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Abstract. We approach higher-order variational problems of Herglotz type from an
optimal control point of view. Using optimal control theory, we derive a generalized

Euler–Lagrange equation, transversality conditions, DuBois–Reymond necessary opti-

mality condition and Noether’s theorem for Herglotz’s type higher-order variational
problems, valid for piecewise smooth functions.

1. Introduction. The generalized variational problem proposed by Herglotz in 1930 [2]
can be formulated as follows:

z(b) −→ extr

with ż(t) = L(t, x(t), ẋ(t), z(t)), t ∈ [a, b],

subject to z(a) = γ, γ ∈ R.
(H1)

The Herglotz variational problem consists in the determination of trajectories x(·) subject
to some initial condition x(a) = α, α ∈ Rm, that extremize (maximize or minimize) the
value z(b), where L ∈ C1([a, b] × R2m+1;R). While in [2] the admissible functions are
x(·) ∈ C2([a, b];Rm) and z(·) ∈ C1([a, b];R), here we consider (H1) in the wider class of
functions x(·) ∈ PC1([a, b];Rm) and z(·) ∈ PC1([a, b];R), where the notation PC stands
for “piecewise continuous” (for the precise meaning of piecewise continuity and piecewise
differentiability see, e.g., [3, Sec. 1.1]).

It is clear to see that Herglotz’s problem (H1) reduces to the classical fundamental prob-
lem of the calculus of variations (see, e.g., [12]) if the Lagrangian L does not depend on
the z variable: if ż(t) = L(t, x(t), ẋ(t)), t ∈ [a, b], then (H1) is equivalent to the classical
variational problem ∫ b

a

L(t, x(t), ẋ(t))dt −→ extr. (1)

Herglotz proved that a necessary optimality condition for a pair (x(·), z(·)) to be an extrem-
izer of the generalized variational problem (H1) is given by

∂L

∂x
(t, x(t), ẋ(t), z(t))− d

dt

∂L

∂ẋ
(t, x(t), ẋ(t), z(t))

+
∂L

∂z
(t, x(t), ẋ(t), z(t))

∂L

∂ẋ
(t, x(t), ẋ(t), z(t)) = 0, (2)
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t ∈ [a, b]. The equation (2) is known as the generalized Euler–Lagrange equation. Observe
that for the classical problem of the calculus of variations (1) one has ∂L

∂z = 0 and equation
(2) reduces to the classical Euler–Lagrange equation

∂L

∂x
(t, x(t), ẋ(t))− d

dt

∂L

∂ẋ
(t, x(t), ẋ(t)) = 0.

In [6] we have introduced higher-order variational problems of Herglotz type and obtained
a generalized Euler–Lagrange equation and transversality conditions for these problems. In
particular, we considered the problem of determining the trajectories x(·) such that

z(b) −→ extr

with ż(t) = L(t, x(t), ẋ(t), . . . , x(n)(t), z(t)), t ∈ [a, b],

subject to z(a) = γ, γ ∈ R.
(Hn)

We proved that if a pair (x(·), z(·)) is an extremizer of the higher-order problem (Hn), then
it satisfies the higher-order generalized Euler–Lagrange equation

n∑
j=0

(−1)j
dj

dtj

(
ψz(t)

∂L

∂x(j)
〈x, z〉n(t)

)
= 0, t ∈ [a, b],

and the transversality conditions ψj(b) = ψj(a) = 0, for j = 1, . . . , n, where{
ψz(t) = e

∫ b
t

∂L
∂z 〈x,z〉n(θ)dθ

ψj(t) =
∑n−j
i=0 (−1)i+1 di

dti

(
ψz(t)

∂L
∂x(i+j) 〈x, z〉n(t)

)
, j = 1, . . . , n.

While in [6] the admissible functions are x(·) ∈ C2n([a, b];Rm) and z(·) ∈ C1([a, b];R),
here we consider (Hn) in the wider class of functions x(·) ∈ PCn([a, b];Rm) and z(·) ∈
PC1([a, b];R).

