
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2015

Tiago Rafael Correia
Almeida

Delay Tolerant Network for Navy Scenarios:
Quality-based Approach

Rede Tolerante a Atraso para Cenários da Marinha:
Abordagem baseada na Qualidade

”The measure of who we are is what we do with what we have.”

- Vince Lombardi

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2015

Tiago Rafael Correia
Almeida

Delay Tolerant Network for Navy Scenarios:
Quality-based Approach

Rede Tolerante a Atraso para Cenários da Marinha:
Abordagem baseada na Qualidade

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Eletrónica e Telecomunicações, realizada sob a orientação cient́ıfica da Pro-
fessora Doutora Susana Sargento, Professora Associada com Agregação do
Departamento de Eletrónica, Telecomunicações e Informática da Univer-
sidade de Aveiro e co-orientação cient́ıfica do Doutor Lucas Guardalben,
Investigador do Instituto de Telecomunicações de Aveiro.

o júri / the jury

presidente / president Professor Doutor Rui Lúıs Andrade Aguiar
Professor Catedrático do Departamento de Eletrónica, Telecomunicações e

Informática da Universidade de Aveiro

vogais / examiners committee Professor Doutor Augusto José Venâncio Neto
Professor Adjunto da Universidade Federal do Ceará (Arguente)

Professora Doutora Susana Isabel Barreto de Miranda Sargento
Professora Associada com Agregação do Departamento de Eletrónica, Tele-

comunicações e Informática da Universidade de Aveiro (Orientadora)

agradecimentos /
aknowledgments

Este trabalho marca o fim do meu percurso académico marcado por
inúmeras experiências que contribúıram para o meu desenvolvimento,
quer a ńıvel pessoal, quer a ńıvel profissional. Agradeço a todos que de
alguma forma contribúıram para este desenvolvimento, com especial
destaque para os que se seguem.

Antes de mais, agradeço profundamente aos meus Pais e Avó pela
educação que me foi transmitida e por todo o apoio que me tem sido
dado durante toda a minha vida. Sem vocês não estaria a atingir esta
meta. Muito Obrigado!

Um agradecimento especial aos meus grandes amigos e colegas Marco
Oliveira, Gonçalo Pessoa, Bojan Magusic, André Martins, Gonçalo
Gomes e Rodrigo Almeida com quem tive o prazer de conviver e partil-
har o laboratório de redes durante este último ano. Obrigado por todo
o apoio e companheirismo malta!

Agradeço ainda à Diana, Fábio, Adriana, Liliana, Vanessa, Inês, André,
Rúben, Rui, Miguel, Deolinda, Diogo e restantes amigos pela amizade
e pela compreensão nos momentos em que estive mais ausente ou com
menos paciência durante este último ano. Obrigado pessoal!

Agradeço à Professora Doutora Susana Sargento e ao Doutor Lucas
Guardalben por me terem sugerido este trabalho e por toda a orientação
e apoio fornecidos que o levaram rumo a bom porto. Muito Obrigado
pela experiência!

Para terminar, agradeço ao grupo de investigação do NAP pelo apoio,
ao Instituto de Telecomunicações de Aveiro pelos recursos facultados e
a todos os professores que tive o prazer de conhecer e que contribúıram
para o meu sucesso académico. Obrigado a todos!

Palavras-chave Redes Tolerantes a Atrasos, Routing, Qualidade das Ligações, Dis-
rupções, Marinha, IEEE 802.11, Linux Wireless Subsystem.

Resumo As operações da marinha envolvem vários intervenientes que trabal-
ham entre si com objetivos comuns e frequentemente sob condições
de comunicação desafiadoras. Existem constrangimentos naturais que
são impostos pelo ambiente da operação, por exemplo, geografia aci-
dentada do terreno. Existem também constrangimentos artificiais que
são criados por elementos hostis que forçam condições de modo a
prejudicar as operações da marinha (ou outras equipas militares), por
exemplo, criação de interferência intencional. Os militares geralmente
usam equipamentos de comunicação proprietários para comunicar entre
si. Apesar da eficácia destes equipamentos, eles são caros e normal-
mente oferecem uma gama de serviços limitada. Contudo, os recentes
avanços tecnológicos permitiram a proliferação de muitos dispositivos
portáteis com capacidade de comunicação sem fios e com o valor de
acrescentar novas funcionalidades de formas muito simples, mas estes
dispositivos ainda não estão adaptados para as redes militares em ter-
mos de comunicação. Esta dissertação propõe usar Redes Tolerantes a
Atrasos (DTNs) com um novo protocolo de encaminhamento Quality-
PRoPHET (Q-PRoPHET) capaz de medir a qualidade das ligações
sem-fios e encaminhar a informação pelas ligações de melhor quali-
dade, onde a probabilidade de sucesso da transmissão é maior. O
Q-PRoPHET usa uma função de qualidade para avaliar a qualidade das
ligações e uma propriedade transitiva para encaminhamento a múltiplos
saltos. Este algoritmo foi implementado no IBR-DTN e foi avaliado em
três cenários que emulam três cenários observados durante operações
táticas da Marinha. Dois destes cenários foram testados dentro de um
edif́ıcio e o último foi testado em ambiente exterior, recorrendo a mobil-
idade real dos nós. Os resultados obtidos mostram que o Q-PRoPHET
tem melhor desempenho que o PRoPHET em termos de taxa de en-
trega, tempo de entrega e transmissão de pacotes, que são parâmetros
cŕıticos para as comunicações das operações da marinha.

Keywords Delay Tolerant Networks, Routing, Link Quality, Disruptions, Navy,
IEEE 802.11, Linux Wireless Subsystem.

Abstract The navy operations involve several participants that work between
them with common objectives and usually under challenged commu-
nication conditions. There are natural constrains that are imposed by
the operation environment, e.g. hilly terrains. There are also artificial
constrains that are created by enemy elements which force conditions
to affect the navy operation (or other military forces), e.g. intentional
jamming. The military often uses proprietary devices to communicate
between them. Despite of the effectiveness of these devices, they are
expensive and usually offer a limited range of services. However, the
recent technological advances allow the proliferation of several mobile
devices with wireless communication capabilities and with the value to
easily insert new features, but these devices are still not prepared to
military networks in terms of communication. Thus, this dissertation
proposes to use Delay Tolerant Networks (DTNs) with a new routing
protocol Quality-PRoPHET (Q-PRoPHET) able to measure the qual-
ity of the wireless links and route the information using the connections
with best quality, where the probability of transmission is higher. The
Q-PRoPHET uses a quality function to evaluate the quality of the
connections and a transitive property to route through multiple hops.
This algorithm was implemented in IBR-DTN and it was evaluated in
three scenarios that emulate three scenarios observed during the navy
tactical operations. Two of these scenarios were tested inside a build-
ing and the last one was tested in an external environment using real
mobility of the nodes. The obtained results show that Q-PRoPHET
has better performance than PRoPHET in terms of delivery ratio, end-
to-end delay and packets transmission, which are critical parameters
for the communication in navy operations.

Contents

Contents i

List of Figures v

List of Tables ix

List of Equations xi

List of Algorithms xiii

Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Document Organization . 3

2 State of the art 5
2.1 Introduction . 5
2.2 Delay Tolerant Networks . 5

2.2.1 Overview . 5
2.2.2 Definition . 6
2.2.3 Applications . 6
2.2.4 Architecture . 9

2.2.4.1 Virtual Message Switching Using Store-and-Forward . . . 9
2.2.4.2 Nodes and Endpoints . 10
2.2.4.3 Endpoint Identifiers and Registrations 11
2.2.4.4 Routing and Forwarding 11
2.2.4.5 Bundle Fragmentation and Reassembly 12
2.2.4.6 Reliability, Custody Transfer and Security 12
2.2.4.7 Timestamps and Time Synchronization 13

2.2.5 Bundle Protocol . 14
2.2.5.1 Service Description . 14

i

2.2.5.2 Bundle Format . 15
2.2.6 Implementations . 17

2.2.6.1 DTN2 . 17
2.2.6.2 IBR-DTN . 20
2.2.6.3 Helix . 23
2.2.6.4 Comparison between DTN implementations 24

2.3 Routing . 26
2.3.1 Overview about Routing . 26
2.3.2 Routing in Delay Tolerant Networks 27

2.3.2.1 Epidemic . 30
2.3.2.2 PRoPHET . 31
2.3.2.3 Spray and Wait . 34
2.3.2.4 MaxProp . 35
2.3.2.5 RAPID . 35
2.3.2.6 Comparison between DTN routing protocols 35

2.3.3 Routing in Military Networks . 37
2.3.3.1 Terrestrial Trunked Radio (TETRA) 38
2.3.3.2 Military Networks as MANETs 38
2.3.3.3 Military Networks as DTNs 39
2.3.3.4 Comparison between the presented military networks . . . 40

2.4 IEEE 802.11 WLAN . 40
2.4.1 Overview . 40
2.4.2 Architecture . 41

2.4.2.1 Infrastructure vs Ad-Hoc Operation Modes 42
2.4.3 Media Access Control (MAC) Layer 43
2.4.4 Linux Wireless Subsystem . 45
2.4.5 Gather MAC and Physical Layer Information from Application Layer 47

2.4.5.1 Gather Connection Status 47
2.4.5.2 Capture Wireless Frames 47

2.5 Chapter Considerations . 49

3 Scenarios and Proposed Solution 51
3.1 Introduction . 51
3.2 Navy Scenarios . 51

3.2.1 Inspection/Boarding . 51
3.2.2 Naval and Amphibious Operations 52
3.2.3 Population Support . 52
3.2.4 Summary . 53

3.3 Proposed Solution . 54
3.3.1 Link Quality . 54
3.3.2 Quality-PRoPHET . 55

3.4 Chapter Considerations . 59

ii

4 Architecture and Implementation 61
4.1 Introduction . 61
4.2 Quality Connection Reader . 61

4.2.1 Access the Quality Parameters . 61
4.2.2 Architecture . 62

4.2.2.1 Initialization . 64
4.2.2.2 Neighbors Manager . 64
4.2.2.3 QCR General Packet . 71
4.2.2.4 Periodic Events: Beacon Generator, Discover Module and

Watchdog Timer . 72
4.2.2.5 Listening Socket . 72
4.2.2.6 SSI Reader . 75
4.2.2.7 IPC Socket . 76

4.2.3 QCR Menu Application . 76
4.3 Q-PRoPHET: Integration with IBR-DTN 79
4.4 Chapter Considerations . 81

5 Integration and Evaluation 83
5.1 Introduction . 83
5.2 Hardware and Operating System Description 83

5.2.1 Single Board Computer . 83
5.2.2 Operating System . 84

5.3 Cambrias Configuration and Software Integration 85
5.3.1 Cambrias Configuration . 85
5.3.2 Software Integration . 85

5.4 Evaluation Challenges . 86
5.5 Quality Connection Reader . 87
5.6 Quality-PRoPHET . 89

5.6.1 Scripts and IBR-DTN source code modifications 90
5.6.1.1 IBR-DTN modifications to gather data logs 90
5.6.1.2 Scripts to generate data logs 91
5.6.1.3 Scripts to perform the tests 92

5.6.2 Scenario 1: Inspection/Boarding . 93
5.6.2.1 Scenario Definition and Emulation 93
5.6.2.2 Evaluation Procedure . 95
5.6.2.3 Obtained Results . 96

5.6.3 Scenario 2: Naval and Amphibious 98
5.6.3.1 Scenario Definition and Emulation 98
5.6.3.2 Evaluation Procedure . 99
5.6.3.3 Obtained Results . 99

5.6.4 Scenario 3: Population Support . 101
5.6.4.1 Scenario Definition and Emulation 101
5.6.4.2 Evaluation Procedure . 101

iii

5.6.4.3 Obtained Results . 103
5.6.4.4 Quality Aging . 105

5.7 Chapter Considerations . 105

6 Conclusions and Future Work 111
6.1 Conclusions . 111
6.2 Future Work . 113

Bibliography 115

iv

List of Figures

1.1 Navy Scenario . 1

2.1 DakNet Concept . 7
2.2 DTN Communication in military scenario 8
2.3 Bundle layer . 9
2.4 DTN Conceptual Architecture . 10
2.5 Bundle Block Formats . 15
2.6 SDNV encoding example . 16
2.7 DTN2 architecture . 18
2.8 IBR-DTN architecture . 21
2.9 Helix architecture . 24
2.10 Three nodes network . 27
2.11 Contact Predictability Spectrum . 27
2.12 Different Routing Taxonomies . 29
2.13 Epidemic Routing Example . 31
2.14 Epidemic Routing Message Exchange Example 31
2.15 PRoPHET Example . 33
2.16 Constrains of Military Environment . 37
2.17 Military MANET as extension of network infrastructure 39
2.18 IEEE 802.11 and OSI Model . 42
2.19 High Level IEEE 802.11 Architecture . 42
2.20 Infrastructure vs Ad-Hoc . 43
2.21 MAC Frame Format . 44
2.22 Frame Control Field . 44
2.23 Sequence Control Field . 45
2.24 Linux Wireless Subsystem . 46
2.25 Radiotap Structure . 46
2.26 Pcap capture process . 48

3.1 Inspection/Boarding Scenario . 52
3.2 Naval and Amphibious Scenario . 53
3.3 Population Support Scenario . 53
3.4 Quality Function . 56

v

3.5 Quality of transitive path . 58
3.6 Q-PRoPHET Example . 59

4.1 QCR: Block Diagram and Interactions . 63
4.2 Relation between QCR and network stack 64
4.3 QCR: Initialization Flow Chart . 65
4.4 QCR: Neighbors Manager [neighborsManagement] Class Diagram 66
4.5 QCR: Neighbors Information [neighborList] Class Diagram 67
4.6 QCR: Sequence Numbers bitmap example 68
4.7 QCR: SSIs storage example . 69
4.8 QCR: neighborList [Neighbors Information] 70
4.9 QCR: unknwonNeighbors [EIDs with unknown MACs] 70
4.10 QCR: General Packet . 71
4.11 QCR: Periodic Events (Beacon Generator, Discover Module and Watchdog

Timer) Flow Chart . 73
4.12 QCR: Listening Socket Flow Chart . 74
4.13 QCR: SSI Reader Flow Chart . 75
4.14 QCR: IPC Socket Packets . 77
4.15 QCR: IPC Socket Flow Chart . 78
4.16 QCR Menu Application Terminal . 79
4.17 QCR Menu Application Flow Chart . 80

5.1 Cambria GW2358-4 . 84
5.2 Scenario to Measure the Quality Factor . 87
5.3 Evaluation of Quality Factor and Quality Parameters 88
5.4 CPU/Load Measure Flow Chart . 91
5.5 Send/Receive Files Script Flow Chart . 92
5.6 Master Script Flow Chart . 94
5.7 Inspection/Boarding Scenario Emulation 95
5.8 Inspection/Boarding Boards Disposition 95
5.9 Scenario 1: Delivery Ratio . 96
5.10 Scenario 1: E2E delay . 97
5.11 Scenario 1: CPU usage . 97
5.12 Scenario 1: Load average . 98
5.13 Naval and Amphibious Scenario Emulation 98
5.14 Scenario 2: Delivery Ratio . 100
5.15 Scenario 2: E2E delay . 100
5.16 Scenario 2: Total transmissions per Experiment 101
5.17 Scenario 2: CPU usage . 102
5.18 Scenario 2: Load average . 102
5.19 Scenario 3: Population Support - Boards Dynamics 103
5.20 Scenario 3: Delivery Ratio . 104
5.21 Scenario 3: E2E delay . 104

vi

5.22 Scenario 3: Total transmissions per Experiment 104
5.23 Scenario 3: CPU usage . 106
5.24 Scenario 3: Load average . 106
5.25 Scenario 3: Delivery Ratio . 107
5.26 Scenario 3: E2E delay . 107
5.27 Scenario 3: Total transmissions per Experiment 107
5.28 Scenario 3: CPU usage . 108
5.29 Scenario 3: Load average . 108

vii

viii

List of Tables

2.1 Comparison between DTN implementations 25
2.2 Comparison between presented DTN routing protocols 36
2.3 Comparison between the presented military networks 41

5.1 Definition of routing parameters in IBR-DTN configuration file 89
5.2 Definition of general parameters in IBR-DTN configuration file 89
5.3 Scenario 2: Ping Success and Quality of the Links 99

ix

x

List of Equations

2.1 PRoPHET: Direct Encounter . 32
2.2 PRoPHET: Decay Over Time . 32
2.3 PRoPHET: Transitive Property . 32
3.1 Link Stability . 55
3.2 Quality Function . 55
3.3 Q-PRoPHET: Direct Contact . 56
3.4 Q-PRoPHET: Decay Over Time . 57
3.5 Q-PRoPHET: Transitive Property . 57

xi

xii

List of Algorithms

4.1 Calculate the number of one bits in a word 69

xiii

xiv

Acronyms

ADU Application Data Unit

AP Access Point

API Application Programming Interface

BPF Berkeley Packet Filtering

BSP Bundle Security Protocol

BSS Basic Service Set

CECOM Army Communications-Electronics Command

CLA Convergence Layer Adapter

CONDOR C2 On-the-move Network Digital Over-the-horizon Relay

CPU Central Processing Unit

DARPA Defense Advanced Research Projects Agency

dB decibel

dBm decibel miliwatt

DCF Distributed coordination function

DHCP Dynamic Host Configuration Protocol

DiPRoPHET Distance-based PRoPHET

DS Domain System

DTLSR Delay Tolerant Link State Routing

DTN Delay Tolerant Network

e2e end-to-end

xv

EID Endpoint Identifier

ESS Extended Service Set

ETSI European Telecommunications Standards Institute

FB Foreign Boat

FCS Frame Check Sequence

GIG Global Information Grid

HCF Hybrid Coordination Function

HQ Headquarters

HT High Throughput

HTTP Hypertext Transfer Protocol

HTTPCL HTTP Convergence Layer

IB Intermediate Boat

IBSS Independent Basic Service Set

ID Identification

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPC Inter Process Communication

IPN Interplanetary Internet

IPND DTN IP Neighbor Discovery

IPNRG Interplanetary Internet Research Group

ISA Instruction Set Architecture

LAN Local Area Network

LowPANCL LowPAN Convergence Layer

LStab Link Stability

LTP Licklider Transmission Protocol

xvi

MAC Media Access Control

MANET Mobile Ad-Hoc Network

MGR Minimum Reception Group

MS Mother Ship

MSB Most Significant Bit

NF Number of Forwards

NORM NACK Oriented Reliable Multicast

NTP Network Time Protocol

OBU On Board Unit

OS Operating System

OSI Open Systems Interconnection

PCF Point Coordination Function

PDU Protocol Data Unit

PHY Physical

PMR Professional Mobile Radio

PRoPHET Probabilistic Routing Protocol using History of Encounters and
Transitivity

PTPd Precision Time Protocol daemon

Q-PRoPHET Quality-PRoPHET

QCR Quality Connection Reader

QoS Quality of Service

RAM Random Access Memory

RAPID Resource Allocation Protocol for Intentional DTN

RF Radio Frequency

RFC Request for Comments

RSU Road Side Unit

xvii

RTT Round-Trip Time

Rx Receiver

SN Sequence Number

SSH Secure Shell

SSI Signal Strength Intensity

SSID Service Set Identifier

SSP Scheme-Specific Part

STA Station

TCA Tetherless Communication

TCP Transmission Control Protocol

TCPCL TCP Convergence Layer

TCS Tetherless Computing Architecture

TETRA Terrestrial Trunked Radio

UDP User Datagram Protocol

UDPCL UDP Convergence Layer

URI Uniform Resource Identifier

USA United States of America

UTC Universal Time Coordinated

SBC Single Board Computer

SDNV Self-Delimiting Numeric Value

SDRAM Synchronous Dynamic Random Access Memory

SV Summary Vector

VANET Vehicular Ad-Hoc Network

VDTN Vehicular Delay Tolerant Network

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

xviii

WSN Wireless Sensor Network

XML eXtensible Markup Language

xix

xx

Chapter 1

Introduction

1.1 Motivation

The navy operations include several elements (boats, helicopters, troops, etc.) that
work between them with common objectives, and they need a communication system to
synchronize and receive instructions during the operations. This communication system
needs to guarantee reliable communications whenever possible.

Recently, the portuguese navy showed interest in investigating new communication
technologies to trade their proprietary solutions by off-the-shelf devices with the use of
ad-hoc network capabilities.

Figure 1.1 represents an aggregation of some navy scenarios where these communication
networks will operate. In the left, there is a boat (with access to the Internet) responsible
to coordinate the operation in the sea and shore, where there are several boats, and a
helicopter acting as communication relay to the teams at the shore. The teams can also
use the Internet access points to communicate with the coordinator boat.

Figure 1.1: Navy Scenario

1

Usually the operations at the shore are ground recognition or population support. In-
dependently of the operation, they are characterized by some issues such as: high mobility
of the nodes, obstacles, reflections and interferences, which may create intermittent con-
nections or even network fragmentation, which affect the navy communications. These
constrains lead to low-quality communications that may be degraded due to bad routing
decisions (i.e. the bundle is not sent to the best forwarder); this shall not happen because
the communication is an essential factor that affects directly the success of the operations.

In Figure 1.1 the majority of the teams at shore have usually more than one path to
communicate with the coordinator (left boat). Thus, an efficient routing algorithm should
be capable to work with the presented constrains and select automatically the best quality
communication path, whenever possible. The navy is also interested in using the Internet
infrastructured accesses to communicate when they are present, be able to choose the best
communication paths, and keep and store the information when no path is available.

Thus, the motivation of this work is to improve the communication in navy scenarios
by offering more value with lower costs by exploring the possibility to use communication
solutions that can be applied into off-the-shelf devices to this type of scenarios. These
communications will use Delay Tolerant Networks (DTNs) as the communication base,
because they are adequate to work with network fragmentation, due to their delay-tolerant
mechanisms (store, carry and forward). To deal with the intermittent connections, it is
proposed a quality-based routing algorithm to select the best quality paths to forward the
information.

Although there are several DTNs solutions in the literature, a quality-based approach
is not available, and this will be the aim of this Dissertation.

1.2 Objectives

The objective of this dissertation is to develop a routing protocol to DTNs based on
the links quality with the capability to work in navy scenarios. The main objectives are
as follows:

• Implement a modular method to gather physical information related with the links
quality in off-the-shelf devices and extract this information to the routing and appli-
cation layers directly from Physical (PHY) and Media Access Control (MAC) layers,
in order to use them to other tasks that need them, e.g. a routing protocol that
needs information on the links quality.

• Propose a routing protocol to DTNs based on the quality of the links, previous
gathered, to deal with the navy constrains, such as intermittent connections.

• Show that DTNs can be applied to navy networks, using IBR-DTN with Probabilistic
Routing Protocol using History of Encounters and Transitivity (PRoPHET). Show
that DTN performance can be increased using a routing algorithm based on the
quality of the wireless links, using the proposed routing algorithm in IBR-DTN.

2

• Assess the proposed routing protocol to perform routing in military scenarios using
the quality links approach.

1.3 Contributions

The work developed in this dissertation has the following contributions:

• Description of methods to gather information about the PHY and MAC layers, re-
lated to the physical conditions of the links.

• Approach to define the quality of the links and a proposal of a modular Application
Programming Interface (API) (Quality Connection Reader (QCR) module) to mea-
sure the quality of the relevant neighboring links and to easily integrate with DTN
platforms.

• A proposal of a routing protocol to DTNs based on the quality of the links inspired
on PRoPHET protocol, the Q-PRoPHET. At the best of my knowledge this is the
first pure links quality-based routing protocol that exists for DTNs.

• Integration of Quality-PRoPHET (Q-PRoPHET) in an available DTN platform, the
IBR-DTN.

• Writing of two papers about the work developed in this dissertation. The first one
deals with the proposal of the quality-based measurement module and a first approach
to routing in DTN, and it was published in Conftele 2015. The second one deals with
the overall routing and evaluation, and it was submitted to the IEEE International
Conference on Communications 2016 (Mobile and Wireless Networks).

1.4 Document Organization

This document is organized as follows:

• Chapter 1 contains the Introduction of the work.

• Chapter 2 presents the state of the art about DTNs, Routing and the Standard
IEEE 802.11, including also a brief overview about the Linux Wireless Subsystem
and a description of methods to gather information directly related with the PHY
layer.

• Chapter 3 presents the navy scenarios for communication, the definition of quality
of the links, and the proposed solution to perform routing in these scenarios using
the links quality.

• Chapter 4 presents the architecture and the implementation of the proposed solu-
tion.

3

• Chapter 5 presents the integration and the evaluation of the implemented solution.

• Chapter 6 presents the conclusions and the future work.

4

Chapter 2

State of the art

2.1 Introduction

This chapter is focused on providing the reader an overview of fundamental concepts
needed to understand the work presented in this dissertation and also to present related
work on the main topics.

Section 2.2 presents the concept of DTN. A brief overview and a definition of DTN
is presented. Therefore, some applications of DTNs are presented as well as the DTN
architecture together with the bundle protocol. Finally, some implementations of DTNs
are presented.

Section 2.3 presents concepts about routing in DTNs. Finally, it presents work and
studies related to routing in military networks.

Section 2.4 focuses on a brief description of IEEE 802.11 Wireless Local Area Network
(WLAN) standard, the general architecture, the MAC layer and how it is implemented in
the Linux Wireless Subsystem. Finally, it is presented the techniques to gather information,
located in MAC and PHY layers, from the higher layers, due to their relevance regarding
the work developed in this dissertation.

Section 2.5 presents the chapter summary and considerations.

2.2 Delay Tolerant Networks

2.2.1 Overview

The Transmission Control Protocol (TCP)/Internet Protocol (IP) model is very suc-
cessfully nowadays in the actual Internet due to its efficiency, flexibility, robustness and
the fact that it provides interoperable communications between all types of hardware and
Operating Systems (OSs) [1]. The TCP/IP model allows the connectivity between several
applications around the world serving many users. However, this model does not work well
in certain circumstances, mainly in Mobile Ad-Hoc Networks (MANETs) where the end-
to-end (e2e) connectivity can be non-existing or the connection can be very intermittent.

5

In these circumstances the TCP breaks [2] because it establishes a logical connection in an
e2e path that it is not always available.

The main alternative to TCP/IP is the User Datagram Protocol (UDP)/IP model
where the essential difference (not only one) is the absence of the logical connection. This
way the source node can send immediately the data, but due to the fact that the e2e path
may not be available, the data cannot be delivered to the destination. This way there is
the need to create/use networks capable to operate under these circumstances. This type
of networks are Delay Tolerant Networks (DTNs).

In reality the birth of DTNs (named by Kevin Fall of Intel Research Labs, Berkeley)
was in August 2002 when Interplanetary Internet Research Group (IPNRG) published an
updated version of the draft Delay-Tolerant Network Architecture: The Evolving Interplan-
etary Internet [3]. This draft describes a generalization of an architecture for Interplanetary
Internets (IPNs), a communication system envisioned to provide Internet services across
interplanetary distances in support of deep space exploration [4] . A more detailed descrip-
tion about the DTNs story and its relation with IPNs may be found in [5].

Throughout this section the DTN specifications are presented in more detail together
with some implementations.

2.2.2 Definition

DTNs are networks that allow communications in challenging environments which are
characterized by connectivity issues such as long and variable delays, sparse and intermit-
tent connectivity, asymmetry data rates, packet losses, high errors rates and even nonex-
istence of e2e connectivity [5] [6] [7].

In DTNs the idea is that an e2e connection path may never be present. This way, to
make a connection possible, the intermediate nodes should accept the data being transfered
and store it. These intermediate nodes should forward the data when the opportunity
arises, i.e. when another node appears or the destination is reached.

A real example to understand the DTN definition is DakNet [8], a project implemented
in some villages in India and northern Cambodia. The concept of DakNet is that physical
transports, e.g. buses, carry a mobile Access Point (AP) between villages’ kiosks (without
direct Internet access) and the city that has a Hub to the Internet, as shown in Figure 2.1.
Data is automatically uploaded or downloaded when the bus is in the range of a kiosk or
the Hub.

2.2.3 Applications

As previously stated, DTNs were initially proposed to IPNs to compensate the discon-
nections over interplanetary distances. However, DTNs can be applied in many challenging
scenarios, which may oppose to one or more assumptions assumed by the e2e TCP/IP
model. According to [9] this type of scenarios can be classified as:

• Terrestrial mobile networks may be partitioned due to nodes mobility and/or

6

Hub

 (Internet access

point)

City

Village Village

Village

Village

Kiosk
Kiosk

KioskKiosk

Scale

10 km

Mobile AP

Figure 2.1: DakNet Concept - based on [8]

changes in Radio Frequency (RF) signal strength. This way the nodes need to store
data until they reach other node that are suitable for delivering it to the destina-
tion. One good example of terrestrial mobile networks are Vehicular Delay Tolerant
Networks (VDTNs) which extend Vehicular Ad-Hoc Networks (VANETs) with DTN
capabilities to support long disruptions in network connectivity [10].

• Exotic media networks include near-Earth satellite communications, long distance
links (either radio or optical), acoustic links in air or water and certain communi-
cations in free-space. As example, one satellite orbiting the earth may provide a
predictability-available store and forward network service that is occasionally avail-
able when the satellite passes periodically by DTN nodes, possibly static in earth
surface [9].

