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Abstract

The paper is devoted to study classes of plane wat¥eadiion problems by a region

which involves a crack with impedance boundary conditi@@anditions on the wave

number and impedance parameters are found to ensure thpageltiness of the prob-
lems in a scale of Bessel potential spaces. Under such eomglirepresentations of
the solutions are also obtained upon the considerationrobsassociated operators
which, in a sense, combine operators of Wiener-Hopf and Elagke.
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1 Introduction

The difraction by regions containing cracks is a well recognizeddrtant problem in ap-
plied mathematics. Recently, several works increasedfigigntly the knowledge about
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the solutions of such problems and the most appropriateespleamework where to in-
terpret these solutions. As a matter of fact, a great pat@frécent interest goes to the
mathematical analysis of the weak formulation of such kihgroblems, and to an even-
tual possibility to increase regularity of the solution isabolev spaces context. E.g., the
works [7, 8, 9, 10, 11, 12, 13, 14, 19, 35, 36, 38, 39, 40] folttig line of research, and
worked out already a corresponding detailed mathematidy/sis about several classes of
diffraction problems (but mostly without cracks).

In the present work, we go further on our own research (cf, J#2) as it concerns the
knowledge about the regularity of solutions of wavétrdiction problems in the half-plane
with a crack geometry, by considering in here (possibigecgnt) boundary impedance con-
ditions on the crack. More specifically, we will derive sedifierent possible conditions
on the wave number and on the impedance paramentes sucheahatiue solutions for
the considered problems are obtained in Bessel potentalespil**, for a smoothness
parametek € [0,1/2).

It is worth mentioning that the present methods aftedint from other somehow more
classical works which are based only on the Wiener-Hopf ogetind its generalizations.
Important tools in our technique are the Green formula andre@anient combination of
pseudo-dierential operators with other types of operators. Moreipedg; we use here
a potential theory approach combined with the use of coaaetension operators, and a
corresponding integral description of the problems. Tthis,is also diferent from the most
classical approach due to the Malyuzhinets method [33]camésponding representations
of solutions by using the so-called Sommerfeld integraigfarm (cf., e.g., [32]). Itis also
clear that the present crackdaction problems present an increase of thiailties when
compared with the corresponding problems of wav&alition by a half-plane. The main
difficulty is related to the dlierent geometries of these two classes of problems, which for
the crack case is originating much mordfidult operators and equations for deriving the
solutions of the problems.

2 Formulation of the problems

We will now introduce the general notation which will allolet mathematical formula-
tion of the problem. LetS(R") denote the Schwartz space of all rapidly vanishing func-
tions andS’(R") the dual space of tempered distributions ®h The Bessel potential
spaceH®(R"), with se R, is formed by the elementg € S'(R") such that|lellysgn =

IIT‘1(1+|§|2)S/2-77¢||L2(Rn) is finite. As the notation indicate$; ||4sgn) is @ norm for the
spaceH®(R") which makes it a Banach space. Hefe= . denotes the Fourier trans-
formation inR".

For a given Lipshitz domaitD, on R", we denote byHS(D) the closed subspace of
HS(R") whose elements have supportsgn and HS(D) denotes the space of general-
ized functions on» which have extensions intR" that belong toHS(R"). The space
HS(D) is endowed with the subspace topology, andH¥D) we introduce the norm
of the quotient spacelS(R")/HS(R"\D). Throughout the paper we will use the notation
R := {X = (X1,...,X1-1. ¥2) € R": +X, > 0}. Note that the spaced®(R?) and H(R") can
be identified, and we will denote them hy(R").
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LetQ:={(x1, %) €R?: %1 > 0,% € R}, I'1 := {(X1,0) : Xy € R}, andl2 := {(0, X2) : Xo € R}.
Let furtherC := {(x1,0) : 0< X1 < a} c I'1 for a certain positive number andQ¢ := Q\C.
Clearly,0Q =T, anddQ¢ =T UC.

For our purposes below we introduce further notatig®s:= {(x1, X2) € R?: x; > 0, X >
0} and Q; = {(X1, %) € R?: x1 > 0,% < O}, thendQj = SjU S, for j = 1,2, whereS :=
{(%1,0) : X1 2 0} cT1, S1:={(0,%X2) : X2 = 0} c 'y, andS; := {(0, %) : X2 < 0} c T, Finally,
we introduce the following unit normal vectong = (0, —15 onI'y andn, = (—1,05 onIs.

