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Abstract We would like to propose a new method in view to catch smoothing
properties and analyticity of functions by computers. Of course, in the strict sense,
such goal is impossible. However, we would like to propose some practical method
that may be applied for many concrete cases for some good functions (but not for
bad functions, in a sense). Therefore, this may be viewed as aprocedure proposal
which includes numerical experiments for the just mentioned challenge and within
a new method.

1 Introduction

The main idea behind the present work is to answer – at least partially – to the very
important practical question:
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Could we catch some smoothing properties and analyticity offunctions by using computers?

More than answering affirmatively to this question, by applying the theory of re-
producing kernels, we would like to propose a new method which turns possible to
catch smoothing properties and analyticity of functions bycomputers. Clearly, in a
strict mathematical sense, such methods will be impossible. Anyway, from a certain
practical point of view, we would like to propose a method that may be applied for
many cases where some good functions are involved, despite the fact that it will
not solve other situations where “bad functions” occur. Ourmain arguments will be
therefore be concerned with numerical experiments attaining such challenge by a
new concept.

For some special cases, certain abstract theory is known by using specific approx-
imation mathematical concepts. For example, for the analyticity issue, it is worth
mentioning that our problem is closely related to some classical problems. This
is the case of the problem of best analytic approximation inLp on the unit circle
which may be formulated as follows: given a functiong∈ Lp, find a functionpg in
the Hardy spaceH p, such that

‖g− pg‖Lp = distLp(g,H p).

This has obviously a long known history which from the point of view of powerful
results may be considered to begin with the great step of F. Riezs when, in 1920, he
proved [8] that the bestH1–approximation inL1 of a trigonometric polynomial of
degreen is an analytic polynomial of degree at mostn. This was even generalized
in 1950 by A. Macintyre and W. Rogosinski [7], when considering the problem of
best analytic approximation inLp for rational functions with finite number of poles
in the open unit disk. In particular, it was derived that the bestH1–approximation
of a rational function is also a rational function (and the same holds for the best
H∞–approximation).

In the present paper, in order to consider analyticity or smoothing properties, we
shall represent them by the members of reproducing kernel Hilbert spaces. Indeed,
by the consequent Sobolev spaces, we can classify the smoothness properties by the
corresponding orders in a quite useful way. On the unit disc in the complex plane,
by the Bergman-Selberg spaces, we can classify the family ofanalytic functions, for
example. In this way, many properties of analytic functionsmay be classified by re-
producing kernel Hilbert spaces, similarly. So, our interest turns to the problem that
we want to determine whether any given function belongs to a certain reproducing
kernel Hilbert space or not.

2 Preliminaries and the basic starting points

First, we shall recall the reproducing kernel Hilbert spaces for their essences (cf. [9,
10]).
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Let H be a Hilbert (possibly finite-dimensional) space, and considerE to be an
abstract set andh a HilbertH -valued function onE. Then, we are able to consider
the linear transform

f (p) = (f,h(p))H , f ∈ H , (1)

from H into the linear spaceF (E) comprising all the complex valued functions
on E. In order to investigate the linear mapping(1), we form a positive definite
quadratic form functionK(p,q) onE×E defined by

K(p,q) = (h(q),h(p))H on E×E. (2)

Then, we obtain the following fundamental results.

Proposition 1.

(I) The range of the linear mapping(1) by H is characterized as the reproduc-
ing kernel Hilbert space HK(E) admitting the reproducing kernel K(p,q) whose
characterization is given by the two properties:(i) K(·,q)∈HK(E) for any q∈E
and,(ii) for any f ∈ HK(E) and for any p∈ E, ( f (·),K(·.p))HK (E) = f (p).

(II) In general, we have the inequality

‖ f‖HK(E) ≤ ‖f‖H .

Here, for any member f of HK(E) there exists a uniquely determinedf∗ ∈ H

satisfying
f (p) = (f∗,h(p))H on E

and
‖ f‖HK (E) = ‖f∗‖H . (3)

(III) In general, we have the inversion formula in(1) in the form

f 7→ f∗ (4)

in (II ) by using the reproducing kernel Hilbert space HK(E).