• Military Ad-Hoc networks should operate in hostile environments which consider
mobility, environmental factors or intentional jamming that cause disconnections in
the network. This way, the capability to store, carry and forward is an useful charac-
teristic to serve the challenges of Military Ad-Hoc networks in hostile environments.
Figure 2.2 shows an example of DTNs operation in a military scenario [11]. Mobile
nodes M1, M2, and Headquarters (HQ) communicate with each other via satellite
communication system. The connection between the satellite and HQ is often reli-
able. Firstly, in (1) M1 communicates directly with M2. However, due to various
reasons, the link between M2 and satellite is down (2), and M1 needs to communicate
with M2. DTN technology can be used to achieve the objective. M1 will route its
data to HQ. Meanwhile the connection between M1 and satellite is down and the
connection between M2 and satellite is restored. HQ realizes that M2 is available
and transfers the stored data to M2 (3).

7

M1

HQ

M2

(1) M1 communicates directly with M2 via satellite

M1

HQ

M2

(2) the link between M2 with satellite is interfered, HQ store the data temporarily

M1

HQ

M2

(3) the link between M2 and satellite is restored, HQ forward data to M2

Figure 2.2: DTN Communication in military scenario - based on [11]

• Sensor/Actuator networks are a type of networks where the nodes are usually
characterized by extremely limited end-node power, memory and Central Processing
Unit (CPU) capabilities. In addition, they are supposed to exist in a large scale with
thousands or millions of nodes per network. For this reason the communication may
be scheduled in order to conserve power, or techniques may be adopted to decrease
the number of active nodes, i.e. the nodes with communication capabilities activated.
For example, the Span algorithm [12] is a power saving method applicable in wireless
networks that reduces the energy consumption due to the fact that a dense network

8

(many nodes per area unit) does not need to have all nodes with wireless capabilities
activated, since only some nodes are enough to guarantee multi-hop packet routing.
This algorithm selects coordinators that stay awake to perform routing, and these
coordinators vary along the time to distribute the energy consumption.

2.2.4 Architecture

The DTN architecture [13] is based on the insertion of a new layer above the transport
layer (or others), the bundle layer. The comparison between Open Systems Interconnection
(OSI) layers, TCP/IP layers and DTN layers is presented in Figure 2.3. The bundle layer
can handles with delays and disruptions at each DTN node in a path between the sender
and the destination. Nodes on the path can provide network capabilities to store, carry
and forward data (usually called bundle(s) in DTNs) using the network layers specific to
each DTN region, often called convergence layers.

Data Link

Network

Transport

Bundle

Application

Data Link

Network (IP)

Transport (TCP)

Application

Data Link

Network

Transport

Session

Presentation

Application

OSI model TCP/IP model DTN model

Physical Physical Physical

Figure 2.3: Bundle layer

A high-level conceptual implementation of DTN architecture at bundle layer is pre-
sented in Figure 2.4. This architecture comprises a central forwarder that is responsible
for moving bundles between applications, Convergence Layer Adapters (CLAs) (to com-
municate with underlying networking layers) and persistent storage, according to routing
decisions [6]. The arrows indicate interfaces which can transport either bundles or direc-
tives (routing decisions, management, applications).

The following subsections explore in more detail the DTN architecture [13] [14].

2.2.4.1 Virtual Message Switching Using Store-and-Forward

A local DTN-enabled application can send and/or receive messages of arbitrary length,
usually called Application Data Units (ADUs) to/from bundle layer. The ADUs are trans-
formed at bundle layer in one or more Protocol Data Unit (PDU), usually called Bundles.

9

Storage

Local Applications Management Process

Routing

Decisions

Convergence Layer

Adapters

Protocol P1 Protocol P2 Protocol Pn...

Bundle

Forwarder

Figure 2.4: DTN Conceptual Architecture - based on [6]

The bundles have a specific format containing two or more blocks of application data or
control information to forward and deliver the bundle to its destination.

Unlike the IP networks based on the assumption that ”storing” will not persist for
more than a small amount of time, the DTN does not assume the same because it does
not expect that the connections to other nodes are always available or reliable. Therefore,
the most important assumption of DTN forwarding is that bundles should have a place to
wait at nodes until a communication opportunity is available. This assumption assumes
that storage is always available and well-distributed over the network, as well as sufficiently
robust to store as many bundles as necessary. Due to the fact that the previous assumption
is not always true the research in DTNs revolves around exploring this issue in many ways,
but essentially in improving and creating new routing algorithms capable of forwarding the
bundles in a fast and efficient manner.

2.2.4.2 Nodes and Endpoints

A DTN node is an engine for sending, forwarding and receiving bundles, i.e. nodes
with a bundle layer attached. Applications can use these nodes to send and receive ADUs.

DTN nodes may belong to one or more groups called DTN endpoints which is a set
of DTN nodes. A specific bundle is considered successfully delivered to a DTN endpoint
when a minimum group of nodes in the endpoint has received that bundle. This group
is called Minimum Reception Group (MGR) and may be one node (unicast), a group of
nodes (anycast) or all nodes (multicast and broadcast).

10

2.2.4.3 Endpoint Identifiers and Registrations

Endpoint Identifiers (EIDs) are names, with some rules, that identify DTN endpoints,
and usually they are expressed using Uniform Resource Identifier (URI) syntax [15] [16].
An URI is a string that is comprised of a Scheme Part and a Scheme-Specific Part (SSP):
<scheme>:<SSP>. Using an EID it is possible to determine the MGR of the DTN group
named by that EID. However, each node needs to have a unique EID that identifies it in
the network.

When an application aims to send an ADU to another node, it needs to know the EID
from that node to be possible for DTN nodes in the network to operate and deliver the
bundle to the destination.

When a local application aims to receive bundles from other nodes, it needs to demon-
strate that intention. This intention is shown by performing a registration in the DTN
node. This registration may or may not be persistent, depending generally if the applica-
tion wishes to continue registered or not.

2.2.4.4 Routing and Forwarding

The DTN architecture (Figure 2.4) offers a framework for routing decisions and for-
warding at the bundle layer. The DTN architecture [13] defines different categories of
contacts in DTNs as follows:

• Persistent Contacts are always available, i.e. always-on like a good Internet con-
nection. These contacts are the best case for DTNs.

• On-Demand Contacts need a trigger action to instantiate, but then they are like
a persistent contact. A good example of an on-demand contact is the dial-up con-
nection.

• Intermittent - Scheduled Contacts are contacts with an agreement between two
or more nodes to establish a contact at a particular time with a certain duration. An
example of a scheduled contact is present in Figure 2.1, if the bus has a precise fixed
schedule.

• Intermittent - Predicted Contacts are, as the name says, expected contacts but
they are not scheduled. An example of a predicted contact is presented in Figure 2.1
if the bus has a random schedule based on the driver’s desire.

• Intermittent - Opportunistic Contacts happen by chance, they are not scheduled
or predicted, but due to the fact that two or more nodes encounter themselves the
contact is made. An example of an opportunistic contact is a smart-phone with Wi-Fi
when it encounters an AP. It can synchronize the e-mail because it encounters an
Internet access by chance.

There are many routing algorithms for DTNs. Some of them are presented in section
2.3, but each of them has assumptions that make it work well for a specific type of contacts
only.

11

2.2.4.5 Bundle Fragmentation and Reassembly

The DTN architecture contains also a fragmentation module that has the capability
to fragment and reassemble bundle fragments [17]. This module is designed to improve
the efficiency of bundle transfers by guaranteeing that contact volumes are completely
utilized, and by avoiding retransmission of partially forwarded bundles. There are two
forms of DTN fragmentation and reassembly:

• Proactive Fragmentation occurs when an ADU is divided into multiple smaller
blocks and each block is transmitted as an independent bundle by the DTN node.
This way the destination is responsible for reassembling the smaller blocks into the
original bundle and obtaining the original ADU. The name of this approach is related
with the fact that fragmentation is made before sending the bundle(s). As example,
the proactive fragmentation may occur when DTN nodes can predict the contact
volumes in advance.

• Reactive Fragmentation occurs when an active bundle transfer is interrupted and
only a fragment of the bundle was transfered. In this situation the receiver bundle
layer changes the received fragment to indicate that it is a fragment and forwards it
normally. The sender node may notice that only a fragment was transfered to the
next hop, and sends the remaining bundle when the contact becomes available again.
The name of this approach is related with the fact that fragmentation occurs after
an attempted transmission was interrupted.

The reactive fragmentation capability is not a requirement that needs to be available
in all DTN implementations, since not all underlying protocols support this and because
it also presents significant challenges related to security.

Even with fragmentation disabled in a DTN node, the capability of reassembly should be
active because the node may receive fragments from other nodes, and it needs to reassemble
them in order to obtain the complete bundle.

2.2.4.6 Reliability, Custody Transfer and Security

The basic service offered by the bundle layer is unacknowledged, i.e. the nodes priori-
tize unicast message delivery, but they do not guarantee that messages will be delivered.
However, the bundle layer also offers the custody transfer mechanism which is a service
that may be provided to a specific bundle while it is crossing the network. The objective
of custody transfer is to keep track of a current custodian for each bundle. The custodian
is required and has the responsibility to keep the bundle secure and safe in the persistent
memory until it delivers the bundle successfully to another custodian [6]. This way the re-
sponsibility to deliver the bundle passes through the DTN nodes with custody capabilities
instead of the original sender.

Not all DTN nodes need to have custody support. A node can receive a bundle with-
out accepting the responsibility to deliver it due to memory limitations or other reasons.
Custody transfer mechanism may not be a true hop-by-hop mechanism because a bundle

12

transfer between two custodians can occur through many DTN nodes without custody
support.

However, to guarantee reliability and custody transfer between DTN nodes, security
may be considered. Security is an important topic in networks nowadays and DTNs are not
an exception. To define security in DTNs there is the Bundle Security Protocol [18] that
describes the bundle security protocol and a set of mandatory ciphersuites1. The bundle
security protocol defines rules to authenticate nodes, guarantee bundles integrity and con-
fidentiality, transport security keys and also to deny access to unauthorized applications
and prevent authorized applications from abusing the DTN to their advantage.

2.2.4.7 Timestamps and Time Synchronization

Bundles have associated to them a timestamp that indicates the creation time and
that is used for identification purposes. Besides that, bundles’ timestamps are also use-
full for routing strategies with scheduled or predicted contacts, bundle expiration time
computations and application registration expiration.

In terms of identification, the EID source, timestamp and data offset/length allow DTN
nodes to identify uniquely each bundle, even if they are fragments.

In terms of routing, if the bundles contain the timestamp, some routing strategies
may use this information to schedule sending the bundles to respective destinations before
the bundles expiration time, that is usually calculated by adding the timestamp and the
lifetime present in the bundle. However, if the lifetime of a specific bundle expired, the
nodes may delete this bundle from storage because it is no longer useful and the node can
free some persistent memory. When an application registers at the bundle layer, it can
also express its desire to receive ADUs until a finite amount of time.

The last utilities presented are only viable if the DTN nodes are synchronized between
them. If they are desynchronized, unwanted behaviors could occur. As an example, if a
DTN node has its internal clock set in advance, when it receives a bundle, it will probably
consider that the bundle is expired due to the fact that its clock has a significant off-
set. Thus, DTN nodes should have mechanisms to guarantee that nodes are synchronized
between them. However, this feature does not require an exactly accurate synchronized
time, but deviations of more than a few seconds could be problematic depending on the
application.

There are many applications developed for offering time synchronization between nodes.
Network Time Protocol (NTP) [19] has provided accurate synchronization within Internet
from years. Precision Time Protocol daemon (PTPd) [20] offers a good synchronization in
Ad-Hoc networks. Most existing networks for extreme environments already provide some
(often out-of-band) means for obtaining accurate time [21].

1”A ciphersuite is a specific collection of various cryptographic algorithms and implementation rules
that are used together to provide certain security services.” [18]

13

2.2.5 Bundle Protocol

The bundle protocol [16] defines the bundle layer (Figure 2.4) that offers an e2e archi-
tecture supporting communications through highly challenging environments that include
intermittent connectivity, large or variable delays and high bit error rates. To offer relia-
bility in this type of networks, the bundle protocol is placed above the transport layer and
under the application layer. According to [16], key capabilities of the bundle protocol are:

• Custody-based retransmission;

• Ability to lead with intermittent connectivity;

• Ability to take advantage of scheduled, predicted, opportunistic and continuous con-
nectivity (See Routing and Forwarding in section 2.2.4.4 for more details);

• Late binding of overlay network EIDs to constituent Internet addresses.

The bundle protocol also defines the bundle’s format. A bundle is formed by a series
of contiguous data blocks where each bundle is formed by two or more blocks of protocol
data, which serve various purposes. The bundles pass through the network in a store,
carry and forward method between the DTN nodes over different network transport layers
including TCP/IP and non TCP/IP transport/network layers [14].

The following subsections explore in a deeper way the bundle protocol.

2.2.5.1 Service Description

The bundle protocol at each node is expected to offer the following services to the
node’s applications that want to use DTN services:

• Initiate a registration (registering a node in an EID);

• Finishing a registration;

• Switching a registration between Active and Passive States;

• Transmitting a bundle to an EID;

• Canceling/Aborting a transmission;

• Verify a registration that is in a passive state;

• Deliver a received bundle.

14

2.2.5.2 Bundle Format

Each bundle is formed, at least, by two blocks that are concatenated. The first block
should be the only Primary Bundle Block (Figure 2.5) in the bundle. Additionally different
blocks may follow the Primary Bundle Block to support specific extensions, such as the
Bundle Security Protocol [18]. Furthermore, at least one block should be a Payload Block
(Figure 2.5) and the last bundle’s block should have the last block flag (in processing control
flags) set to ’1’. All other non Primary Bundle Blocks should have this flag set to ’0’.

Processing Control Flags (SDNV)Block type (1 byte) Block length (SDNV)

Bundle Payload (variable)

Bundle Payload Block:

Version (1 byte) Processing Control Flags (SDNV)

Block length (SDNV)

Destination scheme offset (SDNV) Destination SSP offset (SDNV)

Source scheme offset (SDNV) Source SSP offset (SDNV)

Report-to scheme offset (SDNV) Report-to SSP offset (SDNV)

Custodian scheme offset (SDNV) Custodian SSP offset (SDNV)

Creation Timestamp time (SDNV)

Creation Timestamp Sequence Number (SDNV)

Lifetime (SDNV)

Dictionary length (SDNV)

Dictionary byte array (variable)

Fragment offset (SDNV, optional)

Total application data unit length (SDNV, optional)

Primary Bundle Block:

SDNV = Self-Delimiting Numeric Value

 SSP = Scheme-Specific Part

Figure 2.5: Bundle Block Formats - based on [16]

The bundle protocol was designed to minimize the consumption of transmission band-
width and to allow extensibility of address requirements that are not yet identified, as well
as scalability through a wide range of network scales and payload sizes. For this purpose
the Self-Delimiting Numeric Values (SDNVs) was proposed to encode bundle block fields
with variable length. SDNV is an encoding scheme adapted from [22] [23] and it is a nu-
meric value encoded in N octets, where all octets have their Most Significant Bit (MSB)
set to ’1’, except the last octet that has its MSB set to ’0’. The values encoded in SDNVs
are obtained by extracting the least 7 bits from each SDNV and concatenating them to
form a single bit string [16]. Figure 2.6 presents an example of an encoding process to a

15

hexadecimal value.

0xABD : 1010 1011 1101
is encoded as
[1 00 10101] [0 0111101]
10010101 00111101

Figure 2.6: SDNV encoding example

The fields of the Primary Bundle block, presented in Figure 2.5 are:

• Version indicates the version of the bundle protocol that built this block;

• Processing Control Flags contains flags that are used for status reports, class of
service and general information relative to the bundle;

• Block length contains the length of all remaining fields of the block;

• Destination scheme offset contains the dictionary offset referencing the byte array
of the scheme name of the EID of the bundle’s destination;

• Destination SSP offset contains the dictionary offset referencing the byte array of
the SSP of the EID of the bundle’s destination;

• Source scheme offset contains the dictionary offset referencing the byte array of
the scheme name of the EID of the bundle’s nominal source, i.e., the initial source
EID that it initially transmitted;

• Source SSP offset contains the dictionary offset referencing the byte array of the
SSP of the EID of the bundle’s nominal source;

• Report-to scheme offset contains the dictionary offset referencing the byte array
of the scheme name of the Identification (ID) of the endpoint to which the status
report should be transmitted;

• Report-to SSP offset contains the dictionary offset referencing the byte array of
the SSP of the ID of the endpoint to which the status report should be transmitted;

• Custodian scheme offset contains the dictionary offset referencing the byte array
of the scheme name of the EID of the current bundle’s custodian;

• Custodian SSP offset contains the dictionary offset referencing the byte array of
the SSP of the EID of the current bundle’s custodian;

• Creation Timestamp is used for bundle identification together with the source EID
and (if the bundle is a fragment) the fragment number offset and payload length. The
creation timestamp contains the bundle’s creation time (in seconds since year 2000

16

on Universal Time Coordinated (UTC) scale [24]) and the sequence number, which
is a positive integer number that is increased for each bundle creation and is reseted
whenever the current time advances by one second in order to distinguish different
bundles created at the same node at the same second.

• Lifetime indicates the bundle’s useful lifetime, i.e., the time in which the bundle’s
payload is no longer necessary expressed in seconds after the creation of the times-
tamp time. This field is useful for nodes to know when they do not need to store or
forward the bundles in order to delete them from the network.

• Dictionary length contains the length of the dictionary byte array field;

• Dictionary byte array is a byte array formed by all schemes and SSPs pointed by
previous dictionary offsets;

• Fragment offset indicates the fragment number if the bundle is a fragment. If the
bundle is not a fragment this field does not appear in the block.

• Total application data unit length: If the bundle is a fragment this field indicates
the total length of the original ADU of which this bundle is a fragment. If the bundle
is not a fragment this field does not appear in the block.

The fields of Bundle Payload Block, presented in Figure 2.5 are:

• Block type indicates the block type. For a payload block, this field has the value
’1’.

• Processing Control Flags contains seven flags (bits) to indicate some information
relative to the block. For example, bit 3 indicates that the block is the last block
from the bundle.

• Block length contains the total length of remaining field of the block, i.e., payload
length;

• Bundle Payload contains the ADU.

2.2.6 Implementations

2.2.6.1 DTN2

DTN2 [25] is the reference implementation of the DTN Bundle Protocol [16] and its
main goal is to provide a flexible and robust software framework for experimentation,
extension and real-world deployment. It is written in C++ and uses a framework called
Oasys that was designed to provide an uniform interface to DTN2, hiding the OS and
other support package details.

The architecture of DTN2 daemon is presented in Figure 2.7 and is composed by the
following blocks:

17

User Interface

System Startup

Bundle Daemon CoreControl Interface API Server

External

applicationsInternal applications

Persistent

Storage

(e.g. file system)

Bundle Router
Fragmentation Manager

(and bundle factory)

Contact Manager and

Discovery Agent

Network

Figure 2.7: DTN2 architecture - based on [26]

• System startup that manages the begin of all components and the creation off all
relevant threads (Bundle Daemon Core, API Server and User Control Interface).

• API server is the interface between daemon and applications. It deals with ap-
plication registrations and has the capability to receive/deliver bundles from/to ap-
plications. It also supports a publish and subscriber mechanism that is not fully
documented.

• Control Interface provides a way to configure and monitoring Daemon operations.
It is an interface that can receive commands and may present data to the user.

• Bundle Daemon Core is the central component of the daemon architecture. It
acts like an event dispatcher for the rest of the system and it is not a state machine,
because all events can be handled at any time. According to [26] Bundle Daemon
Core manages:

– the network interfaces in local node;

– sending and receiving node advertisements on interfaces relative to the DTN
node discovery;

– opening and closing links to other nodes;

18

– the bundle router that selects and schedules bundles for transmission on network
interfaces;

– storing and retrieving bundles to/from local node’s persistent storage;

– accepting bundles or delivering them from/to local applications according to the
application registrations;

– the timers used for various purposes, e.g. bundle expiration.

• Fragmentation Manager (and bundle factory) deals with operation of split bundles
(either reactively or pro-actively) or organizing sets of fragments of a bundle, and
determining when the available fragments are enough to form an entire bundle so
that it can be reassembled and transmitted.

• Persistent Storage is a file system or database based storage where the bundles
can be preserved across daemon or node restarts.

• Bundle Router is responsible to make all decisions relative to routing and forward-
ing bundles. It receives events from the Bundle Daemon Core and, based on them,
it decides when it should forward bundles that are stored locally. DTN2 includes
several routing modules, which are:

– Static routing where all routes and links are configured statically, i.e., the
next-hop routes are created and removed by configuration commands;

– Epidemic routing is a variant of flooding routing. A more complete descrip-
tion is presented in section 2.3.2.1.

– PRoPHET is an implementation of Probabilistic Routing Protocol using His-
tory of Encounters and Transitivity (PRoPHET). A more complete description
is presented in section 2.3.2.2.

– Delay Tolerant Link State Routing (DTLSR) is a link state based routing
protocol for DTNs. DTLSR [27] realizes network state changes due to the
flooded link state announcements throughout the network. All nodes maintain
graphs (one graph for each node) representing their current view of the network
and they use shortest path computation (e.g. Dijkstra) to perform routing
decisions often based on an estimation of the delay that it would take to send a
message using the given link. However, each node maintains graphs only to its
administrative area which helps to contain the size of the network graph and
limit the scope of the routing messages. Neighbors in other administrative areas
are reachable via a set of EIDs that announce themselves as gateways for other
neighbors.

– Tetherless Computing Architecture (TCS) routing [28] is an opportunistic-
based protocol used mainly to allow communications between different DTN
regions. It uses a centralized database (usually in the Internet) that knows
the region of each DTN node that is reachable via the region’s gateways (DTN

19

routers that connect more than one region with connection with the central-
ized database). When a certain node needs to communicate with another node
in another region, the bundle passes though the source’s region until the gate-
way, and then it is forwarded to the destination’s region in order to reach the
destination according to the informations present in the centralized database.

• Contact Manager and Discovery Agent has the responsibility to manage com-
munication links to other nodes. These links can be used to send and receive bundles
to/from other reachable DTN nodes. Each link has a respective convergence layer
which determines the lower level transport protocol which should be used to support
the communication. The links can be created due to administrative management
requested either from a configuration file or during operation; as a consequence of an
advertisement received from a neighbor discovery mechanism or as a consequence of
a connection request received in a associated convergence layer from another node.

• Internal applications: DTN2 provides several applications with its distribution.
Dtnping is an application that sends bundles to an EID and waits for an answer. The
response time is measured and is printed out. Dtnsend is used to create a bundle
with data and send it through the DTN, and dtnrecv is used to retrieve the bundle
out in the final destination. Dtncp is used to move a file from a source node to a
destination node. However, in the receiving node a presence of dtncpd is necessary, a
daemon registered with local bundle router that requests notifications when a bundle
comes in that was sent by dtncp. If it receives a bundle, it will put the bundle into
a specified directory.

2.2.6.2 IBR-DTN

IBR-DTN [29] was developed in Institut für Betriebssysteme und Rechnerverbund
(IBR) at Germany. It is considered a lightweight, modular, efficient and highly portable
implementation of Bundle Protocol [30] [31]. IBR-DTN was created specially for embed-
ded systems, in C++, with limited constrains in terms of memory and processing. It is
compatible with several convergence layers, such as TCP, UDP and others.

IBR-DTN daemon architecture is presented in Figure 2.8 and it is composed by the
following blocks:

• Event Switch is the IBR-DTN core. This module dispatches a set of standard
events to all relevant sub-modules. It acts as an event’s forwarder, but events that
trigger high processing can be queued directly in a private queue of the module’s
thread, which allows a high level of concurrency between modules. This way the
existing modules, and the new ones, can receive and raise events to communicate
with other daemon’s modules.

The standard events exist to deal with bundles routing, storage operation and nodes
availability.

20

Asynchronous Events

Event Switch

Discovery Agent

Connection Manager

Base Router

Wall Clock

API Server

Bundle Storage

TCPCL

Memory

SQLite

Retransmission

Neighbor

Static Epidemic

Prophet

TCPCL

UDPCL

File Based

HTTPCL

IPND

get
transmit

get / store

Figure 2.8: IBR-DTN architecture - based on [31]

• Discovery Agent has the function to discover other nodes through pluggable dis-
covery modules. It uses DTN IP Neighbor Discovery (IPND) (v1 and v2) specified in
[32] and it is compatible with DTN2 IP-Discovery frames. Discovery Agent creates
events related to appearance or disappearance of the neighbors. Whenever a neigh-
bor is detected, the routing modules will verify if there are new bundles that should
be transmitted to the new neighbor.

• Connection Manager manages the instances of convergence layer modules. Each
convergence layer offers an interface to transfer bundles to the neighboring nodes.
Incoming bundles are also announced by a global event and stored in the bundles
storage.

IBR-DTN has four built-in convergence layers:

– TCP Convergence Layer (TCPCL) is compatible with Delay-Tolerant Net-
working TCP Convergence-Layer Protocol [33] and uses a handshake mechanism
between different DTN daemons, including also the ability to split bundles into
segments that are acknowledged by receiving daemons.

– UDP Convergence Layer (UDPCL) is compatible with Datagram Conver-
gence Layers for the Delay- and Disruption-Tolerant Networking (DTN) Bundle
Protocol and Licklider Transmission Protocol (LTP) [34]. It offers a very simple
way for transferring bundles between daemons due to the fact that it uses UDP,
a simple transport protocol. UDPCL requires that a bundle fits into a unique
UDP datagram, which the maximum bundles size is limited.

– HTTP Convergence Layer (HTTPCL) is a convergence layer based on
libcurl and can use an Hypertext Transfer Protocol (HTTP) server to send or
receive bundles.

– LowPAN Convergence Layer (LowPANCL) supports 802.15.4 MAC pro-
tocol [35], commonly used in Wireless Sensor Networks (WSNs).

21

• Bundle Storage module is what allows the DTN nodes to store bundles for extended
periods of time. Bundle Storage module offers an interface to store and retrieve
bundles by different search criteria, e.g. by bundle ID. There are three types of
bundles storage and one type can be selected in the configuration file. The different
types are listed below:

– Memory is a volatile storage wherein all bundles are kept in Random Access
Memory (RAM) and it is the default type of storage in IBR-DTN. A maximum
size limit can be defined.

– File Based Storage is a persistent storage type based on simple files stored
on the hard disk. In this type the bundles survive daemon restarts and power
failures of nodes. Since the bundles are not in memory, the requirements in
terms of memory size are reduced.

– SQLite uses a SQLite database as backend. It can store higher amounts of
meta information for bundles which is useful for complex routing algorithms.

• Base Router is responsible for managing different routing modules, which can work
concurrently. It receives events relative to arriving or departing nodes from the
Discovery Agent. They are also notified whenever new bundles arrive in storage. If
a certain routing module considers itself responsible for a given bundle, it can notify
the Connection Manager and uses the appropriate convergence layer to transfer the
bundle to the next node. IBR-DTN includes several routing modules, which are:

– Static where routes and links are configured statically, i.e., the convergence layer
for a given EID is configured a priori in the configuration file. This assumes
that static routes are always available.

– Neighbor routing module just routes bundles to nodes discovered by the Dis-
covery Agent, i.e., the direct neighbor nodes. When using IPND, the nodes
present in the same subnet are reachable.

– Retransmission routing module is used when a convergence layer signals an
error while it was trying to transmit a bundle to the next hop. In this case the
bundle is re-queued and continues at storage. When possible, the Retransmis-
sion module will try to repeat the transmission to the next hop.

– Epidemic routing is implemented also in IBR-DTN. A more complete descrip-
tion is presented in section 2.3.2.1.

– PRoPHET is an implementation of Probabilistic Routing Protocol using His-
tory of Encounters and Transitivity (PRoPHET) protocol whose description is
presented in section 2.3.2.2.

• Wall Clock module determines the current global time in the DTN by evaluating the
local host’s clock. The timestamps in the Bundle Protocol count the time in seconds
since January 1, 2000. In addition, this module is also used to initiate recurring
tasks.

22

• IBR-DTN API is a socket based API interface: it can be a TCP socket which
allows users to run daemon and API on different machines, or it can be a Unix
Domain Socket if the daemon and API are running at the same machine.

To avoid reimplementing the complex bundle streaming protocol in each DTN appli-
cation, IBR-DTN offers a library that can be linked with user’s applications simpli-
fying the creation of bundles.

• Tools: IBR-DTN provides several tools with its distribution [29]. dtnsend and
dtnrecv are two applications to send and receive files. Dtnping is an application
that sends bundles to an EID and waits for a bundle with the same payload as
reply. The response time is measured and it is printed out. Dtntracepath prints
the path of a bundle through the network using ”bundle forwarded” reports from
all hops. Dtntunnel is an experimental tunnel that encapsulates IP traffic through
a DTN connection. Dtninbox and dtnoutbox are two applications to receive/send
files from/to two directories on different nodes. There is also dtntrigger which is a
lightweight alternative to the API and can be used to receive bundles and execute
programs.

2.2.6.3 Helix

Helix DTN was developed by researchers from Instituto de Telecomunicações of Aveiro
and Veniam R© [36], a technological company that develops wireless technologies to vehicular
networks.

Helix is a DTN platform designed specially to wireless networks and it meets the require-
ments to work specially in vehicular networks. Helix distinguishes types of nodes according
to their functionality in the network, e.g. the cars/trucks/bus are On Board Units (OBUs),
static sensors, the fixed accesses to infrastructure are Road Side Units (RSUs) and these
generally are connected via Internet to a Server. This way it is possible to perform routing
according to the type of the nodes and their associated behavior.

Helix does not comprise all rules defined in the RFCs [13] and [16] because the objective
is to have a simple DTN with low resource consumption and low overhead. For example, in
Helix the nodes are identified with a number (integer) and not with a string that requires
generally more bytes to store it, increasing the overhead in the network.