Lete €0, %). We are interested in studying the problem of existenceuaiglieness of
an elementi e H*4(Q), such that

(A+K¥u=0 in Qc, (2.1)

andu satisfies one of the following two representative boundanddions:

{ [%U]%_ Plde =g on € s { [U]%l oo (2.2)
[0n Ul + P2[ulc =92 on C, [ulg, =h2 on S,
[c%m]%— pi[ulf =01 on C, and [6n2u]%1 =f; on Sy, 23
[0, Ul + p2[ulg = g2 on C, [On,ul5, = T2 on S;

here the wave numbére C\R and the numberg; € C are given. The eIements]gj and
[6n2u]f§j denote the Dirichlet and the Neumann tracesSarj = 1,2, respectively, while by

[u]$ we denote the Dirichlet traces @hfrom both sides of the screen and ki, ul; we
denote the Neumann traces @rirom both sides of the crack.

Throughout the paper on the given data we assuméithdt 1/2+2(S;), fj e H-1/2+¢(S)),
andgj € H=Y2*¢(C), for j = 1,2. Furthermore, we suppose that they satisfy the following
compatibility conditions:

xa(g; —gp) e rcH2%(C), (2.4)
and
xo(91+rcfio€?), xo(gz—rcfr0e7'?) e rcH24(0). (2.5)
Here,rc denotes the restriction operator@andya(X) := yo(a— X), whereyg € C*([0, a)),
such thajyo(x) = 1 for x € [0,a/3] andyo(X) = O for x € [2a/3, a].
From now on we will refer to:
e Problem®,_p as the one given by the conditions (2.1), (2.2), (2.4);

e Problem®,_y as the one given by the conditions (2.1), (2.3), (2.4), arfd) (2

Note that the compatibility conditions (2.4) and (2.5) aeeessary for the well-posedness
of the problemsP,_p and®,_y but only in the case = 0. Fore € (0, %) the compatibility
conditions are superfluous.



3 The fundamental solution and potentials
We start this section by proving the uniqueness result ®ptioblems in consideration.

Theorem 3.1.If £ € [0, %) and one of the following situations holds:

@ Rek)(Imk)>0, Imp;=0, Imp,=>0,

(b)) (Rek)(Imk)<0, Impr<0, Imp, <0,

(c) I9mk|>|Rekl, Repy <0, Rep,<0O,

() |19mki=|Rekl, Rep1<0, Rep,<O,

(d) Rek=0, (Impy)(Impy)>0,

(€) Impy#0, (IMK)? - (Rek)?+2(Rek)(TmK) 2 ~ 0,

5 S‘mpl
Repz < Repy %gi,
(f) Impz#0, (IMK)? - (Rek)? + 2(Rek)(TmK) S22 > 0,
‘Repl < %epz gmg;,

then problemsP,_p and®,_N have at most one solution.

Proof. The proof is standard and uses the Green’s formula (beiffigismt to consider the
cases = 0). LetR be a sffiiciently large positive number ari8{R) be the disk centered at
the origin with the radiuRk. SetQg := Q- N B(R). Note that the domaifeg has a piecewise
smooth boundarg including both sides of and denote by(x) the outward unit normal
vector at the non-singular points= Sg.

Let u be a solution of the homogeneous problem. Then the first Gradantity for u
and its complex conjugatein the domainQg, together with zero boundary conditions on
Sgryields

[ wuP—i@uefx=pr [ Paxs pe [ Paxe [ @u)idse. @)
R c c IBRINOC

From the real and imaginary parts of the last identity, weiobt
f |1V + ((Imk)? - (Rek)?) lu?|dx — Rep f [u]*2dx — Repy f I[u]~|2dx
QR C C

- Re f G0)TdS:.  (3.2)
OBRINQC

—Z(Q%ek)(fimk)fQ lu?dx — Smplfcl[u]ﬂzdx - Smpzfcl[u]_lzdx

- 9m f (OnU) UdSR. (3.3)
B(RINQe



Now, note that sinca e H1(Q¢) there exists a monotonic sequence of positive numbers
{Rj}, such thaRy — o as j— oo and

Iim f (OnU)u dSg = 0. (3.4)
= JaBR)NOe
For each of the conditions (a), (b), and (d) the expressidhareft hand side of (3.3) and
for the condition (c) and (3 the expression in the left hand side of (3.2) are monotoiitic W
respect taR, and therefore (3.4) implies that the limits at infinity obthxpressions in the
left and right hand sides of (3.2) and (3.3) exist and arelggua Thusu =0 in Q.