The inversions of the type (4) are – in general – very difficultand delicate prob-
lems, see the history, for example, in [2].

The next result will exhibit that a reproducing kernel Hilbert space is a good and
natural functions space:

Proposition 2. For a Hilbert space H comprising of functions{ f (p)} on a set E,
the space admits a reproducing kernel if and only if, for any point q∈ E, f → f (q)
is a bounded linear functional on H. If a function sequence{ fn} converges to f in
the space H, then it converges to the function point wisely onE. Furthermore, on a
subset of E where K(p, p) is bounded, its convergence is uniform.

We shall call a complex-valued functionk(p,q) in a setE×E apositive definite
quadratic form function (or, a positive semi-definite matrix) on the setE when it
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satisfies the property: for an arbitrary functionX(p) on E that is zero onE except
for a finite number of points ofE, ∑p,qX(p)X(q)k(p,q)≥ 0.

As we can see simply, a reproducing kernelK(p,q) on E is a positive definite
quadratic form function onE, its converse statement is very important:

Proposition 3. For any positive definite quadratic form function K(p,q) on E, there
exists a uniquely determined reproducing kernel Hilbert space HK admitting the
reproducing kernel K(p,q) on E.

Now, for our present challenge, we shall first recall the fundamental property: For
two positive semi-definite matricesK(1)(p,q) andK(2)(p,q) on E, if K(2)(p,q)−
K(1)(p,q) is a positive semi-definite matrix onE, then we shall write it as follows:

K(1) ≪ K(2).

We see that the symbol≪ is a partial ordering in the class of all positive semi-
definite matrices onE, and

Proposition 4. For two positive semi-definite matrices K(1)(p,q) and K(2)(p,q) on
E,

HK(1) ⊆ HK(2) (as members)

if and only if there exists a positive constantΓ such that

K(1)(p,q)≪ Γ 2K(2)(p,q).

Here, the minimum of such constantsΓ coincides with the norm of the inclusion
map J from HK(1) into HK(2) .

Note that for anarbitrary complex-valued functionf on a setE, the function
f (p) f (q) is a positive definite quadratic form function onE. Therefore, we can
apply the theory of reproducing kernels to the membership problem as follows:

Corollary 1. Let K(p,q) be a positive definite quadratic form function on a set E.
Then, for any complex-valued function f on the set E, f belongs to the reproducing
kernel Hilbert space HK if and only if f(p) f (q) ≪ γ2K(p,q) for some constantγ.
Then, the constantγ may be taken by

‖ f‖HK = inf{γ > 0 : f (p) f (q)≪ γ2K(p,q)}. (5)

In connection with this criteria for the membership problem, we note that for
any large number of points{p j}

n
j=1 of the setE, we cannot apply the result by the

positive definiteness.
Indeed, we shall assume that, without loss of generality,{K(p, p j)}

n
j=1 are lin-

early independent inHK . Then, for any given values{α j}
n
j=1, there exists a uniquely

determined memberf ∈ HK satisfying

f (p j ) = α j , j = 1,2,3, ..,n, (6)
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as follows:

f (p) =
n

∑
j=1

Cj K(p, p j) (7)

where the constants{Cj} are determined by the equations

n

∑
j=1

CjK(p j ′ , p j) = α j ′ , j ′ = 1,2, ...,n, (8)

and we obtain the inequality (5) for

γ2 =
n

∑
j=1

n

∑
j ′=1

Cj Cj ′ K(p j ′ , p j). (9)

Note that the functionf satisfying (6) is not uniquely determined, but the func-
tion f given by (7) has the minimum norm among the functionsf satisfying (6).

For any finite number of points{p j}
n
j=1 and any given values{α j}

n
j=1, there

exists a functionf ∈ HK satisfying (6), certainly. However, for many points{p j}
n
j=1

and bad values{α j}
n
j=1, the calculations (7) to looking for{Cj} will be numerically

and practically difficult. The difficulty to calculate (7) will depend on the given data
and the function spaceHK . We looked such phenomena for the Paley-Wiener spaces
in some cases (cf. [1]). However, to represent such deep and delicate phenomena
exactly will be difficult. Anyway, we may expect that the smoothness property of
functions may be reflected to some properties on a large pointset. We shall propose
such method in the next section in view to understand how to catch such property
more clearly.