One of the most important results in optimal control theory is Pontryagin’s maximum
principle proved by Pontryagin et al. in [5]. This principle provides conditions for optimiza-
tion problems with differential equations as constraints. The maximum principle is still
widely used for solving problems of control and other problems of dynamic optimization.
Moreover, basic necessary optimality conditions from classical calculus of variations follow
from Pontryagin’s maximum principle.

One of the problems of optimal control, in Bolza form, is the following one:

J (x(·), u(·)) =

∫ b

a

f(t, x(t), u(t))dt+ φ(x(b)) −→ extr

subject to ẋ(t) = g(t, x(t), u(t)),

(P )

with some initial condition on x, where f ∈ C1([a, b] × Rm × Ω;R), φ ∈ C1(Rm;R), g ∈
C1([a, b] × Rm × Ω;Rm), x ∈ PC1([a, b];Rm) and u ∈ PC([a, b]; Ω), with Ω ⊆ Rr an open
set. In the literature of optimal control, x and u are frequently called the state and control
variables, respectively, while φ is known as the payoff or salvage term. Note that the classical
problem of the calculus of variations (1) is a particular case of problem (P ) with φ(x) ≡ 0,
g(t, x, u) = u and Ω = Rm. In this work we show how the results on the higher-order
variational problem of Herglotz (Hn) obtained in [6] can be generalized by using the theory
of optimal control. The technique used consists in rewriting the generalized higher-order
variational problem of Herglotz (Hn) as a standard optimal control problem (P ), and then
to apply available results of optimal control theory. For the first-order case we refer the
reader to [7].

The paper is organized as follows. In Section 2 we present the necessary concepts and
results from optimal control theory: Pontryagin’s maximum principle (Theorem 2.1); the
DuBois–Reymond condition of optimal control (Theorem 2.3); and the Noether theorem
of optimal control (Theorem 2.5). Our main results are given in Section 3: we extend
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the higher-order Euler–Lagrange equation and the transversality conditions for problem
(Hn) found in [6] to admissible functions x(·) ∈ PCn([a, b];Rm) and z(·) ∈ PC1([a, b];R)
(Theorem 3.3); we obtain a DuBois–Reymond necessary optimality condition for problem
(Hn) (Theorem 3.5); and we generalize the Noether theorem to higher-order variational
problems of Herglotz type (Theorem 3.7). We end with Section 4 of conclusions.

2. Preliminaries. We begin this section by stating the well known Pontryagin’s maximum
principle, which is a first-order necessary optimality condition.

Theorem 2.1 (Pontryagin’s maximum principle for problem (P ) [5]). If a pair (x(·), u(·))
with x ∈ PC1([a, b];Rm) and u ∈ PC([a, b]; Ω) is a solution to problem (P ) with the initial
condition x(a) = α, α ∈ Rm, then there exists ψ ∈ PC1([a, b];Rm) such that the following
conditions hold:

• the optimality condition

∂H

∂u
(t, x(t), u(t), ψ(t)) = 0; (3)

• the adjoint system {
ẋ(t) = ∂H

∂ψ (t, x(t), u(t), ψ(t))

ψ̇(t) = −∂H∂x (t, x(t), u(t), ψ(t));
(4)

• and the transversality condition

ψ(b) = grad(φ(x))(b); (5)

where the Hamiltonian H is defined by

H(t, x, u, ψ) = f(t, x, u) + ψ · g(t, x, u). (6)

Definition 2.2 (Pontryagin extremal to (P )). A triplet (x(·), u(·), ψ(·)) with x ∈ PC1([a, b];
Rm), u ∈ PC([a, b]; Ω) and ψ ∈ PC1([a, b];Rm) is called a Pontryagin extremal to problem
(P ) if it satisfies the optimality condition (3), the adjoint system (4) and the transversality
condition (5).

Theorem 2.3 (DuBois–Reymond condition of optimal control [5]). If (x(·), u(·), ψ(·)) is a
Pontryagin extremal to problem (P ), then the Hamiltonian (6) satisfies the equality

dH

dt
(t, x(t), u(t), ψ(t)) =

∂H

∂t
(t, x(t), u(t), ψ(t)), t ∈ [a, b].