For the condition (e), equalities (3.2) and (3.3) give us

Rep
fg R[qu|2+((Smk)z—(‘Rek)2+2(‘)&ek)(f}mk)STpi)|u|2]dx

Imp; _2
+(‘Rep13mpl—‘)%epz)£|[u] 2dx

~ Re f (O TdSs — —SPLgm f (OnU) TSk,
OB(RINQC Impy IBRINC

with the expression in the left hand side which is also mamictavith respect taR, and
therefore (3.4) implies that limit at infinity exists and etgito 0. Similar arguments work
for the condition (f). Thusi = 0 in Q. also for the conditions (e) and (f). m|

Now, without loss of generality, we assume thfnk > 0; the complementary case
Imk < 0 is treated with obvious modifications. Let us denote thadsted fundamental
solution of the Helmholtz equation (in two dimensions) by

KO = —HOWX).

whereHél)(k|x|) is the Hankel function of the first kind of order zero (cf. [23.4]). Fur-
thermore, we introduce the single and double layer potierdial’;j:

YO0 = [ KOOI xeT;.

WK = [ KO- Plembly. xeT).
i
where j= 1,2 andy, ¢ are density functions. Note that foej1 sometimes we will write

R instead ofl";. In this case, for example, the single layer potential defi@gove has the
form

Vi) (%0, %2) = fR K(xa -y, xu)dy. ¥z #0.

SetR2 := {(x1, %) € R? : x» = 0} and let us first consider the operatd/s= V; and
W .=W;.



Theorem 3.2(Cf., e.g., [10]) The single and double layer potentials V and W are contin-
uous operators

VIHSR) » HSMER2),  W:iHY(R) » M3 (R2) (3.5)

for all se€ R and satisfy following well-known limit relations:

VO = VW = H@), BV = [75110).

(3.6)
W =:[=3100). [T = WGl = £(e).

where
HO@ = [ Ke-ypoy. zek. 37)
L@ = Im o [K-Xlet)dy. zeR. @9

and | denotes the identity operator.

In our further considerations we will use the even and oddresibn operators defined
by

e _ Qo(y)’ y € Ri 0 _ So(y)’ y € Ri
“”(y)‘{d—y), yer,  and “’(y)‘{ o(-y). yeRs

respectively.

Remark3.3 (Cf. [19]). The following operators

CIHHR) — HFR), O ATRRL) — HOR(R),
CHTER) S HURR), (0 AR (RL) — HOE(R),

are continuous for ak € [0,1/2).
Lemma 3.4(Cf. [10]). If £ €[0,3), then
rr,oVol®% =0,  rr,o0Wo°=0,
rr, 000,V ol =0,  rr,00n,Wo%=0
for all y € H%(S), § e rgH=2(S), ¢ € H**%(S), andp e rgHe+2(S).
Note that analogous results are valid for the operaterandW,.
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4 The problems in the form of Wiener-Hopf plus Hankel equa-
tions

In the present section, we will equivalently write our pexik in the form of single equa-
tions characterized by particular operators which willeleghon algebraic sums of Wiener-
Hopf and Hankel operators. These operators will be origthdty an appropriate use of
certain pseudoffierential operators (introduced in the last section), asd alconvenient
use of odd and even extension operators. In view to form#tiegse operators later on, we
will now introduce the reflection operatdrgiven by the rule

Ju(y) =y(-y) forall yeR.

Lemma 4.1. Let one of the conditions (a)—(f) of Theorem 3.1 be satisfiezh operators
1 ,
)= Sl +pH H 2*([R) — H 2"(R), j=1,2, 4.1)

are invertible.

Proof. Note that the invertibility of the operators (4.1) can beilgaterived from the anal-
ogous results on operatafs— %I from [10, Section 5], using the mapping properties of the
operatorH and the identitesLH = HL = —%I; cf. [7, 8, 10]. |

From now on we assume that one of the conditions (a)—(f) obfidra 3.1 is satisfied.

