
Universidade de Aveiro Departamento de Matemática
2016

Elóısa Catarina
Monteiro de
Figueiredo
Amaral e Macedo

Estudo Numérico de Regularidade em Programação
Semidefinida e Aplicações

Numerical Study of Regularity in Semidefinite
Programming and Applications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/78556442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade de Aveiro Departamento de Matemática
2016

Elóısa Catarina
Monteiro de
Figueiredo
Amaral e Macedo

Estudo Numérico de Regularidade em Programação
Semidefinida e Aplicações

Numerical Study of Regularity in Semidefinite
Programming and Applications

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Matemática, realizada sob a
orientação cient́ıfica da Doutora Tatiana Tchemisova Cordeiro, Professora
Auxiliar do Departamento de Matemática da Universidade de Aveiro.

o júri / the jury

presidente / president Doutor Artur da Rosa Pires
Professor Catedrático, Universidade de Aveiro

vogais / examiners committee Doutor Gerhard-Wilhelm Weber
Professor Catedrático, Institute of Applied Mathematics, Middle East Tech-

nical University, Ancara, Turquia

Doutora Maria Purificación Galindo Villardón
Professora Titular, Faculdade de Medicina, Universidade de Salamanca, Es-

panha

Doutor Manuel Valdemar Cabral Vieira
Professor Auxiliar, Faculdade de Ciências e Tecnologia, Universidade Nova

de Lisboa

Doutor Pedro Filipe Pessoa Macedo
Professor Auxiliar, Universidade de Aveiro

Doutora Tatiana Tchemisova Cordeiro
Professora Auxiliar, Universidade de Aveiro (orientadora)

acknowledgements /
agradecimentos

First and foremost, I would like to express my thanks to my supervisor,
Professor Tatiana Tchemisova, for her support during this journey. My
gratitude extends to Professors Adelaide Freitas and Raquel Pinto, who
helped me improve this work.
I am also indebted to the University of Aveiro, in particular Professor
João Santos, for the opportunity of pursuing my dream of graduate
studies, by granting me tuition exemption, and CIDMA (Center for
Research & Development in Mathematics and Applications) for all the
support to invest in my formation and participation in national and
international conferences. Thanks also EURO (Association of Euro-
pean Operational Research Societies) for their bursary, allowing me to
attend a Convex Optimization Course.
Thanks to the professors and colleagues with whom I had the plea-
sure of working at the Department of Mathematics of the University
of Aveiro.
Special thanks are due to my friends Cristina, Elisabete, Isabel, Neusa,
Paula, Sandra, Teresa, Tita and Milé, who are my company for count-
less good or bad days.
I would also like to express my warm thanks to Rui for his love, sup-
port and patience along these years. Last, but not least, I owe great
thanks to my parents, Gabi and Albanito, for their love and continuous
encouragement. They are a constant source of inspiration throughout
my life. This thesis is dedicated to them.

palavras-chave Programação semidefinida (SDP), regularidade, qualificações de
restrições (CQ), condições de optimalidade, análise de dados, cluster-
ização.

resumo Esta tese é dedicada ao estudo de regularidade em programação
semidefinida (SDP - semidefinite programming), uma importante área
da optimização convexa com uma vasta gama de aplicações. A teoria
de dualidade, condições de optimalidade e métodos para SDP assentam
em certos pressupostos de regularidade que nem sempre são satisfeitos.
A ausência de regularidade, isto é, não regularidade, pode afetar a car-
acterização da optimalidade de soluções e os solvers podem apresentar
dificuldades numéricas, conduzindo a resultados pouco fiáveis.
Existem diferentes noções associadas a regularidade. Nesta tese, es-
tudamos em particular, os conceitos de problemas bem-postos, bem
comportados e condições de qualificação de restrições (CQ - constraint
qualifications), bem como as relações entre eles. Uma das CQs mais
utilizadas em SDP é a condição de Slater. Esta condição garante
que as condições de optimalidade de primeira ordem, conhecidas como
condições de Karush-Kuhn-Tucker, estão satisfeitas. Os solvers atuais
não verificam se um problema a resolver satisfaz a condição de Slater,
mas trabalham nesse pressuposto. Desenvolvemos e implementamos
em MATLAB procedimentos numéricos para verificar se um dado prob-
lema de SDP é regular em termos da condição de Slater e determinar o
grau de irregularidade no caso de problemas não regulares. Os resulta-
dos das experiências numéricas apresentados neste trabalho mostram
que os procedimentos propostos são eficientes e confirmam as con-
clusões obtidas sobre a relação entre a condição de Slater e outras
noções de regularidade.
Outra contribuição da tese consiste no desenvolvimento e na imple-
mentação em MATLAB de um procedimento numérico para gerar prob-
lemas de SDP não regulares com um determinado grau de irregulari-
dade. A coleção de problemas não regulares construidos usando este
gerador é de acesso livre e permite testar novos métodos e solvers para
SDP.
Uma outra contribuição desta tese está relacionada com uma aplicação
de SDP em análise de dados. Consideramos um modelo de SDP não
linear, bem como as suas relaxações lineares para problemas de cluster-
ização, e estudamos a sua regularidade. Mostramos que o modelo não
linear é não regular, enquanto que as suas relaxações são regulares.
Sugerimos um algoritmo baseado em modelos de SDP para resolver
problemas de clusterização e redução de dimensionalidade, e imple-
mentámo-lo em R. Os testes numéricos usando vários conjuntos de
dados confirmam a rapidez e eficiência deste procedimento numérico.