Helix was specially developed to collect data from sensors and logs from Veniam’s
vehicular boards, and also to perform content distribution, i.e. software updates for the
boards, commercial advertisements or entertainment content. All applications that require
a DTN in vehicular networks may use Helix.

The Helix architecture is presented in Figure 2.9.

Helix is composed by the following blocks:

• Socket module is an UDP socket and it works as an abstraction layer to send and
to receive Helix packets to or from the neighbors, respectively.

23

Neighboring

Socket

RX

API

Management

Storage
Tables

Data

Routing

Applications

Figure 2.9: Helix architecture

• Receiver (Rx) is a module that queries the socket for new packets. If they exit, it
receives the packets and analyzes and classifies them according to their headers, and
it decides if it should forward or drop the packets.

• Neighboring module listens the media searching from other nodes running Helix,
i.e. neighbors, and manages information relative to the interface where the neighbors
are seen.

• Storage module stores information in persistent memory and in volatile memory.
The bundles are entirely stored in persistent memory, but some information about
the bundles, that needs to be accessed in a fast way, is maintained in RAM.

• Routing module is responsible to manage the bundles. It decides which bundles
should be sent and in which order and to which neighbors, according to the routing
strategy.

• Applications contain some applications that can use Helix DTN. The current avail-
able applications are HelixPing that sends a packet to other DTN node and waits
for the reply and measures the Round-Trip Time (RTT). HelixSendString and
HelixRecvString are two applications to send and to receive a string between two
nodes, respectively; HelixSendFile and HelixInbox are two applications to send
and to receive files between DTN nodes.

2.2.6.4 Comparison between DTN implementations

Table 2.1 presents a high level comparison between the DTN implementations presented
in section 2.2.6. The comparison focuses in the main characteristics of each implementation.

24

T
ab

le
2.

1:
C

om
p
ar

is
on

b
et

w
ee

n
D

T
N

im
p
le

m
en

ta
ti

on
s

D
T

N
Im

p
le

-
m

e
n
ta

ti
o
n

O
S

P
ro

g
ra

m
m

in
g

L
a
n

g
u
a
g
e

S
e
cu

ri
ty

S
u
p
p

o
rt

A
p
p
li

ca
ti

o
n

s
R

o
u

ti
n
g

O
b

se
rv

a
ti

o
n

s

D
T

N
2

[2
5]

[2
6]

D
eb

ia
n
/U

b
u
n
tu

,
M

ac
O

S
X

,
S
o-

la
ri

s,
F

re
eB

S
D

an
d

L
in

u
x

on
A

R
M

C
+

+
O

p
en

S
S
l

an
d

p
ar

ti
al

su
p
p

or
t

fo
r

B
S
P

[1
8]

d
tn

p
in

g,
d
tn

se
n
d
,

d
t-

n
re

cv
,

d
tn

cp
an

d
d
tn

cp
d

S
ta

ti
c,

E
p
i-

d
em

ic
[3

7]
,

F
lo

o
d
in

g,
P

R
oP

H
E

T
[3

8]
[3

9]
,

D
T

L
S
R

[2
7]

,
T

C
A

[2
8]

,
ex

te
rn

al
ro

u
ti

n
g

v
ia

X
M

L

It
is

th
e

ge
n
er

al
re

f-
er

en
ce

im
p
le

m
en

ta
ti

on
fo

r
D

T
N

s.
It

p
re

se
n
ts

fa
st

er
tr

an
sm

is
si

on
th

an
IB

R
-D

T
N

[4
0]

an
d

it
p
re

se
n
ts

sc
al

ab
il
it

y
is

su
es

[4
1]

.

IB
R

-D
T

N
[2

9]
[3

1]
[3

0]
O

p
en

W
R

T
,

D
e-

b
ia

n
/U

b
u
n
tu

,
D

eb
ia

n
A

R
M

,
M

ac
O

S
X

,
G

en
to

o
L

in
u
x
,

W
in

d
ow

s
an

d
A

n
d
ro

id

C
+

+
C

om
b
in

at
io

n
of

4
le

ve
ls

(n
on

e,
au

-
th

en
ti

ca
te

d
b
u
n
d
le

s,
en

cr
y
p
te

d
b
u
n
d
le

s,
si

gn
ed

b
u
n
-

d
le

s)
b
as

ed
on

[1
8]

d
tn

se
n
d
,

d
tn

re
cv

,
d
tn

tr
ig

ge
r,

d
tn

p
in

g,
d
t-

n
tr

ac
ep

at
h
,

d
tn

in
b

ox
,

d
t-

n
ou

tb
ox

an
d

d
tn

st
re

am

S
ta

ti
c,

P
R

oP
H

E
T

[3
8]

[3
9]

,
E

p
i-

d
em

ic
[3

7]
an

d
F

lo
o
d
in

g

It
is

a
ge

n
er

al
im

p
le

-
m

en
ta

ti
on

fo
r

D
T

N
s.

It
is

co
n
si

d
er

ed
an

ef
-

fi
ci

en
t

D
T

N
im

p
le

m
en

-
ta

ti
on

an
d

co
n
su

m
es

fe
w

m
em

or
y

re
so

u
rc

es
w

h
en

co
m

p
ar

ed
w

it
h

D
T

N
2

[3
0]

[3
1]

[4
0]

[4
2]

.

H
el

ix
O

p
en

W
R

T
,

D
e-

b
ia

n
/U

b
u
n
tu

C
+

+
H

el
ix

P
in

g,
H

el
ix

S
en

d
-

S
tr

in
g,

H
e-

li
x
R

ec
v
S
tr

in
g,

H
el

ix
S
en

d
-

F
il
e

an
d

H
el

ix
In

b
ox

ro
u
ti

n
g

v
0

an
d

ro
u
ti

n
g

-
v
1

(b
as

ed
on

th
e

ty
p

e
of

th
e

n
o
d
es

)

It
is

d
ev

el
op

ed
sp

e-
ci

al
ly

fo
r

V
D

T
N

25

By analyzing table 2.1, it is possible to verify that all implementations run in OpenWRT
which is the OS that is used in the evaluation of the work (section 5.3); the embedded
systems and implementations are written in C++. In terms of security there are differences,
but the objective of the work is related with routing and not with security. In terms of
native applications, IBR-DTN offers more applications than the others and with the same
or more functionalities.

Relatively to performance metrics, according to Doering et al. [30], IBR-DTN is an
efficient implementation for embedded systems and it consumes few memory resources.
Beuran et al. [41] and Georgescu et al. [40] made some performance evaluations between
IBR-DTN and DTN2 and in summary they conclude that DTN2 presents better trans-
mission than IBR-DTN, i.e. in good conditions of communication DTN2 was capable to
transfer more data than IBR-DTN. However, Beuran et al. and Georgescu et al. also veri-
fied that DTN2 has scalability issues and it has higher CPU utilization and higher memory
consumption than IBR-DTN, which is a big disadvantage for DTN2 to run in embedded
systems with low memory and CPU resources.

Due to the stated reasons and the fact that Helix is destined to VDTNs, the IBR-DTN
was selected as the base implementation of DTNs to be used in this dissertation.

2.3 Routing

2.3.1 Overview about Routing

Routing is the process of selecting a path to send data to one destination (or more) in
a network. Usually, the idea is to have a routing algorithm, running at the nodes, capable
of selecting the best path to a destination at each node [43]. The term ”routing algorithm”
refers to a computational function that, for each packet arriving at a node, can determine
the link on which the message should be transmitted. There are many routing algorithms,
some of them need more information about the network in order to operate well and others
need less, but each of them are more adequate for certain type of networks or other type of
networks. The term ”best path” could be a set of factors like: the shortest available route
to destination, the fastest route to deliver the data, the most secure route, etc.

The routing algorithms of MANETs assume that there is, at least, one available path
between all nodes. In fact, this is not always truth and the nodes may not be able to send
data because the destination is unreachable. In these situations the data stays at the source
node. However, in a DTN it is possible to deliver data in these situations. The example
in Figure 2.10 shows this process [27]: the nodes A and C cannot communicate directly
with each other, but they have some connectivity with node B at certain time intervals,
as presented in the right graph. However, in this type of connection an e2e path is never
formed between nodes A and C, and it is impossible for these two nodes to communicate
in a MANET. Nevertheless in a DTN, nodes A and C may communicate because node B
can take custody of the ”packets” and wait for the adequate moment to deliver them.

There are routing algorithms for all type of networks, some of them are more adequate

26

A B C co
n
n
ec

ti
v
it

y

time

A-B

B-C

Figure 2.10: Three nodes network - based on [27]

than others. This section focuses mainly on routing in DTNs and in military networks.

2.3.2 Routing in Delay Tolerant Networks

DTNs suffer from frequent disconnections, long-duration partitioning with no e2e path.
The standard routing protocols used in MANETs usually fail in this type of networks be-
cause an e2e path may be unavailable at all times, as shown in Figure 2.10. In DTNs the
routing should be performed over time to achieve eventual delivery by applying persistent
storage capabilities at intermediate nodes [44].

According to [45] DTN routing presents many challenges:

• Contact Schedules is one of the most important characteristics in DTNs, because
it is an inter-node delay component that varies from seconds to days or even months,
depending on the application under consideration. However, it is possible to classify
the contacts of each type of DTNs based on the expected contact predictability, as
shown in Figure 2.11.

Deep

Space

Bus

Schedules

Highway

Mobility

Human

Movement

Random

Waypoint

Precise

Schedules

Approximate

Schedules

Implicit

Schedules
Random

Figure 2.11: Contact Predictability Spectrum - based on [45]

At the left extreme there are precise schedules which are deterministic schedules. An
example is deep space networks, where the connection windows can be calculated
very accurately. One step to the right are the approximate schedules, i.e. precise
schedules with low error probability. For example, a city bus VDTN where all buses

27

have a per-established schedule, but which is not precise due to transit characteristics.
However, the network behavior could be predictable. Another step to the right are
implicit schedules, i.e. non-predictable schedules at time but with a considerable
probability to happen. An example is a person with a free-schedule work. He goes
to work all the days in the week but at each day it is impossible to determine the
hour of arrival. At the right extreme are random contacts, i.e. contacts where it is
not possible to predict when and if they will really happen.

Often the DTNs are in the middle of the spectrum, because they are not completely
predictable, but there are always mobility parameters that can describe, in part,
these networks.

• Contact Capacity considers the capacity of transferring data in the available ex-
change time of the connection, i.e. if there is too large data and few time to transfer
it, the capacity is poor. But if there is a small amount of data to transfer during
contact time, the capacity is better.

• Buffer Space may be a challenge when the nodes experiment long periods of dis-
connection, because they need to keep the bundles in their memories/disks. This
means that intermediate nodes should have enough buffer capabilities to support all
bundles. Otherwise the routing protocols should consider the available buffer space
and make better decisions taking this factor in consideration.

• Processing Power is a constrain in some applications where the nodes have low
CPU and memory capabilities. These nodes could not be able to run complex routing
protocols or maintain routing tables in their memories. Usually this is a relevant issue
in WSN.

• Energy is a challenge in some applications where the nodes have finite energy sup-
plies because they are mobile or they are at remote locations without access to the
power grid. Routing consumes energy by performing its computational operations
and by sending, receiving and storing routing messages. Thus, the routing protocol
should take in consideration the energy consumption.

The DTN routing protocols may be classified according to several criteria. Moreira et
al. performed a survey on opportunistic routing for DTNs [46] where they verified that
different authors classify the routing protocols using different taxonomies. Figure 2.12
presents different taxonomies for DTN routing strategies from Jain et al. [44], Zhang et
al. [47], balasubramanian et al. [48], Song et al. [49], Nelson et al. [50], D’Souza et al.
[51], Spyropoulos et al. [52] and Moreira et al. [46]. For more informations consult these
references.

Usually, the routing protocols implement a trade-off between controlled replication
and some knowledge, because a pure-replication protocol, e.g. flooding, consumes high
resources along the network, because the bundles will be sent to all nodes, and a pure
knowledge protocol requires also high resources to process complex routing algorithms and

28

Jain et al.

Knowledge level

Routing Type

Route determination

Zero

Partial

Complete

Proactive

Reactive

At the source

Per hop

Zhang et al.

Deterministic

Stochastic

Space time routing

Tree approach

Modified shortest path

Epidemic/Random spray

History/Prediction based

Model-based

Control movement

Coding-based

Based on one-hop information

Based on E2E information

Balasubramanian

et al.

Routing strategy classification

Effect on performance metrics

Single copy forwarding

Packet replication

Incidental

Intentional

Song et. Al.
Transfer

Replication

Nelson et al.

Forwarding-based

Replication-based
Flooding-based

Quota-based

D’Souza et al.

Flooding-based

History-based

Special device-based

Control flooding
Bounded copies

Additional information usage

Stationary

Mobile

Social context

Spyropoulos et al.

Forwarding

Replication

Coding

Greedy

Controlled

Utility-based

Resource allocation

Source

Network

Moreira et al.

Forwarding-based

Flooding-based

Replication-based

Encounter-based

Resource Usage

Social Similarity

Figure 2.12: Different Routing Taxonomies - based on [46]

29

maintain routing tables in each node. It is necessary to find a trade-off between knowledge
and replication. The trade-off is achieved most of the times by using measurements based
on devices experiences to predict the movement and contacts repetition of the nodes.
Lindgren et al. [39], Mtibaa et al., [53], Hui et al. [54] and Daly et al. [55] present
some works that make use of social techniques to select the best forwarders to route the
information in DTNs. The routing algorithm proposed by Lindgren et al. is PRoPHET
and it is presented in section 2.3.2.2.

The following subsections present some famous routing protocols applicable to DTNs,
Epidemic, PRoPHET, Spray and Wait, MaxProp and RAPID. All these protocols operate
in the bundle layer.

2.3.2.1 Epidemic

Epidemic routing [37] was originally proposed to synchronize replicated databases [56].
It is a replication-based similar to flooding routing where all nodes continuously transmit all
messages to all encountered nodes that have not the messages already. The main objective
is to maximize the delivery rate and to minimize the e2e delay, while also minimizing the
consumed resources in the process. Considering a network of nodes with infinite storage,
infinite CPU and null time to transmit messages between nodes, this routing protocol has
the highest delivery ratio and the lowest delivery time. However, this assumption is not
truth and all nodes continuous always transmitting the message, even if the destination
received it. Consequently, this process consumes high resources along the network, mainly
memory.

The basic concept of Epidemic routing is shown in Figure 2.13 with five nodes. The
dark circles represents the wireless coverage of respective nodes. In Figure 2.13(a), the
source node S aims to send a bundle to destination node D, but there is not an existent
path between these two nodes. Thus, S transmits its message to all neighbor nodes, C1

and C2. Some time later, in Figure 2.13(b) nodes C1 and C2 move around and C2 enters
in C3’s communication range and it sends the message to C3. As C3 is in coverage area of
D, it finally delivers the message to D.

Epidemic implements a Summary Vectors (SVs) mechanism in order to limit the mes-
sage transfers. A SV contains a compact representation of the messages stored at a certain
node. For example, in Figure 2.14, node A encounters B. Node A instead of transmitting
all bundles, it transmits a SV that contains a compact list of its bundles (1). Node B ana-
lyzes the received SV and then transmits a vector requesting the messages that it does not
contain (2). Finally, node A receives that vector and transmits only the missing bundles
to node B (3).

Apparently Epidemic routing is a good routing protocol, but due the node’s limited stor-
age and limited bandwidth, it may be advisable to use other routing techniques. However,
under some types of scenarios it may be the only viable option for successfully delivering
data.

30

C2

C1

S C3

D

time = t1

(a)

C1

S
D

time = t2 > t1

(b)

C3

C2

Figure 2.13: Epidemic Routing Example - based on [37]

A B

(1) - SVA

(2) - Request = SVA ∩ SVB

(3) - Messages unknown to B

(1)

(2)

(3)

Figure 2.14: Epidemic Routing Message Exchange Example - based on [37]

2.3.2.2 PRoPHET

Probabilistic Routing Protocol using History of Encounters and Transitivity (PRoPHET)
[39] [57] considers that the majority of the nodes do not move completely random, i.e. there
are predictable movement patterns. If a location was frequently visited, it is likely that
it will be visited again. This behavior is used to improve routing performance by making
probabilistic routing.

PRoPHET defines a probabilistic metric called delivery predictability at each node for
each known destination. Delivery predictability indicates the probability of a certain node
to deliver a message to another node. When a node encounters another node, they exchange
their delivery predictabilities map and update their local information based on that and
based on the encounter. Using delivery predictability maps, the routing decisions can be
made whether a node should forward or not a message to another node.

The delivery predictability is a Probability (P). Thus, P ∈ [0, 1] and it should reflect
the probability to deliver data to a certain node.

According to Lindgren et al. [39], whenever a node is encountered the delivery pre-
dictability should be updated using Equation 2.1, where P(A,B) is the delivery predictabil-
ity from node A to node B; δ is a small positive number that effectively sets an upper
bound for P(A,B), and Pencounter ∈ [0, 1] is a scaling factor that sets the rate at which the

31

probability increases on encounters after first encounter.

P(A,B) = P(A,B)old + (1− δ − P(A,B)old)× Pencounter (2.1)

If two nodes do not encounter each other in a while, they are less likely to be good
carriers of messages to each other. Therefore, the delivery predictability should reduce
over the time. The Equation 2.2 allows that: γ ∈ [0, 1[is the aging constant and k is
the number of time units that have elapsed since the last time the metric was aged. The
time units can differ and they should be defined based on the application. The delivery
predictabilities are aged before being passed to other nodes. Thus, they reflect the time
that has passed before they are used.

P(A,B) = P(A,B)old × γ
k (2.2)

There is also a Transitive Property that is based in the following observation: if a node
A frequently encounters node B and B frequently encounters node C, probably node B is
a good node to forward data between nodes A and C. Equation 2.3 applies the transitive
property in the delivery predictability, where P(B,C)recv is the P(B,C) received from node B
and β ∈ [0, 1] is a scaling constant that controls the impact that transitivity has in delivery
predictability.

P(A,C) = Max(P(A,C)old , P(A,B) × P(B,C)recv × β) (2.3)

If a certain node is not present at another node’s delivery predictability map, their
probability is assumed to be zero.

The previous process updates the delivery predictabilities at each node to other nodes.
However, there are also other factors to be taken into account. For example, the queu-
ing policies and forwarding strategies define the rules to decide which bundles should
be exchanged with other nodes at exchanging moments and these strategies affect buffer
management, delivery ratio, network overhead and e2e delay [58] [39]. There are many
strategies, but just two forwarding strategies were chosen to be explored under this disser-
tation in order to explain the basic concept. Considering that the nodes A and B are the
nodes that encounter each other, node D the destination node and the bundle is presented
in node A, the two strategies are the following:

• GRTR: Just sends the bundle to node B if P(B,D) > P(A,D), i.e. if the other node
has a higher probability to deliver it. Note that GRTR is not an acronym.

• GTMX: Just sends the bundle to node B if P(B,D) > P(A,D) and NF < NFmax,
i.e. if the other node has a higher probability to deliver it and if the Number of
Forwards (NF) at node A is lower than the limit NFmax. Note that GTMX is not
an acronym.

32

Figure 2.15 presents an example to better understand PRoPHET mechanism. The
example is shown in subfigures (a) to (c), wherein each subfigure presents the nodes dis-
position and their delivery predictability maps. Node A has a bundle to deliver to node D
and the active forwarding strategy is GRTR.

At the initial time all delivery predictabilities of all nodes are low, except the pre-
dictabilities between nodes C and D because these nodes encounter themselves at that
moment. Thus, they have high delivery predictabilities between them as shown in Figure
2.15(a).

Summary vector, delivery pred.

(a) - time = t1

A

C high

B low

A low

D

D high

B low

A low

C

D low

C low

A low

B

D low

C low

B low

A

B

D

C

(b) - time = t2 > t1

A

C high

B low

A low

D

D high

B high

A low

C

D med

C high

A low

B

D low

C low

B low

A

D

C
B

(c) - time = t3 > t2

C high

B low

A low

D

D high

B high

A low

C

D med

C high

A low

B

D low+

C med

B low

A

B

D

C

A

A B

Summary vector, delivery pred.

Update delivery predictabilities

Packet for D not in SVB

P(B,D)>P(A,D)

Send packet to B

Packet

(d)

Figure 2.15: PRoPHET Example - based on [38]

After some time, but not much, node C moves away and encounters node B. Thus,
the delivery predictabilities between these two nodes change the state to high. Besides,
these two nodes trade their delivery predictability maps and due to the transitive property
(Equation 2.3), the entry D in B’s table changes its state to medium, as shown in 2.15(b).

Some time later, but not much, node B encounters node A. This way the delivery pre-

33

dictabilities between these two nodes change to high. However, these two nodes trade their
delivery predictabilities maps, and due to the transitive property, node A has a medium
delivery predictability to node C and has low+ delivery predictability to node D, as shown
in 2.15(c). When nodes A and B trade their delivery predictability maps as shown in
Figure 2.15(d), they trade also their SVs. Thus, after each node updates its predictabili-
ties map, node A verifies that node B has a higher probability to deliver bundles to node
D. Due to the fact that node A has a bundle to node D, that node B does not already
have, node A decides to forward that bundle to node B and this is the essence of PRoPHET.

There are some PRoPHET variations, like PRoPHETv2 [59] proposed by the same
authors with some improvements to original PRoPHET. PRoPHET+ proposed by Huang
et al. [60] calculates a deliverability using buffer size, power, location, popularity and the
predictability calculated by PRoPHET to perform routing decisions. Improved PRoPHET
Routing Protocol proposed by Han et al. [61] is a hybrid between PRoPHET and Epidemic.

Sok et al. proposed Distance-based PRoPHET (DiPRoPHET) [62], a routing protocol
similar to PRoPHET but using also the neighbors’ Signal Strength Intensity (SSI) in order
to fasten up the message delivery speed increasing also the delivery ratio. It considers
a small value, function of distance, in order to increase or decrease a bit the probability
values obtained from PRoPHET. However, this work performs its implementation in one
oldest version from PRoPHET presented in [57] which in turn, it had several modifications
and improvements that are updated in [39].

2.3.2.3 Spray and Wait

Spray and Wait [63] is a simple routing protocol, yet efficient, that attempts to gain
delivery ratio by limiting the number of copies per message allowed in the network. The
Spray and Wait operation can be divided in two phases:

• Spray phase: When a new message is originated at source node, just L message
copies can be initially spread/forwarded by the source or other nodes that received
a copy (depending on spray strategy), i.e. the spray phase happens when the nodes
are allowed to transmit the message.

• Wait phase: if the destination is not found in the spray phase, each one of the L
nodes carrying the message is just allowed to transmit the message only to the final
destination.

There are different forms to process the spray phase [14]. The most common ones are:

• Vanilla is the simplest way to apply spray phase. Just the source node can spray
messages, i.e. source node can send up to L copies of the message to L neighbors.
Each of one these neighbors just send the message to the final destination.

• Binary: The source node starts with L copies of the message that it is allowed to
send. When the source encounters another node, it sends to the new node bL/2c

34

copies of the message and retains dL/2e. Each node that has n > 1 copies of the
message and encounters another node without copies, sends to it bn/2c and keeps
dn/2e copies. When a certain node eventually gives away all of its copies, except
for one, it enters in the wait phase. The benefit of this form is that messages are
disseminated faster than in vanilla.

2.3.2.4 MaxProp

MaxProp [64] is a flooding-based protocol, which may be considered replication-based,
due to the fact that it aims to make a better use of the bandwidth and buffer space to
unify the problem of discarding and scheduling transmissions of the messages. MaxProp
evaluates a cost of virtual e2e path to reach the destination using an estimation of the route
failure probability. At the beginning, the failure probability of neighbor nodes is uniformly
distributed for the network. As time goes by, it is updated using an incremental average.
In addition to that, the message freshness if evaluated using its average transferred size. If
the number of hops of a specific metric is lower than its freshness, the message is classified
according with its number of hops; otherwise, it is prioritized using the previous mentioned
cost. Moreover, this protocol informs its neighbors to clear the possibility of existing copies
of the delivered messages using broadcast acknowledgments through all the network.

2.3.2.5 RAPID

The Resource Allocation Protocol for Intentional DTN (RAPID) [48] is a replication-
based routing protocol which aims to optimize a specified routing metric. To achieve that,
it uses a random variable to represent the encounter between two nodes, and propagates
those messages through the network. The dissemination of these messages are according to
their marginal utility. The marginal utility is calculated using an utility function which is
based on a ratio between message size and the decreased delivery delay associated with it.
After that, only the messages with a positive marginal utility are replicated in the network.
Thus, this protocol is replication-based where the replication is controlled by the marginal
utility. The metrics that this protocol may optimize using the utility function are: average
delay, missed deadlines, and maximum delay.

2.3.2.6 Comparison between DTN routing protocols

Table 2.2 presents a high level comparison between the DTN routing protocols pre-
sented in section 2.3.2. The comparison focuses in the main characteristic of each protocol
presenting their advantages and disadvantages.

These protocols are all based on the replication of bundles. However, they have differ-
ences mostly in the criteria that is used to perform the decision, i.e. when a bundle should
be replicated or not. However, the majority of these criteria are to control the replication
based on several metrics to minimize the resources consumption or the expected delay
(they do not use social metrics). However, PRoPHET controls the replication (and the
resources consumption in the network), while it targets the message to the destination,

35

T
ab

le
2.2:

C
om

p
arison

b
etw

een
p
resen

ted
D

T
N

rou
tin

g
p
roto

cols
R

o
u
tin

g
P

ro
to

co
l

F
o
rw

a
rd

in
g
/
R

e
p
lica

tio
n

ty
p

e
A

d
v
a
n
ta

g
e
s

D
isa

d
v
a
n
ta

g
e
s

E
p
id

em
ic

[37]
B

ased
on

p
u
re

rep
lication

.
E

ase
to

im
p
lem

en
t

an
d

sim
p
le

rou
tin

g
logic.

N
o

k
n
ow

led
ge

ab
ou

t
th

e
n
etw

ork
.

D
ecision

d
ep

en
d
s

on
ly

if
th

e
oth

er
n
o
d
es

h
ave

th
e

b
u
n
d
le.

C
on

su
m

es
h
igh

resou
rces

alon
g

th
e

n
etw

ork
.

P
R

oP
H

E
T

[39]
[38]

[57]
B

ased
on

con
trolled

rep
lica-

tion
b
y

u
sin

g
a

p
rob

ab
ility

b
ased

on
th

e
h
istoricalof

en
-

cou
n
ters

(so
cial-b

ased
).

T
h
e

n
u
m

b
er

of
rep

licas
in

th
e

n
et-

w
ork

is
m

ore
lim

ited
b
ased

on
th

e
n
eigh

b
ors’

p
rob

ab
ility

to
d
e-

liver
th

e
m

essage.
C

on
seq

u
en

tly
th

is
p
roto

col
d
o
es

n
ot

con
su

m
e

as
m

an
y

resou
rces

as
E

p
id

em
ic.

C
om

p
lex

to
im

p
lem

en
t.

It
is

n
ec-

essary
to

u
se

resou
rces

to
calcu

-
late

th
e

p
rob

ab
ility

an
d

to
con

-
su

m
e

m
em

ory
to

m
ain

tain
th

e
p
re-

d
ictab

ilities
tab

le
at

each
n
o
d
e,

m
ain

ly
in

d
en

se
n
etw

ork
s.

S
p
ray

an
d

W
ait

[63]
B

ased
on

con
trolled

rep
lica-

tion
b
y

lim
itin

g
th

e
n
u
m

b
er

of
cop

ies
p

er
m

essage.

E
ase

to
im

p
lem

en
t.

T
h
e

n
u
m

b
er

of
rep

licas
of

th
e

m
essage

in
th

e
n
etw

ork
is

con
trolled

b
y

th
e

sou
rce

n
o
d
e

th
at

lim
its

th
e

n
u
m

b
er

of
cop

ies
allow

ed
.

N
o

k
n
ow

led
ge

ab
ou

t
th

e
n
etw

ork
.

D
ecision

d
ep

en
d
s

on
ly

of
th

e
n
u
m

-
b

er
of

rem
ain

in
g

b
u
n
d
les.

M
ax

P
rop

[64]
B

ased
on

F
lo

o
d
-

in
g/R

ep
lication

.
It

m
ain

tain
s

a
sorted

list
of

b
u
n
-

d
les.

T
h
is

sort
is

b
ased

in
th

e
esti-

m
ated

p
rob

ab
ility

of
th

at
a

tran
-

sitive
p
ath

w
ill

b
e

form
ed

,
w

h
ich

w
ill

th
e

p
ath

to
rep

licate
th

e
p
ack

-
ets.

It
overload

s
th

e
n
etw

ork
w

h
en

th
e

rou
tin

g
tab

les
are

ex
ch

an
ged

.
It

is
n
ot

ad
eq

u
ate

to
d
isp

erse
n
etw

ork
s,

b
ecau

se
th

e
n
o
d
es

can
n
ot

m
ain

-
tain

th
e

grap
h
s

of
th

e
con

n
ected

n
o
d
es.

R
A

P
ID

[48]
B

ased
on

F
lo

o
d
-

in
g/R

ep
lication

.
It

allow
s

to
con

trol
th

e
resou

rce
con

su
m

p
tion

b
y

con
trollin

g
th

e
rep

lication
of

b
u
n
d
les.

It
m

ay
overload

th
e

resou
rces

w
h
en

th
e

n
o
d
es

ex
ch

an
ge

th
eir

m
eta-d

ata.