The famous Noether theorem [4] is another fundamental tool of the calculus of variations
[11], optimal control [8, 9, 10] and modern theoretical physics [1]. It states that when an
optimal control problem is invariant under a one parameter family of transformations, then
there exists a corresponding conservation law: an expression that is conserved along all the
Pontryagin extremals of the problem (see [8, 9, 10] and references therein). Here we use
Noether’s theorem as found in [8], which is formulated for problems of optimal control in
Lagrange form, that is, for problem (P ) with φ ≡ 0. In order to apply the results of [8] to
the Bolza problem (P ), we rewrite it in the following equivalent Lagrange form:

I(x(·), y(·), u(·)) =

∫ b

a

[f(t, x(t), u(t)) + y(t)] dt −→ extr,{
ẋ(t) = g (t, x(t), u(t)) ,

ẏ(t) = 0,

x(a) = α, y(a) =
φ(x(b))

b− a
.

(7)
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Before presenting the Noether theorem for the optimal control problem (P ), we need to
define the concept of invariance. Here we apply the notion of invariance found in [8] to the
equivalent optimal control problem (7). In Definition 2.4 we use the little-o notation.

Definition 2.4 (Invariance of problem (P ) cf. [8]). Let hs be a one-parameter family of
invertible C1 maps

hs : [a, b]× Rm × Ω −→ R× Rm × Rr,
hs(t, x, u) = (T s(t, x, u),X s(t, x, u),Us(t, x, u)) ,

h0(t, x, u) = (t, x, u) for all (t, x, u) ∈ [a, b]× Rm × Ω.

Problem (P ) is said to be invariant under transformations hs if for all (x(·), u(·)) the following
two conditions hold:

(i)[
f ◦ hs(t, x(t), u(t)) +

φ(x(b))

b− a
+ ξs+ o(s)

]
dT s

dt
(t, x(t), u(t))

= f(t, x(t), u(t)) +
φ(x(b))

b− a
(8)

for some constant ξ;
(ii)

dX s

dt
(t, x(t), u(t)) = g ◦ hs(t, x(t), u(t))

dT s

dt
(t, x(t), u(t)). (9)

The next result can be easily obtained from the Noether theorem proved by Torres in [8]
and Pontryagin’s maximum principle (Theorem 2.1).

Theorem 2.5 (Noether’s theorem for the optimal control problem (P )). If problem (P ) is
invariant in the sense of Definition 2.4, then the quantity

(b− t)ξ + ψ(t) ·X(t, x(t), u(t))−
[
H(t, x(t), u(t), ψ(t)) +

φ(x(b))

b− a

]
· T (t, x(t), u(t))

is constant in t along every Pontryagin extremal (x(·), u(·), ψ(·)) of problem (P ), where H
is defined by (6) and

T (t, x(t), u(t)) =
∂T s

∂s
(t, x(t), u(t))

∣∣∣∣
s=0

,

X(t, x(t), u(t)) =
∂X s

∂s
(t, x(t), u(t))

∣∣∣∣
s=0

.

3. Main results. We begin by introducing some definitions for the higher-order variational
problem of Herglotz (Hn).

Definition 3.1 (Admissible pair to problem (Hn)). We say that (x(·), z(·)) with x(·) ∈
PCn([a, b];Rm) and z(·) ∈ PC1([a, b];R) is an admissible pair to problem (Hn) if it satisfies
the equation

ż(t) = L(t, x(t), ẋ(t), · · · , x(n)(t), z(t)), t ∈ [a, b],

with z(a) = γ ∈ R.

Definition 3.2 (Extremizer to problem (Hn)). We say that an admissible pair (x∗(·), z∗(·))
is an extremizer to problem (Hn) if z(b)− z∗(b) has the same signal for all admissible pairs
(x(·), z(·)) that satisfy ‖z − z∗‖0 < ε and ‖x − x∗‖0 < ε for some positive real ε, where
‖y‖0 = max

a≤t≤b
|y(t)|.
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We now present a necessary condition for a pair (x(·), z(·)) to be a solution (extremizer)
to problem (Hn). The following result generalizes [6] by considering a more general class of
functions. To simplify notation, we use the operator 〈·, ·〉n, n ∈ N, defined by 〈x, z〉n(t) :=
(t, x(t), ẋ(t), . . . , x(n)(t), z(t)). When there is no possibility of ambiguity, we sometimes
suppress arguments.

