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Abstract For some general linear integral operator equations, we investigate con-
sequent initial value problems by using the theory of reproducing kernels. A new
method is proposed which – in particular – generates a new field among initial value
problems, linear integral operators, eigenfunctions and values, integral transforms
and reproducing kernels. In particular, examples are worked out for the integral
equations of Lalesco-Picard, Dixon and Tricomi types.
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1 Introduction

Despite the fact that initial value problems for differential equations, and conse-
quent integral equations, have already a long and rich history, there is still the need
in different cases to find out additional and more suitable spaces where their solu-
tions can be interpreted and used in an appropriated way. Sometimes, finding new
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frameworks for those solutions leads even to the discover ofcompletely new solu-
tions which could not be reached in a somehow more “classical” and known setting.
This is just one of the reasons why it is still well appropriate to continue to perform
research in such a classical field. Moreover, additional knowledge about the solu-
tions is also very welcome –even in cases where we know already a great variety of
solutions. This is the case of the study of different kinds ofstability which is, e.g.,
highly relevant when we would like to apply numerical methods. Within this spirit,
we would like to consider initial value problems in linear integral operator equations
by using reproducing kernel Hilbert space machinery [1, 12,13, 14].

Having those general goals in mind, in [4] the authors proposed a general method
for the existence and construction of the solution of the following initial problem

(∂t +Lx)uf (t,x) = 0, t > 0, (1)

satisfying the initial value condition

uf (0,x) = f (x), (2)

for some general linear operatorLx on a certain function space, and on some domain,
by using the theory of reproducing kernels.

Here, we consider a general linear integral equation

Ixu(x) = 0 (3)

and we assume that the eigenfunctionsLν and valuesν are known; that is,

IxLν (x) = νLν(x). (4)

Then, note that the functions
exp(−νt)Lν(x) (5)

are the solutions of the operator equation

(∂t + Ix)u(t,x) = 0. (6)

In order to consider a fully general sum, in the case thatν are positive reals, we
shall consider the kernel form, for a nonnegative continuous functionρ ,

Kt(x,y;ρ) =
∫ +∞

0
exp{−νt}Lν(x)Lν (y)ρ(ν)dν. (7)

Of course, in here, we are considering the integral with absolutely convergence for
the kernel form.

The fully general solutions of the equation (6) may be represented in the integral
form

u(t,x) =
∫ +∞

0
exp{−νt}Lν(x)F(ν)ρ(ν)dν, (8)

for the functionsF satisfying
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∫ +∞

0
exp{−νt}|F(ν)|2ρ(ν)dν < ∞. (9)

Then, the solutionu(t,x) of (6) satisfying the initial condition

u(0,x) = F(x) (10)

will be obtained byt →+0 in (8) with a natural meaning. However, this point will be
very delicate and we will need to consider some deep and beautiful structure. Here,
(7) is a reproducing kernel and in order to analyze the logic above, we will need
the theory of reproducing kernels within an essential (and beautiful) way. Indeed, in
order to construct natural solutions of (1)–(2), we will need a new framework and
function space.

2 Preliminaries on linear mappings and inversions

In order to analyze the integral transform (8) and in view to set the basic background
for our purpose, we will need the essence of the theory of reproducing kernels.

We are interested in the integral transforms (8) in the framework of Hilbert
spaces. Of course, we are interested in the characterization of the image functions,
the consequent isometric identity like the Parseval identity and the inversion for-
mula, basically. For these general and fundamental problems, we have a unified
and fundamental method and concept in the general situation. Namely, following
[12, 13, 14], we shall recall a general theory for linear mappings in the framework
of Hilbert spaces.

Let H be a Hilbert (possibly finite-dimensional) space. LetE be an abstract
set andh be a HilbertH -valued function onE. Then, we shall consider the linear
transform

f (x) = (f,h(x))H , f ∈ H , (11)

from H into the linear spaceF (E) comprising all the complex valued functions
on E. In order to investigate the linear mapping (11), we form a positive definite
quadratic form functionK(x,y) onE×E defined by

K(x,y) = (h(y),h(x))H on E×E.

A complex-valued functionk : E ×E → C is called apositive definite quadratic
form functionon the setE, or shortly,positive definite function, when it satisfies the
property that, for an arbitrary functionX : E →C and any finite subsetF of E,

∑
x,y∈F

X(x)X(y)k(x,y)≥ 0. (12)
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By the fundamental theorem, we know that for any positive definite quadratic
form function K, there exists a uniquely determined reproducing kernel Hilbert
space admitting the reproducing property.

