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Abstract. We develop the Riemann-Hilbert problem approach to in-
verse scattering for the two-dimensional Schrödinger equation at fixed
energy. We obtain global or generic versions of the key results of this
approach for the case of positive energy and compactly supported poten-
tials. In particular, we do not assume that the potential is small or that
Faddeev scattering solutions do not have singularities (i.e. we allow the
Faddeev exceptional points to exist). Applications of these results to the
Novikov-Veselov equation are also considered.
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1. Introduction

We consider the two-dimensional Schrödinger equation

(−∆ + v)ψ(x) = Eψ(x), x ∈ R2, E > 0, (1)

where

v is a real-valued sufficiently regular function on R2

with sufficient decay at infinity.
(2)

Actually, in the present work the assumptions (2) are specified in the sense
that v is a real-valued, bounded, compactly supported function on R2.

For equation (1) we consider the classical scattering solutions ψ+(x, k), k ∈
R2, k2 = E, specified by the following asymptotics

ψ+(x, k) = eikx + iπ
√

2πe−iπ/4
ei|k||x|√
|k||x|

f

(
k, |k| x

|x|

)
+ o

(
1√
|x|

)
,

|x| → ∞,
(3)
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for some a priori unknown f . Function f = f(k, l) on

ME = {k, l ∈ R2 : k2 = l2 = E} (4)

arising in (3) is the classical scattering amplitude for equation (1).
In order to determine ψ+ and f from v one can use the Lipmann-Schwinger

integral equation (11) and the integral formula (12) in Section 2; see e.g. [19].
In this work we continue, in particular, studies on the following inverse

scattering problem for equation (1) under assumptions (2):

Problem 1.1: Given scattering amplitude f on ME at fixed E > 0, find the
potential v on R2.

When v is compactly supported, that is

supp v ⊂ D, (5)

where D is an open bounded domain in R2, we consider also the Dirichlet-to-
Neumann map Φ(E) for equation (1) in D. We recall that this map is defined
via the relation

∂

∂ν
ψ

∣∣∣∣
∂D

= Φ(E) (ψ|∂D) (6)

fulfilled for all sufficiently regular solutions ψ of (1) in D ∪ ∂D, where ν is the
external normal vector to ∂D. Considering Φ(E), we assume also that

E is not a Dirichlet eigenvalue for the operator −∆ + v in D. (7)

It is well known (see [18]) that, under assumptions (2), (5), Problem 1.1
is closely related with the following inverse boundary value problem for equa-
tion (1) in D:

Problem 1.2: Given Φ(E) at fixed E > 0, find v.

Problems 1.1, 1.2 have a long history and there are many important results
on these problems; see [6, 11, 19, 21, 23] and references therein in connection
with Problem 1.1 and [5, 18, 23, 24] in connection with Problem 1.2.

The approach of the present work to Problems 1.1, 1.2 is based, in partic-
ular, on properties of the Faddeev exponentially increasing solutions for equa-
tion (1). We recall that the Faddeev solutions ψ(x, k), k ∈ C2 \ R2, k2 = E, of
equation (1) are specified by

ψ(x, k) = eikx(1 + o(1)), |x| → ∞; (8)

see e.g. [18].
In order to determine ψ from v one can use the Lipmann-Schwinger-Faddeev

integral equation (20) in Section 2.
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In the present work, under assumptions (2), (5), we reduce Problems 1, 2
to some global generalized Riemann-Hilbert-Manakov problem for the classi-
cal scattering solutions ψ+ and the Faddeev solutions ψ for equation (1); see
Problem 3.5 in Section 3. A prototype of this global Riemann-Hilbert-Manakov
problem for the case of equation (1) with E < 0 was considered in Section 8 of
[19].

The term ”global” means, in particular, that the kernels of our Riemann-
Hilbert-Manakov problem have no singularities, even if there are the Faddeev
exceptional points at fixed E. After that we reduce our Riemann-Hilbert prob-
lem to a Fredholm linear integral equation of the second type; see Theorem 4.1
and Proposition 4.2 in Section 4.

As a result we obtain, in particular, a new generic reconstruction method
for Problems 1, 2; see Proposition 4.5 and Remarks 4.6, 4.7 in Section 4.

In particular, our reconstruction from the Faddeev generalized scattering
data is reduced to formulas (58), (60), (64), (65), (70), (83), (84), integral
equations (67)-(69), (85), (86) and formulas (61), (75), (76), (79).

Note that the approach of the present work goes back to the soliton theory,
see [1, 9, 13, 14, 16]. The first applications of this approach to Problems 1, 2
were given in [12, 17, 18, 19]. Actually, the main result of the present work
consists in a globalization of this approach to Problems 1, 2.

The reconstruction method of the present work uses properly generalized
scattering data for small and large values of the complex spectral parameter at
fixed energy and, therefore, is considerably more stable, generically, than the
reconstruction method of [5] based exclusively on properties of some generalized
scattering data for large values of complex spectral parameter. Generically,
stability estimates of [22] obtained using ideas of [2], [5] can be improved using
results of the present work to estimates like in [24], but without the assumptions
that some norm of potential v is sufficiently small in comparison with fixed E.
This issue will be presented in detail elsewhere.

In addition, in contrasts with [5], results of the present work admit applica-
tion to solving the Cauchy problem for the Novikov-Veselov equation ([15, 26])

∂tv = 4<(4∂3
zv + ∂z(vw)− E∂zw),

∂z̄w = −3∂zv, v = v̄, E > 0,

v = v(x, t), w = w(x, t), x = (x1, x2) ∈ R2, t ∈ R,
(9)

with compactly supported v(x, t = 0). Here, we used the following notations:

∂t =
∂

∂t
, ∂z =

1

2

(
∂

∂x1
− i ∂

∂x2

)
, ∂z̄ =

1

2

(
∂

∂x1
+ i

∂

∂x2

)
. (10)

These applications are indicated in Section 6 of the present work and will be
presented in detail elsewhere.
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2. Preliminary results of direct scattering

2.1. Classical scattering functions

We recall that for the classical scattering functions ψ+ and f for equation (1)
the following Lipmann-Schwinger integral equation (11) and the integral for-
mula (12) hold:

ψ+(x, k) = eikx +

∫
y∈R2

G+(x− y,
√
E)v(y)ψ+(y, k)dy, (11)

G+(x,
√
E) = − 1

(2π)2

∫
R2

eiξxdξ

|ξ|2 − E − i0
= − i

4
H1

0 (|x|
√
E),

f(k, l) =
1

(2π)2

∫
R2

e−ilyv(y)ψ+(y, k)dy, (12)

where x, k, l ∈ R2, k2 = l2 = E > 0, H1
0 is the Hankel function of the first type;

see e.g. [19]. In addition, it is known that equation (11) is uniquely solvable
with respect to ψ+(·, k) ∈ L∞(R2) at fixed k, under conditions (2) and, in
particular, under the conditions that

v = v ∈ L∞(R2), supp v ⊂ D, (13)

where D is an open bounded domain in R2; see e.g. [4] for a proof of a similar
result in three dimensions.