4.1 The®,_p problem

We start by considering the boundary value probfény in the following equivalent form:
Findy € H**(Q), j = 1,2, such that

(A+K)y=0 in @ (4.2)
+
[uj]Sj =h; on Sj, 4.3)
[Omui]s—prlwald =01, [OnU]c+P2[wdc=0 on  C, (4.4)
and
[u]fe —[U2lge =0, [OmU1]ie — [OnU2]ce =0 on CS, (4.5)
whereC® = S\C.
Let us consider the following functions
up := —V1<D11€°r3¢+ Hi inQq, (4.6)
and
U = qu)glfors(lﬁ —p)+Hy inQy, 4.7)
where

Hy = =V1®7 (€6, 91 + 2p1[Wa ()] 5)) + 2Wa(¢%hy)  in Qg
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and
Haz 1= Va@5" (£2(£. 02 - 2p2l Wa(£%)] ) + 2Wa(¢%hp) i Qa;

herey andy are arbitrary elements of the spa(ﬁs%”(cc) and ﬁ%+8(C°), respectively;
(.01 € H‘%”(S) is any fixed extension af; € H‘%+€(C), while £,0; € H‘%+€(S) denotes
the extension of, € H‘%”(C) which satisfies the conditiorgc(£,0; — £.92) = 0. Note that
such extension exists due to the compatibility conditiod2Furthermore, the operators
d)Il and d);l denote the inverse of the operatdrs and ®,, respectively, cf. (4.1). Note
also that, the functionkl; andH- are well defined and are known.

Using the results from Section 3 and noting tthl?f-fo = €°r3®j‘1€° (cf. [10]) it is easy

to verify thaty;, j = 1,2, belong to the space}sl*g(Qj) and satisfy equations (4.2)-(4.4).
Thus it remains to satisfy the conditions (4.5). The firstditbon of (4.5) gives us

~1eeH(OTH + D31 Cr g + 1o HO, r s = HiL,

where
1
Hib = [Halge — [Hilg € HZ4(CO).

From the second condition of (4.5), we have
0 = [n, 1] e — [0n,Uz] e = [0 Unl e — P1lU1] e — [On, Uz] e — PolUz] ce + (P + P2)[Utl e,
which leads us to the following equation
~(p1+ P2l HDL T +roel®rsp = HE,

where
1
HD = =(p1+ p2)[H1ld € HZ4(CO).

Thus we arrived to the following equation
I'Cc(](forsT =Hp, (48)
where

~H(@T1+ 5l HDS?!
K = ! 2 2 } ‘I’::(w),

—(pr+ p)HOL | ¢

andHip := (H)5,HZ%,)" is a known vector function. Therefore we need to investigiage
invertibility of the operator

H- I+e (CC) H i+e (CC)
rCc(K{’OrS : b — @ . (4.9
H3+e () H3+e ()

With the help of the operatal and the shift convolution operators
Op(r:a) := T_lTia -F,
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wheretp(¢) 1= €%, £ e R, we equivalently reduce the problem to the invertibilitythée
operator

H 2+ (R,) H2*(R,)
re, K__: ® — ® , (4.10)
H2*(R,) H2*(R,)

where
K__ = Kdiag{l — Op(r_2a)J, | — Op(r_24)J}.

Let us note here that because of Theorem 3.1 and having in tméneixhibited limit rela-
tions of the potentials, we already know that Kerk__ = {0}.

4.2 The®,_n problem

As in the previous subsection, the boundary value prolfer can be equivalently rewrit-
ten in the following form: Findy; € H1+8(Qj),j =1,2, such that

(A+K)y=0 in Q, (4.11)
oy, =F  on S, (4.12)
]
[Onunls—prluddg =01, [Onelc+p2lwlc=g2  on  C, (4.13)
and
[uilde = [Uzlge =0, [OnyUt]ie = [0n, U2l =0 on CF, (4.14)
whereC® = S\C.
Let us consider the following functions
up = V1O sy +Fy1 inQy, (4.15)
and
Up = Vi org(y — @) + F2  in Qy, (4.16)
where
F1 1= —VaBy* (€56, g1 + 2[00, V(£ F1)]5)) - 2V2(°f1)  in Qu,
and

F2 = V185" (£3(L, G + 2[00, Vo (£° f2)]§)) = 2V5((°fp) in Qy;

herey andy are arbitrary elements of the spadgs%+5(C°) and ﬁ%+€(CC), respectively,
as above. Note also that, the functidRgs and F, are well defined (cf. Remark 3.3 and
compatibility conditions (2.5)) and are known.

