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Abstract. Common approaches to solving a robust optimization problem decompose the prob-
lem into a master problem (MP) and adversarial problems (APs). The MP contains the original
robust constraints, written, however, only for finite numbers of scenarios. Additional scenarios are
generated on the fly by solving the APs. We consider in this work the budgeted uncertainty poly-
tope from Bertsimas and Sim, widely used in the literature, and propose new dynamic programming
algorithms to solve the APs that are based on the maximum number of deviations allowed and on
the size of the deviations. Our algorithms can be applied to robust constraints that occur in various
applications such as lot-sizing, the traveling salesman problem with time windows, scheduling prob-
lems, and inventory routing problems, among many others. We show how the simple version of the
algorithms leads to a fully polynomial time approximation scheme when the deterministic problem
is convex. We assess numerically our approach on a lot-sizing problem, showing a comparison with
the classical mixed integer linear programming reformulation of the AP.
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1. Introduction. Robust optimization (RO) is a popular framework to handle
the uncertainty that arises in optimization problems. The essence of RO lies in ensur-
ing that feasible solutions satisfy the robust constraints for all parameter realizations
in a given uncertainty set Ξ. Since the seminal work of [11], the framework has been
used in numerous applications; see [9, 12, 21] and the references therein. The success
of RO can be explained mainly by the following reasons. First, it is simple to use and
understand since it only requires knowledge of uncertainty sets. Second, RO very of-
ten yields optimization problems that are not more difficult to solve than the original
problems.

The classical approach to RO trades the robust constraints for convex reformula-
tions. The initial works were based on conic duality (e.g., [9]) but recent works have
extended the scope of convex reformulations by using other tools, such as Fenchel
duality [8] or the result “primal worst equals dual best” [22]. In this work, we con-
sider an alternative approach, based on decomposition algorithms. Our work falls into
the recent trend that solves complex RO problems without reformulating the robust
constraints as convex ones. Instead, we relax the problem into a so-called master
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problem, where each robust constraint is written only for a finite subset Ξ0 ⊂ Ξ.
Given a feasible solution to the master problem, we check whether the solution is
feasible for each robust constraint by solving adversarial problems (APs). In case one
or more robust constraints are infeasible, we expand Ξ0 by one or more vectors and
solve the augmented master problem. The main advantage of decomposition algo-
rithms over convex reformulations is that they can be applied to virtually any type of
robust constraint as long as one can handle the corresponding AP. For instance, they
can be applied to robust constraints defined by nonconcave functions of the uncertain
parameters [30], to uncertainty sets that are defined through integrality requirements
[20], or to solve exactly two-stage RO problems [36].

We are proposing in this paper a dynamic programming algorithm (DPA) and a
unified decomposition algorithm to solve the following optimization problem. Let d
be a vector of parameters, z be a vector of optimization variables, and gi and hi be
affine functions for each i = 1, . . . , n, and consider the robust constraint

(1.1) f(ξΣ, z) ≤ dT z ∀ξ ∈ Ξ

with

(1.2) f(ξΣ, z) =

n∑
i=1

max
{
gi
(
ξΣ
i , z

)
, hi
(
ξΣ
i , z

)}
,

and where ξΣ
i =

∑i
j=1 ξj denotes the sum of the first i components of uncertain vector

ξ for i = 1, . . . , n. Consider a cost vector c and a feasibility set Z. We are interested
in solving exactly the following type of RO problems:

min cT z

s.t. z ∈ Z,(1.3)

f
(
ξΣ, z

)
≤ dT z ∀ξ ∈ Ξ,(1.4)

where (1.3) represents all constraints not affected by the uncertainty, including the
possible integrality restrictions.

Definition (1.2) has its roots in lot-sizing problems where, for each period in a
given time horizon, one has to pay either storage or backlog cost (cost incurred by
delaying the delivery of the product). It is common to assume demand uncertainty in
these problems so that the total demand that must be handled at period i is equal to∑i
j=1 ξj . For the sake of clarity, we delay to a later section of the paper an important

extension of our approach where the elements of the summations
∑i
j=1 ξj involved in

(1.2) depend on the optimization variables z.
Our algorithm further requires that the uncertainty set be the budgeted uncer-

tainty polytope ΞΓ introduced by [13, 14] and defined as

(1.5) ΞΓ ≡
{
ξ : ξi = ξi + ξ̂iηi, i = 1, . . . , n, ‖η‖∞ ≤ 1, ‖η‖1 ≤ Γ

}
for positive integers ξ̂i, i = 1, . . . , n, arbitrary reals ξi, i = 1, . . . , n, and Γ > 0. The
set is extremely popular in integer programming and network optimization and has
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been used in a wide range of applications. The main purpose of the paper is to study
how to efficiently solve the separation problem for constraint (1.4) and uncertainty
set ΞΓ, namely,

(AP) max
ξ∈ΞΓ

f
(
ξΣ, z

)
.

1.1. Contributions and literature review. Traditionally, (AP) is solved
through either a DPA based on the value of Γ and on the stock levels [15] or mixed
integer linear programming (MILP) with big-M coefficients [15] or approximated via
decision rules (e.g., [10]). More recently, [23] proposed to solve an AP different from
(AP), which is related to the expansion of the maxima in the definition of f . Dif-
ferently from these works, we propose here to address (AP) via a DPA based on Γ

and on ξ̂. Hence, our approach can be applied to a wider range of problem than the
seminal work of [15] that focused on the lot-sizing problem. The worst-case running

time of our approach depends on the value of ξ̂ and Γ, yielding a pseudopolynomial
time algorithm. When the deviations are small, our numerical experiments show that
the DPA can be orders of magnitude faster than the classical MILP reformulation.
Moreover, we show that our DPA gives rise to a fully polynomial time approximation
scheme (FPTAS) for (AP) and the original robust problem whenever Z is a convex
set and an additional technical assumption is satisfied. We also extend our DPA to
combinatorial problems with lower time windows and inventory distribution problems.
Notice also that, unlike [23] that considers bi-affine functions gi and hi, we consider
these functions affine herein.

We mention that dynamic programming has already been successfully applied to
other RO problems with uncertainty set ΞΓ. One of the first works in that aspect
is [28], which presents a DPA to solve the robust knapsack problem. The approach
is compared numerically to other solution algorithms in [29], where the authors also
study the space complexity of the algorithm. The seminal idea of [28] is extended by
[33] to any robust combinatorial optimization problems with cost uncertainty whose
deterministic counterpart can be solved by a DPA, including its variant with variable
uncertainty [32]. Differently from [28, 29, 33], which solve the full RO problem by
a DPA, the authors of [3] use a DPA to solve the AP that arises in robust vehicle
routing problems with time windows. The complexity of their algorithm is linear in Γ.
A common characteristic of the aforementioned works is that the deterministic version
of the problem studied therein (or the AP in case of [3]) can be solved by a DPA.
Thus, these works show how to extend the deterministic DPA to handle the robust
versions of the problems. Fortunately, the extension only multiplies by Γ the number
of states used in the deterministic DPA, so that the robust problems pertain to the
same complexity class as their deterministic counterparts. In contrast, the authors of
[31] prove that the robust shortest path problem with time windows is NP-hard in
the strong sense while its deterministic version is NP-hard in the weak sense. They
propose a DPA for the shortest path problem with time windows which multiplies the
deterministic number of states by an exponential function of Γ, yielding an algorithm
with exponential running time.

The algorithm presented herein is different from the above papers mainly in two
aspects. First, like [15], it does not extend an existing deterministic algorithm because
solving (AP) is trivial in the deterministic context. Second, the number of states of

our algorithm depends on Γ and ξ̂, unlike previous works which only involve Γ. Hence,
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when each component of ξ̂ is bounded by a polynomial function of the input data,
our DPA runs in polynomial time. Otherwise, its running time is pseudopolynomial.

1.2. Structure of the paper. In the next section, we present the general al-
gorithmic procedure used to decompose the original problem into a master problem
and an AP. Then, we discuss the computational complexity of the AP, showing that
it is a special case of different NP-hard optimization problems. In section 3.1, we
present a simple DPA for (AP) defined previously, which we extend in section 3.2 to
an FPTAS. We explain in section 4 how to generalize the framework to encompass
more complex problems such as the robust traveling salesman with deadlines. We
propose in section 5 subtle extensions for our simple DPA, each one described for
a particular problem. Namely, we present in section 5.1 an inventory distribution
problem where the AP can be decomposed into smaller problems linked by a simple
constraint, and we illustrate in section 5.2 on the traveling salesman problem (TSP)
how to handle full time windows rather than deadlines constraints. Our numerical
experiments, realized on the lot-sizing problem, are presented in section 6. Finally,
the appendix contains the NP-hardness proofs.