Let
S1
r = {ζ ∈ R2 : ζ2 = r2}, r > 0, (14)

ΣE = {ζ ∈ C2 : ζ2 = E}, E > 0, (15)

ΣE,ρ = {ζ ∈ ΣE : |=ζ| ≥ ρ}, E > 0, ρ > 0, (16)

and let
χE,ρ be the characteristic function of ΣE,ρ in ΣE . (17)

Note that ME = S1√
E
× S1√

E
, where ME is defined by (4).

It is well known that, under conditions (2), (5),

ψ+(x, k) admits a holomorphic extension in k
from S1√

E
to ΣE at fixed x

(18)

and
f(k, l) admits a holomorphic extension in (k, l)

from ME to ΣE × ΣE
(19)

with possible exponential increasing at infinity in complex domain.
As a corollary, f onME uniquely determines f on ΣE×ΣE , under assump-

tions (2), (5).
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2.2. Faddeev functions

We recall also that the Faddeev solutions ψ(x, k) for (1) satisfy the following
generalized Lipmann-Schwinger integral equation

ψ(x, k) = eikx +

∫
y∈R2

G(x− y, k)v(y)ψ(y, k)dy, (20)

G(x, k) = g(x, k)eikx, (21)

g(x, k) = − 1

(2π)2

∫
ξ∈R2

eiξx

|ξ|2 + 2kξ
dξ, (22)

where x ∈ R2, k ∈ C2 \ R2, k2 = E > 0; see e.g. [7, 19]. In addition, we
consider (20) as an equation for ψ = eikxµ(x, k), where µ(·, k) ∈ L∞(R2) at
fixed k. Note that equation (20) can be rewritten as

µ(x, k) = 1 +

∫
y∈R2

g(x− y, k)v(y)µ(y, k)dy, (23)

where x ∈ R2, k ∈ C2 \ R2, k2 = E > 0; see e.g. [19].
Under assumptions (2) and, in particular, under assumptions (13), equa-

tions (20), (23) are uniquely solvable for µ(·, k) ∈ L∞(R2) at fixed k if k ∈(
ΣE \ S1√

E

)
\ EE , where EE is the set of the Faddeev exceptional points on

ΣE \ S1√
E

; see e.g. [19].

Note also that, due to estimates (3.16)-(3.18) of [19], the following estimates
hold for some constant c0 > 0 :

|G+(x,
√
E)| ≤ c0|x|−1/2E−1/4, (24)

|g(x, k)| ≤ c0|x|−1/2|<k|−1/2, (25)

where G+, g are defined in (11), (21), x ∈ R2, k ∈ C2 \ R2, k2 = E > 0.
In addition, under assumptions (13), as a corollary of (24), (25), in a similar

way to Proposition 4.1 in [19], we have that

‖A(k)‖L∞(R2)→L∞(R2) ≤M(‖v‖L∞(D), D,E, ρ),

k ∈ C2, k2 = E > 0, |=k| = ρ > 0,
(26)

ΣE,ρ ∩ EE = ∅ if ρ > ρ1(‖v‖L∞(D), D,E), E > 0, (27)

where A(k) is the linear integral operator of equation (23),

M(q,D,E, ρ) =
c0qI1(D)

(E + ρ2)1/4
, (28)
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ρ1(q,D,E) =
[
max([c0qI1(D)]4 − E, 0)

]1/2
,

q ≥ 0, I1(D) = max
x∈R2

∫
D

dy

|x− y|1/2
.

(29)

In addition to ψ, we consider also the generalized Faddeev scattering am-
plitude h(k, l) defined by the formula

h(k, l) =
1

(2π)2

∫
R2

e−ilyv(y)ψ(y, k)dy, (30)

where (k, l) ∈
(

ΣE \ S1√
E

)
× ΣE ; see e.g. [8, 19]. Here we assume also that

=k = =l if (5) is not assumed.
Note that, under assumption (13),

h is (complex-valued) real-analytic on
((

ΣE \ S1√
E

)
\ EE

)
× ΣE ,

h(k, ·) is holomorphic on ΣE at fixed k.
(31)

We say that a complex-valued function is real-analytic if its real and imaginary
parts are real-analytic.

2.3. ∂-equation on the Faddeev eigenfunctions

We recall that the following isomorphic relations are valid:

ΣE ≈ C \ 0, S1√
E
≈ T = {λ ∈ C : |λ| = 1}. (32)

More precisely:

k = (k1, k2) ∈ ΣE ⇒ λ = λ(k) :=
k1 + ik2√

E
∈ C \ 0,

k = (k1, k2) ∈ S1√
E
⇒ λ(k) ∈ T;

(33)

λ ∈ C \ 0⇒ k = k(λ,E) ∈ ΣE , λ ∈ T ⇒ k = k(λ) ∈ S1√
E
, (34)

where

k(λ,E) = (k1(λ,E), k2(λ,E)),

k1 =

(
λ+

1

λ

) √
E

2
, k2 =

(
1

λ
− λ
)
i
√
E

2
.

(35)

Note also that

|<k(λ,E)| =
√
E

2

(
|λ|+ |λ|−1

)
, |=k(λ,E)| =

√
E

2

∣∣|λ| − |λ|−1
∣∣ ,

λ ∈ C \ 0, E > 0.

(36)
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Let
Lp,ν(C) be the function space on C consisting
of the functions u such that u, uν ∈ Lp(D1)
with the norm ‖u‖Lp,ν = ‖u‖Lp(D1) + ‖uν‖Lp(D1),

(37)

where p ≥ 1, ν ≥ 0,
uν(λ) := |λ|−νu(λ−1) , (38)

D1 = {λ ∈ C : |λ| ≤ 1}. (39)

It is known that the function ψ of Subsection 2.2 has, in particular, the fol-
lowing properties, under assumptions (2) and, in particular, under assumptions
(13):

ψ(x, k(λ)) = eik(λ)x(1 + o(1)), if λ→ 0 or λ→∞, (40)

∂

∂λ
ψ(x, k(λ)) =

sgn(|λ|2 − 1)

λ
b(k(λ))ψ

(
x, k

(
− 1

λ

))
,

ψ

(
x, k

(
− 1

λ

))
= ψ(x, (k(λ))), k(λ) ∈

(
ΣE \ S1√

E

)
\ EE ,

(41)

where x ∈ R2, k(λ) = k(λ,E) is defined by (35),

b(k) := h(k,−k), (42)

where h is defined by (30); see e.g. [12, 19].
Note that ∂−equations like (41) go back to [1, 3].

2.4. Some estimates related with ∂−equation (41)

In particular, as a corollary of (40),

ψ(x, (k(λ))) 6= 0 if |λ| is sufficiently small
or if |λ| is sufficiently large.