36

because it uses social-based metrics, where each node maintains predictability tables to
each node. Thus, this routing protocol replicates the message to the neighbors that have
higher probability to deliver it. This protocol is then the chosen one to be the basis of this
work.

2.3.3 Routing in Military Networks

Military communications at terrain are increasingly network-based and must be consid-
ered communication networks. These networks are becoming less infrastructured because
at certain scenarios it does not exist an infrastructure to support communications, or the
existent one crashed due a catastrophic disaster, for example.

Figure 2.16 exemplifies that military networks may operate in challenged environments
with many constrains, e.g. intermittent connectivity, high mobility, poor channel quality,
low bandwidths and/or network fragmentation. The Army Communications-Electronics
Command (CECOM), Defense Advanced Research Projects Agency (DARPA), commercial
industry among others believe that, one of the main keys to increase the military network’s
capacity2 is to use more efficient routing protocols [65], which is one of the main focus of
this dissertation.

Figure 2.16: Constrains of Military Environment - adapted from [66]

Tactical military networks, at network-centric environments, are mobile and often Ad-
Hoc, due to the fact that these networks are self-configuring without any central controller

2Capacity defines the amount of data that a network can functionally support.

37

entity. Thus, it is necessary to use routing protocols to address data in these networks,
allowing a multi-hop communication, but the majority of the commercial protocols may be
not adequate in tactical and emergency environments or congested networks due to their
constrains. It is necessary to develop new protocols specifically for tactical forces, and it
is expected that these routing schemes can use the network more efficiently, by reducing
redundancy and excess overhead while take advantage of knowledge of the network state
to improve themselves.

The following subsections present Terrestrial Trunked Radio (TETRA) (a proprietary
solution for communications), Military Networks as MANETs and Military Networks as
DTNs.

2.3.3.1 Terrestrial Trunked Radio (TETRA)

Terrestrial Trunked Radio (TETRA) [67] is a set of standards developed by European
Telecommunications Standards Institute (ETSI) to digital trunked mobile radios to satisfy
the needs of organizations such as: Military, Government, Utilities and others. TETRA
supports voice, data transfer and supplementary services/applications, like group and pri-
vate voice services, call forward and others [68].

Many Professional Mobile Radio (PMR) communication systems rely on TETRA stan-
dards for providing mission-critical communication environments. TETRA, as an ETSI
approved system, has a commercial advantage within Europe, both on the point of view of
manufacturers, operators and governments which in Europe uses ETSI approved systems
for their contracts. However, TETRA has a level of complexity that turns the infras-
tructure and the terminals expensive [69] and it works mainly in direct communications.
However, it is also possible to use an intermediate node as a relay point.

2.3.3.2 Military Networks as MANETs

According to Burbank et al. [66], it is expectable that future tactical actions will achieve
an Internet-like capability providing network access to offer communication everytime and
everywhere. The idea to achieve this considers a Global Information Grid (GIG) that
includes different networks, ground-based wired and wireless, satellite, shipboard, airborne,
etc., as shown in Figure 2.17. Burbank believes that these networks will be connected via
IP networks.

In an ideal MANET, if all nodes are directly or indirectly connected, i.e. without
network fragmentation, the structure presented in Figure 2.17 represents a high-level view
of their functionalities. There is the presence of a fixed terrestrial network where the
routing protocols are actually well developed. There is also several MANETs that may
include hundreds or thousands of mobile nodes which can connect to the infrastructured
network.

However, the concept of ideal MANET does not exist in military scenarios. The high
quantity of nodes and the environment constrains affect the routing protocols efficiency,

38

Figure 2.17: Military MANET as extension of network infrastructure - adapted from [66]

specifically the high mobility and high intermittency (Figure 2.16) that trigger many route
updates, which leads to high routing overhead, high computation and even the protocols
may diverge. At the best of my knowledge, actual MANET routing protocols do not work
well with scalable networks and intermittent connections [70] [71], even if the mobility in
military network presents some coherence and the nodes are more concentrated [66].

2.3.3.3 Military Networks as DTNs

To lead with the disruptions, interference, network partitions and the other constrains
presented in Figure 2.16 some authors suggest DTNs as a solution to deal with them.
”DTN technology is one of the key technologies to solve these problems. At present, DTN
technology has been paid attention to various fields around the world” - Lu et al. [11].

Parikh et al. [72] present an overview relative to apply DTNs technology in the United
States of America (USA) Marine Corps C2 On-the-move Network Digital Over-the-horizon
Relay (CONDOR). It was built a prototype where an adapted version from DTN2 was
installed in a Cisco Router. These authors conclude that DTN ”seeks to deal with the
realities of military tactical communication”. According to Jonson et al. [73], DTNs are
applicable to airborne networks characterized by highly intermittent links and long link
delays. Rigano et al. [74] declare that DTNs provide a robust alternative to only-IP models
in environments characterized by long delays or temporary network partitions, and achieve
equal performance in environments where only-IP models are feasible. It is the concept
of store-and-forward that allows to deal with these constrains, but it is also necessary an
adequate routing protocol to work under these circumstances.

39

Disruption and interference are characteristics of the Physical environment, i.e. they
depend of the media conditions; the current routing protocols for DTNs, presented in
section 2.3, do not consider PHY parameters to try to deal with these constraints. At
the best of my knowledge, there are no routing protocols to DTNs that consider the links
conditions, i.e. the quality of the links.

There are also few works that apply DTNs in military networks. There some theoretical
studies and references about this subject. For example, Fall et al. [7] suggests to use DTNs
in military scenarios but only as an example to the applications of DTNs. Jonson et al. [73]
presents the application of DTNs in airborne networks, but is also a theoretical work that
presents some use cases and challenges. Rigano et al. [74] presents another theoretical
work about the subject, and it describes an approach to improve network performance
in naval networks using DTNs with a transport protocol called NACK Oriented Reliable
Multicast (NORM). Lu et al. [11] presents also a study about DTN applications in military
communications. In practical terms, the work from Parikh et al. [72], presented in this
section, is the most practical case that I found about to apply DTNs in military networks.

2.3.3.4 Comparison between the presented military networks

Table 2.3 presents a high level comparison between the military networks presented
in section 2.3.3. The comparison focuses in the main characteristicss, presenting their
advantages and disadvantages.

The DTNs are chosen as the privileged network to be used in this work, because as
previously stated, they have store, carry and forward mechanisms, which enable the nodes
to store the packets, when they cannot deliver them to other nodes. This is the main
advantage of these networks, when compared to the Ad-Hoc Networks, which allow to
improve the routing in the case of network fragmentation. Besides, the DTNs (and Ad-
Hoc networks) may be implemented in off-the-shelf devices and they allow to insert new
functionalities very easily, unlike TETRA, which is a proprietary and expensive solution.
Besides, it is mainly infrastructured, with some Ad-Hoc capabilities.

2.4 IEEE 802.11 WLAN

2.4.1 Overview

The Institute of Electrical and Electronics Engineers (IEEE) Standard 802.11 [75] de-
scribes the functional components of IEEE 802.11 Local Area Networks (LANs). It is
important to introduce it due to the fact that, in this dissertation, the MAC and PHY
layer functionally defined in the Standard are used to obtain metrics that allow to repre-
sent the quality of the wireless links. The location of the IEEE 802.11 Standard in the
OSI model is presented in Figure 2.18. It describes the MAC (from Data Link Layer) and
PHY specifications which are significantly different from traditional wired LANs. It only
describes the functional components, instead of the physical implementation details.

40

Table 2.3: Comparison between the presented military networks
Military Net-
work Type

Advantages Disadvantages

TETRA [67] It uses specialized hardware
prepared to military scenarios.
Promotes a standard accredited
by ETSI which different forces
may use with confidence.
It may be integrated with tele-
phony network.

It is expensive.
It does not support multi-hop
wireless communications with
more than 1 hop.

Ad-Hoc It supports multi-hop commu-
nications.
There are lots of routing proto-
cols developed to Ad-Hoc net-
works.
It supports integration with
with IP networks.
It may be applied in off-the-
shelf devices.
It is ease to insert new services.

The best performance is
achieved only with the net-
work formed, i.e. without
fragmentation.
There are few quality-based
routing protocols developed.

DTN It supports store-and-forward.
It supports integration with IP
networks.
There are lots of routing proto-
cols developed to Ad-Hoc net-
works.
It may be applied in off-the-
shelf devices.
It is ease to insert new services.

There are few works about to
apply DTNs in military scenar-
ios.
There are few quality-based
routing protocols developed.

2.4.2 Architecture

The IEEE 802.11 architecture offers several components that interact to provide a
WLAN where the Stations (STAs) may move transparently to upper layers.

IEEE 802.11 is based on the cell architecture. When each of these cells is controlled
by an AP these cells are called Basic Service Set (BSS) (infra-structured mode), but when
there are not APs, these cells are then called Independent Basic Service Set (IBSS) (Ad-Hoc
mode). A set of BSSs that are interconnected between them are called Extended Service
Set (ESS) and the Domain System (DS) is the communication way between BSS’s APs,
which is usually the Ethernet. To identify these cells, the most common way is the Service
Set Identifier (SSID) (32 bytes String) that assigns a name to a particular IEEE 802.11
WLAN. Each ESS has to maintain a unique SSID to its BSSs. A visual representation is

41

Data Link

Network

Transport

Session

Presentation

Application

OSI model

Physical PHY

MAC
Logical Link Control (LLC)

IEEE 802.11

WLAN

IEEE 802.3

Ethernet
...

Figure 2.18: IEEE 802.11 and OSI Model - based on [76]

presented in Figure 2.19.

Figure 2.19: High Level IEEE 802.11 Architecture [77]

2.4.2.1 Infrastructure vs Ad-Hoc Operation Modes

The main difference between Infrastructure and Ad-Hoc networks is the absence of an
central entity, the AP, in Ad-Hoc mode as shown in Figure 2.20. In the infrastructured
mode there is a presence of one, or more, APs and the STAs (nodes) can just communicate
with reachable APs. In Ad-Hoc mode only the STAs exist, and these can communicate
directly with other reachable nodes. Multi-hop communications are also possible if an
adequate routing protocol is running.

In this work it will be used the Ad-Hoc communication mode to allow several mobile
nodes to emulate military nodes, such as different moving units in a military team.

In both modes of operation, if a STA aims to communicate with the AP or another
node, it needs to associate itself first with the AP’s BSS or other node’s IBSS, respectively.

42

Infrastructure

STA

AP

STA
STA

STA

STA

Ad-Hoc

Figure 2.20: Infrastructure vs Ad-Hoc

There are two ways of doing this, either by using Passive Scanning/Probing or by using
Active Scanning/Probing. The difference between these two modes is that, in Passive
Scaning the AP in Infrastructure mode or the nodes in Ad-Hoc mode are regularly sending
beacons which contain a Sequence Number (SN) that will be used in this work.

2.4.3 Media Access Control (MAC) Layer

The Media Access Control (MAC) Layer is the lower part of the Data Link Layer from
OSI model as shown in Figure 2.19. The MAC layer offers addressing and channel access
control mechanisms that enable several devices to communicate in a specified network. This
layer specifies several modes of media access, like Distributed coordination function (DCF),
Point Coordination Function (PCF), Hybrid Coordination Function (HCF) and others that
are defined in Chapter 9 (MAC sublayer functional description) of IEEE 802.11 Standard
[75].

The IEEE 802.11 MAC also defines the format of several frames (packets) to perform
certain tasks or transfer data. Some of these frames contain informations that may be
useful to evaluate the quality of the wireless links, and this section presents the way to
reach the SN, which is one of the metrics that will be suggested in this work to compose
the metric to evaluate the quality of the links.

The following descriptions related to frame format are necessary because of their im-
portance for the work developed in this dissertation.

The MAC frame format is shown in Figure 2.21. It comprises of a set of fields that
appear in a defined order in all frames. Frame Control, Duration/ID, Address 1 and Frame
Check Sequence (FCS) corresponds to the minimal frame format that need to be present in
all frames, including reserved formats. Address 2, Address 3, Sequence Control, Address 4,
Quality of Service (QoS) Control, High Throughput (HT) Control (only for IEEE 802.11n)
and Frame Body are present only in certain frames.

A detailed description about the frame format specifications is presented in Chapter 8
(Frame Formats) of the IEEE 802.11 Standard [75].

The Frame Control field from MAC frame is presented in more detail in Figure 2.22.

43

Bytes: 2

Frame

Control

Duration

/ID

Address

1

Address

2

Address

3

Sequence

Control

Address

4

QoS

Control

HT

Control

Frame

Body
FCS

2 6 6 6 2 6 2 4 0-7951 4

MAC Header

Figure 2.21: MAC Frame Format - based on [75]

Bits: 2

Protocol

Version
Type Subtype To DS From DS

More

Fragments
Retry

Power

Manage-

ment

More

Data

Protected

Frame
Order

2 4 1 1 1 1 1 1 1 1

Figure 2.22: Frame Control Field - based on [75]

The type field defines the type of the frame. Available types are Management, Control,
Data Exchange and some that are reserved for future purposes, that are not yet completely
defined. The subtype field defines the subtype in the context with the type field. For
example, some subtypes of management frames are:

• Beacon is generated periodically with the purpose of announcing the presence of a
STA and contains several informations, e.g. Timestamp, Beacon Interval, SSID, etc.

• Association Request is used when a STA aims to associate to a BSS or an IBSS.

• Association Response is the answer to an Association Request that can be positive
or negative. In case of a positive answer, the frame includes information regarding
the association, e.g. supported data rates.

• Reassociation Request is used when a STA looses signal from one AP and finds
another AP It sends a reassociation request to the new AP. This may trigger the
forwarding of data queued in previous AP to the STA.

• Reassociation Response is the answer to a Reassociation Request.

• Probe Request is used in Active Scanning mode, when a STA needs to obtain
information about the neighboring STAs.

• Probe Response is the answer to the Probe Request with the information about
the STA.

• Disassociation is used when a STA aims to finish the association with an AP that
is previously established. Thus, the AP can free some resources relative with the
presence of this STA in its local tables.

44

• Deauthentication is used when a STA decides to finish the communication with
the AP. For example, when too many beacons are lost.

The Sequence Control presented in Figure 2.23 is a two byte field contained in the
MAC Frame (Figure 2.21). The sequence control has 16 bits with two subfields, Sequence
Number (SN) and Fragment Number. The Sequence Control Field is not present in Control
Frames.

4

Fragment Number Sequence Number

12Bits:

Figure 2.23: Sequence Control Field - based on [75]

The SN subfield has 12 bits and it indicates the sequence number of the frame by frame’s
type. Each frame transmitted by a STA has a sequential SN, except the Control Frames.
Beacons are one example where the SNs exists. This SN is the metric that will allow to
evaluate, in part, the quality of the links. The Fragment Number subfield has 4 bits and
indicates the number of the fragment of the frame, if they are fragmented. Otherwise, the
Fragment Number is ’0’.

2.4.4 Linux Wireless Subsystem

The Linux Wireless Subsystem [78] contains several modules to deal with IEEE 802.11
hardware configurations and to manage the packets transmission and reception [79]. Figure
2.24 presents an abstracted view of the interaction between different layers of the Linux
Wireless Subsystem. cfg80211 [80], mac80211 [81] and drivers are inside kernel domain
and Applications for control/management are contained in User Space. Applications can
use the Netlink interface nl80211 [82] to access the cfg80211 module.

The cfg80211 module is the Linux configuration API. It contains the common IEEE
802.11 configuration options and performs active tasks like scanning for APs, managing
security keys and virtual interface management.

The mac80211 implements in software the MAC layer, i.e. it is a softMAC device driver.
If the implementation would be made in hardware, it would be a fullMAC. Its configurations
are handled by cfg80211 (through nl80211) or wireless-extentions (wext) due to legacy
reasons. mac80211 interacts directly with the IEEE 802.11 device drivers, like ath5k, to
transmit or receive frames. It supports IEEE 802.11a/b/d/g/n/s, QoS mechanisms and
different types of interfaces, like AP, IBSS, monitor3 and others. mac80211 has also support
to multiple virtual interfaces (wifi-iface) using the same radio interface (wifi-device). For

3Monitor mode is usually a passive mode, where no packets are transmitted and the interface does not
join to any network. The interface receives all packets from the driver, even if they are not destined to it.
mac80211 module sends upstream all packets, including extra header information if it exists.

45

cfg80211

mac80211

nl80211

drivers

ath5k ...

w
ex

t

wext

ieee80211_ops

user space

Figure 2.24: Linux Wireless Subsystem - based on [79]

the OS, Virtual Interfaces are seen as other radio interfaces, and the OS as well as its
applications can use both simultaneously [83].

Nowadays, there is an extensive list of working Linux wireless drivers that support
most of the available networking cards, although the majority of drivers do not implement
all the features. A more detailed description of these cards and features is presented in [84].

A few years ago, Linux started adding the possibility to use Radiotap [85] on its drivers
and APIs. mac80211 is able to receive Radiotap Headers before the IEEE 802.11 general
frames. When a driver adds a Radiotap, it enables a specific flag to inform the mac80211
module. When mac80211 module aims to receive Radiotap Headers, it can signal the
driver. This happens when mac80211 is configured with a monitor interface.

Radiotap [85] is a de facto standard4 mechanism that provides additional information
about frames.

A Radiotap capture begins with a Radiotap Header shown in Figure 2.25.

Bits: 8

it version it pad it len it present (extended data)

8 16 32 (variable)

Radiotap Header

Figure 2.25: Radiotap Structure

4A de facto standard is a formal or informal standard that achieved a dominant position by tradition
or market dominance. There might not exist official standardized documents.

46

The it version (8 bits) indicates the version of radiotap header in use. Actually there
exists only the version 0. The it pad (8 bits) is currently not used, it exists for alignment
purposes. The it len (16 bits) contains the total length of radiotap data, including the
header. This is useful for a developer/programmer to know where is the beginning of
IEEE 802.11 general frame if its radiotap parser does not know how to understand all
presented data fields. The it present (32 bits) is a bitmap that indicates which data fields
are present after the Radiotap Header. If the 31st bit of this field is not set, that means
that there is radiotap data after the header and this data is strictly ordered according to it
present bits. These data might contain several informations, such as physical information.
For example, the packet’s SSI, the timestamp, the modulation scheme and/or others.

2.4.5 Gather MAC and Physical Layer Information from Appli-
cation Layer

During the research about methods to gather IEEE 802.11 MAC and Physical infor-
mation from Linux Wireless Subsystem it was verified, at the best of my knowledge, that
there are essentially two different options for an Application to gather information from the
Linux Wireless Subsystem. The first option consists of using the nl80211 interface (Figure
2.24) and gathering the connection status information. The second and more complex
option consists in using a monitor interface to capture wireless frames and extract the
relevant information [79]. These two options are explained in the following:

2.4.5.1 Gather Connection Status

This option uses the nl80211 interface which describes, very straightforwardly, the com-
mands that applications may use and which information can be retrieved from cfg80211.

The iw command [86], the new version of deprecated iwconfig [87], is an application
that interacts with nl80211 to offer to the user a command-line interface for wireless devices
for configuration and connection status visualization. However, this option is not the best
choice for demanding applications that need more information, because the information
that can be retrieved from nl80211 is not sufficient and there are some open issues, like
the reported values are generally averaged, the method how the values were generated is
not documented and the updating frequency is unknown. Furthermore, if an application
needs to know a certain information regularly, it needs to perform polling of the nl80211
interface which may be computationally demanding [79].

Due to these issues, the nl80211 interface was not used in this work because there is a
need to regularly obtain precise information which is not plausible due to the limitations
stated before.

2.4.5.2 Capture Wireless Frames

This different option consists in capturing all frames, in the media, and filtering them,
in order to gather and process relevant data, and it allows to obtain information relative

47

to each received packet/frame.

Usually a monitor interface is used to capture all frames (at the same physical channel),
including the Radiotap Header that includes extra information related to the frame, but
configuring a monitor interface does not allow association to any network, which might be
an obstacle to the applications. However, mac80211 allows virtual interfaces as explained
in section 2.4.4, and it is possible to capture all network packets while concurrently using
the wireless card for user’s operations.

There are some well known applications that are able to capture packets and present
them to the user. For example tcpdump [88], a command-line packet analyzer (lightweight
for embedded systems) or wireshark [89], the world’s foremost network graphical protocol
analyzer capable of capturing packets, parsing and many other features. However, these
applications only present the handled data for the user, and it is difficult or not sufficient
to integrate them with other applications.

Those well-known applications and eventually other user’s applications use pcap, an
API for packet capture offered by libpcap library [90]. pcap may capture packets from
various networks, such as wireless 802.11g, ethernet and others, and it has also the ability
to filter packets based on Berkeley Packet Filtering (BPF) [91], implemented directly in
OS kernel for better performance [92]. The pcap capture process is presented in Figure
2.26. When the card driver receives a packet, it sends the packet to the protocol stack as
usually, but it sends also the packet to the BPF (Packet Filter) that is responsible to filter
packets and send them to the subscriber applications [93].

Packets
Network

Card

Card

Driver

Network

Monitor

Other

applications

(e.g. sniffer)

Transmitted

Packet

Received

Packet

Applications

(e.g. browser)

Packet

Filter

Protocol

Stack

Hardware Kernel space User space

Figure 2.26: Pcap capture process - based on [93]

In the work presented in this dissertation, it is chosen the method of capturing wireless
frames because it offers more flexibility, more confidence and it is the method used by the
well-known applications, e.g. tcpdump.

48

2.5 Chapter Considerations

This chapter provided a study about three relevant subjects to this dissertation, DTNs,
Routing and the IEEE 802.11 WLAN standard.

First, the state of the art about DTNs was presented which are one of the main topics
of this dissertation. In this section it was presented the DTN definition, the applications,
the architecture and bundle protocol, and also several implementations in order to give the
reader the necessary knowledge about DTNs.

Then, the state of the art on DTN routing was presented. Then, it presented routing
in military networks, including some studies about the applicability of DTN routing in
military scenarios.

Finally, a brief resume of IEEE 802.11 WLAN standard was presented as well as the
implementation of the standard in Linux systems. Also, some techniques were presented to
gather and capture certain information about the received packets in the wireless drivers.

These topics are the basis to understand the work developed; the work in the following
chapters contains several references to this chapter, due to the relevance of these subjects
to perform the quality-based routing work.

49

50

Chapter 3

Scenarios and Proposed Solution

3.1 Introduction

This chapter presents the navy scenarios for communication presenting the nodes topol-
ogy and the main constrains. These scenarios will be the reference to the scenarios used to
evaluate the quality-based approach in section 5.6. Then, it presents the proposed solution
for quality-based communications in these scenarios.

Section 3.2 presents the three navy scenarios for communication: Inspection/Boarding,
Naval and Amphibious Operations and the Population Support Scenario, with their char-
acteristics, communication and routing challenges.

Section 3.3 presents the quality-based DTN to allow communications in the aforemen-
tioned scenarios. First, it presents the definition of link quality which is important to define
and compare the quality between different links. It presents also the Q-PRoPHET, a DTN
routing protocol that performs decisions based on the quality of the links. This solution is
addressed to solve the navy’s communication challenges presented in section 3.2.

Section 3.4 presents the chapter considerations.

3.2 Navy Scenarios

The navy scenarios presented in this section are derived from practical actions observed
during navy tactical actions where the need to have communication between different
elements is important. The scenarios are as follows.

3.2.1 Inspection/Boarding

The Inspection/Boarding Scenario occurs at the sea and selects one team to inspect
a Foreign Boat (FB). This team needs to maintain communications with the Mother
Ship (MS), either directly or via an Intermediate Boat (IB) if necessary, as shown in
Figure 3.1.

51

The scenario is characterized by low mobility, where the objective is to optimize the
coverage area without any obstacles in sight, but possibly with some interference in the
media due to reflections in the water, intentional jamming, environment factors, etc. These
factors may affect the communication between the Mother Ship and teams in the Foreign
Boat, whether it turns the communication intermittent or even disconnects both nodes.
Therefore, it is possible or even necessary to use an Intermediate Boat as a communication
relay in order to allow communications between the Mother Ship and Foreign Boat.

MS IB FB

Figure 3.1: Inspection/Boarding Scenario

It is necessary that the Mother Ship automatically knows that it has two neighbors,
and that it is able to communicate with both, choosing the best path(s), either directly or
multi-hop, depending on the situation.

3.2.2 Naval and Amphibious Operations

The Naval and Amphibious Scenario occurs at the sea and/or at shore, and the objective
is to offer communication between the Commanders (C) and the Teams (T) in the boats
or in the shore as shown in Figure 3.2. It may be necessary a presence of Helicopters
(H) or other mobile nodes to carry data. These scenarios are characterized by the nodes
presenting high mobility and it is expected failures in the communication due to interference
or partition of node groups. In this scenario there should exist communication between
all elements, and the intermediate nodes may have to forward data between Commanders
and Teams because these two may be directly unreachable.

This scenario is characterized by the nodes presenting mobility and it is expected failures
in the communication due to intermittence, interferences, intentional jamming, environ-
ment factors or partition of node groups.

The commanders should automatically know their neighbors and they may be able to
send messages to Teams using the available neighbors (H1, B1 and B2). However, some
of these nodes, or even all, may be unreachable or may not be adequate nodes to forward
the data. Commander nodes should select the adequate intermediate nodes to forward the
data to the respective destinations.

3.2.3 Population Support

The Population Support Scenario happens in catastrophe cases where it is important to
offer support to population. Here there is one central node that acts as a coordination point
(MS) for other nodes, e.g. ambulances or marines as shown in Figure 3.3. The topology is

52

C

H1

B1

B2

T

shore

shore

Figure 3.2: Naval and Amphibious Scenario

possibly static but some nodes may present mobility, and the teams may possibly connect
to the Internet to communicate with the central coordinator, if necessary. However, the
infrastructure may be destroyed or may be not always available due to scenario constrains.

MS

T
A

M

B

shore

Figure 3.3: Population Support Scenario

It is necessary that rescue teams (T) maintain communications with the MS, either via
other nodes (A or M), either via Internet access at B when possible.

3.2.4 Summary

The military scenarios presented in this section present generally the same issues, in-
termittence and interferences in the media and the possibility of some nodes to disconnect
during long time intervals, due to mobility or connection failure. However, in all scenar-
ios there are several spatial topology differences which distinguish them and the routing
actions to be made.

53

It is important to guarantee communication between the nodes using whenever possi-
ble the links with better transmission quality, and provide routing protocols with stable
behaviors.

3.3 Proposed Solution

This section presents a definition for the link quality, i.e. a quantitative function to
define the quality of the wireless links. Then it presents the Q-PRoPHET, a quality-based
routing protocol for wireless DTNs in disruptive environments, such as military or navy
scenarios. This routing protocol uses the quality of the links to perform routing decisions
under challenged scenarios, and it tries to avoid the poor links to send/forward data.

First it is presented the concept of quality which defines the link quality, and then it is
presented the Q-PRoPHET routing protocol.

3.3.1 Link Quality

To define the link quality of a wireless link, it is necessary to establish a relation
between what is the quality and how the quality may be measured. The link quality in
this dissertation is defined as a dimensionless variable that aims to describe the capability
of the link to exchange data with efficiency and effectiveness in wireless networks. However,
to evaluate the quality and measure it, it is necessary to define and use numerical metrics
with a qualitative relation with the links quality.

This work considers two numerical metrics to evaluate the quality of the links, the
Signal Strength Intensity in dB and the connections’ stability.

The SSI is the decibel (dB) difference between RF signal power measured at the re-
ceiving antenna and a fixed reference. ”Intensity like signal strength will generally fall
off with distance from the source, although it also depends on the local conditions and the
pathway from the source to the point.”(Charles Richter, 1971). Despite this quote is from
seismology research area, it is applicable to characterize the SSI. It is expectable that SSI
decreases with the distance due to signal propagation, although it may decrease due to
other physical conditions that affect the RF propagation signal. Consequently this metric
is good to represent the links quality, because it gives a value to the strength of the signal
and consequently the proximity of the nodes, but it may not be sufficient because it eval-
uates ”the strength of the received packets” and does not consider if they are all received,
i.e., it is possible to have lost packets and the node will never know that the packets were
lost.

The Link Stability (LStab) of the connections is capable to evaluate the success of
received packets, i.e. it measures the ratio between successfully received packets (beacons)
from a node and all emitted packets (beacons) from that node. This metric considers
only the most recent packets (considering a certain temporal window) to define a stability
associated to the moments closer to the decision time. The LStab measured at node A,

54

between nodes A and B, for the most recent temporal window is defined according to
equation 3.1.

LStab(A,B) =
NbrA

NbeB
(3.1)

where NbrA is the number of received beacons in node A, and NbeB is the number
of emmited beacons in node B. These two metrics allow to evaluate the quality of the
connections. The SSI evaluates the ”strength” of the connection and LStab evaluates
the success of the communications, i.e. the quantity of received packets compared to the
emitted packets in the closer moments to the decision time.

To define a complete link quality metric between two nodes, A and B, it is proposed
the quality function present in equation 3.2, where the fquality(A,B) is the quality factor
(link’s quality), measured between nodes A and B; LStab(A,B) is the stability normalized
in the interval [0, 1]; SSI(A,B) is the SSI in dB limited to SSImax. The SSImax is a
constant and it represents the maximum expected SSI in good conditions of transmission,
i.e. when the nodes are relatively closer to each other and with no interference.

fquality(A,B) =
LStab(A,B)

2
+
SSI(A,B)

2× SSImax

(3.2)

In equation 3.2 the minimum value of fquality(A,B) is zero and the maximum value is

one, due the fact that the two equation members, Stab(A,B)
2

and SSI(A,B)
2×SSImax

, are chosen in
order to vary at most the quality factor by a 0.5 factor each. The representation of the
quality as a function of the normalized stability and the normalized SSI is presented in the
graph of Figure 3.4, where it is possible to confirm the minimum and maximum possible
values of the quality factor.

