corresponding WHO inverses by Corollary
3.6 which yield the corresponding resolvent operators, see Theorem 2.3 and
Theorem 2.4. For clarity we summarize these very direct relations:

P
−1/2
Σ,k = I − Π

−1/2
Σ′,k = W−1

t−1,Σ rΣAt−1 onto H
−1/2
Σ along AtH

1/2
Σ′

P
1/2
Σ′,k = I − Π

1/2
Σ,k = W−1

t,Σ′ rΣAt onto H
1/2
Σ′ along At−1H

−1/2
Σ
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according to the WHO inverses ( - appearing in)

W−1
t−1,Σ = P

−1/2
Σ,k At ℓ − Dirichlet problem for Σ

W−1
t,Σ′ = P

1/2
Σ′,k At−1 ℓ − Neumann problem for Σ′.

Herein ℓ denotes any extension operator from H1/2(Σ) into H1/2(R2) or from
H−1/2(Σ) into H−1/2(R2), respectively.

Conversely, from the resolvent operators we obtain the corresponding
projectors and WHO inverses by composition with trace and symmetrization
operators, e.g.,W−1

t−1,Σ : g 7→ u 7→ u+0 −u
−

0 etc. (see Theorem 2.3 and Theorem

2.4).
Now the geometric perspective (see Theorem 3.5 and Corollary 3.6)

implies that the projectors in the above list are related by

P
−1/2
Σ,k = At Π

1/2
Σ,k At−1 . (4.18)

An alternative proof, instead of using (4.18), can be based upon the fact
that the two WHOs in the above scheme, W−1

t−1,Σ and W−1
t,Σ′ , are matrically

coupled (see Lemma 3.3). Again the relationship with the resolvent operators
is evident from the representation formulas. �

Exchanging the roles of Σ and Σ′ we observe that the operators corre-
sponding to the Dirichlet problem for Σ′ and the Neumann problem for Σ
are related in a similar way.

5. Explicit solution of the BVPs

We come to the final results in concrete form presenting the details of the
proof of Theorem 1.3.

Theorem 5.1. Let Σ ⊂ R2 be a PCD and k ∈ C , ℑmk > 0. The resolvent
operators for the Dirichlet and Neumann problems are given by Theorem 2.3
and Theorem 2.4, respectively, where

W−1
t−1,Σ = At Π

1/2
Σ,k ℓ = P

−1/2
Σ,k At ℓ : H1/2(Σ) → H

−1/2
Σ

(5.1)

W−1
t,Σ = A−1

t Π
−1/2
Σ,k ℓ = P

1/2
Σ,k A

−1
t ℓ : H−1/2(Σ) → H

1/2
Σ

(5.2)

with arbitrary extension operators ℓ into H1/2 or H−1/2, respectively, and
the projectors are also explicitly given in

• Theorem 4.3 for convex PCDs and k = i,
• Theorem 4.4 for arbitrary PCDs and k = i,
• Corollary 4.9 for arbitrary PCDs and k ∈ iR+,
• Proposition 4.10 for arbitrary PCDs, ℑmk > 0, the Dirichlet problem,
• Proposition 4.11 for arbitrary PCDs, ℑmk > 0, the Neumann problem.

Proof. All that results directly from the previous as referred to. �
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Remark 5.2. There are few cases where the resolvent operators can be ob-
tained in closed analytical form (in a representation without infinite series
and products). Half-plane screens represent one of them, see Section 4. The
possibility of applying factorization methods to other screen problems with
conical configurations is not positively answered till now in the authors opin-
ion (in contrast to wedge problems, see [8, 14, 15, 41]).

Let us consider the special geometrical case where Σ is a cone, moreover
connected and convex. V.B. Vasil’ev proposed in his book [44] to solve the
diffraction problem by use of a so-called wave factorization of the function
t(ξ) = (ξ2 − k2)1/2 into two factors, holomorphic in certain tube domains.
However, looking at the explicit form of the two factors, it turns out that they
vanish within the corresponding tube domains, see [44], pages 28-29 and 38-
39. This means that the given factorization is not a wave factorization in
the sense of the author’s own Definition 5.1 and therefore not helpful for
the solution of the problem. The authors of the present article do not know
any other example from mathematical physics where the method of wave
factorization is applicable.