(43)

In addition, under assumptions (13), as a corollary of (26), we have

|µ(x, k(λ))| ≤ (1−M(q,D,E, ρ))−1,

x ∈ R2, k(λ) = k(λ,E) ∈ ΣE,ρ, ρ > ρ1(q,D,E), ‖v‖L∞(D) < q,
(44)

where M is defined by (28), ρ1 is defined by (29).
In connection with equation (41) we consider also

uE,ρ(λ) =
1

λ
χE,ρ(k(λ))b(k(λ)), (45)
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where χE,ρ is defined by (17).
Under assumptions (13), we have:

uE,ρ ∈ Lp,2(C), 2 < p < 4, (46)

where ρ > ρ1(‖v‖L∞(D), D,E);

‖uE,ρ‖Lp,2 ≤ qc1(D, p,E)(1−M(q,D,E, ρ))−1, (47)

‖uE,ρ‖Lp,2 = O (q) as q → 0, (48)

for fixed E > 0, ρ > ρ1(q,D,E), D and p, where ‖v‖L∞(D) ≤ q, M is defined
by (28), c1 is a positive constant, 2 < p < 4;

|λuE,ρ(λ)| ≤ q(2π)−2(1−M(q,D,E, ρ))−1

∫
D

dx, λ ∈ C, (49)

where ‖v‖L∞(D) ≤ q, M is defined by (28), ρ > ρ1(‖v‖L∞(D), D,E); see formu-
las (4.4), (4.12), (4.18), (4.19) of [19]. In connection with (46)-(48) we recall
that Lp,2(C) is defined in (37).

2.5. Final remarks

We recall also that, under the assumptions (7), (13), at fixed E, the scattering
amplitude f uniquely determines the Dirichlet-to-Neumann map Φ and vice
versa; see Proposition 4 in [18].

In turn, Φ(E) uniquely determines h on
((

ΣE \ S1√
E

)
\ EE

)
×ΣE ; see [18].

Note also that f at fixed E uniquely determines h on
((

ΣE \ S1√
E

)
\ EE

)
×

ΣE via a two-dimensional analogue of the construction given in [20].
As a corollary, Problems 1.1, 1.2 of Section 1 are reduced to Problem 3.4 of

Section 3.

3. Global generalized Riemann-Hilbert problem

Let

Λ = ΛE,ρ =
{
λ ∈ C :

√
E
2

∣∣|λ| − |λ|−1
∣∣ < ρ

}
, E > 0, ρ > 0,

and ∂Λ = ∂ΛE,ρ be the boundary of Λ in C
with the standard orientation.

(50)

Note that
ΣE,ρ ≈ C \ ΛE,ρ, (51)

where this isomorphism is given by formulas (33), (34).
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Let

W (λ, ς) =
i

2
sgn(|λ|2 − 1)

[
1

ς
lnw1(λ, ς) + ς lnw2(λ, ς)

]
+

∫
|η|=1

1

2(ς − η)
θ

[
sgn(|λ|2 − 1)i

(
|λ|η
λ
− λ

|λ|η

)]
|dη| ,

λ, ς ∈ ∂Λ,

(52)

where

w1 =
ς − λ
ς − λ

|λ|
, w2 =

−1
ς − λ
−1
ς −

λ
|λ|

,

and θ is the standard Heaviside step function.

Remark 3.1. Note that

| argwi(λ, ς)| < π, λ, ς ∈ ∂Λ, i = 1, 2, (53)

and the logarithms in (52) are well defined by the condition |= lnwi| < π.

In particular, we have

W ∈ Lp(∂Λ× ∂Λ), p ≥ 1, ∂Λ = ∂ΛE,ρ, E > 0, ρ > 0. (54)

Lemma 3.2. Let v satisfy (13) and let ρ ≥ ρ1(‖v‖L∞(D), D,E), where ρ1 is the
constant in (27). Let ψ+, ψ be the eigenfunctions of Subsections 2.1, 2.2. Then
the following relation holds:

ψ(x, k(λ)) = ψ+(x, k(λ)) +

∫
∂Λ

W (λ, ς)h(k(λ), k(ς))ψ+(x, k(ς))dς,

λ ∈ ∂Λ.
(55)

where k(λ) = k(λ,E) is given by (35), W (λ, ς) = W (λ, ς, E) is given by (52),
h is defined by (30) and the integration is taken according to the standard
orientation of the ∂Λ.

Lemma 3.2 is proved in Section 6.
Note that, under assumptions (13), as a corollary of (30), (44), we have

|h(k(λ), k(ς))| ≤ q(2π)−2e2ρL(1−M(q,D,E, ρ))−1

∫
D

dx,

λ, ς ∈ ∂Λ = ∂ΛE,ρ, ρ > ρ1(q,D,E), ‖v‖L∞(D) ≤ q,
(56)

where M,ρ1 are defined by (28), (29),

L = max
x∈∂D

|x|. (57)

As a corollary of properties (18), (40), (41), (55) of the functions ψ+ and ψ
(and using (46), (49)), we obtain the following proposition:
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Proposition 3.3. Let v satisfy (13) and let ρ ≥ ρ1(‖v‖L∞(D), D,E), where ρ1

is the constant in (27). Let ψ,ψ+ be the eigenfunctions of Subsections 2.1, 2.2.
Then at fixed x ∈ R2:

1. ψ+(x, k(λ)) is holomorphic in λ ∈ Λ and is continuous in λ ∈ Λ ∪ ∂Λ;

2. ψ(x, k(λ)) has the properties (40), (41) for λ ∈ (C \ 0) \ (Λ ∪ ∂Λ) and is
continuous in λ ∈ (C \ 0) \ Λ;

3. ψ+, ψ are related on ∂Λ via (55).

Now we consider the following generalized inverse scattering problem for
equation (1).

Problem 3.4: Given the Faddeev functions h on ∂Λ×∂Λ and b on (C\0)\Λ,
find potential v on D.

The approach of the present work for solving Problems 1.1, 1.2 and 3.4 is
based on the reduction of Problem 3.4 to the following generalized Riemann-
Hilbert problem.

Problem 3.5: Given functions h on ∂Λ×∂Λ and b on (C\0)\Λ, find functions
ψ+ on Λ and ψ on (C \ 0) \ Λ satisfying the properties of the items 1,2,3 of
Proposition 3.3.

Note that in Problems 3.4, 3.5 we consider h, b and ψ+, ψ as

h = h(λ, ζ, E) = h(k(λ), k(ζ)), λ, ζ ∈ ∂Λ, (58)

ψ+ = ψ+(x, λ,E) = ψ+(x, k(λ)), λ ∈ Λ, (59)

ψ = ψ(x, λ,E) = ψ(x, k(λ)), b = b(λ,E) = b(k(λ)), λ ∈ (C \ 0) \ Λ, (60)

where k(λ) = k(λ,E) is defined by (35), Λ = ΛE,ρ, ∂Λ = ∂ΛE,ρ are defined in
(50), h is defined by (30) and b is defined by (42).

In addition, if ψ is the function of Subsections 2.2, 2.3, 2.4, then it deter-
mines the potential easily. Indeed, due to (1), (43), we have

v(x) =
(∆x + E)ψ(x, k(λ))

ψ(x, k(λ))

on R2 if |λ| is sufficiently small
or if |λ| is sufficiently large.

(61)

Prototypes of Problems 3.4, 3.5 for the case of equation (1) with E < 0
were considered in Section 8 of [19].

Generalized Riemann-Hilbert problems like Problem 3.5 go back to [16] and
to [9, 12, 13].

We say that Problem 3.5 is a generalized Riemann-Hilbert-Manakov prob-
lem.