3.3.2 Quality-PRoPHET

The Q-PRoPHET is a quality-based routing protocol originally based on PRoPHET
protocol. Q-PRoPHET performs routing decisions based on the neighbors link’s quality
instead of the number of encounters, like PRoPHET (see section 2.3.2.2 or pages 12 to
15 of RFC6693 [39]). Besides, Q-PRoPHET is capable also to perform multi-hop routing
decisions based on the intermediate links’ qualities of the path. The main objective of this
new routing protocol is to perform routing decisions to forward data using the best quality
paths, instead of bad paths, i.e. paths with links characterized by weak signal or interfer-
ences whose may affect the success of the transmissions. These unwanted behaviors may
happen in disruptive scenarios due to the fact that these environments are characterized
by high quantity of short term connections. The usual DTN routing protocols may not be
adequate to this type of environments due to the fact that the short-term connections may
not be noticed by the protocols and may affect its performance.

Q-PRoPHET uses the quality factor, fquality, function of SSI and LStab as defined in
equation 3.2, to perform routing decisions based on these qualities.

55

Normalized Stability

S
S

I /
 S

S
I m

ax

Quality Function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.4: Quality Function

The operation mode of Q-PRoPHET is based and similar to the operation mode of
PRoPHET protocol that routes the information based in a probability of a certain node to
deliver information to the destination, either directly or indirectly, i.e. using multiple hops.
This probability is increased at each encounter (equation 2.1) and decreases along the time
(equation 2.2) without contacts. There is also a transitive probability (equation 2.3) to
calculate a probability to deliver information to its destination through intermediate nodes
(multi-hop). There may be applied different forwarding strategies, but the most common
ones are GRTR and GTMX, previous stated in section 2.3.2.2. These equations associated
with the forwarding strategy were replicated and modified in order to create a new quality-
based routing protocol which uses the links’ quality to perform routing decisions as follows.

Q-PRoPHET increases the quality associated to a certain destination based on equation
3.3, decreases the quality according to equation 3.4 and it may also calculate a quality
associated to a path formed by specific nodes according to equation 3.5. The following
paragraphs present a more detailed description related to these equations.

The Direct Contact (equation 3.3) updates the probability to deliver data with success
based on the links quality. A good link has a high quality value, and a bad link has a low
quality value. The probability to deliver data with success is the quality factor fquality.
Thus, Q-PRoPHET avoids to send replicas to poor quality links, i.e. surrounding nodes
which the link’s quality is lower compared to the local node.

P(A,B) = fquality(A,B) (3.3)

The Decay Over Time (equation 3.4) is used to decrease the probability/quality along
the time in the case that the node is unreachable. Variable γ is an aging constant that

56

affects how fast the probability/quality decreases along the time, and k is the number of
time units that have elapsed since the last time the metric was aged. This property is
important in the case that it is needed to carry data between two other nodes that are
not reachable at the same time and there are no other paths to route the information. For
instance, if node A established contact recently with node B, there is the possibility that
node A will establish contact with node B again. If a node C never established contact
with node A, but established contact with node B, it should consider to deliver to B the
bundles addressed to node A.

P(A,B) = P(A,B)old × γ
k (3.4)

The Transitive Rule (equation 3.5) is based on the fact that, if a node A is in contact
with node B and this node is in contact with node C, it may be a better choice to send
data from node A to node C using node B if this node has better quality to deliver the
message. The objective is to benefit a better quality transitive path than a low quality
path. The graph of the quality associated to a path composed between two links (link 1
and link 2) is presented in Figure 3.5, where it is possible to verify that the ideal situation
is when both links have unitary quality, and the worst situation is when at least one of
the links has null quality which is sufficient to stop the communication. It is possible to
verify according to the graph that the multiplication of the qualities of each edge allows to
obtain a good representative of the quality of all transitive paths because, if all edges are
good, the quality will be good, but if at least one edge is bad, the transitive quality will
be bad.

P(A,C) = Max(fquality(A,C), fquality(A,B)× P(B,C)recv × β) (3.5)

However, unlike PRoPHET’s GRTR and GTMX forwarding strategies, this routing
protocol does not compare directly local node’s quality to the destination with neighbors’
quality to the destination, because it should consider also its own quality to the neighbor
nodes to evaluate if it is a good decision to forward the data for a certain neighbor or
not. Thus, it is necessary to perform changes also in the forwarding strategies. The two
modified strategies are, considering that nodes A and B encounter each other, node D is
the destination node and A contains a bundle destined to node D:

• GRTR just sends the bundle to node B if Precv(B,D)× fquality(A,B) > P(A,D), i.e.
if the probability/quality between node B and D times the local node’s quality to
node B is larger or equal than the local node’s quality to node D, considering the
quality of the path;

• GTMX just sends the bundle to node B if Precv(B,D)× fquality(A,B) > P(A,D) and
NF > NFmax, i.e. if the probability/quality between node B and D times local
node’s quality to node B is larger or equal than the local node’s quality to node D,
considering the quality of the path, and if the NF at node A is lower than the limit

57

Quality of link 1

Q
ua

lit
y

of
 li

nk
 2

Quality of transive path

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.5: Quality of transitive path

NFmax. The NF is a method to control the number of replicas of a certain bundle in
the network.

The proposed forwarding strategy allows to benefit the good transitive paths instead
of a direct path, or even allows communication if the only available path is the transitive
path.

To exemplify the Q-PRoPHET operation, Figure 3.6 illustrates a situation where node
A has a bundle to deliver to node D, and there are no direct contacts between them. The
quality tables contain the values of the best qualities of the links correspondent to each
node established contact to other nodes, either the quality is associated to a direct path,
or it is associated to a transitive path.

Node A has a bundle to deliver to node D which is not in direct contact. So, it will
forward the bundle to neighbor nodes. Node A establishes contact with node D with an
associated quality of 0.30, which is the best quality selected from all possible paths to the
destination node. Node A then compares its quality with the quality of the paths via node
B and via node C (separately). Via node B the quality has a value of 0.04, which is lower
than the local quality, and then node A does not send the bundle to node B. Via node
C the quality is 0.3, which is equal to the local quality, and according to the forwarding
strategy (either GRTR or GTMX), the bundle will be sent to node C. After that, node
C will verify that its direct path to node D has a quality of 0.60, which is larger than
the quality via node B with the value of 0.16. Consequently, node C delivers directly the
bundle to node D.

58

A

C

D

0.8
0.05

0.5 0.6

0.2

C 0.60

B 0.80

A 0.30
D

D 0.60

B 0.48

A 0.50
C

D 0.80

C 0.48

A 0.10
B

D 0.30

C 0.50

B 0.10
A

B

Figure 3.6: Q-PRoPHET Example

3.4 Chapter Considerations

This chapter presented the navy scenarios which present wireless communication chal-
lenges and the solution to improve the communication in those scenarios.

First, it was presented a definition of the quality to evaluate the wireless links based on
the SSI and LStab. Then, it was presented the Q-PRoPHET routing protocol which uses
the quality of the links, and a transitive property to perform routing allowing multi-hop
forwarding.

The next chapter will describe the implementation of an API to measure the quality of
the links, and the implementation of the Q-PRoPHET in IBR-DTN, which uses this API
to get the quality values.

59

60

Chapter 4

Architecture and Implementation

4.1 Introduction

This chapter presents the Quality Connection Reader (QCR) API and the Q-PRoPHET
architecture and implementation.

Section 4.2 explains the process that QCR uses to gather the quality parameters (SSI
and LStab) and how to maintain these parameters to calculate the quality of the wireless
links.

Section 4.3 presents the modifications performed in IBR-DTN to insert the Q-PRoPHET
routing protocol and to communicate with QCR.

Section 4.4 presents the chapter summary and considerations.

4.2 Quality Connection Reader

The QCR is an API that gathers the quality parameters and calculates the links’ quality
for DTN neighbors, as well as to maintain an updated list of the parameters associated to
each neighbor. This module offers a communication interface to easily integrate it with a
DTN platform or other applications that need to measure the quality of the links without
engaging in implementation details, e.g. AP selection based on the quality of the links.

4.2.1 Access the Quality Parameters

The quality parameters are the SSI and the links’ stability, as stated in section 3.3.1.

To gather the SSI, it is used the SSI value presented in Radiotap Header (see Figure
2.25 from section 2.4.4) obtained from the network card’s driver. This process involves to
capture frames to access radiotap’s SSI values and frame’s source address, i.e. the MAC
address related to identification purposes. To access these fields it is used a packets capture
(libpcap) in a virtual monitor interface created for this purpose, as mentioned in section
2.4.5.2.

61

To calculate the stability value it is necessary a method to each node to know that
it is missing packets. To estimate that, it is not necessary and practicable to consider
all packets. Thus, it may be used a specific type of packets/frames as an approach to
estimate the stability value, which are the advertising beacons where each node sends
periodic beacons containing a SN. The SNs are incremented in each new beacon and the
other nodes are able to listen these beacons if they are reachable. Consequently, the other
nodes may know how many beacons were received and how many beacons were lost by
analyzing the beacons’ SN. Thus, a node can calculate the stability value as the ratio
between the listened beacons and all emitted beacons from a specific neighbor, in a recent
temporal window in order to consider a stability of the actual moment.

Beacons may be implemented, but it is possible to use the IEEE 802.11 Beacon frames,
which are beacons periodically sent by the nodes’ MAC layer, as stated in section 2.4.3,
to announce its presence to neighboring nodes. Beacons contains information about the
source node, including its MAC address and a SN. Thus, they meet the requirements to be
the option to evaluate the LStab. To read these beacons can be used libpcap to perform
packet capture. However, in this work the beacons are implemented by the QCR due to
reason that will be explained later.

4.2.2 Architecture

To gather the quality factors from DTN neighbors and to integrate these qualities with a
DTN platform or other program, it was developed the Quality Connection Reader (QCR)
module in C++ programming language. QCR is capable of tracking and filtering the
beacons from DTN neighbors and extract the relevant information (in this case beacons’
SN and radiotap’s SSI) to calculate the quality factor presented in section 3.3.1.

The QCR architecture and interactions with the DTN platform are presented in Figure
4.1.

Unlike the proposed IEEE 802.11 beacon frames in section 3.3.1, the presented QCR
module implements its own beacons system, due to the fact that the pcap performance to
capture IEEE 802.11 beacon frames in monitor mode varies significantly according to the
platform being used [92]. It was implemented a first version of QCR using IEEE 802.11
beacon frames, but it presented problems on the experimental testbed because not all
beacons were being captured, even when the nodes were closer to each other. The pcap
captures (depending on the board’s performance) all packets in the media, including all
Wireless Fidelity (Wi-Fi) nodes, not only the DTN nodes, because the interface captures
in monitor mode.

QCR is able to communicate with a DTN platform via an Inter Process Communication
(IPC) socket. QCR is easy to integrate with different DTN implementations, like IBR-DTN
(section 2.2.6.2) or DTN2 (section 2.2.6.1), or other applications that need to measure the
quality of the links, e.g. access point selection based on the link quality.

There are many commands that DTN platform can send to the QCR, but the most
important ones are Add new EID to track quality; Remove EID and Request quality by

EID. Here, the DTN platform acts like a master program that sends instructions and

62

Architecture from one node

DTN Platform

(example: IBR-DTN, DTN2)

IPC Socket

Beacon Generator and

Discover Module

Send Beacons and

request MAC addresses

Listening Socket

Read beacons and answers to

DTN neighbors

SSI Reader

Read Radiotap headers from

DTN neighbors

Quality Connection Reader

Watchdog Timer

Decreases quality of

unreachable nodes

A
cc

es
s

In
te

rf
ac

e

Neighbors

Manager

N
ei

g
h

bo
rs

 I
nf

o
rm

at
io

n

E
ID

s
w

it
h

 u
n
k
n

o
w

n
 M

A
C

s

O
th

er W
ireless N

o
d
es

Figure 4.1: QCR: Block Diagram and Interactions

receives information to/from the QCR, the slave program. To perform its tasks, QCR
interacts with different layers from the network stack as presented in Figure 4.2. QCR
gathers information from PHY and MAC layer (in Data Link) to obtain the metrics to
calculate the links quality and to identify the associated neighbors by MAC address. It
uses also the transport layer to communicate with other nodes’ QCR and implements its
own beacons system; it also communicates with IBR-DTN (Figure 4.1), which is the master
program in this case, but it can be another application.

However, to integrate the QCR in IBR-DTN, the chosen DTN platform, it is necessary
to perform changes in the IBR-DTN source code, relatively to all code dimension, in order
to add a new routing protocol and prepare it to communicate with the QCR via an IPC
socket using a set of rules defined in both sides.

The following topics present the QCR implementation and operation details.

63

Data Link

Network

Transport

Bundle (IBR-DTN)

Application

Network Stack

Physical

Quality Connection

Reader

Figure 4.2: Relation between QCR and network stack

4.2.2.1 Initialization

The QCR initialization is presented in Figure 4.3.
QCR begins by creating a Neighbors Manager which is a shared structure with the

purpose to store all relevant information about DTN neighbors. More, details about this
structure are presented in section 4.2.2.2.

Then, the QCR launches four threads that perform the core tasks: the Periodic Events,
the Listening Socket, the SSI Reader and the IPC Socket. These threads may access
concurrently the Neighbors Manager Structure to read or to change data. Usually, all
threads are in an infinite loop cycle to perform their tasks. Consequently they will not
finish, because this is not the objective.

4.2.2.2 Neighbors Manager

Neighbors Manager [neighborsManagement] (Figure 4.4) is a shared structure with
a public access interface to handle concurrency between different threads. This struc-
ture includes several objects and methods to maintain a list of Neighbors Information
[neighborList] and a list of EIDs which MACs are unknown [unknownNeighbors]. It
also contains a string with its own EID called myEID. Two vectors containing node’s mon-
itor interfaces (myMonitors) and MAC addresses (myMACs) from its own interfaces used
by DTN platform are also present in the Neighbors Manager, and their purpose will be
explained later in the end of this section. Besides that, it contains a set of mutexs to apply
mutual access exclusion to each one of the stated structures or objects by different threads
operating concurrently.

Figures 4.4 and 4.5 present the class diagram of Neighbors Manager, but due to the
lack of space in the page, the diagram needs to be presented in two pages.

There is an extensive list of methods. An overview about classes will be presented and
the most important attributes and methods will have a more detailed description.

64

Create Neighbors

Manager Structure

Periodic Events

(Beacon Generator,

Discover Module and

Watchdog Timer)

Listening Socket SSI Reader IPC Socket

Figure 4.3: QCR: Initialization Flow Chart

basicParam (basic parameter) is an abstract base class1 and just contains one attribute,
the quality value. It contains a pure virtual method2 to calculate and update the quality
(calcQuality()) and it contains a method to read quality value (getQuality()). Besides
that, basicParam contains another pure virtual method to identify the associated interface
type, for example the Wi-Fi, the only interface implemented so far. basicParam() and
∼basicParam() are the constructor and the destructor of the class, respectively.

wifi80211params (Wi-Fi 802.11 parameters) is a derived class from basicParam base
class. wifi80211params contains information about the parameters associated to a Wi-Fi
interface. These parameters allow to calculate the quality value for that type of interface
(for Wi-Fi these parameters are the LStab and the SSI).

The stability value is not directly represented in wifi80211params class due to the fact
that it depends on the last received beacons. Thus, there are some objects to maintain the
necessary data related with the received beacons. recentSN_fifo is a pointer to a bitmap,
which together with recentSN_ptr and recentSN_value, represent which beacons were
received in the recent temporal window. The number of recent beacons under evaluation
is defined by SN_fifo_size, which is measured in sets of four bytes (32 bits). Each bit in
recentSN_fifo means that a certain beacon was received or not. Figure 4.6 presents an

1Abstract base classes are classes that can be only used as base classes, i.e., it is not possible to
instantiate objects from them.

2A pure virtual method is a method defined in the abstract base class, but it is only implemented in a
derived class. Besides, a class with at least one pure virtual method is an abstract class.

65

neighborList [Neighbors Information]

...

...

unknownNeighbors [EIDs with unknown MACs]

- std::string** neighborListPtr;

- int nElem;

- int max_size;

+ unknownNeighbors();

+ unknownNeighbors(const unknownNeighbors& obj);

+ virtual ~unknownNeighbors();

+ unknownNeighbors& operator=(const unknownNeighbors& obj);

+ int addNeighbor(const std::string& neighbor);

+ int remNeighbor(const std::string& neighbor);

+ bool exists(const std::string& neighbor) const;

+ void deleteAll();

+ int unknownNeighborsSize() const;

+ std::string getNeighbor(int pos) const;

neighborsManagement [Neighbors Manager]

- neighborList* validNeighbors;

- unknownNeighbors* unkNeighbors;

- std::vector<std::string>* myMACs;

- std::vector<std::string>* myMonitors;

- std::string myEID;

- int die;

+ extern std::mutex validNeighbors_mutex;

+ extern std::mutex unkNeighbors_mutex;

+ extern std::mutex myMACs_mutex;

+ extern std::mutex myMonitors_mutex;

+ extern std::mutex myEID_mutex;

+ neighborsManagement(const std::string& eid);

+ virtual ~neighborsManagement();

+ int addNeighbor(const std::string& id, const std::string& mac);

+ int removeNeighborWithEID(const std::string& s);

+ int removeNeighborWithMAC(const std::string& s);

+ bool knownNeighborsEmpty() const;

+ bool hasEID(const std::string& s) const;

+ bool hasMAC(const std::string& s) const;

+ int updateInfo(const std::string& mac, int sn, int ssi);

+ int updateSSI(const std::string& mac, int ssi);

+ int updateSN(const std::string& mac, int sn);

+ int updateSNbyEID(const std::string& eid, int sn);

+ int getLastSNWithEID(const std::string& eid) const;

+ int getLastSNWithMAC(const std::string& mac) const;

+ float getQualityWithEID(const std::string& eid) const;

+ float getQualityWithMAC(const std::string& mac) const;

+ int getSSIWithEID(const std::string& eid) const;

+ int getSSIWithMAC(const std::string& eid) const;

+ int getStabWithEID(const std::string& eid) const;

+ int getStabWithMAC(const std::string& eid) const;

+ void deleteALLKnownNeighbors();

+ int addUnknownNeighbor(const std::string& neighbor);

+ int remUnknownNeighbor(const std::string& neighbor);

+ bool hasUnknownNeighbor(const std::string& neighbor) const;

+ void deleteALLUnknownNeighbors();

+ int unknownNeighborsSize() const;

+ std::string getUnknownNeighbor(int pos) const;

+ int addMyMACs(const std::string& mac);

+ int addMyMonitors(const std::string& interface);

+ std::string getMyEID() const;

+ int getStringUnknownNeighbors(char* s_ptr) const;

+ int getStringWithMyMACS(char* s_ptr) const;

+ int getStringWithMyMonitors(char* s_ptr) const;

+ int updateUndatedInfo();

+ void clearNoContactFlagbyEID(const std::string& eid);

Figure 4.4: QCR: Neighbors Manager [neighborsManagement] Class Diagram

66

basicParam

float quality;

virtual void calcQuality() = 0;

+ basicParam();

+ basicParam(float qual);

+ virtual ~basicParam();

+ virtual float getQuality() const;

+ virtual char interfaceType() = 0;

wifi80211params

- int *recentSN_fifo;

- int *recentSSIs_fifo;

- int SN_fifo_size;

- int SSIs_fifo_size;

- int recentSN_ptr;

- int recentSN_value;

- int recentSSI_ptr;

- timeval lastUpdate;

- int noDirectContact;

+ string MAC;

virtual void calcQuality();

+ wifi80211params(int SN_fifo_length, int SSI_fifo_length, std::string mac);

+ wifi80211params(const wifi80211params& obj);

+ virtual ~wifi80211params();

+ wifi80211params& operator=(const wifi80211params& obj);

+ void updateSN(int recentSN);

+ void updateSSI(int recentSSI);

+ void updateAll(int recentSN, int recentSSI);

+ int getSSI() const;

+ float getStab() const;

+ int lastSNReceived() const;

+ int updateUndatedInfo();

+ virtual char interfaceType(void);

+ void updateActualTime(void);

+ void resetData(void);

+ void setNoContactFlag();

+ void clearNoContactFlag();

+ int readNoContactFlag() const;

neighborList [Neighbors Information]

- node* head;

- node* tail;

- int nElem;

+ neighborList();

+ virtual ~neighborList();

+ int addElem(const std::string& id, const std::string& mac);

+ int removeElemWithEID(const std::string& s);

+ int removeElemWithMAC(const std::string& s);

+ bool isEmpty() const;

+ bool hasEID(const std::string& s) const;

+ bool hasMAC(const std::string& s) const;

+ int updateInfo(const std::string& mac, int sn, int ssi);

+ int updateSSI(const std::string& mac, int ssi);

+ int updateSN(const std::string& mac, int sn);

+ int updateSNbyEID(const std::string& eid, int sn);

+ int getLastSNWithEID(const std::string& eid) const;

+ int getLastSNWithMAC(const std::string& mac) const;

+ float getQualityWithEID(const std::string& eid) const;

+ float getQualityWithMAC(const std::string& mac) const;

+ int getSSIWithEID(const std::string& eid) const;

+ int getSSIWithMAC(const std::string& eid) const;

+ int getStabWithEID(const std::string& eid) const;

+ int getStabWithMAC(const std::string& eid) const;

+ void deleteALL();

+ void updateUndatedInfo();

+ void clearNoContactFlagbyEID(const std::string& eid);

node

+ node* prev;

+ node* next;

+ std::string EID;

+ wifi80211params* param;

+ node(node *p, node* n, const std::string&

id, const std::string& mac, unsigned

num_SN, unsigned num_SSI)

~node()

Figure 4.5: QCR: Neighbors Information [neighborList] Class Diagram

67

example to better understand the concept.
In Figure 4.6, the SN_fifo_size is 1. This means that stability is considering the last 32

beacons, which recentSN_fifo has only four bytes to maintain the reception information
associated to the last 32 beacons. In Figure 4.6(a) the last received beacon has SN=1000
and it sets the bit 16 from the bitmap. The recentSN_ptr=17 because it is the next
position to update when a new beacon is received. The stability is 25/32, because 25 bits
are set, i.e. in the last emitted 32 beacons, this node received 25 beacons. To count the set
bits it is used an efficient algorithm to count the ones in a word [94], because this structure
is regularly changing and the method to calculate the stability should be efficient to save
time and CPU consumption. The used algorithm is presented in Algorithm 4.1 and it was
adapted from C code example present in [95].

1 1 1 1 1 0 1 1 1 1 1 110111111110011110001

31 30 29 28 27 26 25 24 23 22 21 01234567891011121314151617181920

recentSN_fifo = memory_address

bits

recentSN_ptr = 17

SN_fifo_size = 1

recentSN_value = 1000

1 1 1 1 1 0 1 1 1 1 1 110111111110011110101

31 30 29 28 27 26 25 24 23 22 21 01234567891011121314151617181920

recentSN_fifo = memory_address

bits

recentSN_ptr = 19

SN_fifo_size = 1

recentSN_value = 1002

(a)

(b)

Stability = 25/32

Stability = 26/32

Figure 4.6: QCR: Sequence Numbers bitmap example

In Figure 4.6(b) it is received a new beacon with SN=1002. This means that the beacon
with SN=1001 was missed. Thus, bit 17 is reset to consider beacon miss 1001 and bit 18
is set. After that, recentSN_ptr=19, because it will be the next expected beacon to be
filled when a new beacon arrives.

In this case the value of recentSN_ptr varies between 0 and 31 due to the fact that
there are only 32 bits.

The informations related to the SSI are maintained in recentSSIs_fifo, that is a
pointer to an integer array that contains the most recent SSIs from received packets. The
number of SSIs stored is defined by SSIs_fifo_size, and recentSSI_ptr is a pointer
to the position where the next SSI will be stored. In Figure 4.13 the last SSI measured
was 36dB. When a new value of SSI arrives, it will be stored in the position pointed by
recenSSI_ptr, which is position 1. The value of considered SSI is the mean of all values

68

Algorithm 4.1 Calculate the number of one bits in a word
Input: u
Output: c
U ← u
N ← (U >> 1)&033333333333
U ← (U −N)
N ← (N >> 1)&033333333333
U ← (U −N)
U ← (U + (U >> 3))&030707070707
c← U%63

stored in the array pointed by recentSSIs_fifo. This methodology is adopted because it
is possible that single isolated cases, such as a constructive reflection in the media, increases
the SSI of one received packet, affecting strongly the quality value. Consequently, a routing
decision could be affected, to avoid that, the SSI used to calculate the quality is the mean
of the last three measures.

SSIs_fifo_size = 3

35 38 36

recentSSI_ptr = 1

2 1 0

recentSSIs_fifo = memory_address

SSI = (35+38+36)/3

Figure 4.7: QCR: SSIs storage example

The lastUpdate variable present in wifi80211params stores the time of the last up-
date of stability and SSI metrics. This time is useful to identify when a neighbor is out of
reach and their parameters were not updated recently, and consequently, they should be
decreased.

MAC attribute contains the neighbors interface’s MAC address, i.e. the interface that
the local node is tracking the quality by its MAC address.

neighborList class [Neighbors Information] contains a double-linked list of nodes.
Each node of the list contains an EID identifying the neighbor and a pointer to wifi80211params
object that contains the quality value and associated metrics. A visual representation of
neighborList is presented in Figure 4.8, where head and tail are pointers to the double-
linked list, and nElem is the number of nodes presented in the list. This list may contain

69

information about different neighbors, each one identified by its EID. Each EID node
contains a pointer to a wifi80211param object that contains parameters information, in-
cluding the quality, and contains also the neighbor’s MAC address.

neighborList [Neighbors Information]

head

tail

nElem

node

next

prev

EID

param

node

next

prev

EID

param

node

next

prev

EID

param

...

wifi80211

params

wifi80211

params

wifi80211

params

Figure 4.8: QCR: neighborList [Neighbors Information]

unknownNeighbors class [EIDs with unknown MACs] contains the known EIDs which
MAC addresses are still unknown. This list is used mainly for the Discover Module to
discover the MAC addresses from these EIDs. An example of the structure is presented in
Figure 4.9 where neighborListPtr is a pointer to an array of pointers to strings containing
the EIDs; nElem is the number of EIDs present in the list, and max_size is the length of
the unknownNeighbors array that may be different of nElem, if the array is not full. If the
array fills, the max_size can increase adaptively to a higher value, allowing the insertion
of new unknown neighbors which EIDs are known but MACs are not.

unknownNeighbors

[EIDs with unknown MACs]

neighborListPtr

nElem = 2

max_size (variable)

ptrToStr[0] ptrToStr[1] ptrToStr[2] ptrToStr[max_size-1]...

EID A

EID B

Figure 4.9: QCR: unknwonNeighbors [EIDs with unknown MACs]

neighborsManagement class [Neighbors Manager] contains the Neighbors Information
List and the EIDs with unknown MACs List. It also contains a string with its own EID,
a string vector with its own MAC interfaces, a string vector with its own network monitor
interfaces and a variable (die) to signal the threads when the program should finish. These

70

objects are accessed by different threads using a mutual exclusion mechanism. All public
methods from neighborsManagement use the mutexs to perform their tasks.

4.2.2.3 QCR General Packet

The packet structure used by QCR to communicate with other QCR nodes is presented
in Figure 4.10.

A QCR App Identifier is proposed whose function is to identify the application. The
QCR applications use always the same UDP port, but if there are other nodes using the
same port and they send broadcast messages, those messages will be received by QCR
module. To prevent this situation, it is used identifiers to identify the application, not to
authenticate it. However, in Wi-Fi this situation is not a problem because QCR operates
inside a defined WLAN, where the nodes in the network are authenticated.

The COMMAND field indicates the purpose of the packet, i.e., the type of packet. The
actual commands available are Beacon, Request MACs and Acknowledge MACs. Each
type of command has a defined type of Content.

My MAC address (variable)

QCR App Identifier

D T N CHECK_CODE ContentCOMMAND

1 1 1 1 1 (variable)

REQ_MACS

ACK_MACS

COMMAND (1 byte)

BEACON

Neighbor EID (variable)

My EID (variable)

Content (variable)

Sequence Number (4 bytes) My EID (variable)

Figure 4.10: QCR General Packet

The content field of the BEACON command includes a SN and the source’s EID of the
beacon. The content of the Request MACs (REQ_MACS) command includes the neighbor’s
EID that are used to discover its MAC address. In the Acknowledge MACs (ACK_MACS),
the content field includes the packet’s source EID and the list of MAC addresses.

All packets are always sent with broadcast addresses. In the beacon packets the ob-
jective is to send them to all reachable neighbors. The objective of the Request MACs
command is also to send the packet to all reachable neighbors because the sender node
does not know the destination and it is trying to discover it. The main objective of the
Acknowledge MACs command is to send the message (answer) to the query node, but to
consider the situation where there may be more neighbors that need the same information,
the packet is sent to the broadcast address, which may decrease the number of Request
MACs in the network, e.g. in the early state of network formation where all nodes will
discover the new neighbors and query them by its MAC wireless interface address.

71

4.2.2.4 Periodic Events: Beacon Generator, Discover Module and Watchdog
Timer

The Periodic Events thread is responsible to run all periodical tasks: Beacon Generator,
Discover Module and Watchdog Timer.

