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Initial value problems
in linear integral operator equations’
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Abstract For some general linear integral operator equations, westigate con-

sequent initial value problems by using the theory of repoing kernels. A new

method is proposed which — in particular — generates a nesvdiabng initial value

problems, linear integral operators, eigenfunctions ades, integral transforms
and reproducing kernels. In particular, examples are wbikét for the integral

equations of Lalesco-Picard, Dixon and Tricomi types.
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1 Introduction

Despite the fact that initial value problems for differahtequations, and conse-
quent integral equations, have already a long and richtyidteere is still the need
in different cases to find out additional and more suitabkcep where their solu-
tions can be interpreted and used in an appropriated wayetoes, finding new
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frameworks for those solutions leads even to the discoveooipletely new solu-
tions which could not be reached in a somehow more “classacal known setting.
This is just one of the reasons why it is still well appropeitd continue to perform
research in such a classical field. Moreover, additional\edge about the solu-
tions is also very welcome —even in cases where we know 3li@gdeat variety of
solutions. This is the case of the study of different kindstability which is, e.g.,
highly relevant when we would like to apply numerical metbod/ithin this spirit,
we would like to consider initial value problems in lineatggral operator equations
by using reproducing kernel Hilbert space machinery [1,182,14].

Having those general goals in mind, in [4] the authors pred@sgeneral method
for the existence and construction of the solution of thiofaing initial problem

(aI+LX)uf(taX):07 t>0, (1)
satisfying the initial value condition
us (07 X) = f(X)a (2)

for some general linear operatgron a certain function space, and on some domain,
by using the theory of reproducing kernels.
Here, we consider a general linear integral equation

Ixu(x) =0 3)

and we assume that the eigenfunctibpsand valuey are known; that is,

Then, note that the functions
exp(—vt)Ly(x) (5)
are the solutions of the operator equation
(6 +1x) u(t,x) =0. (6)

In order to consider a fully general sum, in the case thate positive reals, we
shall consider the kernel form, for a nonnegative contirsfonctionp,

Hxyp)= [ exd(-vL XL Ip(v)dv. @)

Of course, in here, we are considering the integral with kibsly convergence for
the kernel form.

The fully general solutions of the equation (6) may be regmésd in the integral
form

u(t,x) = /(:mexp{—vt}Lv(x)F(v)p(v)dv, @)

for the functiong= satisfying
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/O'+°°exp{—vt}|F(v)|2p(v)dv <. ©)

Then, the solutioni(t, x) of (6) satisfying the initial condition
u(0,x) = F(x) (10)

will be obtained by — +0 in (8) with a natural meaning. However, this point will be
very delicate and we will need to consider some deep and ifgaitucture. Here,
(7) is a reproducing kernel and in order to analyze the lobmva, we will need
the theory of reproducing kernels within an essential (aslitiful) way. Indeed, in
order to construct natural solutions of (1)—(2), we will deenew framework and
function space.

2 Preliminaries on linear mappings and inversions

In order to analyze the integral transform (8) and in viewettke basic background
for our purpose, we will need the essence of the theory obdapring kernels.

We are interested in the integral transforms (8) in the fraork of Hilbert
spaces. Of course, we are interested in the charactenzatithe image functions,
the consequent isometric identity like the Parseval idigmatnd the inversion for-
mula, basically. For these general and fundamental prahleve have a unified
and fundamental method and concept in the general situdtiamely, following
[12, 13, 14], we shall recall a general theory for linear magp in the framework
of Hilbert spaces.

Let 2 be a Hilbert (possibly finite-dimensional) space. Eebe an abstract
set anch be a Hilberts#-valued function ork. Then, we shall consider the linear
transform

f(x) = (f,h(x))r, fe?, (12)

from 2# into the linear space” (E) comprising all the complex valued functions
on E. In order to investigate the linear mapping (11), we form aifpee definite
quadratic form functiofK (x,y) onE x E defined by

K(xy) = (h(y),h(x)),» on EXxE.

A complex-valued functiork : E x E — C is called apositive definite quadratic
form functionon the sek, or shortly,positive definite functiagrwhen it satisfies the
property that, for an arbitrary functiof: E — C and any finite subsét of E,

> X(X)X(y)k(x,y) > 0. (12)
X,yeF
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By the fundamental theorem, we know that for any positivenitefiquadratic
form function K, there exists a uniquely determined reproducing kerndbeil
space admitting the reproducing property.

Then, we obtain the following fundamental result.