We say that the results of Lemma 3.2 and Proposition 3.3 are global and that
the related Problem 3.5 is global, since these results and problem are formulated
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for general v satisfying (13) and, in particular, without the assumption that
EE = ∅, where EE is the set of Faddeev exceptional points at fixed E. The
reduction of Problem 3.4 to Problem 3.5 follows from Proposition 3.3 and, for
example, from formula (61).

4. Integral equations for solving Problem 3.5

4.1. Formulas and equations

Let

µ+(λ) := e−ik(λ)xψ+(x, λ,E), λ ∈ Λ, (62)

µ(λ) := e−ik(λ)xψ(x, λ,E), λ ∈ C \ Λ, (63)

r(x, λ,E) = ei(−k(λ)+k(−1/λ))x sgn(|λ|2 − 1)

λ
χ(λ)b(λ,E)

= e−2i<k(λ)xu(λ), λ ∈ C \ 0,

(64)

R(x, λ, ζ, E) = ei(k(ζ)−k(λ))xW (λ, ζ, E)h(λ, ζ, E), λ, ζ ∈ ∂Λ, (65)

where ψ+, ψ and h = h(λ, ς, E) = h(k(λ), k(ς)), b = b(λ,E) = b(k(λ)) are the
functions of Problem 3.5, χ(λ) = χE,ρ(k(λ)) is defined via (17), u(λ) = uE,ρ(λ)
is defined via (45), k(λ) = k(λ,E) is defined by (35), W is given by (52),
Λ = ΛE,ρ is defined by (50).

Let

e(λ) = e(x, λ,E), Xj(λ, ζ) = Xj(x, λ, ζ, E), j = 1, 2, λ, ζ ∈ C, (66)

be defined as the solutions of the following linear integral equations:

e(λ) = 1− 1

π

∫
C
r(x, ζ, E)e(ζ)

d<ζd=ζ
ζ − λ

, (67)

X1(λ, ζ) +
1

π

∫
C
r(x, η,E)X1(η, ζ)

d<ζd=ζ
η − λ

=
1

2(ζ − λ)
, (68)

X2(λ, ζ) +
1

π

∫
C
r(x, η,E)X2(η, ζ)

d<ζd=ζ
η − λ

=
1

2i(ζ − λ)
. (69)

In addition, we consider also

Ω1(λ, ζ) := X1(λ, ζ) + iX2(λ, ζ), Ω2(λ, ζ) := X1(λ, ζ)− iX2(λ, ζ),
λ, ζ ∈ C. (70)
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Note that if (46) is fulfilled, then equation (67) for e(·) and equations (68),
(69) for Xj(·, ζ), j = 1, 2, are uniquely solvable in Lq,0(C), p/(p− 1) ≤ q < 2,
where Lp,ν is defined in (37). In addition:

e(·) ∈ C(C ∪∞), e(∞) = 1,
|e(λ)− 1| ≤ c2(r0, p),

(71)

∣∣∣∣Ω1(λ, ζ)− 1

ζ − λ

∣∣∣∣ < c2(r0, p)
1

2|ζ − λ|2/p
, (72)

|Ω2(λ, ζ)| < c2(r0, p)
1

2|ζ − λ|2/p
, (73)

where

r0 = ‖r(x, ·, E)‖Lp,2 , lim
r0→0

c2(r0, p) = 0. (74)

Note that r0 is independent of x ∈ R2. In connection with the functions
e,X1, X2,Ω1,Ω2 and related results we refer to Chapter 3 of [25] and to Sec-
tion 6 of [19].

We define

ψ′(λ) =

{
ψ+(λ), λ ∈ Λ ∪ ∂Λ,
ψ(λ), λ ∈ (C \ 0) \ Λ,

(75)

where ψ+, ψ are the functions of Problem 3.5. In addition, we consider µ′, µ+, µ,
where

ψ′(λ) = eik(λ)xµ′(λ) = eik(λ)x

{
µ+(λ), λ ∈ Λ ∪ ∂Λ,
µ(λ), λ ∈ (C \ 0) \ Λ.

(76)

Theorem 4.1. Let the data h and b of Problem 3.5 satisfy the following con-
ditions:

uE,ρ ∈ Lp,2(C), 2 < p < 4, (77)

h(·, ·, E) ∈ C(∂Λ× ∂Λ), (78)

where uE,ρ is defined by (45), W is defined by (52), ∂Λ = ∂ΛE,ρ is defined
in (50), ρ > 0. Let ψ′ be a solution of Problem 3.5. Then for µ′ defined
by (76) the following formula holds:

µ′(λ) = e(λ) +
1

2πi

∫
∂Λ

Ω1(λ, ζ)K(ζ)dζ − 1

2πi

∫
∂Λ

Ω2(λ, ζ)K(ζ)dζ,

λ ∈ C \ ∂Λ,
(79)

where the integration is taken according to the standard orientation of ∂Λ,

K(λ) := µ+(λ)− µ(λ), λ ∈ ∂Λ. (80)
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In addition, this K = K(x, λ,E) satisfies the following linear integral equation

K(λ) +

∫
∂Λ

R(x, λ, λ′, E)

(
e(λ′)+

1

2πi

∫
∂Λ

Ω1(λ′(1− 0(|λ′| − 1)), ζ)K(ζ)dζ

− 1

2πi

∫
∂Λ

Ω2(λ′, ζ)K(ζ)dζ

)
dλ′ = 0,

(81)

λ ∈ ∂Λ, where R is defined by (65), Ω1,Ω2 are defined by (70) and the integra-
tions are taken according to the standard orientation of ∂Λ.

Note also that∫
∂Λ

Ω1(λ′(1− 0(|λ′| − 1)), ζ)K(ζ)dζ

= lim
0<ε→0

∫
∂Λ

Ω1

(
λ′(1− ε(|λ′| − 1)), ζ

)
K(ζ)dζ, λ′ ∈ ∂Λ.

(82)

Formula (79) is similar to formula (6.7) of [19]. Equation (81) is similar to
equation (6.11) of [19].

Theorem 4.1 is proved in Section 7.
Consider

I(λ) = I(x, λ,E) = −
∫
∂Λ

R(x, λ, λ′, E)e(λ′)dλ′, λ ∈ ∂Λ, (83)

A1(λ, ζ) = A1(x, λ, ζ, E)

=
1

2πi

∫
∂Λ

R(x, λ, λ′, E)Ω1(λ′(1− 0(|λ′| − 1)), ζ)dλ′,

A2(λ, ζ) = A2(x, λ, ζ, E)

=
−1

2πi

∫
∂Λ

R(x, λ, λ′, E)Ω2(λ′, ζ)dλ′, λ, ζ ∈ ∂Λ,

(84)

where R, e,Ω1,Ω2 are the functions of (65), (66), (70).