2. The framework. We describe in this section the general decomposition al-
gorithm used in this paper. Then, we discuss the complexity of the AP.

2.1. Decomposition. We are interested in solving exactly the following type of
RO problems:

min cT z

(P) s.t. z ∈ Z,(2.1)

f
(
ξΣ, z

)
≤ dT z ∀ξ ∈ ΞΓ.(2.2)

Constraint (2.1) contains all restrictions not affected by uncertainty, including the
possible integrality restrictions on z. Constraint (2.2) is a robust constraint charac-
terized by a function that satisfies (1.2). For the sake of simplicity, we consider a
unique robust constraint in (P); one readily extends the approach described below to
problems with K constraints of type (2.2).

The problem (P) contains infinite numbers of variables and constraints, making
it intractable as such. Here, we tackle the problem by generating a finite subset
of variables and constraints on the fly in the course of the decomposition algorithm
presented below. Let Ξ0 ⊂ ΞΓ be a finite set. Since Ξ0 is finite, we can reformulate

(2.3) f
(
ξΣ, z

)
≤ dT z ∀ξ ∈ Ξ0,

as the following finite set of linear inequalities, written for each ξ ∈ Ξ0:

n∑
i=1

ϕξi ≤ d
T z,(2.4)

ϕξi ≥ gi
(
ξΣ
i , z

)
∀i = 1, . . . , n,(2.5)

ϕξi ≥ hi
(
ξΣ
i , z

)
∀i = 1, . . . , n,(2.6)

where ϕξ is an additional vector of optimization variables. Our approach is based on
the above linear reformulation of (2.3). Specifically, we relax constraints (2.2) for all
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elements in ΞΓ but Ξ0 and replace robust constraint (2.2) by its linear reformulation,
obtaining the master problem

min cT z

(MP) s.t. z ∈ Z,
n∑
i=1

ϕξi ≤ d
T z ∀ξ ∈ Ξ0,

ϕξi ≥ gi
(
ξΣ
i , z

)
∀ξ ∈ Ξ0, i = 1, . . . , n,

ϕξi ≥ hi
(
ξΣ
i , z

)
∀ξ ∈ Ξ0, i = 1, . . . , n.

Given a feasible solution z∗ to (MP), one checks the feasibility of z∗ for (P) by
solving an AP. Let ξ∗ be the optimal solution for the AP. If f(ξ∗Σ, z∗) > dT z∗,
then Ξ0 ← Ξ0 ∪ {ξ∗}, and the corresponding optimization vector ϕξ

∗
and constraints

(2.4)–(2.6) are added to (MP). Therefore, the overall algorithm is a row-and-column
generation algorithm along the line of those proposed in [3, 36].

2.2. Illustration: Robust lot-sizing problem. Consider the robust lot-sizing
problem (RLSP) defined for a finite planning horizon {1, . . . , n}. For each time period
i = 1, . . . , n, we are given a capacity Ci, holding cost pi, a shortage cost si, and a
production cost ci. We assume that the vector of demands ξ belongs to set ΞΓ, where
ξi represents the nominal demand in period i, and ξ̂i represents the maximum allowed
demand deviation in period i. The amount that needs to be produced in each time
period must be decided before the actual demand value is revealed. In contrast, stock
levels and backlogged demands are adjusted to each individual demand realization.

The problem can be modeled as follows. Variable xi represents the amount pro-
duced at period i and variable θ represents the total storage and backlog costs. For
each ξ ∈ Ξ, ξΣ

i represents the total demand up to time period i for demand vector ξ.
The formulation for the RLSP follows.

min cTx+ θ

s.t 0 ≤ xi ≤ Ci ∀i = 1, . . . , n,(2.7)

θ ≥
n∑
i=1

max

si
ξΣ

i −
i∑

j=1

xj

 ,−pi

ξΣ
i −

i∑
j=1

xj

 ∀ξ ∈ ΞΓ.(2.8)

We see readily that the problem is a special case of (P) for z = (x, θ). Namely,
Z is the set defined by (2.7), the components of d corresponding to x and θ are
equal to 0 and 1, respectively, and functions f , g, and h are defined by f(ξΣ, x, θ) =∑n
i=1 max{si(ξΣ

i −
∑i
j=1 xj),−pi(ξΣ

i −
∑i
j=1 xj)}, gi(ξΣ, x, θ) = si(ξ

Σ
i −

∑i
j=1 xj) and

hi(ξ
Σ, x, θ) = −pi(ξΣ

i −
∑i
j=1 xj).

Observe that the AP depends only on the quantities produced. Hence the ap-
proach holds if more complex models are considered for the decision problem, such as
set-up costs, start-up costs, etc.

2.3. Complexity of the adversarial problem. Omitting the dependency on
z, the AP maxξ∈ΞΓ f(ξΣ) considered in this paper optimizes a function of the form
f(ξΣ) =

∑n
i=1 fi(ξ

Σ
i ), where fi is a convex function for each i = 1, . . . , n. Hence, f
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is convex so that its maximum is attained at least at one of the extreme points of
polytope ΞΓ, which we denote ext(ΞΓ) :

ext(ΞΓ) ≡
{
ξ : ξi = ξi + ξ̂iηi, i = 1, . . . , n, η ∈ {−1, 0, 1}n, ‖η‖1 ≤ Γ

}
.

There exist a few cases in which problem (AP) is easy. For instance, when Γ
is constant (i.e., it is not part of the input), ext(ΞΓ) contains a polynomial number
of elements so that (AP) can be solved in polynomial time by inspection. More
interestingly, the problem can also be solved in polynomial time whenever Γ = n,
which corresponds to ΞΓ being a box uncertainty set; see [26]. More recently, the
authors of [6] have shown that a closely related problem where each function fi involves
only component ξi of the uncertain vector is also easy.

While the NP-hardness of (AP) is still unknown, simple generalizations of the
problem are difficult. For instance, optimizing a piecewise linear convex function over
ext(ΞΓ) is APX -hard; see Proposition A.1 in the appendix. We next study problems
more closely related to (AP). We show that if we generalize either the uncertainty set
ΞΓ or the set of admissible functions fi, the resulting problem is NP-hard. Namely,
consider the following generalization of problem (AP):

(ÃP) max
ξ∈Ξ̃

n∑
i=1

f̃i
(
ξΣ
i

)
.

• If Ξ̃ is a polytope having a compact description and functions f̃i are convex
functions of the form f̃i(ξ

Σ
i ) = max{gi(ξΣ

i ), hi(ξ
Σ
i )}, where gi and hi are affine

functions, then (ÃP) is NP-hard. This result is stated in Proposition A.2
given in the appendix.

• If Ξ̃ is the set ext(ΞΓ) and f̃i are general nonnegative functions such that

f̃(ξΣ) =
∑n
i=1 f̃i(ξ

Σ
i ) is positive, then (ÃP) is NP-hard. This result is stated

in Proposition A.3 given in the appendix.
In view of the above results and of the numerical difficulty of solving problem (AP),
our conjecture is that the problem is NP-hard.

On the other hand, if the deviations are constant or if their size can be bounded
by a polynomial function of the input data, then (AP) can be solved in polynomial
time. This is an immediate consequence of the DPA presented in the next section.

3. A dynamic programming algorithm. We present in section 3.1 a simple
DPA to solve the AP for a simplification of ΞΓ. We show then in section 3.2 how
to approximate (AP) and (P) through an FPTAS when some additional assumptions
are satisfied. We show how to extend the DPA to the general set ΞΓ and to larger
classes of functions in sections 3.3 and 3.4, respectively.

3.1. Exact algorithm. For the sake of simplicity, we consider in what follows
that Γ is integer and that Ξ does not include downward deviations (η ∈ {0, 1}n). We
discuss in section 3.3 how these simplifications can be relaxed. We further assume
that z is fixed throughout the section so that, for each i = 1, . . . , n, we can simplify the
writing of affine functions gi(ξ

Σ
i , z) and hi(ξ

Σ
i , z) by removing the explicit dependency

on z. We obtain affine functions

gi(ξ
Σ
i ) = g0

i + g1
i ξ

Σ
i and hi(ξ

Σ
i ) = h0

i + h1
i ξ

Σ
i ,

where the dependency on z is hidden in the independent terms g0
i and h0

i . Then, we
define fi(ξ

Σ
i ) = max{gi(ξΣ

i ), hi(ξ
Σ
i )} for each i = 1, . . . , n and f(ξΣ) =

∑n
i=1 fi(ξ

Σ
i ).
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We are interested here in solving the optimization problem maxξ∈ΞΓ f(ξΣ). Notice
that because f is convex, its maximum is always reached at an extreme point of ΞΓ,
yielding discrete optimization problem

(3.1) max
ξ∈ext(ΞΓ)

f
(
ξΣ
)
.