The goodness of a function in the reproducing kernelHK may be given by:

(g1) the number of the points{p j} in (7)
(g2) the distribution of the coefficients{Cj} in (7), and
(g3) the distribution of the points{p j} on the setE.

The factors (g1) and (g2) may be considered in a general setting, however, (g3)
will depend on the reproducing kernel Hilbert spaceHK .

3 Aveiro discretization method

By considering the inversion of (1) from a finite number of point data{ f (p j)}, we
established the following fundamental results:

Proposition 5 (Ultimate realization of reproducing kernel Hilbert spaces ([2])).
In our general situation and for a uniqueness set{p j} of the set E for the function
space HK (that is, for any function f∈ HK satisfying f(p j) = 0 for all j, f is zero
identically on E) satisfying the linearly independence in HK , we obtain, for any
member f∈ HK
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‖ f‖2
HK

= lim
n→∞

n

∑
j=1

n

∑
j ′=1

f (p j)ã j j ′ f (p j ′), (10)

whereã j j ′ are assumed the elements of the complex conjugate inverse ofthe positive
definite Hermitian matrix An constituted by the elements

a j j ′ = K(p j ′ , p j).

Furthermore, the limit is determined in the sense of not decreasing sequences.

From this Proposition 5, we see that the membership propertyis faithfully re-
flected on the uniqueness point set{p j} by the norm (10). Now, our basic idea is as
follows: Fujiwara’s infinite precision algorithm and greatcomputer power will be
able to calculate the norm (10) for many practical cases; seethe case of numerical
and real inversion formula of the Laplace transform that is afamous difficult prob-
lem (cf. [1, 2, 4, 5, 6]). Surprisingly enough, Fujiwara gavethe solution for some
Fredholm integral equation containing a parameterα = 10−400 by 6000 discretiza-
tion (6000 linear equations) with600 digits precision.

Furthermore, Fujiwara gave already numerical experimentsfor the norms for
many points (cf. [1, 2]), and we see that when increasing the number of points we are
requested to calculate with more precision and more calculation costs. So, we will
need more precision and computer costs for the realization of our method. However,
this was succeeded already for our present method as we shallsee in Section 5.

4 The Sobolev spaces and the Paley-Wiener spaces

In order to give numerical experiments, we shall introduce the typical reproducing
kernel Hilbert spaces, Sobolev Hilbert spaces.

Let m>
n
2

be an integer. Denote byNCK the binomial coefficient. Then, we have

Wm,2(Rn) = HK(R
n), (11)

whereWm,2(Rn) denotes the Sobolev space whose norm is given by

‖F‖Wm,2(Rn) =

√√√√√
m

∑
ν=0

mCν




ν

∑
α∈Zn

+, |α |≤ν

ν!
α!

∫

R

∣∣∣∣
∂ ν F(x)

∂xν

∣∣∣∣
2

dx


, (12)

and

K(x,y) =
1

(2π)n

∫

R

exp(i(x− y) ·ξ )
(1+ |ξ |2)m dξ . (13)

In particular, note that ifm>
n
2

, thenWm,2(Rn) is embedded into BC(Rn).
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A generalization of the above spaces is given in the following way. Lets>
n
2

and

define

K(x,y) :=
1

(2π)n

∫

Rn
(1+ |ξ |2)−sexp(i(x− y) ·ξ )dξ . (14)

Then, we have
HK(R

n) = Hs(Rn), (15)

where the norm is given by

‖ f‖Hs(Rn) =

(∫

Rn
(1+ |ξ |2)s|F f (ξ )|2 dξ

) 1
2

. (16)

The simplest example is given in the following way. The spaceHS(R) is made
up of absolutely continuous functionsF onR with the norm

‖F‖HS(R) :=

√∫

R

(F(x)2+F ′(x)2)dx. (17)

In addition, the Hilbert spaceHS(R) admits the reproducing kernel

K1(x,y) :=
1

2π

∫

R

1
1+ ξ 2 exp(i(x− y)ξ )dξ =

1
2

e−|x−y|. (18)

Note that if the factor(1+ |ξ |2)s is replaced by the characteristic function on a
compact set onRn, then that space becomes the Paley-Wiener space comprisingof
entire functions of exponential type.