Beacon Generator is the module responsible to generate and send periodically broadcast
beacons to the media with an associated SN between 0 and BEACON_LIMIT-1. The value
selected for BEACON_LIMIT is 4096 based on the SN limit used by IEEE 802.11 beacon
frames. The defined periodicity for the Beacon Generator is PERIOD_MS=200 (ms).

The Discover Module is responsible for periodically discover the MAC addresses from
the neighbors that their EIDs are known, but their MACs are unknown. This module
reads periodically the unknownNeighbors List and it sends periodic messages containing
queries for EIDs which associated MACs are unknown. The defined periodicity for Discover
Module is 1 second due the fact that this trade-off for the user is insignificant, but for the
boards it is large enough to not overload them with this task.

Watchdog Timer is responsible to decrease the quality value from unreachable/non-
contactable neighbors. When a neighbor is not in contact, there are no received beacons
and SSI values. This means that it is necessary to decrease the quality because the node
is not reachable. The adopted method consists in using a periodic Watchdog Timer3 that,
every 200ms, verifies the last time that the quality values were updated. If a quality value
was not updated since MS_WINDOW=2 (seconds) the quality is updated to zero. The Flow
Chart presented in Figure 4.11 exemplifies the Periodic Events flow.

In the beginning the iterationCounter and beaconSN variables are initialized with the
value 0. Then, it is created an UDP socket running on port 12347. Then, the thread verifies
if it should finish or continue to run. If the thread continues running, it creates a beacon
packet with an associated beaconSN and sends it to the broadcast address. Then, the
beaconSN value is increased by 1 and, if it reaches the BEACON_LIMIT, the value is reset to
0. Then, the Watchdog Timer runs and after that the iterationCounter is incremented.
Thus, if the iterationCounter is equal to TICKET_1SEC, the Discover Module runs and it
sends broadcast discovery packets to the network requesting the unknown MAC addresses
from the EIDs list with unknown MACs. At this point the work for this iteration is finished
and the thread sleeps during PERIOD_MS. Then, it verifies the finish condition to decide if
it should continue running or if it should finish. The finish condition is verified by reading
the die flag present in the neighborsManagement class. If the flag equals to ’1’, then the
thread exits.

4.2.2.5 Listening Socket

The Listening Socket module has the function to listen the media and receive the QCR
general packets (Figure 4.10) from another nodes’ QCRs. According to the received packet,
it may be necessary to update the local information, like neighbor’s actual SN or add a

3A Watchdog Timer is a counter that is programmed with a specific time and it is always counting the
time and when reaches the specified value, it resets and invokes a certain action

72

iterationCounter=0; beaconSN=0;

Create UDP Socket

[finish]

Make Beacon with beaconSN

Send broadcast packet: Beacon

beaconSN=(beaconSN+1)%BEACON_L

IMIT

[iterationCounter equals

TICKET_1SEC]

Send Broadcast packets: Discover

Neighbors's MAC

iterationCounter=0;

Decrease quality of unreachable

neighbors (Watchdog Timer)

iterationCounter++;

Close Socket
Sleep during

PERIOD_MS

Figure 4.11: QCR: Periodic Events (Beacon Generator, Discover Module and Watchdog
Timer) Flow Chart

pair EID/MAC or even to send a ACK_MACS packet to inform the neighbor about the local
node’s MAC addresses.

The Listening Socket flow presented in Figure 4.12 is the following: first it is created
an UDP socket on port ’12347’, the same used by the Beacon Generator module. Then,

73

Create and bind UDP Socket

Wait until receive a packet from socket

[packet’s header is

QCR App identifier]

[beacon packet]
[REQ_MACS

packet]

[ACK_MACS

packet]

Update SN by EID
Answer with packet:

ACK_MACS

Associate EID with

received MAC

[known packet’s

EID]
[packet’s EID

is local EID

[packet’s EID is

present in unknown

MACs List]

[finish]
Close Socket

Figure 4.12: QCR: Listening Socket Flow Chart

the finish condition is tested and the thread continues its execution due to the fact that
it is the first cycle. After that, the thread waits until it receives a new packet. When a
new packet is received, the QCR App identifier is compared with the expected identifier.
If they do not match, i.e. if they are different, the thread returns to finish condition and
consequently it waits for a new packet. If they match, the thread reads the packet type. If
the packet type is Beacon and if the packet’s source EID is present in Neighbors List, the
SN associated to this neighbor is updated. If the packet is a Request MACs and the EID
present in the content field is the local node’s EID, it sends a Acknowledge MACs with its
MAC. However, if the received packet is an Acknowledgment MACs and if the packet’s
source EID is presented on EIDs with unknown MACs List, that EID and content MACs
will be added to the Neighbors Informations List and the EID is deleted from EIDs with
unknown MACs List.

74

4.2.2.6 SSI Reader

The SSI Reader module has the function to obtain the measured SSI from neighbor’s
packets and update Neighbors Information List accordingly. To obtain the SSI values, this
thread accesses directly the Radiotap Header (Figure 2.25 from section 2.4.4) by capturing
all wireless frames in the media with a virtual interface working in monitor mode, using
libpcap (section 2.4.5.2). As stated in section 2.4.4, one of the informations present in the
Radiotap header is the SSI of the received packets.

Configure pcap with monitor interface

[finish]

Read one frame

Close pcap

NULL frame

Read radiotap's SSI and update SSI in

neighbors list

[local node is tracking

frame’s source MAC]

Sleep SECURE_TIME

Figure 4.13: QCR: SSI Reader Flow Chart

The SSI Reader flow is presented in Figure 4.13 where the thread after initialization
process configures the module pcap and associates it to the monitor interface to capture
all frames in the media. If the received frame is NULL (i.e. frame not received), the thread
returns to verify the finish condition. Otherwise, the thread reads the source’s MAC
address and it verifies if this MAC address is presented in the Neighbors Informations List.
If it is true, the thread reads the associated Radiotap Header and gather the SSI and then
it updates the SSI value in the Neighbors Informations List.

75

4.2.2.7 IPC Socket

The Inter Process Communication (IPC) Socket uses a binded UDP Socket (always
listening) that uses the loopback interface to allow the local user’s applications to commu-
nicate with QCR in order to make requests or to give instructions, using this socket. It is
necessary that local applications know the communication protocol to communicate with
the QCR. The communication protocol consists in the use of the defined packets with the
format presented in Figure 4.14.

There is a structure for packets that applications send to the QCR module, called
Instruction/Request general packet. The first byte contains the command, i.e. the
purpose of the packet, and after that, it may appear one or two fields with variable
length according to the command. The list of existent commands is presented in In-
struction/Request Packets Format which contains also the fields of each type of packet.
The existent commands allow an application to: Add a new neighbor by EID; Add a new
neighbor by EID which MAC is previously known; Delete an EID and associated infor-
mation; Delete a MAC interface and associated information; Request the most recent SN
by EID or by MAC; Request the SSI by EID or by MAC; Request Quality by EID or by
MAC; Delete all EIDs and associated information; verify if the QCR is connected in the
respective port or even to finish the application.

For QCR answers, it is used the same socket but the packet’s format is different. The
Answer general Packet is composed by a first byte that indicates an acknowledgment
or error and after appears a command, that usually is the received command (those one
that QCR is answering). Then, may appear some data if the answer is an acknowledge
that needs to send data to the application. The Answer packet formats for each type of
answer is presented also in Figure 4.14. The ERROR packet is used, for example, when the
application request data that is not available (COMMAND field is the received command) or
when the received packet does not follow the established communication rules (COMMAND is
UNK_COMM).

The IPC Socket flow is presented in Figure 4.15 where at the beginning it is created and
binded a socket to allow the communication between the processes, and then the thread is
always waiting a new connection with a command. When it receives a command, it reads
the command and the thread performs the adequate action. For example, for an ADD_EID

command, the thread will try to add the packet’s content (EID) to the unknown MACs
List, and then it will answer to the application with an ACK or ERROR packet according to
the operation success.

4.2.3 QCR Menu Application

To test the QCR module and/or to allow an user to use it with a terminal line, it is
available a QCR Menu Application. This application interacts with the user via a terminal
and with the QCR via an IPC Socket. The menu is present in Figure 4.16 and it allows
the user to: check if the QCR is connected; Add a new EID/MAC association; delete a
neighbor by EID or MAC; request the most recent SN by EID or MAC; request the most

76

COMMAND Content 1

1 (facultative, variable)

COMMAND (1 byte)

Content 2

(facultative, variable)

ACK / ERROR Content 2

1 1 (facultative, variable) (facultative, variable)

Instruction / Request general Packet:

Answer general Packet:

Fields (variable)

Instruction / Request Packets Format:

Answer Packets Format:

COMMAND Content 1

ADD_EID

ADD_EID_MAC

DEL_EID

DEL_MAC

REQ_SN_EID

REQ_SN_MAC

REQ_SSI_EID

REQ_SSI_MAC

REQ_QUAL_EID

REQ_QUAL_MAC

DEL_ALL

IS_ALIVE

EID

EID MAC

EID

MAC

EID

MAC

EID

MAC

EID

MAC

FINISH_PROGRAM

COMMAND (1 byte) Fields (variable)

ACK

ERROR

ERROR (default)

COMMAND

COMMAND

UNK_COMM

Content

Figure 4.14: QCR: IPC Socket Packets

77

Create/Bind IPC Socket

using loopback interface

Wait for packet with command

ADD_EID

Add EID to EIDs

with unknown

MACs List

Add EID/MAC

to Neighbors List

Delete Neighbor

by EID

Delete Neighbor

by MAC
Read SN by EID

Read SN by

MAC

Send ACK_MSG

or

ERROR_MSG

according

operation success

Send ACK_MSG

or

ERROR_MSG

according

operation success

Send ACK_MSG

or

ERROR_MSG

according

operation success

Send ACK_MSG

or

ERROR_MSG

according

operation success

Send requested

SN or

ERROR_MSG

according

operation success

Send requested

SN or

ERROR_MSG

according

operation success

Read SSI by EID

from Neighbors

List

Read SSI by

MAC from

Neighbors List

Read Quality by

EID from

Neighbors List

Read Quality by

MAC from

Neighbors List

Delete All

Information

about Neighbors

Send requested

SSI or

ERROR_MSG

according

operation success

Send requested

SSI or

ERROR_MSG

according

operation success

Send Quality or

ERROR_MSG

according

operation success

Send Quality or

ERROR_MSG

according

operation success

Send ACK_MSG
Send

ACK_MESSAGE

ADD_EID_MAC DEL_EID DEL_MAC REQ_SN_EID REQ_SN_MAC

REQ_SSI_EID REQ_SSI_MAC REQ_QUAL_MAC REQ_QUAL_MAC DEL_ALL

DEL_ALL

Finish program

finish=1

Send

UNK_COMM

default FINISH_PROGRAM

[finish]
Close Socket

command

Figure 4.15: QCR: IPC Socket Flow Chart

78

--

 QCR Menu Application

--

 OPTION | FUNCTION

 1 | Check if QCR is 'online'

 2 | Add New EID - MAC

 3 | Delete by EID

 4 | Delete by MAC

 5 | Request SN by EID

 6 | Request SN by MAC

 7 | Request SSI by EID

 8 | Request SSI by MAC

 9 | Request Quality by EID

 10 | Request Quality by MAC

 11 | Delete All Info

 13 | Finish this Program (exit)

 14 | Add EID

--

 Option:

Figure 4.16: QCR Menu Application Terminal

recent SSI measured by EID or MAC; request the Quality by EID or MAC; delete all
neighbors and add a new EID.

The QCR menu is a simple program that connects to the QCR’s IPC Socket, according
the user’s option, to send instructions or to receive data. The QCR Menu Flow Chart is
presented in Figure 4.17. In resume the program waits for a user’s command, and then it
sends the instruction to the QCR. According to the instruction, it waits for the answer
that may be an acknowledge/error or data destined to the user.

4.3 Q-PRoPHET: Integration with IBR-DTN

The Q-PRoPHET was implemented in IBR-DTN [29] (presented in section 2.2.6.2),
an implementation of DTNs that contains several routing protocols, one of them is the
PRoPHET. IBR-DTN was selected due to the reasons presented in section 2.2.6.4, includ-
ing table 2.1.

To modify the IBR-DTN in order to integrate the new routing protocol Q-PRoPHET,
it was necessary to explore the source code of IBR-DTN 1.0.0 with the support of [96].
The modifications performed to integrate the Q-PRoPHET in IBR-DTN are the following:

1. Create a new folder in routing folder named QProphet. Copy the PRoPHET routing
source code files to this new folder. Modify these files in order to change classes

79

Prepare IPC Socket to loopback interface

[finish]
Close Socket

Print Menu and read option from terminal

Read EID from

terminal

Read EID / MAC

from terminal

Read EID from

terminal

Read MAC from

terminal

Read EID from

terminal

Read MAC from

terminal

ADD_EID ADD_EID_MAC DEL_EID DEL_MAC REQ_SN_EID REQ_SN_MAC

Read EID from

terminal

Read MAC from

terminal

Read EID from

terminal

Read MAC from

terminal

Try to send

Instruction to

QCR

Send Instruction

to QCR

Send Instruction

to QCR

Wait for answer Wait for answer

Print Success /

Error message

Print Respective

Value

REQ_SSI_EID REQ_SSI_MAC REQ_QUAL_EID REQ_QUAL_MAC

DEL_ALL

IS_ALIVE

Print success

message

[answer

received]

FINISH_PROGRAM

option

Figure 4.17: QCR Menu Application Flow Chart

80

names, methods names and attributes names;

2. Set the Q-PRoPHET formulas according to the equations 3.3, 3.4 and 3.5. Set
the GRTR and GTMX forwarding strategies according to Q-PRoPHET forwarding
strategies presented in section 3.3.2;

3. Create a new class to establish communications with QCR’s IPC socket according
to the defined protocol (section 4.2.2.7). Change Q-PRoPHET methods to use this
new class to communicate with QCR to send or to receive the necessary instructions
or informations;

4. Change the makefiles in order to allow the compilation and linking phases of all these
new code files, when IBR-DTN daemon is compiled;

5. Include the Q-PRoPHET source code files in external files that need to use/access
routing classes;

6. Change the IBR-DTN configuration module to insert the support to a new routing
protocol, i.e., in order to accept the Q-PRoPHET as a valid routing protocol. It was
also added a new class to insert/store the Q-PRoPHET configuration parameters
associated to the protocol in IBR-DTN;

7. Change the Management Connection module that may need to access the routing
parameters in order to search for Q-PRoPHET extension and to read its parameters
or predictability tables;

8. Change Native Daemon module in order to launch the Q-PRoPHET extension when
Q-PRoPHET routing protocol is selected in IBR-DTN’s configuration file;

9. Insert a new parameter in the configuration file to put the EID of a specific node that
is connected via Ethernet and it is considered always available. The Q-PRoPHET
considers always this neighbor node has always unitary quality, i.e. the maximum
quality possible because the connection is considered perfect.

4.4 Chapter Considerations

This chapter presented the architecture and the implementation of the solution to
perform routing in navy scenarios.

First, it presented the architecture and the implementation of QCR, the API responsible
to follow and gather the quality of the wireless links.

Then, it presented the Q-PRoPHET architecture and implementation which imple-
ments the Q-PRoPHET solution inside IBR-DTN, the selected DTN platform.

The next chapter presents the integration of the implementation of QCR and Q-PRoPHET
inside IBR-DTN using a real testbed. It presents the evaluation of these implementations
emulating the navy scenarios.

81

82

Chapter 5

Integration and Evaluation

5.1 Introduction

This chapter presents the integration of IBR-DTN with Q-PRoPHET and QCR in a
real testbed using Single Board Computers (SBCs) with OpenWRT OS, runs experiments
in navy emulated scenarios and discusses the obtained results.

Section 5.2 presents a brief description of the hardware and OS of the testbed.
Section 5.3 presents the installation and configuration of IBR-DTN and other modules.
Section 5.4 presents the challenges to emulate the navy scenarios in the testbed.
Section 5.5 presents the evaluation of QCR, and section 5.6 presents the evaluation of

Q-PRoPHET in three scenarios that emulate the scenarios presented in section 3.2, two of
them are indoor and the last one is outdoor with real mobility of the nodes.

Section 5.7 presents the chapter summary and considerations.

5.2 Hardware and Operating System Description

Along this section it is described the SBCs used to implement and test the solution
proposed in chapter 3, as well as to describe the OS installed.

5.2.1 Single Board Computer

The SBCs used in all the evaluation phase are Cambria Network Computers - GW2358-
4 (only Cambria(s) in following sections) (Figure 5.1) developed by Gateworks R© [97].
Cambrias were developed mainly for enterprise and residential network applications.

Cambria GW2358-4 [98] main features are:

• Intel R© XScale R© IXP435 667MHz Processor;

• 128MB SDRAM Memory;

• 32MB Flash Memory;

83

• Two 10/100 Ethernet ports;

• RS232 Serial Port;

• Real Time Clock;

• OpenWRT Linux Board Support Package.

Figure 5.1: Cambria GW2358-4 [97]

All Cambrias were equipped with AR5213A Wi-Fi cards [99], a multi protocol MAC
baseband processor from Atheros R© Communications which in turn provides support for
AG 2.4GHz Wi-Fi.

5.2.2 Operating System

The Operating System installed on Cambrias is OpenWRT Wireless Freedom [100], an
open-source GNU/Linux distribution for embedded devices, typically wireless routers. The
version is the Barrier Breaker 14.07 (based on r42625). OpenWRT offers a fully file system
with package management in order to enable developers/programmers to customize and
configure the system to suit their needs, as well as to develop their own applications. Open-
WRT is on constant evolution due to several contributions from OpenWRT community.
See reference [100] for more details.

In the user point of view, OpenWRT is similar to Linux where the user interacts with
the OS usually via a terminal, or in some cases via a graphical interface (e.g. web page)
provided by some software packages. These software packages have the disadvantage of
loosing the freedom to perform some tasks, depending on the package in use.

OpenWRT offers an environment to facilitate the developers work. It provides the
OpenWRT Buildroot, which is a set of makefiles and patches that may be installed in the
user’s host system (usually a laptop). Buildroot allows the programmer to easily compile
and to create packages to install their programs in OpenWRT OS. It contains a toolchain
that allows the programmers to compile their programs to OpenWRT in their personal host
systems. This process of compilation is called cross-compilation because it allows to compile
a program to a processor architecture in a machine containing a different architecture, i.e.

84

with different Instruction Set Architectures (ISAs). It is possible to perform this process
manually using the toolchain, but buildroot automates for a large quantity of embedded
systems which facilitates the user’s tasks.

5.3 Cambrias Configuration and Software Integration

This section presents the relevant configurations and the steps to install the different
software on Cambrias.

The Cambrias used in the evaluations may have special configurations from the scenario,
but some configurations are independent. The most relevant and common configurations
are presented in this section.

5.3.1 Cambrias Configuration

First it is installed OpenWRT Barrier Breaker 14.07 OS in all Cambrias. But before,
it is installed the OpenWRT Buildroot on a laptop with Linux OS. Then, Buildroot is
configured to compile the OpenWRT (and all selected packages) to the target system Intel
IXP4xx (Cambria’s processor family). Then, the OpenWRT OS and the boot-loader are
compiled and installed in all Cambrias.

Second, the basic network configurations are performed. It is created two virtual wire-
less interfaces (wifi-iface) converging in the same radio interface (wifi-device). One of them
is configured in Ad-Hoc mode and the other is configured in Monitor mode. One Ethernet
port is configured to obtain automatically IP via a Dynamic Host Configuration Proto-
col (DHCP) server in order to facilitate the access to the boards by Secure Shell (SSH)
inside the building’s intra-network when possible.

5.3.2 Software Integration

The software to be integrated in Cambrias is IBR-DTN (modified version with Q-PRoPHET)
and the QCR module.

The IBR-DTN (version 1.0.0) modules were compiled in Buildroot and installed in all
Cambrias in the following order: dtndht, ibrcommon, ibrdtn, ibrdtnd and ibrdtn-tools, where
ibrdtnd was previously modified in order to include the Q-PRoPHET.

The QCR module was compiled using directly the toolchain because it facilitates the
process of development and compilation, from the beginning, in the Eclipse Kepler IDE.
Then it was generated the executable file and it was installed in all Cambrias; it runs in
the OpenWRT from the beginning of the system as an internal service available for local
applications to use.

85

5.4 Evaluation Challenges

The evaluation phase presented several challenges and constrains that forced to change
and adapt the planned procedures to perform the implementation and its evaluation. The
most important constrains are described along this section.

The first constrain was due to libpcap performance to capture IEEE 802.11 beacon
frames in monitor mode, because its performance varies significantly according to the
platform being used [92]. The Cambrias have limited capabilities, a 667MHz processor and
32MB of memory. This was not enough for the board to capture and process all existent
frames at an indoor environment, and this affected the QCR sensitivity to measure the
quality of the relevant links. However, in an outdoor environment it was possible to capture
more relevant frames than in the inside which increased the QCR’s sensitivity to measure
the quality. Another constrain that affects the beacons transmission was the fact that, if
a certain node is almost to send a beacon and it receives a beacon from another node,
it waits some time until it tries to send the beacon again. Due to the large amount of
beacons on the media, it may increase and delay the sending phases of the beacons. The
implementation of QCR’s beacon system solves this problem and it allows more freedom
in the beacon management, i.e. it is easy to change the beacon periodicity, for example.
However, if a node wants to track another node, both of them need to run the QCR,
because is it the one that sends the beacons.

Another problem that happened with the QCR module is the fact that the high amount
of analyzed frames required high resource consumption which increased the CPU usage and
consequently the system’s load average1. Due to this constrain, it was inserted a delay phase
between frame captures, which decreases the number of analyzed frames. Consecutively,
not all frames are captured, but it is not necessary to listen to all frames. The miss of
some frames from DTN neighbors is not a problem, since they are only necessary to get
the SSI values; the beacons system is implemented in the transport layer by QCR. The
delay phase in QCR’s SSI Reader thread allows to solve the majority of the load problems
that occurred in the QCR module.

However, IBR-DTN evaluation also presents load problems. Despite the fact that IBR-
DTN has been developed for systems with low CPU and memory capabilities, it presents
load problems to run in Cambrias when it needs to perform its tasks: if the IBR-DTN
is running without tasks to perform (e.g. send or receive bundles), it does not present
problems; but if it is necessary to send or to receive files, the load increases and affects the
system’s performance. This problem limits the freedom to perform tests in Q-PRoPHET
due to the fact that, if there is a large amount of files or large files to transfer, the load values
increase and the results may not be valid. To minimize these problems, methodologies were
proposed to perform the tests that will be more detailed in the relevant sections.

Another big challenge was to emulate the proposed scenarios for communication to

1The load average measures the mean of the number of processes waiting to be served by the CPU.
This number should be lower than the total number of CPUs because that means that the CPUs can
dispatch all processes. For a single CPU system, the load should not be higher than 1 ideally. Unix-like
systems usually display the load information relative to the last 1, 5 and 15 minutes [101].

86

test the Q-PRoPHET. It was necessary to create/emulate links with good communication
and links with bad connections, i.e. intermittent links. However, positioning the boards
in specific configurations in order to emulate intermittent conditions is a difficult task to
perform due to the wireless medium instability. To try to solve this problem, scripts have
been deployed to vary the antennas transmission power. However, the variation was not
enough to emulate all scenarios; the first scenarios have been emulated this way at the
building’s corridors. To solve these problems in the second scenario, it was performed tests
with Cambrias near each other without antennas. This way, it was created a ”controlled”
environment with the desired intermittence conditions.

To test the different scenarios, it was necessary to measure the times in different boards
which implies to have the Cambrias synchronized between them. First, it was used the
IBR-DTN synchronization system, but this system was not effective to synchronize in an
efficient way all boards and some measures of e2e delay were negative. Thus, to perform
the indoor tests and taking into account that all boards are connected in the same intranet
with Internet access, it was used NTP [19] [102] to synchronize all boards using an NTP
server present in the Internet. However, to test the outdoor scenario, it was not possible to
connect all boards to the Internet to provide synchronization between all boards. So, it was
used one fixed Cambria with Internet access to synchronize itself by NTP and providing
its own clock using PTPd [20].

Finally, the IBR-DTN was not developed to perform routing in the conditions that
Q-PRoPHET requires, where it is necessary to verify always the available neighbors, instead
of generating events only when a new neighbor appears or disappears, i.e. it is discovered
by the Discover module or it disappears the necessary amount of time for the Discover
module to realize that it disappears. This fact limits its capability to obtain always the
more recent quality values and to maintain a consistent table of neighbors. Ideally, it
should always poll the quality value, which certainly increases the load average of the
system, that may be a problem depending on the host system.

5.5 Quality Connection Reader

To test the quality values measured by QCR, two Cambrias are near each other by a
distance of d as presented in Figure 5.2 in an outdoor environment.

A

d

B

Figure 5.2: Scenario to Measure the Quality Factor

To perform this test, node A is static and node B can be mobile. In the experiment, it
is measured the quality factor between nodes A and B, as well as the SSI and the Stability
parameters between 2m and 100m, and capturing 200 beacons frames (nearly 40 seconds)

87

at each measured distance. With the different values of quality, SSI and LStab measured,
the obtained results in this test are presented in Figure 5.3 with a confidence interval of
95%.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Evaluation of quality factor

Distance between nodes (m)

Q
ua

lit
y

0 20 40 60 80 100
0

10
20
30
40
50
60
70

S
S

I (
dB

)

Flutuation of quality parameters

Distance between nodes (m)

0
5
10
15
20
25
30
35

S
ta

bi
lit

y

Figure 5.3: Evaluation of Quality Factor and Quality Parameters

The obtained results in this scenario show that the quality factor decreases with the
distance, as expected, due to the fact that the SSI and the Stability are decreasing with
the distance. This result was expected and it was the desired result in order to quantify
the quality of the links.

However, there is a behavior that is important to refer. The SSI decreases more for lower
distances, with no significant differences at higher distances where the communication is
equally possible, because the stability is still high. Instead, the stability for lower distances
does not vary significantly, and it begins to decrease only for long distances (>60m). Thus,
the quality has an approximately decreasing behavior due to the behavior of the quality
parameters (SSI and LStab). This way, it is possible to verify that the SSI is not the
best metric to evaluate the link quality, because at higher distances it loses sensitivity
and cannot define well the communication. At high distances, the stability has better
sensitivity. Using these two parameters, the quality factor can have a good sensitivity at
all distance ranges.

The QCR module is capable to describe and define well the quality of the connections.

88

5.6 Quality-PRoPHET

To evaluate the Q-PRoPHET routing protocol, implemented into IBR-DTN, the sce-
narios for communication presented in section 3.2 were emulated, and the results obtained
for Q-PRoPHET were compared with the results obtained for PRoPHET evaluated in the
same conditions.

Both protocols contain parameters and configurations that affect the way they work.
The main values set in the configuration file that affect the routing modules are presented
in Table 5.1.

Table 5.1: Definition of routing parameters in IBR-DTN configuration file
Parameter PRoPHET Q-PRoPHET

routing prophet QProphet
routing forwarding yes yes
routing prefer direct no no
p encounter max 0.7 (not applicable)
p encounter first 0.5 (not applicable)
p first threshold 0.1 0
beta 0.9 0.9
next exchange timeout 10 10
forwarding strategy GRTR GRTR
gamma 0.999 0.999

The other important configurations set in IBR-DTN configuration file are presented in
Table 5.2. Note that the fragmentation is disabled: the objective is to evaluate the routing
protocol in different scenarios, but also with different sizes of bundles which cannot be
controlled with the fragmentation enabled.

Table 5.2: Definition of general parameters in IBR-DTN configuration file
Parameter Value

fragmentation no
limit payload 10MB
limit storage 1GB
net interfaces lan0
net lan0 type tcp
net lan0 interface ath0
net lan0 port 4556
time reference yes
time synchronize no
time discovery announcements no
time set clock no

89

These are the default parameters used to perform the evaluation in the scenarios for
communication. Any parameter different from the defined parameters is described in the
respective section. If not, the default values are used.

5.6.1 Scripts and IBR-DTN source code modifications

5.6.1.1 IBR-DTN modifications to gather data logs

It was necessary to perform changes in IBR-DTN source code in order to generate the
necessary data logs to track the departure and arrival times associated to relevant bundles
in order to verify which bundles are delivered and to measure the e2e delay between source
and destination nodes. To obtain these informations the following changes were performed:

• BundleReceivedEvent: The getMessage method was changed in order to filter
the bundles associated to the application dtnSender and write in a specific file the
following information about the received bundle separated by commas:

– host id: The host that generated the information log;

– src id: The source of the bundle;

– dest id: The destination of the bundle;

– timestamp: The bundle’s origin timestamp in seconds after year 2000;

– seqNum: The sequence number of the bundle;

– time: The time in seconds (and microseconds) after year 1970 which the infor-
mation log was generated.

• TransferCompletedEvent: The getMessage method was changed in order to filter
the bundles associated to the application dtnSender and write in a specific file,
different from the previous one. The following information about the bundle is sent
separated by commas:

– host id: The host that generated the information log;

– src id: The source of the bundle;

– dest id: The destination of the bundle;

– timestamp: The bundle’s origin timestamp in seconds after year 2000;

– seqNum: The sequence number of the bundle;

– time: The time in seconds (and microseconds) after year 1970 which the infor-
mation log was generated.

With these modifications it is possible to uniquely identify all bundles sent by the
application identified by dtnSender, and store the relevant log information to discover
which bundles are delivered and how long they were delivered.

90

5.6.1.2 Scripts to generate data logs

CPU usage and load average

Due to the CPU usage and load consumption problems stated before, it was necessary
to develop a script to measure the CPU consumption and the load average in order verify
if the obtained results from the tests are valid or if it is necessary to adapt the test in order
to consume less resources from the boards.