Proposition 4.2. Let the assumptions of Theorem 4.1 be fulfilled and K be
the function of (80), (81). Then K,K satisfy the following system of linear
integral equations

K(λ) +

∫
∂Λ

A1(λ, ζ)K(ζ)dζ +

∫
∂Λ

A2(λ, ζ)K(ζ)dζ = I(λ), λ ∈ ∂Λ, (85)

K(λ) +

∫
∂Λ

A2(λ, ζ)K(ζ)dζ +

∫
∂Λ

A1(λ, ζ) K(ζ)dζ = I(λ), λ ∈ ∂Λ, (86)
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where I, A1, A2 are defined by (83), (84). In addition,

I ∈ L2(∂Λ), Aj ∈ L2(∂Λ× ∂Λ), j = 1, 2, (87)

‖Aj‖L2
→ 0 for ‖h‖C → 0, r0 ≤ rfixed, j = 1, 2, (88)

where |x| < c for fixed c > 0, r0 is defined in (74)

Proposition 4.2 is proved in Section 6.

4.2. Analysis of equations

Due to estimates (87), the system (85), (86) can be considered as a Fredholm
linear integral equation of the second type for the vector-function (K,K) ∈
L2(∂Λ,C2) with parameters x ∈ R2 and E > 0.

The modified Fredholm determinant detA for system (85), (86) can be de-
fined by means of the formula:

ln detA = Tr(ln(Id + A)−A), (89)

where system (85), (86) is written as

(Id+A)

(
K
K

)
=

(
I
I

)
. (90)

For the precise definition of detA, see [10].
In addition, we have the following lemmas:

Lemma 4.3. Let v satisfy (13) for fixed D and Λ = ΛE,ρ be defined by (50) for
fixed E and ρ. Let A1, A2, I correspond to v according to formulas (20)-(23),
(30), (42), (58), (60), (64), (65), (83), (84). Let |x| < c for fixed c > 0. Then:

‖Aj‖L2(∂Λ×∂Λ) → 0, ‖I‖L2(∂Λ) → 0, for ‖v‖L∞(D) → 0, j = 1, 2; (91)

system (85), (86) for (K,K) ∈ L2(∂Λ,C2) is uniquely solvable by the method of
successive approximations when ‖v‖L∞(D) is sufficiently small (for fixed D,E,ρ
and c).

Actually, Lemma 4.3 follows from estimates (48), (56), (71)-(73), (88).

Lemma 4.4. Let v satisfy (13) for fixed D and Λ = ΛE,ρ be defined by (50) for
fixed E and ρ, where ρ > ρ1(q,D,E), ‖v‖L∞(D) < q, ρ1 is defined by (29). Let
A1, A2, I correspond to sv according to formulas (20)-(23), (30), (42), (58),
(60), (64), (65), (83), (84) (with sv in place of v), where s ∈]− s1, s1[, where
s1 = q/‖v‖L∞(D). And let detA = detA(x, s), x ∈ R2, s ∈] − s1, s1[, be the
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modified Fredholm determinant of the related system (85), (86) (where detA
depends also on v,E and ρ). Then:

detA(x, 0) = 1, x ∈ R2, (92)

detA ∈ C(R2×]− s1, s1[,C), (93)

detA(x, ·) is real-analytic on ]− s1, s1[ for fixed x ∈ R2. (94)

Lemma 4.4 is proved in Section 8. Using Lemma 4.4 we obtain, in particular,
the following result:

Proposition 4.5. Let Λ = ΛE,ρ be defined by (50) for fixed E and ρ, where
ρ > ρ1(q,D,E), ρ1 is defined by (29), D is a fixed open bounded domain in
R2, q is a fixed positive number. Then for almost each v satisfying (13) with
‖v‖L∞(D) ≤ q the system (85), (86) corresponding to v (according to formulas
(30), (42), (58), (60), (64), (65), (83), (84)) is uniquely solvable for almost
each x ∈ R2.

Remark 4.6. We understand the statement of Proposition 4.5 in the sense that
if v satisfies (13) and ‖v‖L∞(D) = q1 for fixed q1, where 0 < q1 < q, then for
almost each s ∈]−s1, s1[, where s1 = q/q1, the system (85), (86) corresponding
to sv is uniquely solvable for almost each x ∈ R2.

Remark 4.7. If the assumptions of Proposition 4.5 are fulfilled, ‖v‖L∞(D) < q,
and system (85), (86) corresponds to v, then, as a corollary of (93), the set of
x, where the system (85), (86) is uniquely solvable, is an open set in R2.

Proposition 4.5 is proved in Section 8.

5. Applications to the Novikov-Veselov equation

In this section we suppose that v and ρ satisfy the assumptions of Lemma 4.4
for fixed D, E and q.

We define

fs(k, l, t) = fs(k, l) exp[2it(k3
1 − 3k1k

2
2 − l31 + 3l1l

2
2)], (k, l) ∈ME ;

hs(k, l, t) = hs(k, l) exp[2it(k3
1 − 3k1k

2
2 − l31 + 3l1l

2
2)],

(k, l) ∈ ∂ΣE,ρ × ∂ΣE,ρ ;

bs(k, t) = bs(k) exp[2it(k3
1 + k

3

1 − 3k1k
2
2 − 3k1k

2

2)], k ∈ ΣE,ρ ;

(95)

where t ∈ R, s ∈] − s1, s1[, s1 is defined as in Lemma 4.4 and fs, hs, bs are
defined according to (11), (12), (20)-(23), (30), (42) with sv in place of v. In
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addition:

hs(k(λ), k(ς), t) = hs(k(λ), k(ς)) exp[iE3/2t(λ3 + λ−3 − ς3 − ς−3)]

=: hs,t(λ, ς, E), (λ, ς) ∈ ∂Λ× ∂Λ,

bs(k(λ), t) = bs(k(λ)) exp[itE3/2(λ3 + λ−3 + λ
3

+ λ
−3

)]

=: bs,t(λ,E), λ ∈ (C \ 0) \ Λ,

(96)

where t ∈ R, s ∈] − s1, s1[, k(λ) = k(λ,E) is defined by (35), Λ = Λ(E, ρ) is
defined by (50).

We consider Problem 3.5 of Section 3 with h = hs,t, b = bs,t, ψ
+ = ψ+

s,t. As
in Section 4.1, we consider the reduction of this generalized Riemann-Hilbert-
Manakov problem to formulas (75), (76), (79), (80) and the system of equations
(85), (86), where µ′ = µ′s,t, e = es,t, Ωj = Ωj,s,t, j = 1, 2, K = Ks,t, I = Is,t,
Aj = Aj,s,t, j = 1, 2. In addition, as in Section 4.2, we consider detA(x, s, t)
for the aforementioned system (85), (86).

We expect that using ideas of [12, 13, 14, 19] and of the present work one
can obtain the following result:

Suppose that detA(x, s, t) 6= 0 for x ∈ X , t ∈ T at fixed s ∈]−s1, s1[, where
X is an open domain in R2, T is an open interval in R, 0 ∈ T , s1 is defined in
Lemma 4.4. Then there is a real valued vs(·, t) such that:

vs(·, 0) = sv, (97)

where sv is the potential of Lemma 4.4;

−∆xψ
+
s,t + vs(x, t)ψ

+
s,t = Eψ+

s,t,

−∆xψs,t + vs(x, t)ψs,t = Eψs,t, (x, t) ∈ X × T ,
(98)

where ψ+
s,t = ψ+

s,t(x, λ), λ ∈ Λ, and ψs,t = ψs,t(x, λ), λ ∈ (C \ 0) \ Λ, solve
the aforementioned Problem 3.5; v = vs(x, t) solves the Novikov-Veselov equa-
tion (9) in X × T with appropriate w = ws(x, t) (and satisfies (97) on X ).