Theorem 3.3 (Higher-order Euler–Lagrange equation and transversality conditions for
problem (Hn)). If (x(·), z(·)) is an extremizer to problem (Hn) that satisfies the inicial
conditions

x(a) = α0, . . . , x
(n−1)(a) = αn−1, α0, . . . , αn−1 ∈ Rm, (10)

then the Euler–Lagrange equation
n∑
j=0

(−1)j
dj

dtj

(
ψz(t)

∂L

∂x(j)
〈x, z〉n(t)

)
= 0 (11)

holds, for t ∈ [a, b], where{
ψz(t) = e

∫ b
t

∂L
∂z 〈x,z〉n(θ)dθ

ψj(t) =
∑n−j
i=0 (−1)i+1 di

dti

(
ψz(t)

∂L
∂x(i+j) 〈x, z〉n(t)

)
, j = 1, . . . , n.

(12)

Moreover, the following transversality conditions hold:

ψj(b) = 0, j = 1, . . . , n. (13)

Proof. Observe that the higher-order problem of Herglotz (Hn) is a particular case of prob-
lem (P ) when we consider a n+1 coordinates state variable (x0, x1, . . . xn−1, z) with x0 = x,
x1 = ẋ, . . . , xn−1 = x(n−1), a control u = x(n) and choose f ≡ 0 and φ(x0, . . . , xn−1, z) = z.
The higher-order problem of Herglotz can now be described as an optimal control problem
as follows:

z(b) −→ extr

ẋ0(t) = x1(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t),
...

ẋn−2(t) = xn−1(t),

ẋn−1(t) = u(t),

ż(t) = L(t, x0(t), . . . , xn−1(t), u(t), z(t)),

z(a) = γ, γ ∈ R.

(14)

Observe that since we consider problem (Hn) subject to the initial conditions (10), then
x0(a) = α0, . . . , xn−1(a) = αn−1 with α0, . . . , αn−1 given Rm vectors. From Pontryagin’s
Maximum Principle for problem (P ) (Theorem 2.1) there are (ψ1, . . . , ψn, ψz) ∈ PC1([a, b];
Rn×m+1) such that the following conditions hold:

• the optimality condition

∂H

∂u
(t, x0(t), . . . , xn−1(t), u(t), z(t), ψ1(t), . . . , ψn(t), ψz(t)) = 0, (15)

• the adjoint system
ẋj−1(t) = ∂H

∂ψj
(t, x0(t), . . . , xn−1(t), u(t), z(t), ψ1(t), . . . , ψn(t), ψz(t)), j = 1, . . . , n

ψ̇1(t) = − ∂H
∂x0

(t, x0(t), . . . , xn−1(t), u(t), z(t), ψ1(t), . . . , ψn(t), ψz(t))

ψ̇j(t) = − ∂H
∂xj−1

(t, x0(t), . . . , xn−1(t), u(t), z(t), ψ1(t), . . . , ψn(t), ψz(t)), j = 2, . . . , n

ψ̇z(t) = −∂H∂z (t, x0(t), . . . , xn−1(t), u(t), z(t), ψ1(t), . . . , ψn(t), ψz(t))

(16)
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• the transversality conditions{
ψj(b) = 0, j = 1, . . . , n,

ψz(b) = 1,
(17)

where the Hamiltonian H is defined by

H(t, x0, . . . , xn−1, u, z, ψ1, . . . , ψn, ψz)

= ψ1 · x1 + . . .+ ψn−1 · xn−1 + ψn · u+ ψz · L(t, x0, . . . , xn−1, u, z).

Observe that the optimality condition (15) implies that ψn = −ψz ∂L∂u and that the adjoint
system (16) implies that

ψ̇1 = −ψz ∂L∂x0
,

ψ̇j = −ψj−1 − ψz ∂L
∂xj−1

, for j = 2, . . . , n,

ψ̇z = −ψz ∂L∂z .