Then, we obtain the following fundamental result.

Proposition 1 (cf. [12, 13, 14]).
(A) The range of the linear mapping (11) byH is characterized as the reproducing
kernel Hilbert space HK(E) admitting the reproducing kernel K(x,y) whose char-
acterization is given by the two properties:(i) K(·,y) ∈ HK(E) for any y∈ E and,
(ii) for any f ∈ HK(E) and for any x∈ E, ( f (·),K(·.x))HK (E) = f (x).
(B) It holds

‖ f‖HK(E) ≤ ‖f‖H .

Here, for any member f of HK(E) there exists a uniquely determinedf∗ ∈ H satis-
fying

f (x) = (f∗,h(x))H onE

and
‖ f‖HK (E) = ‖f∗‖H .

(C) We have the inversion formula in (11) in the form

f 7→ f∗ (13)

in (B) by using the reproducing kernel Hilbert space HK(E).

However, in general, this formula (13) is not obvious. Consequently, case by
case, we need different arguments to analyse it. See [13] and[14] for the details
and applications. Recently, however, we obtained a very general inversion formula,
based on the so-calledAveiro Discretization Method in Mathematics(cf. [2]), by
using the ultimate realization of reproducing kernel Hilbert spaces that is introduced
simply in the last section. In this paper, however, in order to give prototype examples
with analytical nature, we shall consider the following global inversion formula in
the general situation with natural assumptions.

Here we consider a concrete case of Proposition 1. In order toderive a general
inversion formula widely applicable in analysis, we assumethatH = L2(I ,dm) and
thatHK(E) is a closed subspace ofL2(E,dµ). Furthermore, below we assume that
(I ,I ,dm) and(E,E ,dµ) are bothσ -finite measure spaces and that

HK(E) →֒ L2(E,dµ). (14)

Suppose that we are given a measurable functionh : I ×E → C satisfyinghy =
h(·,y) ∈ L2(I ,dm) for all y∈ E. Let us set

K(x,y)≡ 〈hy,hx〉L2(I ,dm). (15)

As we have established in Proposition 1, we have

HK(E)≡ { f ∈ F (E) : f (x) = 〈F,hx〉L2(I ,dm) for someF ∈ H }. (16)
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Let us now define

L : H → HK(E)(→֒ L2(E,dµ)) (17)

by

LF(x)≡ 〈F,hx〉L2(I ,dm) =

∫

I
F(λ )h(λ ,x)dm(λ ), x∈ E, (18)

for F ∈ H = L2(I ,dm), keeping in mind (14). Observe thatLF ∈ HK(E).
The next result will serve to the inversion formula.

Proposition 2 (cf. [13]). Assume that{EN}∞
N=1 is an increasing sequence of mea-

surable subsets in E such that

∞⋃

N=1

EN = E (19)

and that
∫

I×EN

|h(λ ,x)|2 dm(λ )dµ(x)< ∞ (20)

for all N ∈ N. Then we have

L∗ f (λ )
(
= lim

N→∞
(L∗[χEN f ])(λ )

)
= lim

N→∞

∫

EN

f (x)h(λ ,x)dµ(x) (21)

for all f ∈ L2(I ,dµ) in the topology ofH = L2(I ,dm). Here, L∗ f is the adjoint
operator of L, but it represents the inversion with the minimum norm for f∈HK(E).

Moreover, in this Proposition 2, we see that –in a very natural way– the inversion
formula may be given in the strong convergence in the spaceH = L2(I ,dm).

3 Main result

Following the general theory in Section 2, we shall now buildour results. Without
loss of generality, we will assume thatν is on the positive real line.

Then, we form the reproducing kernel

K (x,y;ρ) =
∫ +∞

0
Lν(x)Lν (y)ρ(ν)dν, t > 0, (22)

and consider the reproducing kernel Hilbert spaceHK (ρ)(R
+) admitting the kernel

K (x,y;ρ). Here, we assume that the kernel form converges in the absolute sense.
In particular, note that

Kt(x,y;ρ) ∈ HK (ρ)(R
+), y> 0.
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Then, we obtain the main theorem in this paper:

Theorem 1. For any member f∈ HK (ρ)(R
+), the solution uf (t,x) of the initial

value problem, for t> 0,
(∂t + Ix)uf (t,x) = 0, (23)

satisfying the initial value condition

uf (0,x) = f (x), (24)

exists and it is given by

uf (t,x) = ( f (·),Kt (·,x;ρ))HK (ρ)(R
+). (25)

Here, the meaning of the initial value (24) is given by

lim
t→+0

uf (t,x) = lim
t→+0

( f (·),Kt (·,x;ρ))HK (ρ)(R
+)

= ( f (·),K (·,x;ρ))HK (ρ)(R
+)

= f (x), (26)

whose existence is ensured and the limit is the uniformly convergence on any subset
ofR+ such thatK (x,x;ρ) is bounded.

