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How to catch smoothing properties and
analyticity of functions by computers?

L.P. Castro, H. Fujiwara, T. Qian and S. Saitoh

Abstract We would like to propose a new method in view to catch smoagthin
properties and analyticity of functions by computers. Qfirse, in the strict sense,
such goal is impossible. However, we would like to proposeegpractical method
that may be applied for many concrete cases for some goodidnsdbut not for
bad functions, in a sense). Therefore, this may be viewedpaeaedure proposal
which includes numerical experiments for the just mentibcleallenge and within
a new method.

1 Introduction

The main idea behind the present work is to answer — at les$alpa— to the very
important practical question:
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Could we catch some smoothing properties and analyticifyraftions by using computers?

More than answering affirmatively to this question, by applythe theory of re-
producing kernels, we would like to propose a new method wvhiens possible to
catch smoothing properties and analyticity of functionsbgnputers. Clearly, in a
strict mathematical sense, such methods will be impossirigway, from a certain
practical point of view, we would like to propose a method timay be applied for
many cases where some good functions are involved, desgitiact that it will
not solve other situations where “bad functions” occur. @ain arguments will be
therefore be concerned with numerical experiments attgisuch challenge by a
new concept.

For some special cases, certain abstract theory is knowsibyg specific approx-
imation mathematical concepts. For example, for the aititlytissue, it is worth
mentioning that our problem is closely related to some atakgroblems. This
is the case of the problem of best analytic approximatiobfiron the unit circle
which may be formulated as follows: given a functige LP, find a functionpg in
the Hardy spacelP, such that

19— pgllLe = distp(g,HP).

This has obviously a long known history which from the poihview of powerful
results may be considered to begin with the great step ofdzsRithen, in 1920, he
proved [8] that the bedt1—approximation irL! of a trigonometric polynomial of
degreen is an analytic polynomial of degree at mastThis was even generalized
in 1950 by A. Macintyre and W. Rogosinski [7], when considgrthe problem of
best analytic approximation inP for rational functions with finite number of poles
in the open unit disk. In particular, it was derived that thesti 1—approximation
of a rational function is also a rational function (and thensaholds for the best
H*—approximation).

In the present paper, in order to consider analyticity oratmiog properties, we
shall represent them by the members of reproducing kerdleéHispaces. Indeed,
by the consequent Sobolev spaces, we can classify the snassthroperties by the
corresponding orders in a quite useful way. On the unit dighé complex plane,
by the Bergman-Selberg spaces, we can classify the famégalftic functions, for
example. In this way, many properties of analytic functiorey be classified by re-
producing kernel Hilbert spaces, similarly. So, our ing¢tarns to the problem that
we want to determine whether any given function belongs tertam reproducing
kernel Hilbert space or not.

2 Preliminaries and the basic starting points

First, we shall recall the reproducing kernel Hilbert syzafoe their essences (cf. [9,
10)).
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Let.7Z be a Hilbert (possibly finite-dimensional) space, and aterdt to be an
abstract set anld a Hilbert.sZ-valued function orkE. Then, we are able to consider
the linear transform

f(p) = (f.h(p)w, fei, (1)

from 2# into the linear space” (E) comprising all the complex valued functions
on E. In order to investigate the linear mappif(y), we form a positive definite
quadratic form functiofK (p,q) on E x E defined by

K(p,q) = (h(a).h(p)),r on ExE. @)
Then, we obtain the following fundamental results.

Proposition 1.

(I) The range of the linear mapping.) by »# is characterized as the reproduc-
ing kernel Hilbert space ki(E) admitting the reproducing kernel(,q) whose
characterization is given by the two propertiés: K(-,q) € Hx (E) forany qe E
and, (i) for any f € Hg (E) and for any pc E, (f(:),K(-.p))n ) = f(P)-

(I In general, we have the inequality

1l ) < Il

Here, for any member f of HE) there exists a uniquely determin&de 7
satisfying
f(p) = (,h(p))r on E
and
[ F e ey = 11T (3)

(1) In general, we have the inversion formula(ity in the form
fifr 4
in (11') by using the reproducing kernel Hilbert space ().

The inversions of the type (4) are — in general — very diffiemtl delicate prob-
lems, see the history, for example, in [2].

The next result will exhibit that a reproducing kernel Hitbgpace is a good and
natural functions space:

Proposition 2. For a Hilbert space H comprising of functiodd (p)} on a set E,
the space admits a reproducing kernel if and only if, for aninpge E, f — f(q)
is a bounded linear functional on H. If a function sequefiég converges to f in
the space H, then it converges to the function point wisell oRurthermore, on a
subset of E where {p, p) is bounded, its convergence is uniform.