Using the results from Section 3 and noting t@gﬂ{’e = ferScDj‘lfo (cf. [10]) it we have

thatu;, j = 1,2 belong to the spacés$'*#(Q;) and satisfy the equations (4.2)-(4.4). The first
condition of (4.5) gives us

~1eeH (DL + LN Crap + ree HOZ rsp = iy,
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where )
Fik := [Falge — [Falée € HZ(CY).
On the other hand, the second condition of (4.14) leads us to
0= [3n, U1l = [0ny Uzl ce = [0ny Ut e — Palua] e = [0ny Uz] e — P2lUz] e + (P1 + P2)[Ua] e
which gives rise to the equation
~(p1+ P2l ceHD oo +roel®rsp = FA,

where 1
Fin = —(p1+ p2)[F1lé € H2P(CY).
Thus, altogether, we arrived to the following equation

rCchersT = F|N, (417)
where L L L
—“H(@ -+ D) HD;
K= ! 2 ? ) T Z=( v )
—(pL+p)HOE | 14

and Fn = (Fi,F&,)" is a known vector function. Therefore, by similar argumesss
above, we need to investigate the invertibility of the opmra

H-22(R,) HE*(R,)
e, Kot : @ — @ (4.18)
Hz*e(R,) HZ*e(R,).

where
K.+ = Kdiag{l + Op(r_2a)Jd | + Op(r_za)J}.

and having the property Keg, K. = {0}.

5 Analysis of Wiener-Hopf plus and minus Hankel operators

In this section we will consider general operators with tledbgl structure of Wiener-Hopf
plus and minus Hankel operators, and we will recall — in arr@miate framework for
our purposes — some known operator relations between tipesators and Wiener-Hopf
operators.

In view of this, let us also recall that two bounded linearrapars T and S (acting
between Banach spaces) are said tedpgivalentf T = ES Ffor some boundedly invertible
operatorsE and F. In such a case we will writd ~ S. In addition, when the use of
identity extension operators is needed in combination tihrelated operatork andS,
such corresponding relations are referred to @sm@inear) equivalence after extensi(see
[2, 18] for a detailed description about such operator iaia).

Let us define

AS(€) = (€ +0)° = (1+£9) 2 exp|siarg¢ +i)} ,
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with a branch chosen in such a way that &egi) — 0 as¢ — +o0, i.€., with a cut along the
negative real axis (see Example 1.7 in [22] for additionfdrimation about the properties
of these functions). In addition, we will also use the notati

A ¢
O e f°

Lemma 5.1. [22, §4] Let sr € R, and consider the operators

ASD) = (D+i)°
ASD) = rs, (D-i)%,

where(D +i)*S = F1(¢ +i)*S- F, and ¢1) : H'(R,) — H"(R) is any bounded extension
operator in these spacéwhich particular choice does not change the definitiot\&¢D)).
These operators arrange isomorphisms in the following ssmitings

AS(D) : H'(R,) - H'SR,),
AS(D) : H'(Ry)—>HTSR,)
(for any sr e R).

Bearing in mind the purpose of this section, Mt= Op(a;) = T‘la;j -F and Bjj =
Op(o;) be pseudodierential operators of order; € R; thus, (-)*iay,(-) ik € L*(R),
where(¢) = (1+§2)% and ij = 1,2. Since the operators, (Aj + BjJ) arrange continuous
maps _

g, (A” + Bij J) : HS(R+) — HSHi (R+)
for all se R, then 2x 2 matrix operator
A11+ BllJ A12+ BlzJ

A+BJ= . A=(Ajij=12, B=(Bj)ij=12
Ao1+Bo1J  Agp+BpoJ

arrange continuous maps
H-2*(R,)  HZ*:(R,)
Mg, (A+BJ): ® — ®
H*e(R,) H2*(R,)

whereAj; = Op(g;), Bj = Op(r_2a3;), for i,j = 1,2, and
a1(f) = —o(H)E[r(@)E] ™ +[o(@2)E)] ),
a(é) = o(H)Eo (@)1,
a1(f) = —(pr+ P H)Eo(@1)(E)]
ap) = 1L