Other canonical screen problems such as the diffraction from a flat cir-
cular disc (see [21, 45] for instance) end up with Fredholm integral equations
and series expansion, as well, but not with a solution in closed analytic form.

In view of the complexity of the derived formulas, some simplification
can be obtained for a screen that is complementary to a convex PCD by the
following corollaries. The idea is known as a sort of abstract Babinet principle
[39].

Corollary 5.3. Let Σ be an E-domain. Assume that the inverse of Wt,Σ is
known (which provides the resolvent to the Neumann problem for Σ by The-
orem 2.4). Then the Dirichlet problem for Σ′ is uniquely solved by Theorem
2.4 where W−1

t−1,Σ′ is obtained from Theorem 3.10, substituting V =W−1
t,Σ and

the corresponding other terms.

Corollary 5.4. Let Σ be an E-domain. Assume that the inverse of Wt−1,Σ is
known (which provides the resolvent to the Dirichlet problem for Σ by Theo-
rem 2.3). Then the Neumann problem for Σ′ is uniquely solved by Theorem
2.3 where W−1

t,Σ′ is obtained from Theorem 3.10, substituting V =W−1
t−1,Σ and

the corresponding other terms.

We finish with a result on the low regularity of solutions to the BVPs.

Theorem 5.5. Let Σ ⊂ R2 be a PCD, ℑmk > 0 and ε ∈]0, 1/2[.
I. If g ∈ H1/2+ε(Σ)2∼ and u ∈ H1(Ω) is a solution of the Dirichlet problem
for Σ, then u ∈ H1+ε(Ω), i.e., u± ∈ H1+ε(Ω±), see (1.2)-(1.5). Moreover the
resolvent operator (2.7) restricted to these spaces represents a linear homeo-
morphism:

Kε
D,Ω : H1/2+ε(Σ)2∼ → H1+ε(Ω). (5.3)

II. If g ∈ H−1/2+ε(Σ)2 and u ∈ H1(Ω) is a solution of the Neumann problem
for Σ, then u ∈ H1+ε(Ω), i.e., u± ∈ H1+ε(Ω±), see (1.2)-(1.5). Moreover the
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resolvent operator (2.7) restricted to these spaces represents a linear homeo-
morphism:

Kε
N,Ω : H−1/2+ε(Σ)2 → H1+ε(Ω). (5.4)

Proof. Following all the way long the foregoing construction of resolvent oper-
ators we realize that there is no problem to include the parameter ε ∈]0, 1/2[.
Notice that there is no compatibility condition in the second statement II

since H̃−1/2+ε(Σ) = H−1/2+ε(Σ) for ε ∈]0, 1/2[. �

6. Open problems

At the end we would like to formulate some unsolved problems that we found
interesting.

Problem 6.1. How can we treat other boundary conditions like impedance,
oblique derivative etc.? It is known that these BVPs lead to WHOs of the
form Wφ,Σ = rΣAφ where the Fourier symbol φ is more complicated and a
matrical coupling relation and orthogonal projectors can not be seen.

Problem 6.2. In non-Hilbert spaces W s,p we have no orthogonality. Is there
any alternative approach, perhaps working with sesquilinear forms (as a gen-
eralization of the Halmos Theorem)?

Problem 6.3. Replacing the Helmholtz equation by the Lamé or Maxwell
equations, can we obtain analogous results considering matrix WHOs?

Problem 6.4. Slit domains and cracks may be tackled by certain space mod-
ifications. Are there any interesting new results, techniques, applications?

Problem 6.5. Arbitrary convex screens could be formally treated by an in-
finite product ∧∞

j=1Pj considering Σ as an intersection of infinitely many
half-planes. What about convergence?
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[27] S.G. Mikhlin and S. Prössdorf, Singular Integral Operators. Extended and
partly modified translation from the German by A. Böttcher and R. Lehmann.
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