Problem (3.1) may not be easy to solve since ext(ΞΓ) contains an exponential number
of elements and function f is nonlinear. However, recall that, because of the definition
of ΞΓ, we do not need to know the entire vector ξ ∈ ext(ΞΓ) to compute f(ξΣ).

In fact, it is enough to know the cumulative uncertainties ξΣ
i =

∑i
t=1 ξt for each

i = 1, . . . , n, which are equivalent to the cumulative deviations
∑i
t=1 ξt −

∑i
t=1 ξt for

each i = 1, . . . , n because ξ ∈ [ξ, ξ + ξ̂]. With this in mind, we introduce

f ′i(φi) = max
{
gi
(
ξ̄Σ
i

)
+ g1

i φi, hi
(
ξ̄Σ
i

)
+ h1

iφi
}
,

obtained from fi by treating separately the cumulative mean ξ̄Σ
i =

∑i
t=1 ξt and the

cumulative deviation φi = ξΣ
i − ξ̄Σ

i . Namely, let η ∈ {0, 1}n be a binary vector
that satisfies ‖η‖1 ≤ Γ and let ξ ∈ ext(ΞΓ) be the associated vector of uncertain

parameters, defined as ξi = ξi + ξ̂iηi for each i = 1, . . . , n. One readily checks that

fi(ξ
Σ
i ) = f ′i(φi) if and only if φi =

∑i
t=1 ξ̂tηt. Therefore, AP (3.1) can be rewritten

as

max

n∑
i=1

f ′i(φi)

(AP) s.t. φi =

i∑
t=1

ξ̂tηt ∀i = 1, . . . , n,

n∑
i=1

ηi ≤ Γ,

ηi ∈ {0, 1} ∀i = 1, . . . , n.

Up to now we have shown that the optimal solution cost of (AP) only depends
on the cumulative deviations φi for each i = 1, . . . , n. To obtain a DPA, we still need
a way to enumerate only the most promising cumulative deviations. Let φ be the
maximum allowed cumulative deviation, that is, φ = maxS⊆{1,...,n}:|S|=Γ

∑
i∈S ξ̂i. We

define α(j, γ, φ), for each triple of integers 1 ≤ j ≤ n, 0 ≤ γ ≤ Γ, and 0 ≤ φ ≤ φ, as
the optimal value of the restricted problem for set {1, . . . , j} with at most γ deviations
and a cumulative deviation of φ:

α(j, γ, φ) = max

j∑
i=1

f ′i(φi)

s.t. φj = φ,(3.2)

φi =

i∑
t=1

ξ̂tηt ∀i = 1, . . . , j,(3.3)

j∑
i=1

ηi ≤ γ,(3.4)

ηi ∈ {0, 1} ∀i = 1, . . . , j.(3.5)
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Let α(j, γ, φ) = −∞ if the feasible set defined by (3.2–3.5) is empty because the value
of φ cannot be reached by a sum of deviations. Hence, we have that α(1, 0, 0) = f ′1(0),

α(1, γ, ξ̂1) = f ′1(ξ̂1) for each 1 ≤ γ ≤ Γ, and α(1, γ, φ) = −∞ for the remaining cases.
We see immediately that the optimal solution cost of the adversarial problem

(AP), denoted by opt(AP), can be computed as opt(AP) = maxφ=0,...,φ α(n,Γ, φ).
Moreover, we see easily by contradiction that α(n, γ, φ) satisfies the functional equa-
tion stated below.

Lemma 3.1. For j > 1, each α(j, γ, φ) can be obtained using the following
recursion:

(3.6)
α(j, γ, φ) = f ′j(φ) + max

{
α(j − 1, γ, φ), α(j − 1, γ − 1, φ− ξ̂j)

}
,

α(j, γ, φ) = f ′j(φ) + α(j − 1, 0, φ),

for each j = 2, . . . , n, γ = 0, . . . ,Γ, and φ = 0, . . . , φ.

The computation of f ′j(φ) can be done in constant time for each j = 2, . . . , n and

φ = 0, . . . , φ, yielding a pseudopolynomial worst-case complexity for our DPA.

Lemma 3.2. Problem (AP) can be solved by a DPA in O(nΓφ) operations.

Using the equivalence between separation and optimization (e.g., [24]), it follows
that (P) can be solved in pseudopolynomial time whenever Z is an easy convex set,
which is the case for the RLSP.

Corollary 3.3. Consider problem (P) and let Z be a convex set that has a poly-
nomial time separation oracle. Then, problem (P) can be solved in pseudopolynomial
time.

Proof. We present next a simple cutting-plane algorithm for solving (P). Let J be
a nonnegative integer and f ji (z) be an affine function of z for each 1 ≤ i ≤ n, 1 ≤ j ≤ J .
We solve (P) by a cutting-plane algorithm based on the following relaxation:

min cT z

(R) s.t. z ∈ Z,
n∑
i=1

f ji (z) ≤ dT z ∀j = 1, . . . , J,

initialized with J = 0. Given a feasible solution z∗ to (R), we solve the AP. If
maxξ∈ΞΓ f(ξΣ, z∗) > dT z∗, we let ξ∗ be an optimal solution of the maximization

problem, set J ← J + 1, and add a new constraint to (R) where f ji (z) = gi(ξ
∗Σ, z) if

gi(ξ
∗Σ, z∗) = max{gi(ξ∗Σ, z∗), hi(ξ∗Σ, z∗)} and f ji (z) = hi(ξ

∗Σ, z), otherwise.

Lemma 3.2 states that solving the AP using the proposed dynamic approach can
be considered an interesting option when the sum of deviations φ is not too large. The
cases when the deviations are large correspond to the situations where the uncertain
parameters can assume a wide range of values and therefore the decision maker is very
conservative or very little is known about the uncertain parameters. We also see that
the algorithm is polynomial when Γ is constant since φ can take at most nΓ different
values.

3.2. Fully polynomial time approximation scheme. We show next how to
modify our DPA to obtain an FPTAS for problems (P) that satisfy additional as-
sumptions. Our approach works in two steps. First, we adapt to (AP) the FPTAS



DYNAMIC PROGRAMMING FOR ROBUST OPTIMIZATION 1807

proposed for the knapsack problem by [27]. Their main idea is to reduce the preci-
sion on the parameters by dividing them with a well-chosen number, identical for all
parameters. Our approach holds whenever functions fi and gi satisfy the technical
assumption stated below. Then, we show that whenever Z is convex, an FPTAS for
(AP) can be turned into an FPTAS for (P).

Assumption 1. Consider problem (AP) described by (g0, g1, h0, h1, z) and let ξ =

maxi=1,...,n ξ̂i. There exists a positive function χ of (g0, g1, h0, h1) such that LB =
ξχ(g0, g1, h0, h1) is a lower bound for opt(AP) and

(3.7)

∣∣∣∣ max
i=1,...,n

{g0
i , g

1
i , h

0
i , h

1
i }
∣∣∣∣

χ(g0, g1, h0, h1)
≤ P(n),

where P(n) is a polynomial in n.

Let us illustrate Assumption 1 on the RLSP, assuming that min{sn, pn} > 0. For
that problem, we see that a lower bound for the optimal solution of the problem is

LB = ξ min{sn,pn}
2 , so that (3.7) becomes

2 max
i=1,...,n

{si,pi}

min{sn,pn} ≤ P(n) for some polynomial

P(n). For instance, requiring that P(n) be equal to some constant λ > 0 yields

the set of instances for which
max

i=1,...,n
{si,pi}

min{sn,pn} ≤
λ
2 . Considering polynomials of higher

degrees yields a larger set of admissible instances while increasing the computational
complexity of the resulting FPTAS.

Lemma 3.4. Consider problem (AP) such that Assumption 1 holds. There exists
an FPTAS for (AP).

Proof. For any ε > 0, we let

K =
εξχ(g0, g1, h0, h1)

2n(Γ + 1)

∣∣∣∣ max
i=1,...,n

{g0
i , g

1
i , h

0
i , h

1
i }
∣∣∣∣

and define the new mean value ξ
′
i = ξi

K and deviation ξ̂′i = b ξ̂iK c for each i = 1, . . . , n,

and φ
′

= maxS⊆{1,...,n}:|S|=Γ

∑
i∈S ξ̂

′
i. Then, execute the DPA presented in the previ-

ous section to (AP) using the vector of deviations ξ̂′. Using notation ξ′ = b ξ
K c, we

see that the running time of the algorithm is polynomial in (n,Γ, 1/ε) since

O(nΓφ
′
) = O(nΓ2ξ′) = O

(
nΓ2

⌊
ξ

K

⌋)
= O

(
nΓ2

⌊
nΓP(n)

ε

⌋)
.

We are left to show that the optimal solution to the problem with ξ̂′ is an (1 − ε)-
approximate solution for the original problem.