We shall call a complex-valued functiép, g) in a setE x E apositive definite
quadratic form function (or, a positive semi-definite matrix) on the &tvhen it
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satisfies the property: for an arbitrary functi¥iip) on E that is zero orE except
for a finite number of points d&, ¥ , o X(p)X(q)k(p,q) > 0.

As we can see simply, a reproducing kerKéb,q) on E is a positive definite
quadratic form function ok, its converse statement is very important:

Proposition 3. For any positive definite quadratic form functiorf K g) on E, there
exists a uniquely determined reproducing kernel HilbedapHc admitting the
reproducing kernel Kp,q) on E.

Now, for our present challenge, we shall first recall the améntal property: For
two positive semi-definite matricé¢™ (p,q) andK @ (p,q) on E, if K@ (p,q) —
K™ (p,q) is a positive semi-definite matrix d, then we shall write it as follows:

KO <« K@,

We see that the symbek is a partial ordering in the class of all positive semi-
definite matrices ok, and

Proposition 4. For two positive semi-definite matrice$'(p,q) and K2 (p,q) on
E,
Hco CHye (as members

if and only if there exists a positive constansuch that
K®(p,q) < M*K@(p,q).

Here, the minimum of such constarfitscoincides with the norm of the inclusion
map J from K4 into Hy 2.

Note that for anarbitrary complex-valued functiorf on a setE, the function
f(p)f(q) is a positive definite quadratic form function & Therefore, we can
apply the theory of reproducing kernels to the memberstoplpm as follows:

Corollary 1. Let K(p,q) be a positive definite quadratic form function on a set E.
Then, for any complex-valued function f on the set E, f bedldoghe reproducing
kernel Hilbert space K if and only if f(p)f(q) < y?K(p,q) for some constany.
Then, the constantmay be taken by

[ flle =inf{y>0: f(p)f(a) < y’K(p,a)}. (5)

In connection with this criteria for the membership probjeme note that for
any large number of pointgsp; T:l of the setE, we cannot apply the result by the
positive definiteness.

Indeed, we shall assume that, without loss of generdlityp, pj)}_; are lin-
early independentiklk. Then, for any given valuei; T:l- there exists a uniquely
determined membelr € Hk satisfying

f(pJ):aJ’ j:172737“7n7 (6)
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as follows: .

f(p) = > CiK(p,pj) 7
=1

where the constan{EC;} are determined by the equations

n .

ZCJK(pJ/apJ):aJ/a J/:1727"'an7 (8)

=1
and we obtain the inequality (5) for

y2 n n -
= C; Gy K(py, pj)- )
P

Note that the functiorf satisfying (6) is not uniquely determined, but the func-
tion f given by (7) has the minimum norm among the functidérsatisfying (6).

For any finite number of point$pj}T:1 and any given value$aj}’j‘:1, there
exists a functiorf € Hk satisfying (6), certainly. However, for many poir{ts; }''_;
and bad value$a;}''_;, the calculations (7) to looking fdiC; } will be numerically
and practically difficult. The difficulty to calculate (7) Ivdepend on the given data
and the function spaddx . We looked such phenomena for the Paley-Wiener spaces
in some cases (cf. [1]). However, to represent such deep elichte phenomena
exactly will be difficult. Anyway, we may expect that the snttowess property of
functions may be reflected to some properties on a large peintWe shall propose
such method in the next section in view to understand how tchcsuch property
more clearly.

The goodness of a function in the reproducing keHielmay be given by:

(91) the number of the points;} in (7)
(92) the distribution of the coefficien{€; } in (7), and
(93) the distribution of the pointsp; } on the seE.

The factors (g1) and (g2) may be considered in a generahgettowever, (g3)
will depend on the reproducing kernel Hilbert spate

3 Aveiro discretization method

By considering the inversion of (1) from a finite number oftadata{ f (p;)}, we
established the following fundamental results:

Proposition 5 (Ultimate realization of reproducing kernel Hilbert spaces ([2])).
In our general situation and for a uniqueness épj} of the set E for the function
space K (that is, for any function & Hy satisfying f{p;) = O for all j, fis zero
identically on E) satisfying the linearly independence ig, ke obtain, for any
member fe Hk
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’ n n
11l = nlgnmgljglf(pj)ajyf(py), (10)

wherea;;: are assumed the elements of the complex conjugate invefsepdsitive
definite Hermitian matrix Aconstituted by the elements

a.jj/ = K(pjl, pJ)
Furthermore, the limit is determined in the sense of noteasing sequences.