The uniqueness property of the initial value problem is depending on the com-
pleteness of the family of functions

{Kt(·,x;ρ) : x∈ R
+} (27)

in HK (ρ)(R
+).

Before starting with the proof of the Theorem some remarks are in order. In our
theorem, the complete property of the solutionsuf (t,x) of (23) and (24) satisfying
the initial valuef may be derived by the reproducing kernel Hilbert space admitting
the kernel

k(x, t;y,τ;ρ) := (Kτ (·,y;ρ),Kt(·,x;ρ))HK (ρ)(R
+). (28)

In our method, we see that the existence problem of the initial value problem is
based on the eigenfunctions and we are constructing the desired solution satisfying
the desired initial condition. For a larger knowledge for the eigenfunctions we can
consider a more general initial value problem.

Furthermore, by considering the linear mapping of (25) withvarious situations,
we will be able to obtain various inverse problems looking for the initial valuesf
from the various output data ofuf (t,x).

Proof (of Theorem 1).In first place, note that the kernelKt(x,y;ρ) satisfies the
operator equation (23) for any fixedy, because the functions

exp{−νt}Lν(x)
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satisfy the operator equation and it is the summation. Similarly, the functionuf (t,x)
defined by (25) is the solution of the operator equation (23).

Secondly, in order to see the initial value problem, we note the important general
property

Kt(x,y;ρ)≪ K (x,y;ρ); (29)

that is,K (x,y;ρ)−Kt(x,y;ρ) is a positive definite quadratic form function. More-
over, we have

HKt (ρ) ⊂ HK (ρ)(R
+)

and for any functionf ∈ HKt (ρ)

‖ f‖HK (ρ)(R
+) = lim

t→+0
‖ f‖HKt (ρ)

in the sense of non-decreasing norm convergence (see [1]). In order to see the crucial
point in (26), note that

‖K (y,x;ρ)−Kt(y,x;ρ)‖2
HK (ρ)(R

+)

= K (x,x;ρ)−2Kt(x,x;ρ)+ ‖Kt(y,x;ρ)‖2
HK (ρ)(R

+)

≤ K (x,x;ρ)−2Kt(x,x;ρ)+ ‖Kt(y,x;ρ)‖2
HKt (ρ)

= K (x,x;ρ)−Kt(x,x;ρ),

that converses to zero ast → +0. We thus obtain the desired limit property in the
theorem.

Finally, the uniqueness property of the initial value problem follows from (25)
easily.

4 Examples

At first, we shall consider the typical and famous Lalesco-Picard equation:

y(x)−λ
∫ ∞

−∞
e−|x−t|y(t)dt = 0, λ > 0. (30)

Then, we know the general solution

y(x) =C1exp(x
√

1−2λ)+C2exp(−x
√

1−2λ), 0< λ <
1
2
, (31)

and

y(x) =C1cos(x
√

1−2λ)+C2sin(x
√

1−2λ),
1
2
< λ , (32)

(see [7, 11]).
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From the results, we can consider the four eigenfunctions and eigenvalues
groups; so, without loss of generality, we shall consider the case, for

yλ (x) = exp(−x
√

1−2λ) (33)

in which we have
∫ ∞

−∞
e−|x−t|yλ (t)dt =

1
λ

yλ (x), 0< λ <
1
2
. (34)

Therefore, by a suitable weightρ , we shall consider the reproducing kernel

∫ 1/2

0
exp(−y

√
1−2λ)exp(−x

√
1−2λ)ρ(λ )dλ . (35)

Note that we can consider many weightsρ , however, as the simplest case, we obtain
the reproducing kernel

K(x,y) =
∫ 1/2

0
exp(−y

√
1−2λ)exp(−x

√
1−2λ)

1√
1−2λ

dλ

=
1

x+ y

(
1−e−xe−y) . (36)