The flowchart presented in Figure 5.4 represents the process of the measurement of
CPU consumption and load average, as well as the process to store the information in
the log files. The information associated to the CPU is obtained using the information
present in /proc/stat and the information about the load average is obtained from the
file /proc/loadavg. The gathered information is stored in two different log files where one
contains the values of CPU usage and the other contains the values of load average. The
$1 is the input argument and represents the measurement periodicity in seconds, i.e. the
time between consecutive measures.

Read /proc/stat

Calculate CPU usage

Read /proc/loadavg

Obtain load average

Store information in log file

W
ai

t
$
1
 s

ec
o
n
d
s

Figure 5.4: CPU/Load Measure Flow Chart

91

Send and receive files

To perform the different tests, it is necessary to send files from the source node and
receive these files in the destination node. To perform this task automatically in the source
and destination node, it was created a script to run in these nodes to launch the sender
and the receiver applications.

The script accepts four arguments: the number of files to send, the size of each file, the
destination node and the time interval between files. Figure 5.5 presents the flow chart of
the script.

Launch Receiver Application
Send file to destination node

with N bytes

Wait sleepTime

[local node is

destination node]

[All files were sent]

Figure 5.5: Send/Receive Files Script Flow Chart

If the local node is the destination node, the dtnrecv tool is launched with the appli-
cation name of dtnReceiver and the script finishes. If not, the script initiates the phase
to send files with N bytes to the destination node with intervals of sleepTime. To send
each file is used dtnsend tool with the application name of dtnSender. When all files are
sent the script finishes.

5.6.1.3 Scripts to perform the tests

To perform the evaluation phase of scenario 1 (Inspection/Boarding) and scenario 2
(Naval and Amphibious Operations) it was developed a script to run in a computer (Master
Script) that is responsible to access and control all boards in order to make the tests and

92

repeat them in order to have several repetitions of the same experiment. Figure 5.6 presents
the Master Script Flow Chart.

The Master Script accepts arguments such as: the number of iterations per protocol,
the experiment time, the size of each file and the number of files to sent, and optionally
the intermittence period if it is to use intermittence in the experiment.

First, the script begins by creating a folder with the current date and hour to uniquely
identify each experiment, and then it creates a new folder to include the results of each
iteration.

Then, the protocol is set to Q-PRoPHET and it is created a folder to include the log
files about this protocol.

After, the old logs in Cambrias are deleted if they exist, and then the script enters in
a waiting phase until the load average (1 minute) is lower than 0.2, in order to guarantee
that all boards in the beginning of the experiment are in the conditions to perform the test
and guarantee that this test is not affected due to the high load average in the boards.

If the experiment that is running considers the use of the intermittence script in the
boards, the intermittence is enabled. Thus, the intermittence script will be run in the
specified boards to vary the antennas’ transmission power between the minimum value
(1dBm) and the maximum value (16dBm) to simulate intermittent conditions.

Thus, the Send/Receive Files Scripts are called in the Source and Destination nodes,
and IBR-DTN is launched in the remaining boards in order to begin the experiment; the
Master Script waits the experiment time until it finishes the experiment by finishing all
scrips and applications called in the process.

To finish the actual iteration the Cambrias’ logs are copied to the respective protocol
folder inside the respective iteration folder. Then, the protocol is changed and the ex-
periment is repeated again with the new protocol. Each pair of experiments, one from
PRoPHET and another from Q-PRoPHET, originates the logs from one iteration. Then,
if it is the last iteration, it is created a log with general information about the experiments
such as: the actual date, the boards identification, the source node, the destination node,
the number of files sent per experiment, the size of each file, the number of iterations and
the experiment time. Thus, the script finishes and the experiments are done.

5.6.2 Scenario 1: Inspection/Boarding

5.6.2.1 Scenario Definition and Emulation

The Inspection/Boarding scenario is emulated with three nodes as presented in Figure
5.7. In this scenario the objective is to create a stable connection between nodes A and
B, and also between nodes B and C. However, it is desirable to create an intermittent
connection between nodes A and C to emulate intermittent conditions between these two
nodes to verify the behavior of both protocols under this intermittent connection.

The scenario from Figure 5.7 is emulated using three Cambrias inside the building 2
from Instituto de Telecomunicações in Aveiro. To emulate the scenario with the communi-
cation conditions stated before, it is necessary to use the ping tool in order to guarantee a

93

Create folder with current

date and hour

Create iteration number folder

Create protocol folder

Delete old logs present in

Cambrias if they exist

Synchronize all Cambrias

[load of at least one

cambria higher than 0.2]

Wait 30 sec

Launch IBR-DTN running

protocol in boards and init

CPU/load measures

Set protocol = qprophet

[Intermitence enable]

Launch Intermitence Script in

Boards

Wait Experiment Time

Kill all scripts and

applications launched

Gather logs to logs folder

Set protocol = prophet

[prophet protocol running]

Launch Send/Receive Files

Scripts [last iteration]

Generate log with global info

about the experiments

Figure 5.6: Master Script Flow Chart

94

A

d1

B

d2

C

Figure 5.7: Inspection/Boarding Scenario Emulation

full communication between node B with its neighbors, and in order to discover the limit
of communication between nodes A and C. These limits are discovered for a transmission
power (txpower) of 16dBm in all antennas. Then, the txpower is varied to 1dBm in nodes
A and C to verify that the connection between these nodes is really bad and the commu-
nication between node B and the other nodes is stable and good. The obtained board’s
disposition inside the building is presented in Figure 5.8. This way it is possible to control
the communication between nodes A and C by controlling the board’s transmission power.

7m

A

B

C

Figure 5.8: Inspection/Boarding Boards Disposition

5.6.2.2 Evaluation Procedure

Three experiments are performed with different file sizes: 1KB, 15KB and 85KB. Each
experiment tests PRoPHET and Q-PRoPHET protocols with 50 iterations for each exper-
iment. Per experiment, it is sent 25 files with a delay of 4 seconds between consecutive

95

files. This way, it is sent 25 files in the first 100 seconds from the experiment to distribute
the CPU consumption to send the files along the experiment time. The time of each exper-
iment is 105 seconds and then the experiment finishes and the data is stored. The source
and destination boards also run the intermittence script with an interval of 6 seconds, i.e.
during 6 seconds the transmission power is 16dBm, and the next 6 seconds the transmission
power is 1dBm and so on.

To perform the evaluation in this scenario it is used the script described in section
5.6.1.3. All Cambrias are connected in Instituto de Telecomunicações’ intranetwork and
the laptop that runs the Master Script is also connected to the same network. This way,
the script is able to control all boards and run the experiments automatically.

5.6.2.3 Obtained Results

The delivery ratio results are presented in Figure 5.9 with a confidence interval of 95%
for 25 runs of each experiment. It is possible to verify that for a small size of the files, i.e.
1KB and 15KB, there are no significant differences in the delivery ratio, but it is important
to refer that Q-PRoPHET is able to deliver 100% of the sent files. For 85KB files there
are significant differences in PRoPHET performance because its delivery ratio decreases
to 80%, unlike the Q-PRoPHET that continues nearly 100%. This result makes sense
because it is expectable that the source node running PRoPHET protocol sees many times
the destination node and tries to send the bundles directly. However, it is not possible to
send bundles at all times and the source node considers itself a better node to deliver the
bundles than the middle node; in Q-PRoPHET the middle node is always a better node
to deliver the bundles to the destination.

1K 15K 85K
0

20

40

60

80

100

File Size (Bytes)

D
el

iv
er

y
R

at
io

 (
%

)

prophet
qprophet

Figure 5.9: Scenario 1: Delivery Ratio

The e2e delay results are presented in Figure 5.10 with a confidence interval of 95%. The
e2e delay is measured as the mean time to deliver the packets while a periodic intermittency
of 6 seconds is introduced in the source and destination nodes. It is possible to verify that,
for all sizes of files, the Q-PRoPHET provides faster delivery than PRoPHET, since it
chooses the best-quality available path. Note that, for 85KB files, the delay difference is

96

significant, where Q-PRoPHET spends approximately 8 seconds less to deliver all bundles
when compared to PRoPHET.

1K 15K 85K
0

5

10

15

20

25

30

File Size (Bytes)

E
2E

 D
el

ay
 (

s)

prophet
qprophet

Figure 5.10: Scenario 1: e2e delay

The measurements of CPU usage and load average are presented in Figure 5.11 and
Figure 5.12, respectively. These measurements are important to evaluate if the previous
results are valid or not, i.e. if the boards are overloaded (high CPU consumption and load
average) the results are not valid. In the experiments with 1KB and 15KB files, the CPU
usage is often under 50% and the load is near 0.5, which are acceptable values to these
parameters. In the experiment with files of 85KB, the CPU usage and load average are
higher than in the previous experiments. However, due to the fact that the load average
does not cross much the limit of value 1, the results are also considered valid.

0 20 40 60 80 100
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

1K − prophet

Src
Dst

0 20 40 60 80 100
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

1K − qprophet

Src
Dst

0 20 40 60 80 100
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

15K − prophet

Src
Dst

0 20 40 60 80 100
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

15K − qprophet

Src
Dst

0 20 40 60 80 100
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

85K − prophet

Src
Dst

0 20 40 60 80 100
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

85K − qprophet

Src
Dst

Figure 5.11: Scenario 1: CPU usage

97

0 20 40 60 80 100
0

0.5

1

1.5

2

Time (sec)

Lo
ad

1K − prophet

Src
Dst

0 20 40 60 80 100
0

0.5

1

1.5

2

Time (sec)

Lo
ad

1K − qprophet

Src
Dst

0 20 40 60 80 100
0

0.5

1

1.5

2

Time (sec)

Lo
ad

15K − prophet

Src
Dst

0 20 40 60 80 100
0

0.5

1

1.5

2

Time (sec)

Lo
ad

15K − qprophet

Src
Dst

0 20 40 60 80 100
0

0.5

1

1.5

2

Time (sec)

Lo
ad

85K − prophet

Src
Dst

0 20 40 60 80 100
0

0.5

1

1.5

2

Time (sec)

Lo
ad

85K − qprophet

Src
Dst

Figure 5.12: Scenario 1: Load average

5.6.3 Scenario 2: Naval and Amphibious

5.6.3.1 Scenario Definition and Emulation

The Naval and Amphibious scenario is emulated using five nodes as presented in Figure
5.13. In this scenario the objective is to send data from node A to node E where these two
nodes have not direct contact between each other. Thus, the objective is to use always the
middle nodes (not necessarily all nodes) to deliver the information. Due to the fact that
the scenario is characterized by some intermittent connections, the boards are placed in a
specific disposition where the conditions of the links are checked using the QCR Menu to
evaluate the quality of the links.

A C E

B

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 5.13: Naval and Amphibious Scenario Emulation

Initially, the idea was to place the boards inside of Instituto de Telecomunicações, but
it was very difficult to create good and bad links to emulate the scenario because the links
never maintain their state, i.e. during some time the link presents the wanted behavior, but
then the behavior changes. For example, the creation of an intermittent link was achieved,

98

but after some minutes the link was completely lost.
Due to all challenges to create intermittent conditions, the scenario was emulated with

no antennas in the boards and all boards were placed in a table. After several changes
in the boards disposition, the final measurements of ping successful and quality values for
each link are presented in Table 5.3. The quality values presented in the table are obtained
with the mean of two measures of the quality value, each measure from one node to another
node and then in the inverse way. It is possible to verify that there are a set of good links
which are links (1), (2), (3), (7) and (8); there is one bad link which is link (6) and some
intermittent links which are links (4) and (5).

Table 5.3: Scenario 2: Ping Success and Quality of the Links

Link
Ping success

/100
Quality mean

1 91 0.373592
2 100 0.514792
3 99 0.565521
4 83 0.325456
5 72 0.248232
6 0 0
7 100 0.572710
8 99 0.547188

5.6.3.2 Evaluation Procedure

To perform the evaluation in this scenario it is also used the script presented in section
5.6.1.3 with the intermittence script disabled, due to the fact that the connections are emu-
lated in a more controlled scenario than in scenario 1 and presenting natural intermittence.

To evaluate scenario 2 experiments are performed for the following size of files: 1KB,
5KB, 15KB, 35KB and 85KB. To each size of files, PRoPHET and Q-PRoPHET are
evaluated, with 25 iterations to evaluate the performance of the routing protocols with
a confidence interval of 95%. 20 files are sent from node A to node E with an interval
between files of 5 seconds, i.e. all files are sent during the first 100 seconds.

During the experiments it is obtained the necessary data to calculate the delivery ratio,
the e2e delay, the CPU usage/load average and the total number of bundles sent in the
network.

5.6.3.3 Obtained Results

The delivery ratio results are presented in Figure 5.14. It is possible to verify that for
small files, the delivery ratio results are always near 100% for both protocols under test.
The main difference is visible for bundles of 85KB, either in PRoPHET and Q-PRoPHET.

99

In PRoPHET the delivery ratio is approximately 70%, and in Q-PRoPHET it is approxi-
mately 90% - 95%, relatively better than PRoPHET.

1k 5k 15k 35k 85k
0

20

40

60

80

100

file size (bytes)

D
el

iv
er

y
R

at
io

 (
%

)

prophet
qprophet

Figure 5.14: Scenario 2: Delivery Ratio

The e2e delay results are presented in Figure 5.15. It is possible to verify that there
is a trend of higher e2e delays with the increasing of the files size. However, there is an
anomaly in the tendency in PRoPHET for files of 35KB. For all sizes the e2e delays in
Q-PRoPHET are lower (or equal for 35KB) than the delays in PRoPHET protocol. In
this scenario Q-PRoPHET will make use of the available best quality links and will be
able to send the same information in less time. Note that, the e2e results obtained for this
scenario are higher than the e2e results obtained for scenario 1. It means that the number
of intermittent links and its effect in the e2e results have impact in both protocols.

1k 5k 15k 35k 85k
0

20

40

60

80

100

120

140

file size (bytes)

E
2E

 D
el

ay
 (

s)

prophet
qprophet

Figure 5.15: Scenario 2: e2e delay

The total number of transmissions in the network, i.e., in all nodes, can be seen in Figure
5.16. It is possible to verify that Q-PRoPHET always transmits more than PRoPHET.
Higher packet transmissions means that Q-PRoPHET has better opportunities to transmit
packets, with more available quality links to the destination.

100

1k 5k 15k 35k 85k
0

20

40

60

80

100

120

140

file size (bytes)

N
um

be
r

of
 tr

an
sm

is
si

on
s

prophet
qprophet

Figure 5.16: Scenario 2: Total transmissions per Experiment

The measurements of CPU usage and load average (1 minute) are presented in Figures
5.17 and 5.18, respectively. For files of 1KB to 35KB, the load average never reaches value
1 for both protocols, which means that the boards deal well with the experiments. For the
experiments with 85KB files, the load crossed value 1, but it does not diverge and never
reaches value 2. We then consider that the results are valid.

5.6.4 Scenario 3: Population Support

5.6.4.1 Scenario Definition and Emulation

The Population Support scenario is emulated in an outdoor environment and using
real mobility. To emulate the scenario, two static boards (D and E) are placed in the
two buildings of Instituto de Telecomunicações in Aveiro, one board at each building, as
presented in Figure 5.19. These two boards have an Ethernet connection to the buildings’
intranetwork, which may be used as a static route always available between these two
boards. Note that boards D and E cannot communicate via wireless. There are more
three nodes: A, B and C, which will move during the experiment. The initial position
of these three nodes is presented in Figure 5.19. Nodes A and B will move in clockwise
direction, and node C moves in counterclockwise. Nodes B and C encounter each other at
the bottom right corner of Building 2 and in the superior left corner. The mobile nodes
delay, approximately, 210 seconds to give one lap.

Nodes A and B may communicate often directly because they are near each other and
generally they do not have obstacles between them. Depending on the position, these
nodes may communicate directly with nodes D or E or even C. For node C it is applicable
the same aproach.

5.6.4.2 Evaluation Procedure

To test this scenario, node C is selected as the source node, and node B is the destination
node. Each experiment in this scenario has approximately 10 minutes and 30 seconds (630

101

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)
1k −

 prophet

S

rc
D

st

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)

1k −
 qprophet

S

rc
D

st

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)

5k −
 prophet

S

rc
D

st

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)

5k −
 qprophet

S

rc
D

st

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)

15k −
 prophet

S

rc
D

st

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)

15k −
 qprophet

S

rc
D

st

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)

35k −
 prophet

S

rc
D

st

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)

35k −
 qprophet

S

rc
D

st

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)

85k −
 prophet

S

rc
D

st

0
50

100
150

200
0 50

100

T
im

e (sec)

CPU usage (%)

85k −
 qprophet

S

rc
D

st

F
igu

re
5.17:

S
cen

ario
2:

C
P

U
u
sage

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

1k −
 prophet

S

rc
D

st

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

1k −
 qprophet

S

rc
D

st

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

5k −
 prophet

S

rc
D

st

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

5k −
 qprophet

S

rc
D

st

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

15k −
 prophet

S

rc
D

st

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

15k −
 qprophet

S

rc
D

st

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

35k −
 prophet

S

rc
D

st

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

35k −
 qprophet

S

rc
D

st

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

85k −
 prophet

S

rc
D

st

0
50

100
150

200
0

0.5 1

1.5 2

T
im

e (sec)

Load

85k −
 qprophet

S

rc
D

st

F
igu

re
5.18:

S
cen

ario
2:

L
oad

average

102

E

Instituto de

Telecomunicações

1In
tran

et

Instituto de

Telecomunicações

2

D

Intranet

A

B

C

30m

Figure 5.19: Scenario 3: Population Support - Boards Dynamics

seconds), i.e. the nodes A, B and C give three laps around building 2. The source node
sends 240 files during the first 8 minutes, i.e. with an interval of 2 seconds between files.
The experiments are performed for the following files size: 1KB, 5KB, 15KB and 35KB.

The synchronization of node D is performed using NTP because the board is connected
to the Internet. The synchronization for the other nodes is performed using PTPd in all
nodes, with node D as a master because it is considered a time reference, and other nodes
are slaves. The experiments are launched and managed manually, due to the fact that not
all boards are connected with a reliable connection to the master laptop.

5.6.4.3 Obtained Results

The results of the delivery ratio are presented in Figure 5.20. They show that for
1KB files, the delivery ratio is approximately 100% for both protocols. Note that for 5KB
both delivery ratios are lower, but the ratio for Q-PRoPHET is better than PRoPHET.
For 15KB the ratios are approximately equal with a better result for PRoPHET, and for
35KB the values of delivery ratio are lower for both protocols, but more pronounced for
the Q-PRoPHET protocol.

The e2e delay results are presented in Figure 5.21. They show that, for files with 1KB,
5KB and 15KB the e2e, delays for Q-PRoPHET are lower than for PRoPHET, and they
have a tendency to increase according to the file size. However, for 35KB, the e2e delay
for Q-PRoPHET was worse than for PRoPHET.

These results show that is still room for improvements in Q-PRoPHET. In this specific
case, the Q-PRoPHET has a lower number of transmissions than PRoPHET (Figure 5.22),
which means that Q-PRoPHET always prioritizes one link until the end of the experiment.
In this case, the link gets saturated faster due to the amount of files exchanged (35KB),
which is due to the nodes mobility and the outdoor interferences, as can be seen in 5.20.

103

1k 5k 15k 35k
0

20

40

60

80

100

file size (bytes)

D
el

iv
er

y
R

at
io

 (
%

)

prophet
qprophet

Figure 5.20: Scenario 3: Delivery Ratio

1k 5k 15k 35k
0

50

100

150

200

250

file size (bytes)

E
2E

 D
el

ay
 (

s)

prophet
qprophet

Figure 5.21: Scenario 3: e2e delay

1k 5k 15k 35k
0

200

400

600

800

1000

file size (bytes)

N
um

be
r

of
 tr

an
sm

is
si

on
s

prophet
qprophet

Figure 5.22: Scenario 3: Total transmissions per Experiment

The measurements of CPU usage and load average (1 minute) are presented in Figures
5.23 and 5.24. For 1KB and 5KB, the CPU and load values were always under 1 or near.

104

For 15KB and 35KB files, the CPU and load results are worse. Sometimes the load reaches
value 2 which means that the Cambrias have difficulties performing their task. However,
since the load does not diverge, the results are considered valid.

5.6.4.4 Quality Aging

Due to the fact that the results for the 35KB files for scenario 3 were not satisfactory,
an improvement attempt was made to Q-PRoPHET. The improvement consists in the
modification of the constant γ from 0.999 (default value) to 0.6 to decrease faster the quality
aging in relation of the surrounding nodes. The idea is to force the quality measurement to
recalculate the links quality of the surrounding nodes, in order to find new better quality
alternatives to forward the bundles to destination nodes, rather than always prioritize few
good quality links.

After running the experiment with changing γ value in Q-PRoPHET protocol, the
obtained results are presented associated by the label ’35k (2)’. The label ’35k (1)’
represents the previous result and it is presented again for comparison purposes.

The Q-PRoPHET delivery ratio in Figure 5.25 is now significantly higher than the
previous version of Q-PRoPHET, which means that the variance of the constant γ affects
strongly the obtained results.

The e2e delay in Figure 5.26 for Q-PRoPHET is now significantly lower (difference of
approximately 60 seconds) than PRoPHET protocol. The improvements in the results of
the delivery ratio and e2e delay are due to the fact that now the nodes consider themselves
nodes with a lower quality in a very early stage. Moreover, Q-PRoPHET transmits more
bundles than PRoPHET as it is shown in Figure 5.27, which contributes to better results.

Considering the tests that have been performed with different γ values in different
scenarios, the best case is to adjust the constant γ value automatically according to the
amount of surrounding neighbors. This means that, for dense scenarios, the aging of
links should decrease very early, forcing the quality measurement module to update more
frequently the surrounding links quality, and increasing the options to forward bundles
over more quality links until reaching the destination. In sparse scenarios, higher values of
γ introduce better results.

Figures 5.28 and 5.29 show the CPU consumption and load average (1 min.) with a
confidence interval of 95%. By comparing the Q-PRoPHET results, it is possible to verify
that the results of CPU and load are a bit worse for the case when γ is 0.6, due to the
fact that the number of transmissions increase and consequently the resources are more
overloaded.

5.7 Chapter Considerations

This chapter presented the testbeds used to evaluate the proposed approach, using
Cambrias with openWRT OS. It presented also the integration and configuration of the
software in the Cambrias.

105

0
100

200
300

400
500

600
0 50

100

T
im

e (sec)

CPU usage (%)

1k −
 prophet

S

rc
D

st

0
100

200
300

400
500

600
0 50

100

T
im

e (sec)

CPU usage (%)

1k −
 qprophet

S

rc
D

st

0
100

200
300

400
500

600
0 50

100

T
im

e (sec)

CPU usage (%)

5k −
 prophet

S

rc
D

st

0
100

200
300

400
500

600
0 50

100

T
im

e (sec)

CPU usage (%)

5k −
 qprophet

S

rc
D

st

0
100

200
300

400
500

600
0 50

100

T
im

e (sec)

CPU usage (%)

15k −
 prophet

S

rc
D

st

0
100

200
300

400
500

600
0 50

100

T
im

e (sec)

CPU usage (%)

15k −
 qprophet

S

rc
D

st

0
100

200
300

400
500

600
0 50

100

T
im

e (sec)

CPU usage (%)

35k −
 prophet

S

rc
D

st

0
100

200
300

400
500

600
0 50

100

T
im

e (sec)

CPU usage (%)

35k −
 qprophet

S

rc
D

st

F
igu

re
5.23:

S
cen

ario
3:

C
P

U
u
sage

0
100

200
300

400
500

600
0

0.5 1

1.5 2

T
im

e (sec)

Load

1k −
 prophet

S

rc
D

st

0
100

200
300

400
500

600
0

0.5 1

1.5 2

T
im

e (sec)

Load

1k −
 qprophet

S

rc
D

st

0
100

200
300

400
500

600
0

0.5 1

1.5 2

T
im

e (sec)

Load

5k −
 prophet

S

rc
D

st

0
100

200
300

400
500

600
0

0.5 1

1.5 2

T
im

e (sec)

Load

5k −
 qprophet

S

rc
D

st

0
100

200
300

400
500

600
0

0.5 1

1.5 2

T
im

e (sec)

Load

15k −
 prophet

S

rc
D

st

0
100

200
300

400
500

600
0

0.5 1

1.5 2

T
im

e (sec)

Load

15k −
 qprophet

S

rc
D

st

0
100

200
300

400
500

600
0

0.5 1

1.5 2

T
im

e (sec)

Load

35k −
 prophet

S

rc
D

st

0
100

200
300

400
500

600
0

0.5 1

1.5 2

T
im

e (sec)

Load

35k −
 qprophet

S

rc
D

st

F
igu

re
5.24:

S
cen

ario
3:

L
oad

average

106

35k (1) 35k (2)
0

20

40

60

80

100

file size (bytes)

D
el

iv
er

y
R

at
io

 (
%

)

prophet
qprophet

Figure 5.25: Scenario 3: Delivery Ratio

35k (1) 35k (2)
0

50

100

150

200

file size (bytes)

E
2E

 D
el

ay
 (

s)

prophet
qprophet

Figure 5.26: Scenario 3: e2e delay

35k (1) 35k (2)
0

100

200

300

400

500

600

file size (bytes)

N
um

be
r

of
 tr

an
sm

is
si

on
s

prophet
qprophet

Figure 5.27: Scenario 3: Total transmissions per Experiment

Then, it presented the evaluation challenges. Some of the challenges were related
to the fact that it is difficult to emulate the navy scenarios with real intermittence of
the connections. Other challenges were due to the Cambrias’ capabilities, which are not

107

0 100 200 300 400 500 600
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

35k (1) − prophet

Src
Dst

0 100 200 300 400 500 600
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

35k (1) − qprophet

Src
Dst

0 100 200 300 400 500 600
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

35k (2) − prophet

Src
Dst

0 100 200 300 400 500 600
0

50

100

Time (sec)

C
P

U
 u

sa
ge

 (
%

)

35k (2) − qprophet

Src
Dst

Figure 5.28: Scenario 3: CPU usage

0 100 200 300 400 500 600
0

0.5

1

1.5

2

Time (sec)

Lo
ad

35k (1) − prophet

Src
Dst

0 100 200 300 400 500 600
0

0.5

1

1.5

2

Time (sec)

Lo
ad

35k (1) − qprophet

Src
Dst

0 100 200 300 400 500 600
0

0.5

1

1.5

2

Time (sec)

Lo
ad

35k (2) − prophet

Src
Dst

0 100 200 300 400 500 600
0

0.5

1

1.5

2

Time (sec)

Lo
ad

35k (2) − qprophet

Src
Dst

Figure 5.29: Scenario 3: Load average

108

sufficient to run IBR-DTN and the QCR efficiently, which forced to change some evaluation
procedures to not overload the boards.

Therefore, the chapter presented the evaluation of the QCR API in an outdoor en-
vironment, which shows that the quality decreases with the distance as expected, but it
also shows that the SSI has more sensitivity for lower distances and the LStab has more
sensitivity to higher distances.

Finally, the evaluation of the routing approach in the several scenarios has been per-
formed and analysed. The first two scenarios were indoor, and the last one was outdoor
using real mobility of the nodes.

The obtained results show that a quality-based routing protocol should be used in
DTNs: Q-PRoPHET has better performance than PRoPHET, a well-known routing pro-
tocol in DTNs, in terms of delivery ratio, e2e delay and packets transmission, which are
critical parameters for the communication in navy operations.

However, in scenario 3 the obtained results of Q-PRoPHET with 35KB file size are
worse than the same results of PRoPHET. To improve the Q-PRoPHET behavior, the
value of γ was changed to 0.6 and the experiments were run again. The new results show
that γ can affect the results: γ can be a good aging parameter to force the nodes to send
more ou less bundles. Thus, the γ parameter should be automatically adjusted to work
in sparse and dense scenarios. These results show that a quality-based routing should be
applied in DTNs to improve their communications.

109

110

Chapter 6

Conclusions and Future Work

6.1 Conclusions

During this work, it was referred that the participants of navy scenarios (mariners,
boats, etc.) need to communicate between them to reach the common objectives. How-
ever, the environments of the navy operations are usually characterized by network frag-
mentation and intermittent connections, which affect the communication systems. In or-
der to decrease the costs of the proprietary communication solutions that navy use, and
to enable the possibility to insert easily new functionalities, this dissertation proposed a
delay-tolerant quality-based routing protocol where the objective is to route information
taking into account the connection quality of the links to be applied in off-the-shelf devices.

To develop the quality-based routing protocol, it was necessary to evaluate the quality of
the links. The quality of the links is defined with a quality factor, which is a function of two
metrics: the SSI and the LStab. The obtained results show that these metrics allow a good
sensitivity to the quality factor in all distances, since the SSI has good sensitivity in lower
distances, and LStab has good sensitivity in higher distances. The quality measurements
are performed with the QCR, an API developed in this work, to measure the quality of
the surrounding neighbors. To calculate the quality factor, the QCR gathers the SSI,
contained in the radiotap headers, and it implements a beacons system to calculate the
LStab. To provide the quality factor, the QCR has an IPC socket to communicate with
other programs.

The quality-based routing protocol Q-PRoPHET uses the quality factor measured by
the QCR. This routing protocol was based on PRoPHET, a well-known protocol developed
for DTNs. The Q-PRoPHET was implemented into IBR-DTN and it was tested in a set
of scenarios that emulate navy scenarios with the presence of intermittent connections.
The same tests were also performed with PRoPHET in order to have a good reference to
evaluate the obtained results.