From this Proposition 5, we see that the membership propefgithfully re-
flected on the uniqueness point $@j } by the norm (10). Now, our basic idea is as
follows: Fujiwara’s infinite precision algorithm and greamputer power will be
able to calculate the norm (10) for many practical casestls=ease of numerical
and real inversion formula of the Laplace transform thatfanaous difficult prob-
lem (cf. [1, 2, 4, 5, 6]). Surprisingly enough, Fujiwara gdtie solution for some
Fredholm integral equation containing a parametet 1040 by 6000 discretiza-
tion (6000 linear equations) with00 digits precision

Furthermore, Fujiwara gave already numerical experiméortshe norms for
many points (cf. [1, 2]), and we see that when increasing timetrer of points we are
requested to calculate with more precision and more cdloulaosts. So, we will
need more precision and computer costs for the realizafionranethod. However,
this was succeeded already for our present method as wesskah Section 5.

4 The Sobolev spaces and the Paley-Wiener spaces

In order to give numerical experiments, we shall introdineetypical reproducing
kernel Hilbert spaces, Sobolev Hilbert spaces.

n . . . -
Letm> > be an integer. Denote RCxk the binomial coefficient. Then, we have

W™M2(R") = Hg (R"), (11)

whereW™?(R") denotes the Sobolev space whose norm is given by

2

_ |5 Lol ]0VF(X)
(IF [lwmagny = VZOva GEZ%G‘SV al Je | axv dx|, (12)
e 1 Hix=y)-<)
- exp(i(X—y)-
K(xy) = (2n)“/R At ERm dg. (13)

In particular, note that ifn > 2 thenWw™?2(R") is embedded into B@®").
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A generalization of the above spaces is given in the follgwiay. Lets > g and
define

17 2\—s W)
KOOY) 1= g (L 1EP) Sexplitx—y) - ) d. (14)
Then, we have
Hi (R") = H3(R"), (15)
where the norm is given by
3
by = ( [ (1+ €27 € e ) (16)

The simplest example is given in the following way. The spidgéR) is made
up of absolutely continuous functioff'son R with the norm

IF sy = [ (F 2+ Fr02)ax an

In addition, the Hilbert spacdds(R) admits the reproducing kernel
1 1 1
o iy — Za %Vl
K]_(X,y) . ZH/R 1+ 52 equ(x y)f)df 2e . (18)

Note that if the factof1+ |&|?)S is replaced by the characteristic function on a
compact set oiiR", then that space becomes the Paley-Wiener space comprfsing
entire functions of exponential type.

Indeed, we shall consider the following integral transfpfon a functionF in

Lo(—m/h,+m/h), h>0:

1 m/h —iz
(@)= o /7 L Fe (19)

In order to identify the image space following the theoryegimoducing kernels, we
form the reproducing kernel

I L — 1
Kh(z,u)_ﬁ'/in/he el = o sing (2-0) (20)

The corresponding image space is called the Paley-WierweW(ﬁ), com-
prised of all analytic functions of exponential type safiis), for some constart,

and agz — o,
[ <>|<Cexp( ul ')

/ I (%) [2dx < oo.
R

and
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From the identity
- 1. .
Kn(ih, ') = £3(j, ")
(where we are using the Kronecked} sinced(j, j’) is the reproducing kernel for
the Hilbert spacé?, using the general theory of integral transforms of Prajpmsil
and the Parseval's identity, we reach to the isometric ilesin (19)

-11/h .
ol FOP=NT 107 = [ 1090

ET. —m/h

That is, the reproducing kernel Hilbert spadg, with K (z 1) is characterized as a
space comprising the Paley-Wiener spW:(e’—hT) and with the square norm above.
Here we used the well-known result thgh}; is a uniqueness set for the Paley-
Wiener spacgV (ﬁ) ; thatis,f(jh) =0forall j impliesf = 0. Then, the reproducing
property ofK(z U) states that

00 = (1), Kn( X, =Y FIKn(IX) = [ F(E)Kn(E1)0E.
J

In particular, on the real ling, this representation is the sampling theorem which
represents the whole datgx) in terms of the discrete dafé (jh)};. For a general
theory for the sampling theory and error estimates for soniefpoints{hj};, see

[9].

5 Numerical experiments

In order to look our principle, we show some numerical exaspln our numerical
experiments, we takesampling point;, j =1,2,...,n, and calculate a truncation
of the right-hand side of (10):

Z F(pi)ajy f(py), (21)

=1

which converges to the squaretd-norm of f if the test functionf belongs to the
target function spack. The sampling points are distributed in some finite interval
uniformly by using pseudo-random numbers generated bytéimelard library func-
tionrand() in the programming language C. Throughout this section, e300
decimal digits arithmetic by the multiple-precision anitétic environmenexflif3].

Example 1Doesf;(x) = :—Zle*‘x‘ belong toHs(R) whose reproducing kernel is given
by (18)?