These studies will be given in detail elsewhere. Note that, actually, the
zeroes of detA(x, s, t) describe the blow-up points of the potential vs(x, t). It
remains to note that in similar way to Proposition 4.5 and Remarks 4.6, 4.7,
for almost each s ∈] − s1, s1[, we have that detA(x, s, t) 6= 0 for almost each
(x, t) ∈ R2 × R; and the nonzero set of detA is open.

6. Proof of Lemma 3.2

6.1. Lemma for Green functions

Let
z = x1 + ix2, z = x1 − ix2 for x = (x1, x2) ∈ R2. (99)
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Lemma 6.1. The following formula holds:

G(x, k(λ))−G+(x,
√
E)

=
1

(2π)2

∫
∂Λ

W (λ, ς, E)ei
√
E/2(ςz+z/ς)dς, λ, ς ∈ ∂Λ,

(100)

where G,G+ are defined in (21), (11), W is defined by (52), k(λ) = k(λ,E) is
defined in (35), Λ = ΛE,ρ is defined in (50).

Proof. We recall that

∂

∂λ
G(z, k(λ)) =

sgn(|λ|2 − 1)

4πλ
eik(−1/λ)x, λ ∈ (C \ 0) \ T, (101)

∂

∂λ
G(z, k(λ)) =

sgn(|λ|2 − 1)

4πλ
eik(λ)x, λ ∈ (C \ 0) \ T, (102)

where G is defined by (21), (22), k(λ) = k(λ,E) is defined by (35), T is defined
by (32); see [19].

Note that

k(−1/λ)x = −
√
E

2
(λz + z/λ), k(λ)x =

√
E

2
(λz + z/λ). (103)

Using the Cauchy formula for eik(−1/λ)x/λ and eik(λ)x/λ we have

eik(−1/λ)x/λ =
1

2πi

∫
∂Λ

1

ς
e−i
√
E/2(ςz+z/ς) dς

ς − λ
, λ ∈ Λ, (104)

eik(λ)x/λ =
1

2πi

∫
∂Λ

1

ς
ei
√
E/2(ςz+z/ς) dς

ς − λ
, λ ∈ Λ. (105)

Due to (101), (102) and (104), (105) we have

∂

∂λ
G(x, k(λ)) = sgn(|λ|2 − 1)

−1

2πi

∫
∂Λ

1

4πς
e−i
√
E/2(ςz+z/ς) dς

ς − λ
,

λ ∈ Λ, |λ| 6= 1,

(106)

∂

∂λ
G(x, k(λ)) = sgn(|λ|2 − 1)

1

2πi

∫
∂Λ

1

4πς
ei
√
E/2(ςz+z/ς) dς

ς − λ
,

λ ∈ Λ, |λ| 6= 1.

(107)

Formulas (106), (107) remain also valid with G(x, k(λ)) replaced in the left
hand side by G(x, k(λ))−G+(x,

√
E), where G+ is defined in (11).
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Integrating the differential equation for G−G+ we obtain

G(x, k(λ))−G+(x,
√
E)

= u(z, λ) +
[
G(x, k(λ0))−G+(x,

√
E)− u(z, λ0)

]
,

for λ0 = λ0(λ), λ ∈ Λ ∩ D1, or for λ0(λ), λ ∈ Λ ∩ (C \ D1),

(108)

where D1 is defined by (39), λ0 = λ0(λ) = λ
|λ| (1 + 0(|λ|2 − 1)),

u(z, λ) =
sgn(|λ|2 − 1)

2πi

∫
∂Λ

1

4πς
e−i
√
E/2(ςz+z/ς) ln(ς − λ)dς

− sgn(|λ|2 − 1)

2πi

∫
∂Λ

1

4πς
ei
√
E/2(ςz+z/ς) ln(ς − λ)dς, λ ∈ Λ \ T,

(109)

where notation 1 + 0(|λ|2 − 1) is like in (82). In the last expression logarithm
is chosen such that |= ln(·)| < π.

We change the variable ς → −1/ς in the first integral on the right and
obtain the formula

u(z, λ) = − sgn(|λ|2 − 1)

8π2i

∫
∂Λ

ei
√
E/2(ςz+z/ς)

[
1

ς
ln (ς − λ)

+ς ln

(
−1

ς
− λ
)]

dς, λ ∈ Λ \ T.
(110)

In the last expression logarithm is chosen such that |= ln(·)| < π.
We choose λ0 as λ0 = λ

|λ| (1± 0) since the limiting values of G−G+ on the

unit circle T are given by (see [19, Section 3]):

G(x, k(λ0))−G+(x,
√
E)

=
πi

(2π)2

∫
T

ei
√
E/2(ςz+z/ς) × θ

[
sgn(|λ|2 − 1)i

(
|λ|ς
λ
− λ

|λ|ς

)]
|dς|,

(111)

where θ is the Heaviside step function.

Using the Cauchy formula for ei
√
E/2(ςz+z/ς) in (111), we can rewrite (111)

as follows:

G(x, λ0)−G+(x,
√
E) =

1

8π2

∫
ς1∈T

(∫
∂Λ

ei
√
E/2(ςz+z/ς)dς

ς − ς1

)
×θ
[
sgn(|λ|2 − 1)i

(
|λ|ς1
λ
− λ

|λ|ς1

)]
|dς1|.

(112)

In order to complete the proof of Lemma 6.1 it remains only to put (112), (110)
into (108).
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In addition, to justify Remark 3.1, we need to prove (53). Assume that ς
belongs to the part |ς| = C of ∂Λ = ∂ΛE,ρ where

C = ρ/
√
E +

√(
ρ/
√
E
)2

+ 1.

Since the point λ belongs to the disk |ς| ≤ C and the point λ0 is strictly inside
of the disk, the angle α between vectors ς −λ and ς −λ0 is strictly less then π.
Thus | argw1| = |α| < π in this case. If ς belongs to the part |ς| = 1/C of the
boundary of ∂Λ, then points λ and λ0 belong to the part of the ray (emitted
from λ = 0) through the point λ. This part belongs to the region |ς| ≥ 1/C,
and | argw1| = |α| < π/2 in this case. After the estimate (53) for w1 is proved,
the estimate for w2 becomes obvious if we replace −1/ς by ς.

6.2. Final part of the proof of Lemma 3.2

Let

ψ0 = ψ0(x, k(λ)) = eik(λ)x = ei(
√
E/2)(λz+z/λ), λ ∈ (C \ 0) \ T, (113)

where k(λ) = k(λ,E) is defined by (35), T is defined by (32).