Proposition 1 (cf. [12, 13, 14]).
(A) The range of the linear mapping (11) B¢ is characterized as the reproducing
kernel Hilbert space K(E) admitting the reproducing kernel (&,y) whose char-
acterization is given by the two propertie$) K(-,y) € Hk (E) for any ye E and,
(ii) for any f€ Hk (E) and for any x E, (f(-),K(--X))p, ) = f(X).
(B) It holds

il e < Il

Here, for any member f of {H{E) there exists a uniquely determinEdc /7 satis-
fying
f(x)=(f",h(x))» onE
and
[ fllme ) = IF 1L
(C) We have the inversion formula in (11) in the form

f s fr (13)

in (B) by using the reproducing kernel Hilbert spacg ().

However, in general, this formula (13) is not obvious. Capstly, case by
case, we need different arguments to analyse it. See [13[latjdor the details
and applications. Recently, however, we obtained a vergiggimversion formula,
based on the so-calleélveiro Discretization Method in Mathemati¢sf. [2]), by
using the ultimate realization of reproducing kernel Hittspaces that is introduced
simply in the last section. In this paper, however, in ordegive prototype examples
with analytical nature, we shall consider the followinglggdinversion formula in
the general situation with natural assumptions.

Here we consider a concrete case of Proposition 1. In ordéeltwe a general
inversion formula widely applicable in analysis, we asstinae.7” = L%(1,dm) and
thatHk (E) is a closed subspace bf(E,du). Furthermore, below we assume that
(I,.#,dm) and(E, &,du) are botho-finite measure spaces and that

Hk (E) < L2(E,du). (14)

Suppose that we are given a measurable fundtiohx E — C satisfyinghy =
h(-,y) € L?(1,dm) for all y € E. Let us set

K(Xa y) = <hYa hX>L2(| ,dm)- (15)
As we have established in Proposition 1, we have

Hk(E) ={f € Z(E) : 1(X) = (F,hx)2( gm for someF € J7’}. (16)
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Let us now define
L: . — Hk(E)(— L?(E,dp)) (17)
by
LF (00 = (Fuzgam = [FAORAXAMA). x€E, (18)

for F € 2 = L%(1,dm), keeping in mind (14). Observe thaf € Hy (E).
The next result will serve to the inversion formula.

Proposition 2 (cf. [13]). Assume thafEn }{_; is an increasing sequence of mea-
surable subsets in E such that

G En=E (19)
N=1
and that
[ AP du() < o (20)

for all N € N. Then we have

L*fm( <L*[xENf1><A>)—nm fh(Adu) (21)

= lim
N—>00 N—oo JEy

for all f € L?(1,du) in the topology of7# = L?(I,dm). Here, L*f is the adjoint
operator of L, but it represents the inversion with the mimimmorm for fe Hg (E).

Moreover, in this Proposition 2, we see that —in a very natuag— the inversion
formula may be given in the strong convergence in the spéce L?(1,dm).

3 Main result

Following the general theory in Section 2, we shall now boild results. Without
loss of generality, we will assume thais on the positive real line.
Then, we form the reproducing kernel

Hx0)= [ LL ey, >0 (22)

and consider the reproducing kernel Hilbert spHg,e(p)(R+) admitting the kernel
(X, y;p). Here, we assume that the kernel form converges in the dbssduase.
In particular, note that

H(X%Y:P) €H () (RT), y>0.
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Then, we obtain the main theorem in this paper:

Theorem 1. For any member f€ H () (R"), the solution y(t,x) of the initial
value problem, for t> 0,
(& + I us (t,x) =0, (23)

satisfying the initial value condition
us (0,x) = f(x), (24)
exists and it is given by
ur (t,%) = (F(-), (X 0))h (R (25)
Here, the meaning of the initial value (24) is given by

Jim ug(t,x) = im (F(), (X P)h ()
= (F(), (X PR, ) (R
= f(x), (26)

whose existence is ensured and the limit is the uniformlye@ence on any subset
of R™ such that’# (x,x; p) is bounded.

The uniqueness property of the initial value problem is deljpgg on the com-
pleteness of the family of functions

(Hi(-%p)  xER') 27)
in H/(p) (RJr)

Before starting with the proof of the Theorem some remarkdraorder. In our
theorem, the complete property of the solution#, x) of (23) and (24) satisfying
the initial valuef may be derived by the reproducing kernel Hilbert space auhgit
the kernel

k(X,t,y,T p) ( ( y,P) f%('aX;p))Hl/m)(R*)' (28)

In our method, we see that the existence problem of the lingiae problem is
based on the eigenfunctions and we are constructing theedesilution satisfying
the desired initial condition. For a larger knowledge fag #igenfunctions we can
consider a more general initial value problem.