Let η′, η∗ ∈ {η|η ∈ {0, 1}n, ‖η‖1 ≤ Γ} be the solution returned by the above
algorithm and the optimal solution, respectively, and let profit(·) and profit′(·) denote

the profit of any element of {0, 1}n using deviations ξ̂ and ξ̂′, respectively. Clearly,
profit(η′) ≤ opt(AP). Then, recall from the definition that K profit′(η) =

n∑
i=1

max

{
g0
iK + g1

i

i∑
t=1

(
ξt + ηtK

⌊
ξ̂t
K

⌋)
, h0
iK + h1

i

i∑
t=1

(
ξt + ηtK

⌊
ξ̂t
K

⌋)}
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for any η ∈ {η|η ∈ {0, 1}n, ‖η‖1 ≤ Γ} and observe that |ξ̂t −Kb ξ̂tK c| ≤ K. Hence, for
any η ∈ {η|η ∈ {0, 1}n, ‖η‖1 ≤ Γ} we have that

(3.8) |profit(η)−K profit′(η)| ≤ n(Γ + 1)K

∣∣∣∣ max
i=1,...,n

{g0
i , g

1
i , h

0
i , h

1
i }
∣∣∣∣ .

Therefore,

profit(η′) ≥ K profit′(η′)− n(Γ + 1)K

∣∣∣∣ max
i=1,...,n

{g0
i , g

1
i , h

0
i , h

1
i }
∣∣∣∣

≥ K profit′(η∗)− n(Γ + 1)K

∣∣∣∣ max
i=1,...,n

{g0
i , g

1
i , h

0
i , h

1
i }
∣∣∣∣

≥ profit(η∗)− 2n(Γ + 1)K

∣∣∣∣ max
i=1,...,n

{g0
i , g

1
i , h

0
i , h

1
i }
∣∣∣∣

= opt(AP)− εLB ≥ (1− ε)opt(AP),

proving the result.

The lemma below shows that the existence of an FPTAS for (AP) can be trans-
lated into an FPTAS for special cases of problem (P).

Lemma 3.5. Consider the following special case of problem (P):

min cT z + θ

(P′) s.t. z ∈ Z
f(ξΣ, z) ≤ θ ∀ξ ∈ ΞΓ.

Assume that Z is a convex set that has a polynomial time separation oracle and that
there exists an FPTAS for maxξ∈ΞΓ f . There exists an FPTAS for (P′).

Proof. We must show that for each ε > 0, we can provide in polynomial time
an (1 + ε)-approximate solution to (P′). Our approach relies on the cutting-plane
algorithm from Corollary 3.3 with the difference that each (AP) is now solved with the
FPTAS to provide an 1

1+ε -approximate solution. Let (z′, θ′) be the solution returned
by the approximate cutting-plane algorithm. We claim that (z′, (1+ε)θ′) is the desired
approximate solution. Clearly, (z′, (1 + ε)θ′) is computed in polynomial time. Then,
we must verify that

opt(P′) ≤ cT z′ + (1 + ε)θ′ ≤ (1 + ε)opt(P′).

To prove the first inequality, we rewrite (P′) as

min
z∈Z

cT z + F (z),

where F (z) = maxξ∈ΞΓ f(ξΣ, z). Since θ′ is an 1
1+ε -approximate solution of the cor-

responding (AP), we have that θ′ ≥ 1
1+εF (z′). Hence,

cT z′ + (1 + ε)θ′ ≥ cT z′ + F (z′) ≥ opt(P′).

We prove the second inequality by contradiction. Assuming the inequality does not
hold, we obtain

(3.9) opt(P′) <
cT z′

1 + ε
+

1 + ε

1 + ε
θ′ ≤ cT z′ + θ′.
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Moreover, because θ′ is an approximate solution of the corresponding (AP), we have

cT z′ + θ′ ≤ cT z′ + F (z′) ≤ opt(P′),

which is in contradiction with (3.9).

3.3. General uncertainty set. We discuss below how to extend the DPA to
handle the general uncertainty set ΞΓ.

Downward deviations. Downward deviations of ξ can be handled by replacing
constraints (3.4) and (3.5) in the definition of α(j, γ, φ) by

∑j
i=1 |ηi| ≤ γ and ηi ∈

{−1, 0, 1}, respectively. The recursion formula (3.6) is then adapted to

α(j, γ, φ) = f ′j(φ) + max{α(j−1, γ, φ), α(j−1, γ − 1, φ− ξ̂j), α(j−1, γ−1, φ+ ξ̂j)},
α(j, 0, φ) = f ′j(φ) + α(j − 1, γ, φ)

for each j = 2, . . . , n, γ = 0, . . . ,Γ, and φ = 0, . . . , φ. The FPTAS for (AP) still holds
in this case.

Fractional Γ. If Γ is fractional one can take advantage of the fact that the extreme
points of ΞΓ can have at most one fractional ηi. Let ΓI = bΓc and ΓF = Γ−ΓI . Hence
(AP) can be solved by applying the DPA n+ 1 times, with Γ replaced by ΓI . In the
first iteration, we suppose that η has no fractional component (no other change in data
is required). In each of the remaining n iterations, we assume that ηj = ΓF . Then, we

redefine ξj as ξj+ΓF ξ̂j and ξ̂j as 0 for that iteration. This approach works because the

DPA does not require that ξi be integer. The FPTAS for (AP) also holds in this case.

3.4. Other objective functions. We discuss next whether the DPA and the re-
lated FPTAS can be extended to more general functions. One the one hand, the DPA
holds when fi : R → R is any quasi-convex function (quasi-convexity is required for
replacing ΞΓ by ext(ΞΓ)). Clearly, the computational complexity of the resulting DPA
increases according to the computational cost of evaluating each function fi. For in-
stance, for the type of functions fi considered in this paper, this complexity is O(1). A
simple example of nonlinear function arises in scheduling problems that minimize the
squared deviation, where the cost of finishing a job i having a deadline di at time ξΣ

i is
defined as fi(ξ

Σ) = (ξΣ
i − di)2. On the other hand, the FPTAS extends easily only to

functions fi defined as the maxima of K affine functions. This extension could be used
to address lot-sizing problems with piecewise linear convex holding costs, for instance
[35]. The extension to K affine functions (instead of 2 as in (1.2)) carries over imme-
diately to problems (P) and (P′). However, the row-and-column generation algorithm
described in section 2.1 and its cutting-plane version used in Corollary 3.3 are not
designed to handle the more general quasi-convex functions mentioned for the DPA.

The separation problem is not affected by the dependency of f on z, so that the
DPA and FPTAS extend directly to more complex functions of z. However, the row-
and-column generation algorithm would then involve solving nonlinear (MP). For
instance, allowing gi and hi to be bi-affine functions, as seen in the recent literature
on RO [23, 6], would lead to bilinear (MP) when considering the more general models
described in the next section.

4. Variable order

4.1. Introducing permutations. We discuss in this section how to extend the
algorithmic framework discussed in section 2 to handle problems where the order used
to define ξΣ

i =
∑i
j=1 ξj must depend on the values taken by the optimization vari-

ables z. Consider, for instance, the one-machine scheduling problem that minimizes
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tardiness. Namely, each job i has a given deadline di and there is a cost for finishing
the job after the deadline that is proportional to the delay. One readily sees that the
finishing times of the jobs in a schedule, denoted by z, can be defined by cumulative
sums similar to ξΣ but depending on the order used in the schedule z. More precisely,
the order of the jobs in z can be described by a permutation of the jobs {1, . . . , n}. Let
τz(i) denote the order of job i in the schedule z. The finishing time of job i is given by

yi(ξ, z) =

τz(i)∑
j=1

ξτ−1
z (i).

Given a penalty weight wi for each job i, the total penalty cost of the schedule z is

f(ξ, z) =

n∑
i=1

max{wi(yi(ξ, z)− di), 0}.

We detail in the next subsection a similar construction for the vehicle routing problem
with deadlines. Notice that for more complex problems it is useful to introduce two
distinct functions. For instance, in assignment type project scheduling problems [16],
the processing time of a job depends on the amount of resource that is assigned to
the job. Hence a solution z would describe not only the order of the jobs but also
their processing times. We would then let τz represent the order in which the jobs
are realized, while πz would be a function from {1, . . . , n} to {1, . . . ,m} that would
characterize the processing times of the jobs among the m available processing times.
Notice that our framework does not handle repetitions of the components of ξ in the
partial summations so that πz must be an injective function.

With these applications in mind, we generalize problem (P) as follows. We con-
sider two positive integers n and m such that m ≥ n and ΞΓ ⊂ Rm and consider the
robust constraint

(4.1) f(y(ξ, z), z) ≤ dT z, ξ ∈ ΞΓ,

with f defined as follows.