We will denote by G+(
√
E), G(k) the convolution operators with kernels

G+, G of (21), (11), and we will denote by G+(
√
E)v,G(k)v the operators of

multiplication by the potential v followed by convolution G+(
√
E) or G(k),

respectively. Then, under the assumptions of Lemma 3.2, equations (11), (20)
can be considered as linear integral equations for ψ+(·, k),ψ(·, k) ∈ L∞(D), and
can be rewritten as follows:

ψ+(·, k) = (I −G+(
√
E)v)−1ψ0(·, k), ψ(·, k) = (I −G(k)v)−1ψ0(·, k), (114)

for fixed k ∈ ΣE \ ΣE,ρ, where I is the identity operator.

Thus

ψ+(·, k) = (I −G+(
√
E)v)−1(I −G(k)v)ψ(·, k),

ψ(·, k) = (I −G+(
√
E)v)−1(I −G+(

√
E)v)ψ(·, k), k ∈ ΣE \ ΣE,ρ.

(115)

Therefore,

ψ(·, k)− ψ+(·, k) = (I −G+(
√
E)v)−1(G(k)−G+(

√
E))vψ(·, k)

k ∈ ΣE \ ΣE,ρ.
(116)

We take G − G+ from Lemma 6.1 and use there that ψ0(x − y, k(λ)) =
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ψ0(x, k(λ))ψ0(−y, k(λ)). This leads to

(G(k(λ))−G+(
√
E))vψ(·, k(λ))

=
1

(2π)2

∫
D

∫
∂Λ

W (λ, ς)ψ0(x, k(ς))ψ0(−y, k(ς))dςv(y)ψ(y, k(λ))dy

=

∫
∂Λ

W (λ, ς)ψ0(x, k(ς))h(k(ς), k(λ))dς, λ ∈ ∂Λ,

where we used also (30). We plug the last relation in (116). It remains to note
(see (114)) that (I −G+(

√
Ev))−1ψ0(·, k(ς)) = ψ+(·, k(ς)).

7. Proofs of Theorem 4.1 and Proposition 4.2

7.1. Proof of Theorem 4.1

Let
µ′0(λ) = µ′(λ)− e(λ),

µ+
0 (λ) = µ+(λ)− e(λ), µ0(λ) = µ(λ)− e(λ),

(117)

where µ′, µ+, µ are the functions of (76), e(·) is the function of (67).
From formulas (64), (67) and from items 1 and 2 of Proposition 3.3 it

follows, in particular, that

∂

∂λ
e(λ) = r(x, λ,E)e(λ), λ ∈ C, (118)

∂

∂λ
µ′0(λ) = r(x, λ,E)µ′0(λ), λ ∈ C \ ∂Λ, (119)

µ′0(λ)→ 0 as λ→∞.

Proceeding from (119) and using the generalized Cauchy formula for µ′0 (see
formula (10.6) of Chapter 3 of [25]) one can obtain

µ′0(λ) =
1

2πi

∫
∂Λ

Ω1(λ, ζ)K0(ζ)dζ − 1

2πi

∫
∂Λ

Ω2(λ, ζ)K0(ζ)dζ,

λ ∈ C \ ∂Λ,
(120)

where
K0(λ) := µ+

0 (λ)− µ0(λ), λ ∈ ∂Λ. (121)

In addition, from (80), (117) and (121) it follows that

K0(λ) = K(λ), λ ∈ ∂Λ. (122)

Formulas (117), (120), (122) imply formula (79).
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Finally, equation (81) follows from the substitution of (79) into (55) using
formulas (65), (76), (80), estimates (71)-(73) and the jump properties of the
Cauchy integral.

This completes the scheme of proof of Theorem 4.1.

7.2. Proof of Proposition 4.2

Equation (85) follows from equation (81) and formulas (83), (84). Equation
(86) follows from (85).

Estimates (87), (88) follow from formulas (64), (65), (83), (84), estimates
(54), (71)-(74), (77), (78) and the estimate

‖Ω0
1u‖Lp(∂Λ) ≤ const(p, ∂Λ)‖u‖Lp(∂Λ), 1 < p <∞, (123)

where

(Ω0
1u)(λ) =

1

2πi

∫
∂Λ

u(ς)dς

ς − λ(1− 0(|λ| − 1))
, λ ∈ ∂Λ, (124)

u is a test function on ∂Λ.

8. Proofs of Lemma 4.4 and Proposition 4.5

8.1. Proof of Lemma 4.4

Property (92) follows from (89), (91).
Property (93) follows from continuous dependence of A1, A2 with respect

to x ∈ R2, |x| ≤ c, at fixed s ∈]− s1, s1[ and continuous dependence of A1, A2

with respect to s ∈]− s1, s1[ uniformly in x ∈ R2, |x| ≤ c, in the sense of
‖ · ‖L2(∂Λ×∂Λ), for fixed c > 0.

In turn, these continuities of A1, A2 in x and in s follow from formulas (72),
(73), (84) and the following results:

(i) h|∂Λ×∂Λ depends continuously on s ∈]−s1, s1[ in the sense of ‖·‖C(∂Λ×∂Λ),

(ii) uE,ρ depends continuously on s ∈]−s1, s1[ in the sense of ‖ ·‖Lp,2(C), 2 <
p < 4, where h = h(k(λ), k(ς)), uE,ρ correspond to sv according to (20)-
(23), (30), (35), (42), (45);

(iii) The following estimates hold:∣∣∣e−2i<k(λ)x − e−2i<k(λ)x′
∣∣∣ ≤ Const · (

√
E(|λ|+ |λ|−1)|x− x′|)α,

λ ∈ C \ 0, x, x′ ∈ R2, 0 < α ≤ 1,∣∣∣ei(k(ς)−k(λ))x − ei(k(ς)−k(λ))x′
∣∣∣ ≤ 2(E+2ρ2)1/2e2ρmax(|x|,|x′|)|x− x′|,

ς, λ ∈ ∂Λ, x, x′ ∈ R2;
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(iv) If u ∈ Lp,2(C), 2 < p < 4, then (|λ|+|λ−1|)αu(λ) ∈ Lp′,2(C) (as a function
of λ), 2 < p′ < p(1 + αp/2)−1, where 0 < α < (p− 2)/p;

(v) The map (defined via (67))

r ∈ Lp,2(C)→ e(·) ∈ C(C)

is continuous and the maps (defined via (68), (69))

r ∈ Lp,2(C)→ Xj ∈ C(C2 \ Cε), j = 1, 2,

Cε = {(λ, ς) ∈ C2 : |λ− ς| < ε},

are continuous for any ε > 0, where Lp,2(C) is considered with the norm
of (37), 2 < p < 4, and C(C), C(C2 \Cε) are considered with the uniform
norms.