Furthermore, by considering the linear mapping of (25) wiahous situations,
we will be able to obtain various inverse problems lookingtfe initial valuesf
from the various output data of (t,X).

Proof (of Theorem 1)In first place, note that the kernek{(x,y; p) satisfies the
operator equation (23) for any fixgglbecause the functions

exp{—vt}Ly(x)
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satisfy the operator equation and it is the summation. &lgjlthe functiorus (t, x)
defined by (25) is the solution of the operator equation (23).
Secondly, in order to see the initial value problem, we nloédmportant general

property
(XY, P) K H (XY P); (29)

thatis, 7 (x,y; p) — #(X,y; p) is a positive definite quadratic form function. More-
over, we have
Hoti(o) © Hor (o) (RY)

and for any functiorf € H (p)
| f HH%/(p)(R*) = tiTO | f HH%(p)

in the sense of non-decreasing norm convergence (seefbpdér to see the crucial
pointin (26), note that

1 (v, 0) = (v P)R, ) )
= K (x%p) = 24(x. %) + | A% P)IF,  2)
< (XX p) —224(%,%P) + [ (Y, X P)
= (X% p) — J4(X.X ),

[

that converses to zero &s+ +0. We thus obtain the desired limit property in the
theorem.

Finally, the uniqueness property of the initial value peshlifollows from (25)
easily.

4 Examples

At first, we shall consider the typical and famous LalescraRl equation:
A/ e M Uy)dt=0, A >0. (30)

Then, we know the general solution

y(x) =Crexp(xy/1—2A) +Coexp(—xy/1—-2A), 0<A < %, (31)

and
y(x) = Crcogxy/1—2A) +Cysin(xy/1—2A), %<A, (32)
(see [7, 11]).
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From the results, we can consider the four eigenfunctiorts gigenvalues
groups; so, without loss of generality, we shall considerdhse, for

Y (¥) = exp(—xv/1 - 2A) (33)
in which we have
ket 1 1
/ ey, (Odt= Tya (), 0<A <. (34)

Therefore, by a suitable weigpt we shall consider the reproducing kernel

/(;1/2exp(—y\/1—2A)exp(—x\/1—2/\)p()\)d)\. (35)

Note that we can consider many weigptshowever, as the simplest case, we obtain
the reproducing kernel

/
K(xy) = /01 2exp(—y\/1—2/\)exp(—x\/1—2)\)\/li_2)\d/\
1

gy (1-ee?). (36)

Now, we are interested in the integral transform

F(x) = /(;1/2F(/\)exp(—x\/1— 21) \/iﬁd)\ 37)
for the functiong~ satisfying the conditions
/1/2|F(A)|2;d/\ <. (38)
0 V1i-22

Note that for the kernel form
P Z=X+1y, (39)
on the right half complex plane, this reproducing kernehis $zego kernel and for
the image of the integral transform
f(z) = / e ME(\)dA, (40)
JO

for theL,(0, ) functionsF (A ), we obtain the isometric identity

%T/jlf(iy)lzdy: /C;OOIF(/\)FdA. 1)
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Here, f (iy) means the Fatou’s non-tangential boundary values of thgiSgeace of
analytic functions on the right hand half complex plane.
From the relation for analytic extension

1
K(zt) < —— 42
@20 < = (42)
(in the sense that the right hand side minus the left handisidepositive defi-
nite quadratic form function), we see that the admissibppeaducing kernel Hilbert
spacedik andHgs have the inclusion relation as functions

Hk C Hs (43)
and we have the norm inequality, for ahy H,
[ fllHs < [1f Il - (44)

The spacdHk is a subspace of the Szegd spé&teand so we can use the Szegd
spaceHs for the isometric identity and inversion formula. For exdietails on these
general properties, see [13]. As the conclusions, we s¢ghtbamagef (x) of the
integral transform (37) is extensible analytically onte tight half complex plane
asf(z), z= x+ iy, and we obtain the norm inequalities

1/2 , 1 1o+
IO < o [ty (45)

Furthermore, we obtain the inversion formula in the spatisfgang (38)

F(A) = /:; f (iy) exp(—iyv/1— 21)dy. (46)