Assumption 2. For every z ∈ Z, we can define a permutation τz of {1, . . . , n} and

an injective function πz : {1, . . . , n} → {1, . . . ,m} with yi(ξ, z) =
∑τz(i)

j=1
ξπz(j) such

that

(4.2) f(y(ξ, z), z) =

n∑
i=1

max{gi(yi(ξ, z), z), hi(yi(ξ, z), z)}.

When z is fixed, we use the shorter notation f(y(ξ), z).

The following extends the algorithm proposed in section 2.1 by considering a
vector of optimization variables yξ for each ξ ∈ Ξ, which models the function y(ξ, z)
in the new master problem. Namely, let us denote by Y the linear restrictions that
link optimization vectors z and yξ such that for any z ∈ Z the projection of Y on

yξ is reduced to singleton {(
∑τz(1)
t=1 ξπz(t), . . . ,

∑τz(n)
t=1 ξπz(t))}. We illustrate the set in

the next subsection. The counterpart of (P) under Assumption 2 is

min cT z

(Pvar) s.t. z ∈ Z,
(z, yξ) ∈ Y ∀ξ ∈ ΞΓ,(4.3)

f(yξ, z) ≤ dT z ∀ξ ∈ ΞΓ.
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The difference between (P) and (Pvar) lies in constraints (4.3), which ensure that the
optimization vector yξ takes the right value for any z ∈ Z and ξ ∈ ΞΓ. The row-and-
column generation algorithm depicted in section 2.1 extends naturally to cope with
the new variables and constraints. More precisely, given a feasible solution z∗ to (MP),
one checks the feasibility of z∗ for (Pvar) by solving an AP, which is identical to (AP)
because z∗ is fixed. Let ξ∗ be the optimal solution for the AP. If f(yξ

∗
, z∗) > dT z∗,

then Ξ0 ← Ξ0 ∪ {ξ∗}, and the corresponding optimization vectors yξ
∗

and ϕξ
∗

and
constraints (z, yξ

∗
) ∈ Y and

n∑
i=1

ϕξ
∗

i ≤ d
T z,

ϕξ
∗

i ≥ gi
(
yξ
∗
, z
)
∀i = 1, . . . , n,

ϕξ
∗

i ≥ hi
(
yξ
∗
, z
)
∀i = 1, . . . , n

are added to (MP).
We show next that the problems modeled by (Pvar) must involve nonconnected

feasibility sets Z. Roughly speaking, the next result formalizes the intuitive idea
that the permutations are nontrivial only if Z is nonconnected, which happens in
mixed-integer linear programs, for instance.

Lemma 4.1. If Z is a connected set, then for all z, z′ ∈ Z it holds that

(4.4)

τz(i)∑
t=1

ξπz(t) =

τz′ (i)∑
t=1

ξπz′ (t) for each i = 1, . . . , n.

Proof. Let ξ ∈ ext(ΞΓ) be fixed and let the projection of Y on its component y
be represented by function Y(z) = Y ∩ {z} for all z ∈ Z. Function Y is continuous
in z, because its image is characterized by constraints that are affine functions of z.
Suppose now that Z is connected and that there exists z, z′ ∈ Z such that (4.4) does

not hold and let δ > 0 be a positive real. Denote by
−→
zz′ a path in Z from z to z′ and

consider a, b ∈
−→
zz′ with ‖a− b‖ ≤ δ such that (4.4) does not hold. By assumption and

recalling that ξ̂ is integer, there exists an index i such that

|Yi(a)−Yi(b)| =

∣∣∣∣∣∣
τa(i)∑
t=1

ξπa(t) −
τb(i)∑
t=1

ξπb(t)

∣∣∣∣∣∣ ≥ 1,

proving the discontinuity of Y at a.

The lemma implies that when Z is connected, constraints (4.3) can be removed
from (Pvar) getting back to the simpler version (P).

4.2. Illustration: Robust TSP with deadlines. Here we consider a variant
of the TSP where a deadline is considered for the visit to each client. The resulting
problem is called the TSPD. The problem occurs in many practical situations and has
been studied previously in the stochastic programming literature; see, for instance,
[17]. The robust TSPD, denoted RTSPD, is defined as follows. We are given a
complete digraph G = (V,A) with V = {0, 1, . . . , n}, where node 0 is the depot, costs
cij for crossing arc (i, j) ∈ A, and a deadline bi associated with each node but the
depot. If the vehicle arrives after time bi, a penalty cost, denoted by si, is incurred per



1812 A. AGRA, M. COSTA SANTOS, D. NACE, AND M. POSS

time unit of the violated time. We assume that the traveling times ξij are uncertain
and belong to the aforementioned budgeted polytope where ξij is the regular traveling

time and ξ̂ij is the maximum possible delay.
In our formulation below, binary variable xij indicates whether arc (i, j) is in the

solution, and continuous variable yξi represents the time of visit to vertex i when the
vector of traveling times ξ is considered. We assume node 0 is the depot, from where
the vehicle departs. The RTSPD with time windows can be modeled as follows:

min

n∑
i=1

n∑
j=1

cijxij + θ(4.5)

s.t.

n∑
i=1

xij = 1 ∀j ∈ V,(4.6)

n∑
j=1

xij = 1 ∀i ∈ V,(4.7)

yξ0 = 0 ∀ξ ∈ ΞΓ,(4.8)

yξj ≥ y
ξ
i + ξij −M(1− xij) ∀ξ ∈ ΞΓ, (i, j) ∈ A,(4.9)

θ ≥
n∑
i=1

max
{
si

(
yξi − bi

)
, 0
}
∀ξ ∈ ΞΓ,(4.10)

xij ∈ {0, 1} ∀(i, j) ∈ A,(4.11)

where M is a big-M constant. Constraints (4.6) and (4.7) ensure that each node is
visited once. Constraints (4.8) and (4.9) define the time variables for the visit to each
node, which also forbids cycles. Constraints (4.10) models the penalty incurred for
not meeting the deadline at each node and adds the penalty to θ.

We have yet to show that the above formulation is a special case of (Pvar). Here,
set Z contains all z = (x, θ), where θ is an unrestricted real and x is a Hamiltonian
cycle, that is, a binary vector that satisfies constraints (4.6) and (4.7) and whose
associated subgraph does not contain cycles. Strictly speaking, the above formulation
is not a special case of (Pvar) because cycles are forbidden through constraints (4.9),
which are constraints that characterize Y and should therefore not contribute to
the definition of Z as introduced in section 4.1. Hence, to be truly coherent with
(Pvar), one should add to the model classical constraints to forbid cycles (e.g., subtour
inequalities, cut inequalities, MTZ inequalities), which we omit to keep our model as
simple as possible. Set Y is then defined by constraints (4.8) and (4.9). Namely,
consider a fixed z = (x, θ) ∈ Z, where x is a fixed Hamiltomian cycle, and let τz(i)
denote the position of node i in the cycle, starting from the depot (τz(0) = 0), and
let πz(i) denote the arc that comes in position i in the cycle. One readily verifies that

(4.8) and (4.9) yield the following restriction for yξi for each i = 1, . . . , n:

(4.12) yξi ≥
τz(i)∑
t=1

ξπz(i).

Again, to be faithful to (Pvar), constraint (4.12) should hold to equality. Although this
could be enforced by complementing the formulation with additional linear constraints
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with big-M constants, these are unnecessary because the equality holds in any op-
timal solution of the RTSPD. Finally, function f(y(ξ, z), z) can be defined from the
right-hand side of (4.10),

∑n
i=1 max{si(yi(ξ, z)−bi), 0}, which satisfies Assumption 2.

Therefore, the decomposition of the problem can be done similarly to section 2. Given
a solution z ∈ Z to the master problem, the AP looks for the scenario ξ that maximizes
f(y(ξ), z), namely,

opt(AP) = max
ξ∈ΞΓ

{
n∑
i=1

fi(ξ)

}
, where fi(ξ) = max{si(yi(ξ)− bi), 0}.

Differently from the RLSP presented in the previous subsection, we see that the
meaning of yi(ξ, z) depends here on vector z = (x, θ), since the order in which the
nodes and arcs are visited depends on the specific Hamiltonian cycle x.

5. Extensions. In this section we discuss two extensions of the AP and the DPA.
For the sake of simplicity, these extensions are presented for specific optimization
problems.

5.1. A simple inventory distribution problem. In this section we consider
an example of the case where the AP can be separated into k subproblems with a
single linking constraint which is the constraint imposing a maximum number of Γ
deviations. Each subproblem coincides with (AP). The approach consists in solving
each subproblem (AP) with the DPA for each possible number of deviations and then,
in a second stage, combining the k subproblems.