Hence, ψz is solution of a first-order linear differential equation, which is solved using an

integrand factor to find that ψz(t) = ke−
∫ t
a

∂L
∂z dθ with k a constant. From the last transver-

sality condition in (17), we obtain that k = e
∫ b
a

∂L
∂z dθ and, consequently,

ψz(t) = e
∫ b
t

∂L
∂z dθ.

Note also that for j = n we obtain ψ̇n = −ψn−1 − ψz ∂L
∂xn−1

, which is equivalent to

ψn−1 =
d

dt

(
ψz

∂L

∂xn

)
− ψz

∂L

∂xn−1
.

By differentiation of the previous expression, we obtain that

ψ̇n−1 =
d2

dt2

(
ψz

∂L

∂xn

)
− d

dt

(
ψz

∂L

∂xn−1

)
and noting that ψ̇n−1 = −ψn−2 − ψz ∂L

∂xn−2
, we find an expression for ψn−2:

ψn−2 = − d2

dt2

(
ψz

∂L

∂xn

)
+
d

dt

(
ψz

∂L

∂xn−1

)
− ψz

∂L

∂xn−2
.

Similarly, we obtain that

ψn−3 =
d3

dt3

(
ψz

∂L

∂xn

)
− d2

dt2

(
ψz

∂L

∂xn−1

)
+
d

dt

(
ψz

∂L

∂xn−2

)
− ψz

∂L

∂xn−3
.

Applying the same argument to the next multipliers and noting that ψ1 = −ψ̇2 − ψz ∂L∂x1
,

we have

ψ̇1 = −ψz
∂L

∂x0

= (−1)n
dn

dtn

(
ψz

∂L

∂xn

)
+ (−1)n−1 d

n−1

dtn−1

(
ψz

∂L

∂xn−1

)
+ · · · − d

dt

(
ψz

∂L

∂x1

)
or, equivalently,

(−1)n
dn

dtn

(
ψz

∂L

∂xn

)
+ (−1)n−1 d

n−1

dtn−1

(
ψz

∂L

∂xn−1

)
+ · · · − d

dt

(
ψz

∂L

∂x1

)
+ ψz

∂L

∂x0
= 0.

Rewriting previous equation in terms of problem (Hn) and in the form of a summation, one
gets

n∑
j=0

(−1)j
dj

dtj

(
ψz

∂L

∂x(j)

)
= 0
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as intended. Observe also that from the previous argumentation we were also able to derive
expressions for the multipliers:

ψj =

n−j∑
i=0

(−1)i
di

dti

(
−ψz

∂L

∂x(i+j)

)
, j = 1, . . . , n,

which together with (17) leads to the transversality conditions

n−j∑
i=0

(−1)i
di

dti

(
ψz

∂L

∂x(i+j)

) ∣∣∣∣
t=b

= 0, j = 1, . . . , n.

This concludes the proof.

Definition 3.4 (Extremal to problem (Hn)). We say that an admissible pair (x(·), z(·))
is an extremal to problem (Hn) if it satisfies the Euler–Lagrange equation (11) and the
transversality conditions (13).

Next we present two new important results: the DuBois–Reymond condition and the
Noether theorem for the higher-order variational problem of Herglotz (Hn).

Theorem 3.5 (DuBois–Reymond condition for problem (Hn)). If (x(·), z(·)) is an extremal
to problem (Hn), then

d

dt

(
n∑
i=1

ψi(t)x
(i)(t) + ψz(t)L〈x, z〉n(t)

)
= ψz(t)

∂L

∂t
〈x, z〉n(t),

where ψz(t) and ψi(t) are defined in (12).

Proof. Rewrite (Hn) as optimal control problem (14) and apply Theorem 2.3.

Definition 3.6 (Invariance for problem (Hn)). Let hs be a one-parameter family of invert-
ible C1 maps hs : [a, b]× Rm × R −→ R× Rm × R,

hs(t, x(t), z(t)) = (T s〈x, z〉n(t),X s〈x, z〉n(t),Zs〈x, z〉n(t)),

h0(t, x, z) = (t, x, z), ∀(t, x, z) ∈ [a, b]× Rm × R.