keywords Semidefinite programming (SDP), regularity, constraint qualifications
(CQ), optimality conditions, data analysis, clustering.

abstract This thesis is devoted to the study of regularity in semidefinite pro-
gramming (SDP), an important area of convex optimization with a
wide range of applications. The duality theory, optimality conditions
and methods for SDP rely on certain assumptions of regularity that
are not always satisfied. Absence of regularity, i.e., nonregularity, may
affect the characterization of optimality of solutions and SDP solvers
may run into numerical difficulties, leading to unreliable results.
There exist different notions associated to regularity. In this thesis,
we study in particular, well-posedness, good behaviour and constraint
qualifications (CQs), as well as relations among them. A widely used
CQ in SDP is the Slater condition. This condition guarantees that the
first order necessary optimality conditions in the Karush-Kuhn-Tucker
formulation are satisfied. Current SDP solvers do not check if a prob-
lem satisfies the Slater condition, but work assuming its fulfilment. We
develop and implement in MATLAB numerical procedures to verify if a
given SDP problem is regular in terms of the Slater condition and to de-
termine the irregularity degree in the case of nonregularity. Numerical
experiments presented in this work show that the proposed procedures
are quite efficient and confirm the obtained conclusions about the re-
lationship between the Slater condition and other regularity notions.
Other contribution of the thesis consists in the development and MAT-
LAB implementation of an algorithm for generating nonregular SDP
problems with a desired irregularity degree. The database of nonregu-
lar problems constructed using this generator is publicly available and
can be used for testing new SDP methods and solvers.
Another contribution of this thesis is concerned with an SDP applica-
tion to data analysis. We consider a nonlinear SDP model and linear
SDP relaxations for clustering problems and study their regularity. We
show that the nonlinear SDP model is nonregular, while its relaxations
are regular. We suggest a SDP-based algorithm for solving clustering
and dimensionality reduction problems and implement it in R. Numeri-
cal tests on various real-life data sets confirm the fastness and efficiency
of this numerical procedure.

“If you live each day as it was your last,
someday you’ll most certainly be right...”

– Steve Jobs

Contents

Contents i

List of Tables v

1 Introduction 1
1.1 Overview and motivation . 1
1.2 Literature review . 2
1.3 Aims and contributions . 7
1.4 Structure of the thesis . 8

2 Semidefinite programming 11
2.1 Preliminaries . 11
2.2 Linear SDP Problem . 16
2.3 Duality and optimality results in SDP . 21
2.4 Interior point methods for solving SDP problems 27
2.5 Numerical solution of SDP problems . 32

2.5.1 Overview of existing SDP solvers 32
2.5.2 An example of a nonregular SDP problem: numerical issues when

the Slater regularity condition fails to hold 34

3 Regularity in semidefinite programming 37
3.1 Constraint qualifications . 37

3.1.1 The Slater condition . 37
3.1.2 Other constraint qualifications in SDP 40
3.1.3 Relationships between different constraint qualifications in SDP . . 42
3.1.4 Testing the Slater condition . 43