We exemplify this situation below with a robust variant of a simplistic inventory
distribution problem. We are given a set k of retailers and a set of n time periods.
The company controls the inventory at the retailers and needs to decide when and
how much to deliver in each time period at each retailer. We define the following pa-
rameters: C is the distribution capacity per period for each retailer and ξij , sij , pij , fij
represent for retailer j in period i the demand, backlogging cost, holding cost, and
fixed transportation cost, respectively. As before, demand vector ξ is uncertain and
belongs to uncertainty set ΞΓ

IR defined as ΞΓ
IR = {ξ : ξij = ξij+ξ̂ijηij , i = 1, . . . , n, j =

1, . . . , k, ‖η‖∞ ≤ 1, ‖η‖1 ≤ Γ}. Hence, Γ is the total number of deviations allowed.
In our simplistic variant presented below, the only distribution variables are the

continuous variables xij that describe the quantity delivered to retailer j in period i.
Hence, xij plays the role of the former production variable xi used in section 2.2. A
formulation for the robust inventory routing problem (RIRP) follows:

min fTx+ θ

s.t 0 ≤ xij ≤ C ∀i = 1, . . . , n, j = 1, . . . , k,

θ ≥
n∑
i=1

k∑
j=1

max

{
sij

i∑
t=1

(ξtj − xtj) ,−pij
i∑
t=1

(ξtj − xtj)

}
∀ξ ∈ ΞΓ

IR.(5.1)

Unlike the simple lot-sizing from section 2.2, it is not possible here to sum up total
demands up to period i in variable yξi since the latter depends also on the particular
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retailer. One way to avoid this difficulty is to ignore the correlation of demands for
different retailers, replacing the above model with

min fTx+

k∑
j=1

θj

s.t 0 ≤ xij ≤ C ∀i = 1, . . . , n, j = 1, . . . , k,

θj ≥
n∑
i=1

max

{
sij

(
ξΣ
i −

i∑
t=1

xtj

)
,−pij

(
ξΣ
i −

i∑
t=1

xtj

)}
∀j = 1, . . . , k, ξ ∈ ΞΓj

uncor

with ΞΓj

uncor = {ξ : ξi = ξi + ξ̂iηi, i = 1, . . . , n, ‖η‖∞ ≤ 1, ‖η‖1 ≤ Γj}, and ξΣ
i =∑i

t=1 ξt.
The uncorrelated model yields k APs, each of them identical to the AP of the

RLSP. Still, it may not be satisfactory in some applications to ignore the correlations
of demands among different retailers. Hence, we explain below how to solve the AP
induced by constraint (5.1). As mentioned previously, for each retailer j ∈ {1, . . . , k},
we have an AP which coincides with the AP of the RLSP. The k problems are linked
through the maximum number of deviations Γ. For each j ∈ {1, . . . ,m}, γ ∈ {0, . . . ,Γ}
let δjγ denote the value of the AP for the RLSP for retailer j with γ deviations,
computed by the DPA from section 3. The value of the AP for the RIRP is given by
the best combination of these k subproblems:

opt(AP′) = max


k∑
j=1

Γ∑
γ=0

δjγujγ :

k∑
j=1

Γ∑
γ=0

γujγ ≤ Γ, ujγ ∈ {0, 1},

j = 1, . . . , k, γ = 0, . . . ,Γ

}
,

where ujγ is a binary variable that indicates whether γ deviations are considered for
retailer j. This linking problem, known as the linking set problem can be solved by
dynamic programming in O(kΓ) operations; see [4]. Recall that φ = maxS⊆{1,...,n}:

|S|=Γ

∑
i∈S ξ̂i. We obtain the following result.

Lemma 5.1. Problem (AP′) can be solved by a DPA in O(nΓφ+ kΓ) operations.

Notice that, for the sake of clarity, we presented a simplistic inventory routing
problem. However, our approach extends directly to inventory routing problems where
the routing and/or distribution is modeled by introducing binary variables (e.g., [34]),
as well as problems with different capacities, since these refinements do not affect
(AP′). We also point out that similar APs occur in other problems such as the vehicle
routing problems with deadlines with uncertain traveling times where the number of
delays is bounded by Γ. In the latter problem, it can be important to bound the total
number of delays for all vehicle by a single value of Γ.

5.2. The TSP with time windows. The RTSPD considered in the previous
section is a simplification of the widely studied TSP where a full time window [ai, bi]
is associated to each node different from the depot, thus complementing the deadline
bi with a lower limit ai. The difficulty of handling a full time window, instead of
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a deadline, depends on the type of constraints considered: soft or hard, where a
soft constraint can be violated at some cost, and a hard constraint must always be
satisfied. For instance, the deadline introduced for the RTSPD in the previous section
is a soft constraint. A hard left constraint imposes that if the salesman arrives at node
before ai he must wait until ai. We examine next the four different combinations for
left and right time limits. If left and right time limits are soft, with unitary penalty
costs denoted by p and s, respectively, the resulting problem can be formulated as
the RTSPD studied previously replacing constraint (4.10) with

θ ≥
n∑
i=1

max
{
si

(
yξi − bi

)
, 0,−pi(yξi − ai)

}
∀ξ ∈ ΞΓ.

One readily sees that the above robust constraint is defined by a function that satisfies
Assumption 2. If the left time limit is soft, with unitary penalty cost p, and the right
time limit is hard, the problem can be formulated as the RTSPD studied previously
replacing constraint (4.10) with robust constraints

θ ≥
n∑
i=1

max
{

0,−pi
(
yξi − ai

)}
∀ξ ∈ ΞΓ,(5.2)

yξi ≤ bi ∀i = 1, . . . , n, ξ ∈ ΞΓ.(5.3)

One readily sees that both robust constraints above are defined by functions that
satisfy Assumption 2. Actually, solving the (AP) associated to constraint (5.3) can be
done in polynomial time since it comes down to computing the Γ highest components
of ξ̂ among {ξ̂1, . . . , ξ̂i} for each i = 1, . . . , n. If both time limits are hard, the
problem does not enter the framework studied in this paper. The authors of [3]
propose different approaches for that problem and show that the corresponding (AP)
can be solved in polynomial time. The last case, denoted RTSPTW in what follows
(standing for traveling salesman problem with time windows), considers hard left time
limit and soft right time limit with unitary penalty cost p (see [1] for an application).
This case is more complex than the previous ones. Still, we show in the balance of
the section that the associated AP can also be solved by a DPA in pseudopolynomial
time.

The mathematical model for the RTSPTW is close to the one given for the TSPD.
In addition to (4.5)–(4.11), we must consider a new constraint imposing a lower bound
on the start time of each visit:

(5.4) yξi ≥ ai ∀ξ ∈ ΞΓ, i ∈ V.

Unfortunately, the addition of constraints (5.4) to the formulation of the RTSPD
prevents the RTSPTW from being a special case of problem (Pvar). Namely, let
z = (θ, x) ∈ Z, where x is the incidence vector of a Hamiltonian cycle and θ the worst-
case cost due to the delay, and let τz and πz be the functions defined in section 4.2.
To avoid carrying the functions throughout, we assume without loss of generality that
τz(i) = i and πz(i) = i for each i = 1, . . . , n. Constraints (5.4) break the structure
witnessed for the RTSPD since the arrival time yi(ξ) at node i can no longer be
defined as an affine function of ξ, such as (4.12) used for the RTSPD. Namely, the
wait of the salesman in case he arrives at node i before ai yields arrival times that
can be formulated recursively as

(5.5) yi(ξ) = max(ai, yi−1(ξ) + ξ(i−1)i)
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for each i = 1, . . . , n, where we recall that (i − 1, i) denotes the arc that enters i
and leaves its predecessor i− 1 in the Hamiltonian cycle. Therefore, penalty function
f(y(ξ), z) =

∑n
i=1 max{si(yi(ξ)− bi), 0}, with yi(ξ) defined in (5.5), does not satisfy

Assumption 2 because y is not affine. Fortunately, it is possible to adapt our DPA to
handle this difficulty. For the sake of simplicity, we explain the generalization of the
DPA directly for the RTSPTW, rather than using the general framework depicted in
section 4.

Expanding recursively the maxima in (5.5), yi(ξ) can be expressed as (see [2, 18])

(5.6) yi(ξ) = max
`=1,...,i

{
a` +

i−1∑
t=`

ξt(t+1)

}
.