Recall that the complete symbols of the pseuffedential operators{ and @; are

(cf. [10, 11]): i . |
O =~ 2 @) =5- Py (5.1)
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wherew = w(¢) := (0? +p2)%1(COS% +ising), with

0 =0(&) = (Rek)* - (Imk)* - £2,
0= 2(Rek)(Imk)

and
arctar% if 0>0,p>0
3 if 0=0,p>0
n—arctarﬁ if 0<0,p>0
a={m if p=0 : (5.2)
2r-arctandl if ©>0,p<0
3—2” if 0=0,p<0
7r+arctar‘% if 0<0,p<0

Lemma 5.1 allows us to construct an equivalence relationdmstrg, (A+ BJ) and
re, (A+83) : [L2(R))? = [La(R4)]%, (5.3)
which is explicitly given by the following identity
. lie 1ve f 1-¢ -3-¢
e, (A+BJ) =diagAz ",AZ “}re, (A+BJ)diagAZ ",A % "}, (5.4)
whereA = (Aj)ij=12, B := (Bjj)ij=12, With
Aj = (D—i)2*A;D+i)", By :=(D—i)2*ByI(D+i) "] (5.5)

for ry:= -3 +e, r2:= 3 +£. Due to the fact than™" : HS#(R,) — Lo(R.) and A;S:
Lo(R.) — HS(R,) are invertible operators (cf. Lemma 5.1), the identity}{Shows that

e, (A+BJ) ~ g, (A+BJ).
Note that
A () =A3(@©)e™, AS(-H)=A3@)e™

which in particular allow us to describe the operat@ts andB;; and their symbols in the
following way

A =0p@E), O =AT©aEA©,
8 =0pli). B =AZ" OO (-9 =AT"TEby .
In particular, we haver(A)(¢) = (&;(£))ij=12 With

811(8) = (O an@),  Aa€) = L2 ara(©),
B21(8) = (O)°(E) (@), Epal€) = L2748 al©),
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ando(8)(¢) = (b (€))i j=1.2, where

b)) = iE-i)r_2a(®)e ™ ani(é).
b12(6) = —it_2a(@)e ™ ara(9),
b21(€) = iE-i) " r2al) e an(é),
b2o() = —it_zal®) €™ aa(é).
Thus
e, Kis ~ e, (A+8BJ) and rg, K _ ~rg, (A-BJ). (5.6)

Further, let us consider a pseuddeiential operator Of) with 4 x 4 matrix symbol
E(¢) partitioned into four Z 2 blocksejj, i,j = 1,2:

e [ @11(é)  a12(é)
=) '_( a21(£)  a22(é) ) 5.7)

with
() = o(A)NE) - BT A (-] ' (B)(-4),
@12(8) = —o(B)E)[(A)(-E)] T,
@21(6) = [ A (B)(-4),
@22(é) = [o(A@)-HIT

The direct calculation shows that; is the null matrix, i.e.@11(£) = 0, while

_ ; éni 1ie 10
a12(é) = -T2 €Y (,f)( 0 1],
a(é) = irza(f)emif(g)[ e . ]
£2(6)
@) = L { —72(E)aga(é)  {2(E)aal€) ]
P\ ~©an)  (©an()
where
ot @O EOT(H)E)
p(€) ==& 2(E)(—aa(§)aza(é) + a(§)a2(é)) = A OO (@) @)
Under the above conditions it is straightforward to conelttoat
r,0pE) : [La(R,)]* - [La(R)]* (5.8)

is a continuous operator. Moreover, it is easy to see thati¢berminant of the symbol of
this operator, as well ag¢), is always nonzero, for all € R.
The importance of the operatog, Op(E) is clarified by the next result.
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Theorem 5.2. (i) The operators
re, A=, B8 [LaR4)])? - [L2(R4))?

(defined in (5.3)—(5.5)) are both invertible if and only iétbperator r, Op(E) (given
in (5.8)) is invertible.