Problem (Hn) is said to be invariant under the transformations hs if for all admissible pairs
(x(·), z(·)) the following two conditions hold:

(i) (
z(b)

b− a
+ ξs+ o(s)

)
dT s

dt
〈x, z〉n(t) =

z(b)

b− a
, for some constant ξ; (18)

(ii)

dZs

dt
〈x, z〉n(t) = L

(
T s〈x, z〉n(t),X s〈x, z〉n(t),

dX s

dT s
〈x, z〉n(t), . . .

. . . ,
dnX s

d(T s)n
〈x, z〉n(t),Zs〈x, z〉n(t)

)
dT s

dt
〈x, z〉n(t), (19)

where

dX s

dT s
〈x, z〉n(t) =

dX s

dt 〈x, z〉n(t)
dT s

dt 〈x, z〉n(t)
and

diX s

d(T s)i
〈x, z〉n(t) =

d
dt

(
di−1X s

d(T s)i−1 〈x, z〉n(t)
)

dT s

dt 〈x, z〉n(t)
(20)

for i = 2, . . . , n.

Next we present the main result of this paper.
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Theorem 3.7 (Noether’s Theorem for problem (Hn)). If problem (Hn) is invariant in the
sense of Definition 3.6, then the quantity

n∑
i=1

ψi(t)Xi−1〈x, z〉n(t) + ψz(t)Z〈x, z〉n(t)

−

(
n∑
i=1

ψi(t)x
(i)(t) + ψz(t)L〈x, z〉n(t)

)
T 〈x, z〉n(t)

is constant in t along every extremal to problem (Hn), where

T =
∂T s

∂s

∣∣∣∣
s=0

, X0 =
∂X s

∂s

∣∣∣∣
s=0

, Z =
∂Zs

∂s

∣∣∣∣
s=0

,

Xi =
d

dt
Xi−1 − x(i) d

dt

(
∂T s

∂s

∣∣∣∣
s=0

)
for i = 1, . . . , n− 1,

ψi is defined by (12) and ψz(t) = e
∫ b
t

∂L
∂z dθ.

Proof. As before, we deal with problem (Hn) in its equivalent optimal control form (14).
We now prove that if problem (Hn) is invariant in the sense of Definition 3.6, then (14) is
invariant in the sense of Definition 2.4. First, observe that if (18) holds, then (8) holds for
(14) with f ≡ 0 and φ(x0, . . . , xn−1, z) = z. Second, note that the control system of (14)

defines Us :=
dX s

n−1

dT s and X si :=
dX s

i−1

dT s , that is,{
dX s

i−1

dt 〈x, z〉n(t) = X si 〈x, z〉n(t)dT
s

dt 〈x, z〉n(t), i = 1, . . . , n− 1,
dX s

n−1

dt 〈x, z〉n(t) = Us〈x, z〉n(t)dT
s

dt 〈x, z〉n(t).
(21)

This means that if (19) and (21) hold, then there is also invariance in the sense of (9) and
problem (14) is invariant in the sense of Definition 2.4. This invariance gives conditions to
apply Theorem 2.5 to problem (14), which assures that the quantity

(b− t)ξ +

n∑
i=1

ψi(t)Xi−1〈x, z〉n(t) + ψz(t)Z〈x, z〉n(t)

−

[
n∑
i=1

ψi(t)xi(t) + ψz(t)L〈x, z〉n(t) +
φ(x(b))

b− a

]
T 〈x, z〉n(t),

where Xi = ∂
∂s

diX s

d(T s)i

∣∣∣
s=0

is constant in t along every Pontryagin extremal of problem (14).