As for the RTSPD, our objective penalizes the violation of the right time win-
dow bi with unitary penalty cost si. Hence the AP is in this case opt(AP∗) =
max
ξ∈ΞΓ
{
∑n
i=1 fi(ξ)}, where

fi(ξ) = si

[
max
`=1,...,i

{
a` +

i−1∑
t=`

ξt(t+1)

}
− bi

]+

= max
`=1,...,i

si
[
a` +

i−1∑
t=`

ξt(t+1) − bi

]+
 ,

where we used the simplified notation [x]+ for max{0, x}. Let ξ[`i] denote the subvector

{ξt(t+1) : t = `, . . . , i − 1} and define f `i(ξ[`i]) = si[a` − bi +
∑i−1
t=` ξt(t+1)]

+. Hence,

fi(ξ) = max`=1,...,i f `i(ξ[`i]). Let β(m, γ) be the value of the optimal solution of the
restricted problem defined for the subpath 1, . . . ,m with at most γ deviations:

β(m, γ) = max
ξ∈Ξγ

[1m]

{
m∑
i=1

max
`=1,...,i

f `i(ξ[`i])

}
,

where Ξγ[`i] ≡ {ξ : ξt = ξt + ξ̂tηt, t = `, . . . , i, η ∈ {0, 1}i−`+1, ‖η‖1 ≤ γ}. Clearly,

opt(AP∗) = β(n,Γ).
The rest of the section is devoted to the construction of a DPA to compute β(n,Γ).

Notice that for any t,
∑m
i=t f ti satisfies (1.2), so that the sum can be optimized over the

set Ξγ[tm] in pseudopolynomial time by applying the algorithm presented in section 3.1.

Let us denote f
β
(ξ[1m]) =

∑m
i=1 max`=1,...,i f `i(ξ[`i]) so that β(m, γ) can be rewritten

as

β(m, γ) = max
ξ∈Ξγ

[1m]

f
β
(ξ[1m]).

The algorithm from section 3.1 cannot be used directly to optimize f
β
(ξ[1m]) because

of the maximization involved in the definition of f
β
(ξ[1m]). Hence, we use next an

alternative recursion based on the key lemma below. The lemma expresses f
β
(ξ[1m])

from the set of functions {fβ(ξ[1t]) : 1 ≤ t ≤ m − 1} and the sums {
∑m
i=t f ti(ξ[ti]) :

1 ≤ t ≤ m}. We show in the balance of the section how this leads to a DPA.

Lemma 5.2. Let ξ ∈ Ξγ be fixed and m ∈ {2 . . . , n}. It holds that

f
β
(ξ[1m]) = max

t=1,...,m

{
f
β
(ξ[1(t−1)]) +

m∑
i=t

f ti(ξ[ti])

}
.
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Proof. Since ξ is fixed, we simplify notation and denote f `i(ξ[`i]) as f `i in the

rest of the proof. Notice that from the definition of f `m, the following holds for each
i ∈ {`, . . . ,m}:

arg max
`=1,...,i

f `m = arg max
`=1,...,i

f `i.

Therefore, if arg max`=1,...,m f `m = t and t ≤ i, then arg max`=1,...,i f `i = t. This can
be equivalently written as

(5.7) f tm = max
`=1,...,m

f `m ⇒ f ti = max
`=1,...,i

f `i∀i = t, . . . ,m.

The counterpart of (5.7) for the whole sum
∑m
i=1 max`=1,...,i f `i is

f tm = max
`=1,...,m

f `m ⇒
m∑
i=1

max
`=1,...,i

f `i =

t−1∑
i=1

max
`=1,...,i

f `i +

m∑
i=t

f ti,

and the result follows by taking the maximum over all t = 1, . . . ,m because we do
not know in advance which corresponds to arg max`=1,...,m f `m.

Using Lemma 5.2 we have, for each 2 ≤ m ≤ n and 0 ≤ γ ≤ Γ,

β(m, γ) = max
ξ∈Ξγ

[1m]

{
f
β
(ξ[1m])

}
= max
ξ∈Ξγ

[1m]

max
t=1,...,m

{
f
β
(ξ[1(t−1)]) +

m∑
i=t

f ti(ξ[ti])

}

= max
t=1,...,m

max
δ=0,...,γ

{
max

ξ∈Ξδ
[1(t−1)]

f
β
(ξ[1(t−1)]) + max

ξ∈Ξγ−δ
[tm]

m∑
i=t

f ti(ξ[ti])

}

= max
t=1,...,m

max
δ=0,...,γ

{
β(t− 1, δ) + max

ξ∈Ξγ−δ
[tm]

m∑
i=t

f ti(ξ[ti])

}
= max
t=1,...,m

max
δ=0,...,γ

{
β(t− 1, δ) + F (t,m, γ − δ)

}
,(5.8)

where F (t,m, γ − δ) = maxξ∈Ξγ−δ
[tm]

∑m
i=t f ti(ξ[ti]). Furthermore, for m = 1 and each

γ ∈ {0, . . . ,Γ}, we have

(5.9) β(1, γ) = max
ξ∈Ξγ

[11]

f11(ξ[11]) = s1[a1 − b1]+ = 0.

Combining (5.8) and (5.9), we obtain a DPA to solve (AP∗).
We conclude the section by showing that (5.8) yields a pseudopolynomial DPA.

Notice that function

f̄tm(ξ[tm]) =

m∑
i=t

f ti(ξ[ti])

satisfies Assumption 2 for each 1 ≤ t ≤ m ≤ n. Hence, we can apply the DPA from
section 3 to compute F (t,m, γ) = maxξ∈Ξγ

[tm]
f̄tm(ξ[tm]) for each 1 ≤ t ≤ m ≤ n and

0 ≤ γ ≤ Γ. Namely, let αt be the table used to compute F (t, n,Γ) through the DPA
from section 3. We readily see that

F (t,m, γ) = max
φ=0,...,φ

αt(m− t, γ, φ)
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for each 1 ≤ t ≤ m ≤ n and 0 ≤ γ ≤ Γ. Therefore, we can obtain all values in
{F (t,m, γ) : 1 ≤ t ≤ m ≤ n, 0 ≤ γ ≤ Γ} by applying the DPA from section 3 to
F (t, n,Γ) for each 1 ≤ t ≤ n. This yields a computational time of O(n2Γφ) which is
done in a preprocessing phase. Once all values of F have been computed, (5.8) can
be solved in O(n2Γ2). Since Γ ≤ φ, we obtain the following worst-case complexity.

Lemma 5.3. Problem (AP∗) can be solved by a DPA in O(n2Γφ) operations.

We finish the section by noticing that constraints similar to time windows appear
also in scheduling problem with release times and deadlines [7]. In the deterministic
version of the problem, we consider a set N = {1, . . . , n} of tasks. For each task
i ∈ N we are given a release time ai, which is the time at which task i can start being
processed, a deadline bi, and a duration ξi. The objective of the problem is to find a
feasible schedule of the tasks in a single machine such that the weighted sum of the
deadline violations is minimized. In the robust approach, the durations of the tasks
are uncertain and belong to uncertainty set ΞΓ. Similarly to the discussion for the
TSP, one can consider different versions of the problem depending on whether the
release times and deadlines are soft or hard constraints. Then one readily sees that
for each of these variants, the AP is similar to the aforementioned APs.

6. Computational experiments. We compare in this section our DPA and
the classical mixed integer linear programming (MIP) formulation for solving the
lot-sizing problem with row-and-column generation algorithms.

6.1. Instances and details. We consider three numbers of periods: 50, 100,
and 200. For each one of them we create four sets of instances: S1, S2, S3, and S4.
For all sets we generate the storage cost for each period randomly and uniformly from
an interval [5, 10]. The difference between the sets lies in the backlog cost. For each
i ∈ {1, 2, 3, 4}, instances in Si are defined by backlog cost equal to i times the storage
cost in each period. For all instances the nominal demand is generated randomly
from interval [50, 100]. Then, we consider five levels of deviations, ranging from 10%
to 50% of the nominal demand. We round up the obtained deviations to ensure that
they are integer. Finally, we also consider three different values for the budget of
uncertainty Γ, motivated by the probabilistic bounds given in [14] and provided in
Table 1. Namely, the value of Γε is such that there is a probability of 1− ε that the
real cost will be no higher than the optimal solution cost whenever ξ is composed of
independent and identically distributed random variables.

Our experiments compare the DPA with the well-known MIP reformulation of
(AP) (e.g., [15]) recalled below:

max

n∑
i=1

ϕi,

s.t. ϕi ≤ g0
i + g1

i yi +Miui ∀i = 1, . . . , n,

ϕi ≤ h0
i + h1

i yi +Mi(1− ui) ∀i = 1, . . . , n,

yi =

i∑
i=1

ξi + ξ̂iηi ∀i = 1, . . . , n,

n∑
i=1

ηi ≤ Γ ∀i = 1, . . . , n,

η ∈ {0, 1}n, u ∈ {0, 1}n, y ≥ 0.
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Table 1
Values of Γε obtained by rounding up the values prescribed by the probabilistic bound from [14].

n Γ0.10 Γ0.05 Γ0.01

50 11 13 18
100 14 18 24
200 20 25 34
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(a) Varying the number of time periods.
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(b) Different sets of instances.
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Fig. 1. Geometric mean of (time MIP)/(time DPA).