(i) The operators g, A+rg, BJ and i, A—rr, BJ have both the Fredholm property if
and only if R, Op(E) has the Fredholm property. In addition, if all three openato
are Fredholm, their Fredholm indices satisfy the identity

Ind(rg, A+rg,BI)+Ind (rg, A—rg, BJ) = Indrg, OpE). (5.9)

We would like to notice here that this theorem is a consequerica even stronger
result which basically states that, Op(=) is (toplinear) equivalent after extension to a
diagonal block matrix operator whose diagonal entries heedperatorgg, A+ rg, BJ
andrg, A-rg, BJ. Moreover, it is interesting to clarify that all the neceysaperators
to identify such (toplinear) equivalence after extensietation can be written explicitly
(see [15, 16, 17, 18]).

Having in mind the Theorem 5.2, now we would like to investigthe Wiener-Hopf
operator

re,OpE) : [L2(R4)]* — [La(R,)]% (5.10)

We then realize thaE belongs to theC*—algebra of the semi-almost periodic two by
two matrix functions on the real line[ARR)]*%); see [41]. We recall thal ARR)]**
is the smallest closed subalgebra IoP[R)]** that contains the (classical) algebra of (four
by four) almost periodic elementgAP]*#) and the (four by four) continuous matrices with
possible jumps at infinity.

Due to a known characterization of the structureNRR)]* (see [4, 5, 41]), we can
choose a continuous function on the real line, gasuch thaty(—) = 0, y(+) = 1, and

E=(1A-y)g +yE +Eo,

whereZy is a continuous four by four matrix function with zero limttiafinity, andZ, and
=, are matrices with almost periodic elements, uniquely deteed byZ, and that in our
case have the following form (due to the behavioEddt +c0):

0 0 i T_pa €M 0
_ 0 0 0 i T_pa €M
=T e 0 . o |
0 —irpueet (PR -1
0 0 —iT_pa €7 0
_ 0 0 0 —iT_pa €7
o7 ditwe 0 1 g2er 0
0 i 7og e (pszz) g2eri _ g
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It is worth noting here that so far we have assumed
w(é) —ilélas —» zeo, (@) —last—oo  and () — e asg - o,

For a given Banach algebra (with unit elemett) by G M we will denote the collection
of all invertible elements oM.

Definition 5.3 (See, e.g., [23] 0§6.3 in [6]). An invertible almost periodic matrix function
® € G[AP]*** admits acanonical right AP-factorizatiorif

=D O, (5.11)

whered* e G[AP*]™4, with AP* denoting the intersection &P with the non-tangential
limits of functions inH*(C..) (the set of all bounded and analytic functionsin).

Proposition 5.4. (Cf., e.g., [6, Proposition 2.22]) Let A& (0, ) be an unbounded set and
let

{ Ia }aEA = {(Xaa ya)}aeA

be a family of intervals, c R such thatl,| =y, — X, = o asa — . If ¢ € AP, then the
limit
. 1
M(p) := Iim — | o(X) dx

a=e [lo| ),

exists, is finite, and is independent of the particular chaitthe familyl,}.

Definition 5.5. (i) For any¢ € AP, the number that has just been introduced in Proposi-
tion 5.4,M(y), is called theBohr mean valuéor simply themean valugof ¢. In the matrix
case the Bohr mean value is defined entry-wise.

(i) For a matrix function® € G[AP]** admitting a canonical righAP factorization
(5.11), we may define the new matrix

d(®) := M(@)M(D*), (5.12)
which is known as thgeometric meaof ®.
It is worth mentioning that (5.12) is independent of the ipatar choice of the (canoni-
cal) right AP factorization of®, and that this definition is consistent with the correspogdi

one for the scalar case (which can be defined in a somehow ruira gvay).

Theorem 5.6. For ¢ € [0, 3), the operator £, Op(E) : [L2(R+)]? — [L2(R+)]?, with E given
by (5.7), is a Fredholm operator with zero Fredholm index.

Proof. The matricess| and=; admit the following right canonicahP-factorizations:

15



where

e—2€7ri 0 2% T_Zae—sni 0
_ 0 e —(p+pP)itoa€ ™ —it_ae"
E=1 5 o 1 0 ’
0 0 0 1
2 0 o o0
P1+ P2 -1 0
&y = 1. . 1 ;
| Toa €757 0 5 0
0 —iTpee PR g
10 —2i T_pa€ "™ 0
_ 0 1 —(p1+po)itoae™ it p9e™™
Eh=1y 1 o |
00 0 1
2 0 0 0
_ P1+ P2 1 0 0
Ed = e 0 1@ o
0 | Tpae™ PPz eem  _g2em

(in which the necessary factor properties are evident; efidition 5.3).