For other eigenfunctions, we can obtain similar results.dfoer weighted func-
tions, we can obtain more complicated results; see [13]dosequent details.
Next, as a typical example of Volterra integral equations,shall consider, the
Dixon’s equation
*y(t)dt

Y -2 [ 2o =10, A>o. (47)

For the homogeneous casefof 0, we know the solutions

yx)=Cx¢; B> -1, (48)
where 1 Bz
1 o
(cf.[11], p. 136). Therefore, for the integral operator
*y(t)dt (50)

0 X+t
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we have the eigenfunctions and eigenvalues

yt) =1, A >-1 (51)
Thus, we obtain the related reproducing kernel, fer 8y < 1, for example,

K(xy) = /:x}‘y)‘d)\

11

= Ty (52)
The property of the integral transform
F(x) = /ij F(A)d (53)
for the functiond~ satisfying
/j|F()\)|2d)\ < (54)

will be involved. However, we see that the imafjés extensible analytically onto
the complex plane cutted by the half real lifxe, 0].

By the complex conformal mappiny = logz, the imagef (z) = f(e") of (53)
may be discussed by the Szegd space on the strip domain

s
Ow —}.
{ow<3
At last, as a typical example of singular integral equatieresshall consider the
Tricomi equation

171 1
y(x)—)\/o <t_x+x+t_m) ytdt= f(x), A>0. (55)
For the homogeneous casefof 0, we know the solutions

_x)B
(1", taan:)\rr

(cf. [11], p. 769). Therefore, for the integral operator

171 1
/o <t—x+x+t—2xt) y(ndt, ®7)

we have the eigenfunctions and eigenvalues

_y) 2arctarm
y(t) = 1 L (58)

A+ 2 arctaryA
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Therefore, we obtain the related reproducing kernel, farQy < 1 and for exam-
ple, for 0< A < oo:

s

@ (1—X) 2 arctarA (1-y) 2 arctanm)

K(xy) =
(xY) 0 ylt+zarctamm yit 2 arctarrA

11 (1-x% (1-y)¢ i
:E./o MEaE: se@7df. (59)

As typical integral equations, we stated the above thregmt equations. How-
ever, we can consider many and many different integral éspustand the eigen-
functions structures will be mysterious deep and we areastgd to analyze their
structures and the corresponding integral transformghEtmore, we are particu-
larly interested in kernel form integrals. To this end, theaj book [11] presents a
huge range of possibilities.

5 Concreterealization of the reproducing kernel Hilbert paces

In Section 4, we can consider many concrete forms of the defwing kernels and
among those we have very complicated structures of thescbtaproducing kernel
Hilbert spaces. Even just from the point of view of the theafrieproducing kernels,
their realizations will give interesting research topibattare requested separate
papers.

We were able to realize the important reproducing kernebéitl spaces con-
cretely and analytically. However, for many kernels thealizations will be com-
plicated. Despite this difficulty, it is clear that the coeier forms of the reproducing
kernels will be very important and interested by themselves

Meanwhile, we are also interested in the kernel for#isandk. These calcula-
tions will create a new and large field in integral formulas.

As explained, we have to analyze and realize the correspgmeproducing ker-
nel Hilbert spaces. However, we can also apply quite gefi@nalula by the Aveiro
discretization method exposed in [2, 3]. In these papenms@amical experiments are
also given based on the following result:

Proposition 3. (Ultimate realization of reproducing kernel Hilbert spaces). In
our general situation and for a uniqueness $g} for the reproducing kernel
Hilbert space K of the set E satisfying the linearly independence ¢f ) for
any finite number of the points jwe obtain

n n
1£1E = If1% = Jim F(pi)ajj f(pj)- (60)
Hi H ”%“J;jzl 1)8jjr T{Bj

Here, a;j; is the element of the complex conjugate inverse of the pesitfinite
Hermitian matrix formed by
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ajj/ = K(pj7 pJI)

In this Proposition, for the uniqueness set of the spackeiféproducing kernel
is analytical, then, the criteria will be very simple by identity theorem of analytic
functions For the Sobolev space cases, we have to consider some désse GiE
for the unigueness set. Meanwhile, the linearly indepeoeleurill be easily derived
from the integral representations of the kernels.

From the great mathematicians books [5, 6, 8, 9, 10], we cahrfiany and
many concrete problems among partial differential equatieigenfunctions, inte-
gral transforms and reproducing kernels which are adrgittie application of these
results.
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