For each i = 1, . . . , n, variables ϕi and yi represent the value of functions fi(yi(ξ))
and yi(ξ), respectively. Then, for each i = 1, . . . , n variable ui is equal to 0 if and only
if gi(yi(ξ)) is larger than hi(yi(ξ)) and Mi is a large predefined value that cannot be
smaller than |fi(yi(ξ))| for every ξ ∈ ΞΓ.

The DPA was coded in C++ and compiled in a GNU G++ 4.5 compiler. The
MIP formulation was implemented in C++ using Cplex Concert Technology 12.5 [19].
The numerical experiments were carried out on an Intel Core i7 CPU M60, 2.6-Hz
4-GB RAM machine.

6.2. Results. We provide in Figure 1 geometric means of the solution time of
MIP divided by the solution time of DPA. The standard deviations of the solution
times are illustrated in Figure 2 for both approaches. We present in Table 2 the
arithmetic means of the solution times for the different numbers of time periods and
levels of deviations.

Figure 1 shows that DPA clearly outperforms MIP, with means ranging up to 475
when n = 200 and the deviation is 10%. The different parameters strongly impact the
respective solution times. First, we see in the charts from Figure 1 that, as expected
from its theoretical complexity, higher levels of deviation slow down DPA. The number
of time periods strongly affects both approaches; see Table 2. When the deviation
is small, Figure 1(a) shows that the ratio between MIP and DPA increases with the
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Table 2
Arithmetic means of the solution times.

n 10% 20% 30% 40% 50%
DPA MIP DPA MIP DPA MIP DPA MIP DPA MIP

50 0.051 18.6 0.078 15.2 0.091 10.2 0.094 7.67 0.115 7.56
100 0.358 70.3 0.519 52.1 0.537 29 0.634 23.5 0.674 21.5
200 2.77 1,600 3.72 940 3.95 417 4.69 326 5.23 183
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(a) Standard deviation represented in loga-
rithmic scale.
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Fig. 2. Standard deviation of the solution times σ when varying the number of time periods.

value of n. In contrast, high levels of deviations tend to reduce the ratio between
MIP and DPA. Figure 1(b) depicts the sensitivity of the ratio between the storage
and backlog costs. Our (unreported) results show that MIP is highly sensitive to the
ratio, while DPA is not affected at all, explaining the results of Figure 1(b). Finally,
Figure 1(c) shows that higher values of Γ yields smaller ratios on average. Here, both
approaches are strongly affected by the value of Γ, and the figure shows than DPA is
more affected than MIP since the ratio decreases significantly when Γ rises.

The variations of the solution times are represented in Figure 2 for DPA and MIP,
through the standard deviation (σ). Figure 2(a) presents these standard deviations in
a logarithmic scale, which shows that the solution times of MIP vary between 2 and
3 orders of magnitude more than the solution times of DPA. Figure 2(b) shows these
standard deviations in a relative scale, dividing them by the associated arithmetic
means. The figure shows that in a relative scale, DPA varies roughly twice as much
as MIP.

To conclude, our simple experiments show that DPA can be orders of magnitude
faster than MIP, especially when the deviation level is low. Moreover, the absolute
variability of MIP is much higher than the one of DPA, some instances being par-
ticularly hard to solve for the former. Notice also that we compared a simplistic
implementation of DPA to the well-engineered MIP solver from CPLEX. It is likely
that rules to eliminate dominated states would further improve our results, but this
is out of the scope of the current paper.

Appendix A. NP-hardness results

Proposition A.1. Let f be a piecewise linear convex function. Optimization
problem maxξ∈ΞΓ f(ξ) is APX -hard.

Proof. Consider the independent set problem on an undirected graph G = (V,E)
with n nodes where the goal is to decide whether there is an independent set of size
at least k < n. Then the ΞΓ is the uncertainty set characterized by ξ = 0, ξ̂i = 1 for
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each i = 1, . . . , n and Γ = k, and f is the piecewise linear convex function defined by
f(ξ) = maxz{

∑n
i=1 ξizi : zi + zj ≤ 1, {i, j} ∈ E, z ≥ 0}. For any ξ ∈ ΞΓ, f(ξ) ≤ k.

Moreover, G has an independent set of size at least k if and only if maxξ∈ΞΓ f(ξ) = k.
Therefore, the problem of maximizing f over ΞΓ is NP-hard.

To show that the problem is APX -hard, consider the independent set problem
on 3-regular (cubic) graphs, which is known to be APX -hard [5]. Hence, there is
a constant α > 0 such that it is NP-hard to distinguish whether a cubic graph
G = (V,E) has an independent set of size at least k or at most (1 − α)k. If this is
the case that G has an independent set of size at least k, then maxξ∈ΞΓ f(ξ) = k.
Otherwise, if the independent set of G has size at most (1− α)k, then one can show
that maxξ∈ΞΓ f(ξ) ≤ (1 − α)k + 3αk

4 =
(
1− α

4

)
h. This implies that maximizing f

over ΞΓ is APX -hard.

Proposition A.2. Let Ξ̃ be an uncertainty polytope having a compact descrip-
tion. Optimization problem maxξ∈Ξ̃ f(ξΣ) is NP-hard.

Proof. We consider in this proof function f̂(ξ) =
∑n
i=1 |

∑i
j=1 ξj |, obtained from

(1.2) by choosing gi(ξ
Σ
i ) = ξΣ

i and hi(ξ
Σ
i ) = −ξΣ

i for each i = 1, . . . , n, where the
dependency on z is omitted for the sake of simplicity. We prove first that problem

(A.1) max
ξ∈Ξ̃

f̂(ξ)

has the same optimal solution cost as problem

(A.2) max
ξ∈Ξ̃′

f∗(ξ)

with f∗(ξ) =
∑n
i=1 |ξi| and Ξ̃′ a linear transformation of Ξ̃. To see this, consider

invertible linear transformation α(ξ) = (ξ1, ξ1 + ξ2, ξ1 + ξ2 + ξ3, . . . , ξ1 + ξ2 + · · ·+ ξn).

Then, maxξ∈Ξ̃ f̂(ξ) = maxξ∈Ξ̃

∑n
i=1 |

∑i
j=1 ξj | = maxξ∈Ξ̃

∑n
i=1 |αi(ξ)| = maxξ∈Ξ̃

f∗(α(ξ)) = maxξ∈α(Ξ̃) f
∗(ξ), and the equality holds for Ξ̃′ = α(Ξ̃). Notice that Ξ̃′ can

be described by the same number of inequalities as Ξ̃ and these can be computed in
polynomial time. Therefore, the NP-hardness of (A.1) follows from the NP-hardness
of (A.2), which was proven in [25, Lemma 3.2].

Proposition A.3. Let f̃i be a nonnegative function for each i = 1, . . . , n
and f̃(ξΣ) =

∑n
i=1 f̃i(ξ

Σ
i ), with f̃ being a positive function. Optimization problem

maxξ∈ext(ΞΓ) f̃(ξΣ) is NP-hard.

Proof. The decision problem associated with the optimization problem takes the
following form: given ξ, ξ̂, and Γ > 0, nonnegative functions f̃i(ξ

Σ
i ), i = 1, . . . , n,

and A ∈ R, is there a ξ ∈ ΞΓ such that
∑n
i=1 f̃i(ξ

Σ
i ) ≥ A? We show below that

the partition problem can be reduced to the above decision problem. Recall that
in the partition problem we are given m positive integers ai, i ∈ M = {1, . . . ,m}
and wish to determine whether there exists a partition (S,M \ S) of M such that∑
i∈S ai =

∑
i∈M\S ai =

∑
i∈M ai/2.

For the reduction consider n = m + 2, ξi = 0, i ∈ N, ξ̂i = ai, i ∈ M, ξ̂m+1 =

ξ̂m+2 = 0. Let A =
∑n
i=1 ai and define f̃i(ξ

Σ
i ) = 0, i ∈M, and

f̃m+1

(
ξΣ
m+1

)
= min

{
n∑
i=1

ξi,
A

2

}
, f̃m+2

(
ξΣ
m+2

)
= min

{
A−

n∑
i=1

ξi,
A

2

}
.
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Hence, from the definition of f̃i for i = 1, . . . ,m+2, it follows directly that
∑n
i=1 fi(ξ

Σ
i )

≤ A. Moreover, the equality holds if and only if f̃m+1(ξΣ
m+1) = f̃m+2(ξΣ

m+2) = A/2,

which is equivalent to finding a partition of N with
∑
i∈S ai =

∑
i∈M\S ai = A

2 where

S = {j ∈ {1, . . . , n} : ξj = ξ̂j}.
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