The Figure 1 shows our numerical results. The interval wiereampling points
are located is set to {e-5,5). The horizontal axis is the number of sampling points
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Fig. 1 Numerical Results for Example p; € (-5,5).

n, and the vertical axis is the approximated norm (21). Thelyshows its conver-
gence as becomes large, andrteanshat f; belongs tdHs(R).
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Fig. 2 Numerical Results for Example 1 with Double Precision Arittic

Next, we process the same procedure with the standard dptdatesion arith-
metic. The result shown in Figure 2 is quite different frorguiie 1, and the differ-
ences are due to accumulation of rounding errors in flogtimigt arithmetic. From
the results we know that multiple-precision arithmeticdsentially required for the
proposed algorithm.
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Figure 3 shows results with different intervals. Compariigure 1 with Fig-
ure 3, it can be seen that larger intervals return largeredspn in this example.

Example 2We check thatf,(x) = %e*‘x‘ (1+1x) belongs toH,(R) whose repro-

ducing kernel is given by

1 .
K(xy) = 7 "Y1+ x—y)).
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Fig. 4 Numerical Results for Example p; € (—5,5).
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Figure 4 shows numerical results, where the computed vahms pretty quick
convergence. It obviously indicates thfatis a member oH,(R).

Example 3ls f1(x) = %e*‘x‘ a member ofH,(R)?
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Fig. 6 Numerical Results for Example 4 with= 1.

Our numerical results are shown in Figure 5. We note that émgcal scale is
different from that in Figure 1 or Figure 4. We cannot see eoggnce in numerical
results. In other words, it suggests that the funcfipdoes not belong tbl,(R).

Example 4We consider situations of Paley-Wiener spaces whose rapitogl ker-
nel is given by (20).

In the following examples, we distribute collocation psim in the interval
(—5,5), uniformly, and use 300 decimal digits computation.

We denote

Oh(2) = Kn(z,0),
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and check whetheg, belongs to the spaa# (7).

Figures 6, 7 and 8 show our numerical resultsggig, andgs, respectively. Fig-
ure 6, where the norm grows exponentially, indicates ghat W (’—27) On the other
hand, in Figures 7 and 8, the computed norms illustrate egewee, indicating in
this way that botlg, andgs belong tow (g)

Finally, we check whethef; and f, in Example 1 and 2 belong @ (7). Our
results are shown in Figures 9, and they imply that liethnd f, do not belong to

W (3).
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6 Band preserving, phase retrieval and related problems

The membership problem that we are considering here wasgiyrand directly

motivated by the deep analytical results in [11]. The cqroesling fundamental
problems, with many applications to analytical signal®, stated in our general
theory as follows: For any fixed membgg Hg, look for a functiong satisfying

f(p)a(p) € Hk. (22)

Indeed, they examined deeply for the special Paley-Wigreesfor the images by
Fourier inversion for thé, functions on an interveD, A].

If we are concerned with the functiorisandg on a finite number of point§p; },
then for the non-vanishing poin{p;} of the functionf, the valuegy(p;) are given
arbitrary, and we obtain the representation

n

f(pa(p) = > CiK(p,pj), (23)
=1

as in (7) and we can obtain the meromorphic functiopcompletely, because the
function f and the right-hand side are analytic functions. We can asswithout
loss of generality, that the functiod& (p, pj)} are linearly independent and in this
case, the function (23) is uniquely determined.

The above logic is very interesting, because in view to lawktfie functiong,
we can see a great freedom. Furthermore, we note that, infteetie functiong,
we can take the functions:

_ h(p . .
g(p) = D) (for any given functionh € Hk), (24)

which are meromorphic functions. For the membership prablge can conclude
a simple result. So, we shall recall the reference [11] andete that all the logics
in the paper depend on the property of the restriction fofuhetionsg that belong

Ntd
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to L, spaces on the real line. We will not be able to consider in gksimmanner
such condition omy in the above idea. So, we wonder if in future it will be possibl
to expose some connection between the above theory and théam analysis
obtained in [11].

Moreover, it is also significant to notice that all the anialgtand deep theory of
[11] depends on the zero point properties of the funcfipof course. So, conse-
guently, the construction of the desired functigris not simple. When we consider
the support properties of the related Fourier inversiormimection with the con-
volution property, the results will baysteriously deeand many concrete problems
may happen. For the sake lodrd analysisthe authors of [11] were able to solve
surprisingly and perfectly the phase retrieval problemalitis requesting, however,
the strong conditiog| = 1 on the real line. As it was exposed above, for the sake
of great freedom for the functiorgs we can construct the desired functigaven in
the case of phase retrieval problems.
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