In order to prove (94) we consider sv, where s ∈ C, and we consider hs =
hs(k(λ), k(ς)), λ, ς ∈ ∂Λ, and bs = bs(k(λ)), λ ∈ (C \ 0) \ Λ, where hs, bs
correspond to sv according to (20)-(23), (30), (35), (42) (with sv in place of v).
Proceeding from these formulas and equations and from (26), (27), (51), one
can show that there is an open neighbourhood N of the real interval ]− s1, s1[
in C (where N depends on D, ‖v‖L∞(D), E, ρ, q) such that

N = N , i.e. N is symmetric with respect to R, (125)

hs(·, ·, E) ∈ C(∂Λ× ∂Λ), uE,ρ,s ∈ Lp,2(C), 2 < p < 4,

with holomorphic dependence on s ∈ N ,
(126)

where uE,ρ,s is defined by (45) with bs in place of b.
Next, we consider es, X1,s, X2,s,Ω1,s,Ω2,s defined via (67), (68), (69), (70)

with rs in place of r, where rs is defined by (64) with bs in place of b, where
s ∈]− s1, s1[. And we consider e±s,σ, X±j,s,σ, j = 1, 2, defined via the following
systems of equations:

e+
s,σ(λ) = 1− 1

π

∫
C
rs(x, ζ, E)e−s,σ(ζ)

d<ζd=ζ
ζ − λ

,

e−s,σ(λ) = 1− 1

π

∫
C
rσ(x, ζ, E)e+

s,σ(ζ)
d<ζd=ζ
ζ − λ

,

(127)

X+
1,s,σ(λ, ζ) +

1

π

∫
C
rs(x, η,E)X−1,s,σ(η, ζ)

d<ζd=ζ
η − λ

=
1

2(ζ − λ)
,

X−1,s,σ(λ, ζ) +
1

π

∫
C
rσ(x, η,E)X+

1,s,σ(η, ζ)
d<ζd=ζ
η − λ

=
1

2(ζ − λ)
,

(128)
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X+
2,s,σ(λ, ζ) +

1

π

∫
C
rs(x, η,E)X−2,s,σ(η, ζ)

d<ζd=ζ
η − λ

=
1

2i(ζ − λ)
,

X−2,s,σ(λ, ζ) +
1

π

∫
C
rσ(x, η,E)X+

2,s,σ(η, ζ)
d<ζd=ζ
η − λ

=
−1

2i(ζ − λ)
,

(129)

where s, σ ∈ N , rs is defined by (64) with bs in place of b. In addition, we
consider also

Ω1,s,σ(λ, ζ) := X+
1,s,σ(λ, ζ) + iX+

2,s,σ(λ, ζ),

Ω2,s,σ(λ, ζ) := X+
1,s,σ(λ, ζ)− iX+

2,s,σ(λ, ζ),
(130)

where λ, ζ ∈ C, s, σ ∈ N .
Let

S := {(s, σ) ∈ N ×N : σ = s ∈]− s1, s1[ } . (131)

Using considerations of Section 9 of Chapter 3 of [25], one can show that
systems (127), (128), (129) for e±s,σ, X

±
j,s,σ, j = 1, 2, for (s, σ) ∈ S, are reduced

to the equations for es, Xj,s, j = 1, 2, s ∈] − s1, s1[, are uniquely solvable in
Lq0(C), p/(p− 1) ≤ q < 2, where p is the number (126). In addition:

es = e+
s,s, es = e−s,s, Xj,s = X+

j,s,s, Xj,s = X−j,s,s, Ωj,s = Ωj,s,s, (132)

where j = 1, 2, s ∈]− s1, s1[.
Using the definition of rs and holomorphic dependence of uE,ρ,s on s ∈ N

in (126) one can show that

rs(x, ·, E) ∈ Lp,2(C), rσ(x, ·, E) ∈ Lp,2(C), 2 < p < 4,
with holomorphic dependence on s, σ ∈ N , (133)

for fixed x ∈ R2, E > 0.
Proceeding from these results and from properties of the integral opera-

tors in (127) -(129) (presented in [25]), one can show that there is an open
neighbourhood Sx of S in N ×N (where Sx depends also on v,E, ρ) such that:

systems (127), (128), (129) for e±s,σ, X
±
j,s,σ, j = 1, 2, are uniqely

solvable in Lq,0(C), p/(p− 1) ≤ q < 2, for (s, σ) ∈ Sx;
(134)

e+
s,σ ∈ C(C), Ωj,s,σ ∈ C(C2 \ Cε), j = 1, 2, for any ε > 0,

with holomorphic dependence on (s, σ) ∈ Sx,
(135)

where Cε is defined in item (v) in the proof of property (93);∣∣∣∣Ω1,s,σ(λ, ζ)− 1

ζ − λ

∣∣∣∣ < c3(s, σ, p)

|ζ − λ|2/p
, |Ω2,s,σ(λ, ζ)| < c3(s, σ, p)

|ζ − λ|2/p
, (136)
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where c3 depends continuously on (s, σ) ∈ Sx and depends also on v.
Let

Nx := {s ∈ N : (s, s) ∈ Sx }, x ∈ R2. (137)

One can see that Nx is an open neighbourhood of the real interval ] − s1, s1[
in C.

We consider

A1,s(λ, ζ) = A1,s(x, λ, ζ, E)

=
1

2πi

∫
∂Λ

Rs(x, λ, λ
′, E)Ω1,s,s(λ

′(1− 0(|λ′| − 1)), ζ)dλ′,

A2,s(λ, ζ) = A2,s(x, λ, ζ, E)

=
−1

2πi

∫
∂Λ

Rs(x, λ, λ
′, E)Ω2,s,s(λ

′, ζ)dλ′,

(138)

λ, ζ ∈ ∂Λ, where Rs is defined by (65) with hs in place of h, Ω1,s,σ,Ω2,s,σ are
the functions of (130), (135), (136), λ, ζ ∈ ∂Λ, s ∈ Nx.

We consider also

Ãj,s := Aj,s, j = 1, 2, s ∈ Nx. (139)

Using (126) for hs and (135), (136) for Ωj,s,s, j = 1, 2, we obtain

Aj,s ∈ L2(∂Λ× ∂Λ), j = 1, 2,
with holomorphic dependence on s ∈ Nx.

(140)

Using (139), (140) we also obtain

Ãj,s ∈ L2(∂Λ× ∂Λ), j = 1, 2,
with holomorphic dependence on s ∈ Nx.

(141)

We consider A(x, s), where s ∈ Nx ∩ Nx, defined using (8.14), (8.15) in a

similar way with A(x, s) for s ∈] − s1, s1[, but with Ãj,s in place of A(x, s).
Finally, we consider detA(x, s) for s ∈ Nx ∩Nx.

Using (132) for Ωj,s,s, (140), (141), we obtain that

detA(x, s) is holomorphic in s ∈ Nx ∩Nx for fixed x ∈ R2. (142)

Property (142) implies property (94).

8.2. Proof of Proposition 4.5

Let v be as in Remark 4.6 and let detA(x, s) be defined like in Lemma 4.4.
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Let
Z := {(x, s) ∈ R2×]− s1, s1[ : detA(x, s) = 0 },

Zx := {s ∈ ]− s1, s1[ : detA(x, s) = 0 }, x ∈ R2,

Zs := {x ∈ R2 : detA(x, s) = 0 }, s ∈]− s1, s1[.

(143)

Using (92), (94), we obtain that Zx is a discrete set (maybe empty) with-
out interior accumulation points in interval ] − s1, s1[. Therefore, we have, in
particular, that

Meas Z = 0 in R2×]− s1, s1[. (144)

As a corollary,

Meas Zs = 0 in R2 for almost each s ∈]− s1, s1[. (145)

Property (145) implies the result of Proposition 4.5 interpreted according to
Remark 4.6.
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