This means that the quantity

(b− t)ξ − φ(x(b))

b− a
T 〈x, z〉n(t) +

n∑
i=1

ψi(t)Xi−1〈x, z〉n(t) + ψz(t)Z〈x, z〉n(t)

−

[
n∑
i=1

ψi(t)x
(i)(t) + ψz(t)L〈x, z〉n(t)

]
T 〈x, z〉n(t)

is constant in t along every extremal of problem (Hn). Observe that X0 = ∂X s

∂s

∣∣
s=0

, which

together with (20) leads to
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Xi =
∂

∂s

diX s

d(T s)i

∣∣∣∣
s=0

=
∂

∂s

 d
dt

(
di−1X s

d(T s)i−1

)
dT s

dt

∣∣∣∣∣
s=0

=
d

dt

(
∂

∂s

di−1X s

d(T s)i−1

∣∣∣∣
s=0

)
− x(i) d

dt

(
∂T s

∂s

∣∣∣∣
s=0

)
=

d

dt
Xi−1 − x(i) d

dt

(
∂T s

∂s

∣∣∣∣
s=0

)
.

To end the proof we only need to prove that the quantity

(b− t)ξ − z(b)

b− a
T 〈x, z〉n(t) (22)

is a constant. From the invariance condition (18), we know that

(z(b) + ξ(b− a)s+ o(s))
dT s

dt
〈x, z〉n(t) = z(b).

Integrating from a to t we conclude that

(z(b) + ξ(b− a)s+ o(s)) T s〈x, z〉n(t)

= z(b)(t− a) + (z(b) + ξ(b− a)s+ o(s)) T s〈x, z〉n(a). (23)

Differentiating (23) with respect to s, and then putting s = 0, we obtain:

ξ(b− a)t+ z(b)T 〈x, z〉n(t) = ξ(b− a)a+ z(b)T 〈x, z〉n(a). (24)

We conclude from (24) that expression (22) is the constant

(b− a)ξ − z(b)T 〈x, z〉n(a)

b− a
.

The proof is complete.

4. Conclusion. We investigated the higher-order variational problem of Herglotz from an
optimal control point of view. The higher-order generalized Euler–Lagrange equation and
the transversality conditions proved in [6] were obtained in the wider class of piecewise
admissible functions. Moreover, we proved two important new results: a DuBois–Reymond
necessary condition and Noether’s theorem for higher-order variational problems of Herglotz
type.
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[2] G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930.

[3] S. Lenhart and J. T. Workman, Optimal control applied to biological models, Chapman & Hall/CRC,
Boca Raton, FL, 2007.

[4] E. Noether, Invariante Variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Gttingen, (1918), 235–257.

[5] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory
of optimal processes, Interscience Publishers, John Wiley and Sons Inc, New York, London, 1962.

[6] S. P. S. Santos, N. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type,

Vietnam J. Math., 42 (2014), no. 4, 409–419.

http://www.ams.org/mathscinet-getitem?mr=MR3072684&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2316829&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR166037&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3286693&return=pdf


NOETHER’S THEOREM FOR H-O PROBLEMS OF HERGLOTZ 999

[7] S. P. S. Santos, N. Martins and D. F. M. Torres, An optimal control approach to Herglotz variational
problems, Optimization in the Natural Sciences (eds. A. Plakhov, T. Tchemisova and A. Freitas),

Communications in Computer and Information Science, Vol. 499, Springer, (2015), 107–117.

[8] D. F. M. Torres, Conservation laws in optimal control, in Dynamics, bifurcations, and control (Kloster
Irsee, 2001), 287–296, Lecture Notes in Control and Inform. Sci., 273, Springer, Berlin, 2002.

[9] D. F. M. Torres, On the Noether theorem for optimal control, European Journal of Control, 8 (2002),
no. 1 , 56–63.

[10] D. F. M. Torres, Quasi-invariant optimal control problems, Port. Math. (N.S.), 61 (2004), no. 1, 97–114.

[11] D. F. M. Torres, Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the
calculus of variations, Commun. Pure Appl. Anal. 3 (2004), no. 3, 491–500.

[12] B. van Brunt, The calculus of variations, Universitext, Springer-Verlag, New York, 2004.

Received September 2014; revised July 2015.

E-mail address: spsantos@ua.pt

E-mail address: natalia@ua.pt

E-mail address: delfim@ua.pt

http://www.ams.org/mathscinet-getitem?mr=MR1901565&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2040245&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2098297&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2004181&return=pdf

	1. Introduction
	2. Preliminaries
	3. Main results
	4. Conclusion
	Acknowledgments
	REFERENCES