Having built the factorizations (5.13), we can now apply dfeen 3.2 in [23] or The-
orem 10.11 in [6] in view of proving the Fredholm property ferOp(E). Indeed, within
our case o € G[S ARR)]*** and whose local representatives at infinity admit canonical
right AP-factorizations (5.13), applying that theorems we haverth®p(E) is a Fredholm

operator if and only if

sp|d™(2)d(&)] N (-e0,0] =0,

where sp{d‘l(Er)d (E|)] stands for the set of eigenvalues of the matrix

dE)d(E) :=[d(E)] " d(E).

Noticing that directly from the definition of the Bohr mearuawe haveM(c) = ¢ for

16



any complex constamtandM(r.24) = 0, it follows
d@) = M[ENM[E)]
e—2£ni 0 0

0 0
—2&mi _
0O &€ 00 pi+p -1 0
1
0 p
1

0 0o 1 0 0 0
0 0 0 0 o0 -k g
2g2er 0 o o0
(p1 + pz)e—Z(-:Jri _g2eni 0
) 0 0 : ’
0 o -
2 0 0
P1+ P2 0 0

0

1
dE) = MIENMIE)] = 0 0 %ezg,ri 0
0 Pz geri g

As a consequence,

e—28ﬂ'i 0 0 0
di(=)d(E) = e . °
0 g2 0
0 0 ~(ptpe®” -
and
sp[d (&) d(E)] N (~00,0] = (z& *™} N (~00,0] = 0, (5.14)

which allows us to conclude that, OpE) : [L2(R)]* — [L2(R,)]* is a Fredholm operator
(for the case under consideration o£@ < 1/2; cf. Section 2).
The zero Fredholm index is obtained from the formula (cf.drken 10.21 in [6])

4
. — 1 /1 1
Indrg Op(E) = —ind[det=] — ; (5 - {5 - Zarg fj}),
where ind[detZ] denotes the Cauchy index of the determinant=ofthe numbers €
C\(-0,0], j = 1,...,4 are the eigenvalues of the matdx!(Z,)d(5)) and{-} stands for
the fractional part of a real number. m|

From the derived condition (5.14), it follows that if we wdwllow the case = 1/2 then
our operators would not have the Fredholm property (ancétber would not be invertible
operators).
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Corollary 5.7. Lete e [O,%). The Wiener-Hopf plus and minus Hankel operat@¥<.0)
and (4.18)(related to the problem®,_p and®,_y) are invertible operators.

Proof. Bearing in mind the equivalence relations (5.6), we have:

dimCoKerg, K+ = dimCoKeng, (A+3BJ), (5.15)
dimKerrg, K+ = dimKerrg, (A+ BJ). (5.16)
and
dimCoKemg, K_._ = dimCoKerng, (A-35BJ), (5.17)
dimKerrg, K__ = dimKerrg, (A-BJ). (5.18)

From Theorem 5.2 and Theorem 5.6, we obtain thatA + 8J) andrg, (A - BJ) are
Fredholm operators. Moreover, recalling that KerK,.,. = {0} and Kerrg, K__ = {0}, from
identities (5.9), (5.15)—(5.18) and Theorem 5.6 it follows

0 Indrg, (A+BJ)+ Indrg, (A-BJ)
Ind rR+7(++ + Ind rR+(](__

(0-dimCoKerrg, K.)+ (0—dimCoKerrg, K__).

Thus, we have
dimCoKerrg, K+ = dimCoKeng, K__ =0
and so we reach to the conclusion that both operators in)(@ridD(4.18) are invertible. o

Due to a direct combination of the results of sections 3 anahd, Corollary 5.7, we
now obtain the main conclusion of the present work for théjanms in consideration.

Theorem 5.8. Lete € [0, %) and assume that one of the conditions (a)—(f) of Theorem 3.1
is satisfied.

(i) The Problem®,_p has a unigue solution which is representable as a [fait u,)
defined by the formula@.6) and (4.7), where the componengsandy of the unique
solutionY of the equatior(4.8) are used.

(i) The ProblemP,_y has a unique solution which is representable as a [fait u,)
defined by the formulagt.15) and (4.16), where the components and ¢ of the
unique solutionr’ of the equation(4.17) are used.

Moreover, all these problems are well-posed (since thelvesb operators are continuous).
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