Now, we are interested in the integral transform

f (x) =
∫ 1/2

0
F(λ )exp(−x

√
1−2λ)

1√
1−2λ

dλ (37)

for the functionsF satisfying the conditions

∫ 1/2

0
|F(λ )|2 1√

1−2λ
dλ < ∞. (38)

Note that for the kernel form

1
z+u

, z= x+ iy, (39)

on the right half complex plane, this reproducing kernel is the Szegö kernel and for
the image of the integral transform

f (z) =
∫ ∞

0
e−λ zF(λ )dλ , (40)

for theL2(0,∞) functionsF(λ ), we obtain the isometric identity

1
2π

∫ +∞

−∞
| f (iy)|2dy=

∫ ∞

0
|F(λ )|2dλ . (41)
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Here, f (iy) means the Fatou’s non-tangential boundary values of the Szegö space of
analytic functions on the right hand half complex plane.

From the relation for analytic extension

K(z,u)≪ 1
z+u

(42)

(in the sense that the right hand side minus the left hand sideis a positive defi-
nite quadratic form function), we see that the admissible reproducing kernel Hilbert
spacesHK andHS have the inclusion relation as functions

HK ⊂ HS (43)

and we have the norm inequality, for anyf ∈ HK ,

‖ f‖HS ≤ ‖ f‖HK . (44)

The spaceHK is a subspace of the Szegö spaceHS and so we can use the Szegö
spaceHS for the isometric identity and inversion formula. For extradetails on these
general properties, see [13]. As the conclusions, we see that the imagef (x) of the
integral transform (37) is extensible analytically onto the right half complex plane
as f (z), z= x+ iy, and we obtain the norm inequalities

∫ 1/2

0
|F(λ )|2 1√

1−2λ
dλ ≤ 1

2π

∫ +∞

−∞
| f (iy)|2dy. (45)

Furthermore, we obtain the inversion formula in the space satisfying (38)

F(λ ) =
∫ ∞

−∞
f (iy)exp(−iy

√
1−2λ)dy. (46)

For other eigenfunctions, we can obtain similar results. For other weighted func-
tions, we can obtain more complicated results; see [13] for consequent details.

Next, as a typical example of Volterra integral equations, we shall consider, the
Dixon’s equation

y(x)−λ
∫ x

0

y(t)dt
x+ t

= f (x), λ > 0. (47)

For the homogeneous case off ≡ 0, we know the solutions

y(x) =Cxβ ; β >−1, (48)

where

λ =
1

I(β )
; I(β ) =

∫ 1

0

ξ β dξ
1+ ξ

, (49)

(cf. [11], p. 136). Therefore, for the integral operator

∫ x

0

y(t)dt
x+ t

(50)
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we have the eigenfunctions and eigenvalues

y(t) = I(λ )tλ , λ >−1. (51)

Thus, we obtain the related reproducing kernel, for 0< x,y< 1, for example,

K(x,y) =
∫ ∞

−1
xλ yλ dλ

= − 1
lnxy

1
xy

. (52)

The property of the integral transform

f (x) =
∫ ∞

−1
xλ F(λ )dλ (53)

for the functionsF satisfying
∫ ∞

−1
|F(λ )|2dλ < ∞ (54)

will be involved. However, we see that the imagef is extensible analytically onto
the complex plane cutted by the half real line(−∞,0].

By the complex conformal mappingW = logz, the imagef (z) = f (ew) of (53)
may be discussed by the Szegö space on the strip domain

{
ℑw<

π
2

}
.

At last, as a typical example of singular integral equations, we shall consider the
Tricomi equation

y(x)−λ
∫ 1

0

(
1

t − x
+

1
x+ t−2xt

)
y(t)dt = f (x), λ > 0. (55)

For the homogeneous case off ≡ 0, we know the solutions

y(x) =C
(1− x)β

x1+β ; tan
β π
2

= λ π , −2< β < 0 (56)

(cf. [11], p. 769). Therefore, for the integral operator

∫ 1

0

(
1

t − x
+

1
x+ t−2xt

)
y(t)dt, (57)

we have the eigenfunctions and eigenvalues

y(t) =
1
λ
(1− x)

2
π arctanπλ

x1+ 2
π arctanπλ

. (58)



Initial value problems in linear integral operator equations 11

Therefore, we obtain the related reproducing kernel, for 0< x,y< 1 and for exam-
ple, for 0< λ < ∞:

K(x,y) =
∫ ∞

0

(1− x)
2
π arctanπλ

x1+ 2
π arctanπλ

(1− y)
2
π arctanπλ

y1+ 2
π arctanπλ

dλ

=
1
2

∫ 1

0

(1− x)ξ

x1+ξ
(1− y)ξ

y1+ξ sec2
πξ
2

dξ . (59)

As typical integral equations, we stated the above three integral equations. How-
ever, we can consider many and many different integral equations, and the eigen-
functions structures will be mysterious deep and we are requested to analyze their
structures and the corresponding integral transforms. Furthermore, we are particu-
larly interested in kernel form integrals. To this end, the great book [11] presents a
huge range of possibilities.

5 Concrete realization of the reproducing kernel Hilbert paces

In Section 4, we can consider many concrete forms of the reproducing kernels and
among those we have very complicated structures of the related reproducing kernel
Hilbert spaces. Even just from the point of view of the theoryof reproducing kernels,
their realizations will give interesting research topics that are requested separate
papers.

We were able to realize the important reproducing kernel Hilbert spaces con-
cretely and analytically. However, for many kernels their realizations will be com-
plicated. Despite this difficulty, it is clear that the concrete forms of the reproducing
kernels will be very important and interested by themselves.

Meanwhile, we are also interested in the kernel formsKt andk. These calcula-
tions will create a new and large field in integral formulas.

As explained, we have to analyze and realize the corresponding reproducing ker-
nel Hilbert spaces. However, we can also apply quite generalformula by the Aveiro
discretization method exposed in [2, 3]. In these papers, numerical experiments are
also given based on the following result:

Proposition 3. (Ultimate realization of reproducing kernel Hilbert spaces). In
our general situation and for a uniqueness set{p j} for the reproducing kernel
Hilbert space HK of the set E satisfying the linearly independence of K(·, p j) for
any finite number of the points pj , we obtain

‖ f‖2
HK

= ‖f∗‖2
H = lim

n→∞

n

∑
j=1

n

∑
j ′=1

f (p j )ã j j ′ f (p j ′). (60)

Here, ã j j ′ is the element of the complex conjugate inverse of the positive definite
Hermitian matrix formed by
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a j j ′ = K(p j , p j ′).

In this Proposition, for the uniqueness set of the space, if the reproducing kernel
is analytical, then, the criteria will be very simple by theidentity theorem of analytic
functions. For the Sobolev space cases, we have to consider some dense subset ofE
for the uniqueness set. Meanwhile, the linearly independence will be easily derived
from the integral representations of the kernels.

From the great mathematicians books [5, 6, 8, 9, 10], we can find many and
many concrete problems among partial differential equations, eigenfunctions, inte-
gral transforms and reproducing kernels which are admitting the application of these
results.
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5. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi,Tables of Integral Transforms-Vol I,
II . Bateman Manuscript Project. California Institute of Technology, McGraw Hill, New York,
1954.

6. I.S. Gradshlein, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th Edition, Elsevier
Inc., New York, 2007.

7. H. Hochstadt,Integral Equations, John Wiley and Sons, New York, 1973.
8. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev,Integrals and Series, Volume 3: More special

functions, Gordon and Breach Publisher, New York, 1990.
9. A.D. Polyanin,Handbook of Linear Partial Differential Equations for Engineers and Scien-

tists, Chapman & Hall/CRC, Boca Raton, FL, 2002.
10. A.D. Polyanin, V.F. Zaitsev,Handbook of Exact Solutions for Ordinary Differential Equations,

CRC Press, Boca Raton, FL, 2003.
11. A.D. Polyanin, A.V. Manzhirov,Handbook of Integral Equations, CRC Press, Boca Raton,

FL, 2008.
12. S. Saitoh, Hilbert spaces induced by Hilbert space valued functions,Proc. Amer. Math. Soc.,

89 (1983), 74–78.
13. S. Saitoh,Integral Transforms, Reproducing Kernels and their Applications, Pitman Research

Notes in Mathematics Series 369, Addison Wesley Longman, Harlow, 1997.



Initial value problems in linear integral operator equations 13

14. S. Saitoh, Theory of reproducing kernels: Applicationsto approximate solutions of bounded
linear operator functions on Hilbert spaces,Amer. Math. Soc. Transl. Ser., 230, Amer. Math.
Soc., Providence, RI, 2010.