Indeed, we shall consider the following integral transform, for a functionF in

L2(−π/h,+π/h), h> 0 :

f (z) =
1

2π

∫ π/h

−π/h
F(t)e−iztdt. (19)

In order to identify the image space following the theory of reproducing kernels, we
form the reproducing kernel

Kh(z,u) =
1

2π

∫ π/h

−π/h
e−izte−iutdt =

1
π(z−u)

sin
π
h
(z−u). (20)

The corresponding image space is called the Paley-Wiener spaceW
(π

h

)
, com-

prised of all analytic functions of exponential type satisfying, for some constantC,
and asz→ ∞,

| f (z)| ≤Cexp

(
π |z|
h

)

and ∫

R
| f (x)|2dx< ∞.
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From the identity

Kh( jh, j ′h) =
1
h

δ ( j, j ′)

(where we are using the Kronecker’sδ ), sinceδ ( j, j ′) is the reproducing kernel for
the Hilbert spaceℓ2, using the general theory of integral transforms of Proposition 1
and the Parseval’s identity, we reach to the isometric identities in (19)

1
2π

∫ π/h

−π/h
|F(t)|2dt = h∑

j

| f ( jh)|2 =
∫

R

| f (x)|2dx.

That is, the reproducing kernel Hilbert spaceHKh with Kh(z,u) is characterized as a
space comprising the Paley-Wiener spaceW

(π
h

)
and with the square norm above.

Here we used the well-known result that{ jh} j is a uniqueness set for the Paley-
Wiener spaceW

(π
h

)
; that is, f ( jh) = 0 for all j implies f ≡ 0. Then, the reproducing

property ofKh(z,u) states that

f (x) = ( f (·),Kh(·,x))HKh
= h∑

j
f ( jh)Kh( jh,x) =

∫

R

f (ξ )Kh(ξ ,x)dξ .

In particular, on the real linex, this representation is the sampling theorem which
represents the whole dataf (x) in terms of the discrete data{ f ( jh)} j . For a general
theory for the sampling theory and error estimates for some finite points{h j} j , see
[9].

5 Numerical experiments

In order to look our principle, we show some numerical examples. In our numerical
experiments, we taken sampling pointsp j , j = 1,2, . . . ,n, and calculate a truncation
of the right-hand side of (10):

n

∑
j , j ′=1

f (p j )ã j j ′ f (p j ′), (21)

which converges to the square ofHK-norm of f if the test functionf belongs to the
target function spaceHK . The sampling points are distributed in some finite interval
uniformly by using pseudo-random numbers generated by the standard library func-
tion rand() in the programming language C. Throughout this section, we use 300
decimal digits arithmetic by the multiple-precision arithmetic environmentexflib[3].

Example 1.Doesf1(x) =
1
2

e−|x| belong toHS(R) whose reproducing kernel is given

by (18)?

The Figure 1 shows our numerical results. The interval wherethe sampling points
are located is set to be(−5,5). The horizontal axis is the number of sampling points
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Fig. 1 Numerical Results for Example 1,p j ∈ (−5,5).

n, and the vertical axis is the approximated norm (21). The graph shows its conver-
gence asn becomes large, and itmeansthat f1 belongs toHS(R).
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Fig. 2 Numerical Results for Example 1 with Double Precision Arithmetic

Next, we process the same procedure with the standard doubleprecision arith-
metic. The result shown in Figure 2 is quite different from Figure 1, and the differ-
ences are due to accumulation of rounding errors in floating-point arithmetic. From
the results we know that multiple-precision arithmetic is essentially required for the
proposed algorithm.
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(a) p j ∈ (−1,1)
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(b) p j ∈ (−10,10)

Fig. 3 Numerical Results for Example 1 with Different Intervals

Figure 3 shows results with different intervals. ComparingFigure 1 with Fig-
ure 3, it can be seen that larger intervals return larger dispersion in this example.