The obtained results show that Q-PRoPHET has better performance than PRoPHET
in terms of delivery ratio, e2e delay and packets transmission, which are critical parameters
for the communication in navy operations. This shows that, for this type of scenarios, it

111

is recommended to use routing algorithms based on the quality of the wireless links to
perform routing decisions.

It was also concluded that it is a big challenge to emulate real conditions of inter-
mittence, or maintain these conditions to perform several tests in the same conditions to
obtain results with a small confidence interval, due to the fact that these scenarios are
unstable, i.e. they vary their characteristics along the time. To emulate the scenarios,
different techniques are adopted separately: use an intermittence script in the boards to
vary their antennas’ transmission power, perform the tests without antennas to control
better the links failures, or use real mobility. Using these approaches, we were able to run
the tests and obtain results with good confidence values.

Another challenge was related to the boards capabilities to run the programs and to
perform the tests. First, the initial version from QCR consumed all the CPU resources
by analyzing all IEEE802.11 beacon frames in the media. To solve this issue, it was
implemented a beacons system in the QCR, and the tests were performed in a way that
the load has been distributed over time.

Relatively to IBR-DTN, it is concluded that it is not adequate to perform this type
of routing decisions based on the MAC/PHY layer. For example, this routing protocol
deals directly with the quality of the connections, and if the connection does not exist, the
information about it should be integrated directly with the Discovery Agent, i.e. in this
case the Discovery Agent should be implemented or depend directly from the quality values
and not the opposite. In this work, the IBR-DTN source code was changed to maintain the
IBR-DTN neighbors tables concordant with the QCR tables, i.e. when IBR-DTN detects
a new neighbor, it adds the neighbor to QCR; and when IBR-DTN looses a neighbor, it
removes it from QCR. This allows to solve the problem, but there is duplicated information
and it is necessary more processing.

Another characteristic of IBR-DTN is that it is not adequate for this type of dynamic
routing, because a node that contains several bundles just verifies if they should be sent
when they are generated, when a new contact is made or when it receives a new routing
table from another node. However, in Q-PRoPHET the local tables may change more
frequently and the changes are not often associated to the events that verify if a node
should send a certain bundle. Due to this, the IBR-DTN is not adequate to implement
routing protocols that operate directly with physical conditions due to their dynamics,
because the quality values change very fast and the node cannot verify always its storage
to decide if it should send the bundles. When the quality of the link changes, the routing
changes, but the storage is not always checked. However, due to the process of tables
exchange, the bundles are frequently checked.

Finally, this work allows to conclude that the quality-based routing protocols should
be an investment to apply in DTNs to work in scenarios with navy constrains. The
Q-PRoPHET proved that links quality-based routing can indeed improve the results in
networks with this type of constrains. However, there is still work to be done in this
promising investigation area.

112

6.2 Future Work

For future work the Q-PRoPHET should be tested in other boards with more CPU and
memory resources, and with more demanding scenarios, in order to verify if the results for
high traffic are good and if the protocol may be improved.

It is also suggested to implement a mechanism that prevents the case of link saturation.
For example, if a node selects a preferred link to forward information, based on its quality,
it may get overloaded because it is considered the best link.

Another important aspect is the DTN implementation. In this case, it is recommended
to implement a specific DTN implementation specially for this type of scenarios where
the events to send bundles are different, and where the discovery methods should be also
different, mainly the Discovery Agent and the base router.

Another suggestion for future work is to perform the tests with a noise generator in
order to create real conditions of intermittence and easily replicate them, or to perform
the tests with a rail in order to create equal conditions of mobility in different tests and to
run them automatically without human intervention to impose mobility.

There are also several suggestions to improve Q-PRoPHET. One of them is to perform
a further study about the influence of γ in different scenarios. γ has the capability to
decrease faster the quality in the nodes’ table. Therefore, future work will consider the
proposal of an approach to adjust automatically γ value according to the nodes density.

It is also relevant to consider other metrics to evaluate the quality, for example the
throughput and the saturation level of the links.

Another approach is the proposal of a method to evaluate if there is an e2e path between
the sender and destination nodes. With this method, Q-PRoPHET would be capable to
perform quality-based routing to send the bundle when there is an e2e path, like an ad-hoc
behavior where the objective is to benefit from the best quality path. But, if there is not
an e2e path to the destination, it should be applied a different routing protocol to move
the bundle to better delivers, i.e. move it to the nodes that (probably) will encounter the
destination, or to even trigger other technologies to send the information if it is urgent.

113

114

Bibliography

[1] C. Hunt, TCP/IP network administration. ” O’Reilly Media, Inc.”, 2002, vol. 2.

[2] S. Farrell, V. Cahill, D. Geraghty, I. Humphreys, and P. McDonald, “When tcp
breaks: Delay-and disruption-tolerant networking,” Internet Computing, IEEE,
vol. 10, no. 4, pp. 72–78, 2006.

[3] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-tolerant network architecture: the evolving
interplanetary internet,” Working Draft, IETF Secretariat, Internet-Draft draft-
irtf-ipnrg-arch-01, August 2002. [Online]. Available: https://tools.ietf.org/html/
draft-irtf-ipnrg-arch-01

[4] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, E. Travis, and
H. Weiss, “Interplanetary internet (ipn): architectural definition,” 2001.

[5] A. McMahon and S. Farrell, “Delay-and disruption-tolerant networking,” IEEE In-
ternet Computing, no. 6, pp. 82–87, 2009.

[6] K. Fall and S. Farrell, “Dtn: an architectural retrospective,” Selected Areas in Com-
munications, IEEE Journal on, vol. 26, no. 5, pp. 828–836, 2008.

[7] K. Fall, “Disruption tolerant networking for heterogeneous ad-hoc networks,” in Mil-
itary Communications Conference, 2005. MILCOM 2005. IEEE. IEEE, 2005, pp.
2195–2201.

[8] A. S. Pentland, R. Fletcher, and A. Hasson, “Daknet: Rethinking connectivity in
developing nations,” Computer, vol. 37, no. 1, pp. 78–83, 2004.

[9] K. Fall, “A delay-tolerant network architecture for challenged internets,” in Proceed-
ings of the 2003 conference on Applications, technologies, architectures, and protocols
for computer communications. ACM, 2003, pp. 27–34.

[10] R. Monteiro, L. Guedes, T. Condeixa, F. Neves, S. Sargento, L. Guardalben, and
P. Steenkiste, “Lessons learned from a real vehicular network deployment of delay-
tolerant networking,” in Communication Workshop (ICCW), 2015 IEEE Interna-
tional Conference on Communications. IEEE, 2015, pp. 2489–2494.

115

https://tools.ietf.org/html/draft-irtf-ipnrg-arch-01
https://tools.ietf.org/html/draft-irtf-ipnrg-arch-01

[11] Z. Lu and J. Fan, “Delay/disruption tolerant network and its application in military
communications,” in Computer design and applications (ICCDA), 2010 international
conference on, vol. 5. IEEE, 2010, pp. V5–231.

[12] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks,” Wire-
less networks, vol. 8, no. 5, pp. 481–494, 2002.

[13] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-Tolerant Networking Architecture,” RFC 4838
(Informational), Internet Engineering Task Force, Apr. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4838.txt

[14] A. V. Vasilakos, Y. Zhang, and T. Spyropoulos, Delay tolerant networks: Protocols
and applications. CRC press, 2011.

[15] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” RFC 3986 (INTERNET STANDARD), Internet Engineering
Task Force, Jan. 2005, updated by RFCs 6874, 7320. [Online]. Available:
http://www.ietf.org/rfc/rfc3986.txt

[16] K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC 5050
(Experimental), Internet Engineering Task Force, Nov. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc5050.txt

[17] M. H. Jain and R. Patra, “Implementing delay tolerant networking,” Intel Research,
Berkeley, Technical Report, IRB-TR-04-020, Dec. 2004.

[18] S. Symington, S. Farrell, H. Weiss, and P. Lovell, “Bundle Security Protocol
Specification,” RFC 6257 (Experimental), Internet Engineering Task Force, May
2011. [Online]. Available: http://www.ietf.org/rfc/rfc6257.txt

[19] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network Time Protocol
Version 4: Protocol and Algorithms Specification,” RFC 5905 (Proposed
Standard), Internet Engineering Task Force, Jun. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5905.txt

[20] PTPd. (2015, Sep.) Precision time protocol daemon. [Online]. Available:
http://ptpd.sourceforge.net/

[21] K. Fall, “A delay-tolerant network architecture for challenged internets,” Intel Re-
search Technical, Report IRB-TR-03-003, Feb. 2003.

[22] D. Steedman, Abstract syntax notation one (ASN. 1): the tutorial and reference.
Technology appraisals, 1993.

116

http://www.ietf.org/rfc/rfc4838.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc5050.txt
http://www.ietf.org/rfc/rfc6257.txt
http://www.ietf.org/rfc/rfc5905.txt
http://ptpd.sourceforge.net/

[23] ASN, ITUT, “Encoding rules: Specification of basic encoding rules (ber), canoni-
cal encoding rules (cer) and distinguished encoding rules (der),” Technical report,
International Telecommunication Union, Tech. Rep., 2002.

[24] E. Arias and B. Guinot, “Coordinated universal time utc: historical background and
perspectives,” in Journees systemes de reference spatio-temporels, 2004.

[25] Delay-Tolerant Networking Research Group (DTNRG). (2015, Jan.)
Dtn2. [Online]. Available: https://sites.google.com/site/dtnresgroup/home/code/
dtn2documentation

[26] E. Davis and A. Doria, “D2.2: Functional specification for dtn infrastructure soft-
ware,” Folly Consulting and LTU, Tech. Rep., 2010.

[27] M. Demmer and K. Fall, “Dtlsr: delay tolerant routing for developing regions,”
in Proceedings of the 2007 workshop on Networked systems for developing regions.
ACM, 2007, p. 5.

[28] A. Seth, P. Darragh, S. Liang, Y. Lin, and S. Keshav, “An architecture for tetherless
communication,” Disruption Tolerant Networking, vol. 5142, 2005.

[29] Institut für Betriebssysteme und Rechnerverbund. (2015, Jan.) Ibr-dtn. [Online].
Available: https://trac.ibr.cs.tu-bs.de/project-cm-2012-ibrdtn

[30] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf, “Ibr-dtn: an efficient imple-
mentation for embedded systems,” in Proceedings of the third ACM workshop on
Challenged networks. ACM, 2008, pp. 117–120.

[31] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf, “Ibrdtn: A lightweight,
modular and highly portable bundle protocol implementation,” in Electronic Com-
munications of the EASST. Citeseer, 2011.

[32] D. Ellard, R. Altmann, A. Gladd, and D. Brown, “Dtn ip neighbor discovery (ipnd),”
Working Draft, IETF Secretariat, Internet-Draft draft-irtf-dtnrg-ipnd-02, November
2012. [Online]. Available: https://tools.ietf.org/html/draft-irtf-dtnrg-ipnd-02

[33] M. Demmer, J. Ott, and S. Perreault, “Delay-Tolerant Networking TCP
Convergence-Layer Protocol,” RFC 7242 (Experimental), Internet Engineering Task
Force, Jun. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7242.txt

[34] H. Kruse, S. Jero, and S. Ostermann, “Datagram Convergence Layers for the
Delay- and Disruption-Tolerant Networking (DTN) Bundle Protocol and Licklider
Transmission Protocol (LTP),” RFC 7122 (Experimental), Internet Engineering
Task Force, Mar. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7122.txt

117

https://sites.google.com/site/dtnresgroup/home/code/dtn2documentation
https://sites.google.com/site/dtnresgroup/home/code/dtn2documentation
https://trac.ibr.cs.tu-bs.de/project-cm-2012-ibrdtn
https://tools.ietf.org/html/draft-irtf-dtnrg-ipnd-02
http://www.ietf.org/rfc/rfc7242.txt
http://www.ietf.org/rfc/rfc7122.txt

[35] “Ieee standard for information technology - telecommunications and information ex-
change between systems - local and metropolitan area networks - specific requirement
part 15.4: Wireless medium access control (mac) and physical layer (phy) specifica-
tions for low-rate wireless personal area networks (wpans),” IEEE Std 802.15.4a-2007
(Amendment to IEEE Std 802.15.4-2006), pp. 1–203, 2007.

[36] Veniam R©. (2015, Sep.) Veniam, an internet of moving things. [Online]. Available:
https://veniam.com/

[37] A. Vahdat, D. Becker et al., “Epidemic routing for partially connected ad hoc net-
works,” Technical Report CS-200006, Duke University, Tech. Rep., 2000.

[38] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in intermittently con-
nected networks,” in Service Assurance with Partial and Intermittent Resources.
Springer, 2004, pp. 239–254.

[39] A. Lindgren, A. Doria, E. Davies, and S. Grasic, “Probabilistic Routing
Protocol for Intermittently Connected Networks,” RFC 6693 (Experimental),
Internet Engineering Task Force, Aug. 2012. [Online]. Available: http:
//www.ietf.org/rfc/rfc6693.txt

[40] M. Georgescu, T. Sahara, M. Ashar, H. Izumikawa, Y. Onogi, M. Tamai, and
S. Kashihara, “Performance analysis of file transmission in dtn2 and ibr-dtn,” 2013.

[41] R. Beuran, S. Miwa, and Y. Shinoda, “Performance evaluation of dtn implementa-
tions on a large-scale network emulation testbed,” in Proceedings of the seventh ACM
international workshop on Challenged networks. ACM, 2012, pp. 39–42.

[42] W.-B. Pöttner, J. Morgenroth, S. Schildt, and L. Wolf, “Performance comparison of
dtn bundle protocol implementations,” in Proceedings of the 6th ACM workshop on
Challenged networks. ACM, 2011, pp. 61–64.

[43] C. Gavoille, “Routing in distributed networks: Overview and open problems,” ACM
SIGACT News, vol. 32, no. 1, pp. 36–52, 2001.

[44] S. Jain, K. Fall, and R. Patra, Routing in a delay tolerant network. ACM, 2004,
vol. 34, no. 4.

[45] E. P. Jones and P. A. Ward, “Routing strategies for delay-tolerant networks,” Sub-
mitted to ACM Computer Communication Review (CCR), 2006.

[46] W. Moreira and P. Mendes, “Survey on opportunistic routing for delay/disruption
tolerant networks,” 2010.

[47] Z. Zhang, “Routing in intermittently connected mobile ad hoc networks and de-
lay tolerant networks: overview and challenges,” IEEE Communications Surveys &
Tutorials, vol. 1, no. 8, pp. 24–37, 2006.

118

https://veniam.com/
http://www.ietf.org/rfc/rfc6693.txt
http://www.ietf.org/rfc/rfc6693.txt

[48] A. Balasubramanian, B. Levine, and A. Venkataramani, “Dtn routing as a resource
allocation problem,” ACM SIGCOMM Computer Communication Review, vol. 37,
no. 4, pp. 373–384, 2007.

[49] L. Song and D. F. Kotz, “Evaluating opportunistic routing protocols with large
realistic contact traces,” in Proceedings of the second ACM workshop on Challenged
networks. ACM, 2007, pp. 35–42.

[50] S. C. Nelson, M. Bakht, and R. Kravets, “Encounter-based routing in dtns,” in
INFOCOM 2009, IEEE. IEEE, 2009, pp. 846–854.

[51] R. D’souza and J. Jose, “Routing approaches in delay tolerant networks: A survey,”
International Journal of Computer Applications, vol. 1, no. 17, pp. 8–14, 2010.

[52] T. Spyropoulos, R. N. Rais, T. Turletti, K. Obraczka, and A. Vasilakos, “Routing
for disruption tolerant networks: taxonomy and design,” Wireless networks, vol. 16,
no. 8, pp. 2349–2370, 2010.

[53] A. Mtibaa, M. May, C. Diot, and M. Ammar, “Peoplerank: Social opportunistic
forwarding,” in INFOCOM, 2010 Proceedings IEEE. IEEE, 2010, pp. 1–5.

[54] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forwarding in delay-
tolerant networks,” Mobile Computing, IEEE Transactions on, vol. 10, no. 11, pp.
1576–1589, 2011.

[55] E. M. Daly and M. Haahr, “Social network analysis for routing in disconnected delay-
tolerant manets,” in Proceedings of the 8th ACM international symposium on Mobile
ad hoc networking and computing. ACM, 2007, pp. 32–40.

[56] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry, “Epidemic algorithms for replicated database main-
tenance,” in Proceedings of the sixth annual ACM Symposium on Principles of dis-
tributed computing. ACM, 1987, pp. 1–12.

[57] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently con-
nected networks,” ACM SIGMOBILE mobile computing and communications review,
vol. 7, no. 3, pp. 19–20, 2003.

[58] A. Lindgren and K. S. Phanse, “Evaluation of queueing policies and forwarding
strategies for routing in intermittently connected networks,” in Communication Sys-
tem Software and Middleware, 2006. Comsware 2006. First International Conference
on. IEEE, 2006, pp. 1–10.

[59] S. Grasic, E. Davies, A. Lindgren, and A. Doria, “The evolution of a dtn routing
protocol-prophetv2,” in Proceedings of the 6th ACM workshop on Challenged net-
works. ACM, 2011, pp. 27–30.

119

[60] T.-K. Huang, C.-K. Lee, and L.-J. Chen, “Prophet+: An adaptive prophet-based
routing protocol for opportunistic network,” in Advanced Information Networking
and Applications (AINA), 2010 24th IEEE International Conference on. IEEE,
2010, pp. 112–119.

[61] S. D. Han and Y. W. Chung, “An improved prophet routing protocol in delay tolerant
network,” The Scientific World Journal, vol. 2015, 2015.

[62] P. Sok and K. Kim, “Distance-based prophet routing protocol in disruption tolerant
network,” in ICT Convergence (ICTC), 2013 International Conference on. IEEE,
2013, pp. 159–164.

[63] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an efficient
routing scheme for intermittently connected mobile networks,” in Proceedings of the
2005 ACM SIGCOMM workshop on Delay-tolerant networking. ACM, 2005, pp.
252–259.

[64] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “Maxprop: Routing for
vehicle-based disruption-tolerant networks.” in INFOCOM, vol. 6, 2006, pp. 1–11.

[65] J. Leland and I. Porche, “Future army bandwidth needs and capabilities,” Rand
Corporation, 2004.

[66] J. L. Burbank, P. F. Chimento, B. K. Haberman, and W. T. Kasch, “Key chal-
lenges of military tactical networking and the elusive promise of manet technology,”
Communications Magazine, IEEE, vol. 44, no. 11, pp. 39–45, 2006.

[67] European Telecommunications Standards Institute. (2015, Mar.) Tetra. [Online].
Available: http://www.etsi.org/technologies-clusters/technologies/tetra

[68] J. Nielson. (2015, Mar.) Terrestrial trunked radio. [Online]. Avail-
able: http://www.uwplatt.edu/files/csse/courses/prev/csse411-materials/s12/
TETRApaper Joe Nielson.docx

[69] P. Stavroulakis, Terrestrial trunked radio-TETRA: a global security tool. Springer
Science & Business Media, 2007.

[70] K.-W. Chin, “The behavior of manet routing protocols in realistic environments,” in
Communications, 2005 Asia-Pacific Conference on. IEEE, 2005, pp. 906–910.

[71] J.-M. Choi and Y.-B. Ko, “A performance evaluation for ad hoc routing protocols
in realistic military scenarios,” in Proceedings of the 9th International Conference on
Cellular and Intelligent Communications (CIC 2004), 2004.

[72] S. Parikh and R. C. Durst, “Disruption tolerant networking for marine corps condor,”
in Military Communications Conference, 2005. MILCOM 2005. IEEE. IEEE, 2005,
pp. 325–330.

120

http://www.etsi.org/technologies-clusters/technologies/tetra
http://www.uwplatt.edu/files/csse/courses/prev/csse411-materials/s12/TETRApaper_Joe_Nielson.docx
http://www.uwplatt.edu/files/csse/courses/prev/csse411-materials/s12/TETRApaper_Joe_Nielson.docx

[73] T. Jonson, J. Pezeshki, V. Chao, K. Smith, and J. Fazio, “Application of delay toler-
ant networking (dtn) in airborne networks,” in Military Communications Conference,
2008. MILCOM 2008. IEEE. IEEE, 2008, pp. 1–7.

[74] C. Rigano, K. Scott, J. Bush, R. Edell, S. Parikh, R. Wade, and B. Adamson, “Miti-
gating naval network instabilities with disruption toler,” in Military Communications
Conference, 2008. MILCOM 2008. IEEE. IEEE, 2008, pp. 1–7.

[75] IEEE Standards Association and others, “802.11-2012-ieee standard for information
technology–telecommunications and information exchange between systems local and
metropolitan area networks–specific requirements part 11: Wireless lan medium ac-
cess control (mac) and physical layer (phy) specifications,” Mar 2012.

[76] Microsoft R©. (2015, Mar.) How 802.11 wireless works. [Online]. Available:
https://technet.microsoft.com/en-us/library/cc757419(v=ws.10).aspx

[77] L. Guardalben, “Communication between nodes for autonomic and distributed man-
agement,” Ph.D. dissertation, Universidade de Aveiro, 2014.

[78] Linux Wireless wiki. (2015, Mar.) Documentation for the linux wireless (ieee-802.11)
subsystem. [Online]. Available: https://wireless.wiki.kernel.org/

[79] R. Kuschnig, E. Yanmaz, I. Kofler, B. Rinner, and H. Hellwagner, Profiling IEEE
802.11 Performance on Linux-based Networked Aerial Robots.

[80] Linux Wireless wiki. (2015, Mar.) Documentation - cfg80211. [Online]. Available:
https://wireless.wiki.kernel.org/en/developers/documentation/cfg80211

[81] ——. (2015, Mar.) Documentation - mac80211. [Online]. Available: https:
//wireless.wiki.kernel.org/en/developers/documentation/mac80211

[82] ——. (2015, Mar.) Documentation - nl80211. [Online]. Available: https:
//wireless.wiki.kernel.org/en/developers/documentation/nl80211

[83] G. P. Zanetti and C. E. Palazzi, “Non-invasive node detection in ieee 802.11 wireless
networks,” in Wireless Days (WD), 2010 IFIP. IEEE, 2010, pp. 1–5.

[84] Linux Wireless wiki. (2015, Apr.) Existing linux wireless drivers. [Online]. Available:
https://wireless.wiki.kernel.org/en/users/drivers

[85] J. Berg. (2015, Feb.) Radiotap - radiotap.org. [Online]. Available: http:
//www.radiotap.org/

[86] Linux Wireless wiki. (2015, May.) About iw. [Online]. Available: https:
//wireless.wiki.kernel.org/en/users/documentation/iw

[87] Debian Config. (2015, Ago.) iwconfig. [Online]. Available: https://wiki.debian.org/
iwconfig

121

https://technet.microsoft.com/en-us/library/cc757419(v=ws.10).aspx
https://wireless.wiki.kernel.org/
https://wireless.wiki.kernel.org/en/developers/documentation/cfg80211
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211
https://wireless.wiki.kernel.org/en/developers/documentation/nl80211
https://wireless.wiki.kernel.org/en/developers/documentation/nl80211
https://wireless.wiki.kernel.org/en/users/drivers
http://www.radiotap.org/
http://www.radiotap.org/
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://wiki.debian.org/iwconfig
https://wiki.debian.org/iwconfig

[88] The Tcpdump Group. (2015, Feb.) Tcpdump and libpcap. [Online]. Available:
http://www.tcpdump.org/

[89] Wireshark Foundation. (2015, Oct.) Wireshark. [Online]. Available: https:
//www.wireshark.org/

[90] The Tcpdump Group. (2015, Feb.) Manpage of pcap. [Online]. Available:
http://www.tcpdump.org/manpages/pcap.3pcap.html

[91] S. McCanne and V. Jacobson, “The bsd packet filter: A new architecture for user-
level packet capture,” in Proceedings of the USENIX Winter 1993 Conference Pro-
ceedings on USENIX Winter 1993 Conference Proceedings. USENIX Association,
1993, pp. 259–270.

[92] L. Deri et al., “Improving passive packet capture: Beyond device polling,” in Pro-
ceedings of SANE, vol. 2004. Amsterdam, Netherlands, 2004, pp. 85–93.

[93] L. M. Garcia, “Programming with libpcap - sniffing the network from our own ap-
plication,” Hakin9-Computer Security Magazine, pp. 38–46, 2008.

[94] M. Beeler, R. Gosper, and R. Schroeppel, “Hakmem. memorandum 239,” Artificial
Intelligence Laboratory, MIT, Feb, 1972.

[95] A. Oram and G. Wilson, “Beautiful code: Leading programmers explain how they
think (theory in practice),” 2007.

[96] Institut für Betriebssysteme und Rechnerverbund. (2015, Feb.) Ibr-dtn 1.0.0 doxygen.
[Online]. Available: https://www.ibr.cs.tu-bs.de/projects/ibr-dtn/doxygen/1.0.0/

[97] Gateworks R©. (2015, Jan.) Cambria gw2358-4 single board com-
puter. [Online]. Available: http://www.gateworks.com/product/item/
cambria-gw2358-4-network-processor

[98] Cambria Network Computer - Operating Manual For GW2358-4 Network Processor,
GATEWORKS R©, 08 2008, rev. 01.

[99] Atheros Communications R©. (2015, Jan.) Ar5004g - 802.11b/g wlan solution.
[Online]. Available: https://wikidevi.com/files/Atheros/specsheets/AR5004G.pdf

[100] OpenWrt. (2015, Feb.) Openwrt wireless freedom. [Online]. Available: https:
//openwrt.org/

[101] How-To Geek, LLC. (2015, Jun.) Understanding the load average on linux and
other unix-like systems. [Online]. Available: http://www.howtogeek.com/194642/
understanding-the-load-average-on-linux-and-other-unix-like-systems/

[102] NTP. (2015, Sep.) Network time protocol. [Online]. Available: http://ptpd.
sourceforge.net/

122

http://www.tcpdump.org/
https://www.wireshark.org/
https://www.wireshark.org/
http://www.tcpdump.org/manpages/pcap.3pcap.html
https://www.ibr.cs.tu-bs.de/projects/ibr-dtn/doxygen/1.0.0/
http://www.gateworks.com/product/item/cambria-gw2358-4-network-processor
http://www.gateworks.com/product/item/cambria-gw2358-4-network-processor
https://wikidevi.com/files/Atheros/specsheets/AR5004G.pdf
https://openwrt.org/
https://openwrt.org/
http://www.howtogeek.com/194642/understanding-the-load-average-on-linux-and-other-unix-like-systems/
http://www.howtogeek.com/194642/understanding-the-load-average-on-linux-and-other-unix-like-systems/
http://ptpd.sourceforge.net/
http://ptpd.sourceforge.net/

	Contents
	List of Figures
	List of Tables
	List of Equations
	List of Algorithms
	Acronyms
	Introduction
	Motivation
	Objectives
	Contributions
	Document Organization

	State of the art
	Introduction
	Delay Tolerant Networks
	Overview
	Definition
	Applications
	Architecture
	Virtual Message Switching Using Store-and-Forward
	Nodes and Endpoints
	Endpoint Identifiers and Registrations
	Routing and Forwarding
	Bundle Fragmentation and Reassembly
	Reliability, Custody Transfer and Security
	Timestamps and Time Synchronization

	Bundle Protocol
	Service Description
	Bundle Format

	Implementations
	DTN2
	IBR-DTN
	Helix
	Comparison between DTN implementations

	Routing
	Overview about Routing
	Routing in Delay Tolerant Networks
	Epidemic
	PRoPHET
	Spray and Wait
	MaxProp
	RAPID
	Comparison between DTN routing protocols

	Routing in Military Networks
	Terrestrial Trunked Radio (TETRA)
	Military Networks as MANETs
	Military Networks as DTNs
	Comparison between the presented military networks

	IEEE 802.11 WLAN
	Overview
	Architecture
	Infrastructure vs Ad-Hoc Operation Modes

	Media Access Control (MAC) Layer
	Linux Wireless Subsystem
	Gather MAC and Physical Layer Information from Application Layer
	Gather Connection Status
	Capture Wireless Frames

	Chapter Considerations

	Scenarios and Proposed Solution
	Introduction
	Navy Scenarios
	Inspection/Boarding
	Naval and Amphibious Operations
	Population Support
	Summary

	Proposed Solution
	Link Quality
	Quality-PRoPHET

	Chapter Considerations

	Architecture and Implementation
	Introduction
	Quality Connection Reader
	Access the Quality Parameters
	Architecture
	Initialization
	Neighbors Manager
	QCR General Packet
	Periodic Events: Beacon Generator, Discover Module and Watchdog Timer
	Listening Socket
	SSI Reader
	IPC Socket

	QCR Menu Application

	Q-PRoPHET: Integration with IBR-DTN
	Chapter Considerations

	Integration and Evaluation
	Introduction
	Hardware and Operating System Description
	Single Board Computer
	Operating System

	Cambrias Configuration and Software Integration
	Cambrias Configuration
	Software Integration

	Evaluation Challenges
	Quality Connection Reader
	Quality-PRoPHET
	Scripts and IBR-DTN source code modifications
	IBR-DTN modifications to gather data logs
	Scripts to generate data logs
	Scripts to perform the tests

	Scenario 1: Inspection/Boarding
	Scenario Definition and Emulation
	Evaluation Procedure
	Obtained Results

	Scenario 2: Naval and Amphibious
	Scenario Definition and Emulation
	Evaluation Procedure
	Obtained Results

	Scenario 3: Population Support
	Scenario Definition and Emulation
	Evaluation Procedure
	Obtained Results
	Quality Aging

	Chapter Considerations

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