Example 2.We check thatf2(x) =
1
4

e−|x|
(
1+ |x|

)
belongs toH2(R) whose repro-

ducing kernel is given by

K(x,y) =
1
4

e−|x−y|(1+ |x− y|
)
.
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Fig. 4 Numerical Results for Example 2,p j ∈ (−5,5).

Figure 4 shows numerical results, where the computed valuesshow pretty quick
convergence. It obviously indicates thatf2 is a member ofH2(R).

Example 3.Is f1(x) =
1
2

e−|x| a member ofH2(R)?
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Fig. 5 Numerical Results for Example 3,p j ∈ (−5,5).
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Fig. 6 Numerical Results for Example 4 withh= 1.

Our numerical results are shown in Figure 5. We note that the vertical scale is
different from that in Figure 1 or Figure 4. We cannot see convergence in numerical
results. In other words, it suggests that the functionf1 does not belong toH2(R).

Example 4.We consider situations of Paley-Wiener spaces whose reproducing ker-
nel is given by (20).

In the following examples, we distribute collocation points p j in the interval
(−5,5), uniformly, and use 300 decimal digits computation.

We denote
gh(z) = Kh(z,0),
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Fig. 7 Numerical Results for Example 4 withh= 2.
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Fig. 8 Numerical Results for Example 4 withh= 3.

and check whethergh belongs to the spaceW
(π

2

)
.

Figures 6, 7 and 8 show our numerical results forg1,g2 andg3, respectively. Fig-
ure 6, where the norm grows exponentially, indicates thatg1 /∈W

(π
2

)
. On the other

hand, in Figures 7 and 8, the computed norms illustrate convergence, indicating in
this way that bothg2 andg3 belong toW

(π
2

)
.

Finally, we check whetherf1 and f2 in Example 1 and 2 belong toW
(π

2

)
. Our

results are shown in Figures 9, and they imply that bothf1 and f2 do not belong to
W

(π
2

)
.
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(a) Testingf1 ∈W(π/2)
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(b) Testingf2 ∈W(π/2)

Fig. 9 Numerical Results for Example 4

6 Band preserving, phase retrieval and related problems

The membership problem that we are considering here was strongly and directly
motivated by the deep analytical results in [11]. The corresponding fundamental
problems, with many applications to analytical signals, are stated in our general
theory as follows: For any fixed memberf ∈ HK , look for a functiong satisfying

f (p)g(p) ∈ HK . (22)

Indeed, they examined deeply for the special Paley-Wiener space for the images by
Fourier inversion for theL2 functions on an interval[0,A].

If we are concerned with the functionsf andg on a finite number of points{p j},
then for the non-vanishing points{p j} of the functionf , the valuesg(p j) are given
arbitrary, and we obtain the representation

f (p)g(p) =
n

∑
j=1

CjK(p, p j), (23)

as in (7) and we can obtain the meromorphic functiong completely, because the
function f and the right-hand side are analytic functions. We can assume, without
loss of generality, that the functions{K(p, p j)} are linearly independent and in this
case, the function (23) is uniquely determined.

The above logic is very interesting, because in view to look for the functionsg,
we can see a great freedom. Furthermore, we note that, indeed, for the functiong,
we can take the functions:

g(p) =
h(p)
f (p)

(for any given functionh∈ HK) , (24)

which are meromorphic functions. For the membership problem, we can conclude
a simple result. So, we shall recall the reference [11] and wenote that all the logics
in the paper depend on the property of the restriction for thefunctionsg that belong
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to Lp spaces on the real line. We will not be able to consider in a simpler manner
such condition ong in the above idea. So, we wonder if in future it will be possible
to expose some connection between the above theory and the very hard analysis
obtained in [11].

Moreover, it is also significant to notice that all the analytical and deep theory of
[11] depends on the zero point properties of the functionf , of course. So, conse-
quently, the construction of the desired functionsg is not simple. When we consider
the support properties of the related Fourier inversions inconnection with the con-
volution property, the results will bemysteriously deepand many concrete problems
may happen. For the sake ofhard analysis, the authors of [11] were able to solve
surprisingly and perfectly the phase retrieval problem which is requesting, however,
the strong condition|g|= 1 on the real line. As it was exposed above, for the sake
of great freedom for the functionsg, we can construct the desired functiong even in
the case of phase retrieval problems.
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