3.2 Well-posedness . 51
3.2.1 Well-posedness in the sense of Renegar 52
3.2.2 Testing well-posedness . 54

3.3 Good behaviour . 57
3.3.1 Good behaviour in the sense of Pataki 57
3.3.2 Testing good behaviour . 60

3.4 Relationships between different notions of regularity in SDP 61

i

CONTENTS

3.5 Conclusions . 63

4 Testing of regularity in SDP 65
4.1 SDPreg: a numerical procedure to test the Slater condition in SDP problems 65

4.1.1 Description of the SDPreg procedure 68
4.1.2 Implementation details . 69

4.2 DIISalg: a numerical procedure to determine the irregularity degree of SDP
problems . 71

4.3 Numerical experiments . 71
4.3.1 Description of the experiments and numerical results 71
4.3.2 Comparison of regularity results . 78

4.4 Conclusions . 80

5 Generating nonregular instances in semidefinite programming 83
5.1 An algorithm for generating nonregular SDP instances 83

5.1.1 A class of nonregular SDP problems 84
5.1.2 Generating nonregular SDP instances 85

5.2 Implementation and numerical experiments 87
5.2.1 nonregSDPgen: a nonregular SDP instance generator 87
5.2.2 NONREGSDP: a nonregular SDP database 88
5.2.3 Numerical results and discussion . 88

5.3 Conclusions . 93

6 Application of semidefinite programming in data analysis 95
6.1 Brief introduction and motivation . 95

6.1.1 Clustering: preliminaries . 97
6.2 Integer programming model for clustering and its solution 98

6.2.1 Integer programming model . 98
6.2.2 K-means algorithm . 99

6.3 Semidefinite programming-based model for clustering and its properties . . 100
6.3.1 SDP-based model . 100
6.3.2 General properties of the SDP-based model 102
6.3.3 Study of regularity of the SDP-based model 103
6.3.4 Recovering the assignments . 104

6.4 Approximation algorithm for solving the SDP-based model 108
6.4.1 Linear SDP relaxations of the SDP-based model 108
6.4.2 Study of regularity of the SDP relaxations 110
6.4.3 SDP-based approximation algorithm 114

6.5 Clustering and dimensionality reduction 120
6.5.1 Clustering and disjoint PCA . 120
6.5.2 An alternating least-squares algorithm 122

6.6 A new SDP-based approach to clustering and dimensionality reduction . . 125
6.6.1 Description of the new approach . 125

ii

CONTENTS

6.6.2 Two-Step-SDP algorithm . 126
6.6.3 Two-Step-SDP and ALS algorithms 128
6.6.4 Implementation and numerical results 128

6.7 Conclusions . 136

7 Concluding remarks and future research topics 137

A Sparse SDPA format 141

B The MATLAB functions SDPreg and DIISalg 143

C The MATLAB function nonregSDPgen 145

D NONREGSDP: a collection of nonregular SDP test problems 147

E The R function TwostepSDPClust 149

Bibliography 151

Index 165

iii

CONTENTS

iv

List of Tables

2.1 Numerical solution of the linear SDP problem (2.42) using SDPT3 4.0. . . 35

2.2 Numerical solution of the linear SDP problem (2.42) using SeDuMi 1.34. . 35

4.1 Numerical results using SDPreg on problems collected from literature (com-
putation time is in seconds). 73

4.2 Numerical results using DIISalg on problems collected from literature (com-
putation time is in seconds). 75

4.3 Numerical results using SDPreg on problems from SDPLIB (computation
time is in seconds). 76

4.4 Numerical results using DIISalg on problems from SDPLIB (computation
time is in seconds). 77

4.5 Numerical results on testing regularity using: SDPreg to check the Slater
condition, DIISalg (if s∗ = 0, then the Slater condition holds for the SDP
problem), the lower and upper bounds of the Renegar condition number
from [38] and the rigorous upper bound of the optimal value from [61] (if C
or p̄∗ is finite, then the SDP problem is well-posed). 79

4.6 Summary of regularity tests in terms of the fulfilment of the Slater condition
and well-posedness according to [38]. 79

4.7 Summary of regularity tests in terms of the fulfilment of the Slater condition
and well-posedness according to [61]. 79

5.1 Numerical results using DIISalg and SDPT3 on SDP instances from NON-
REGSDP (computation time is in seconds). 90

5.2 Numerical results using DIISalg and SeDuMi on SDP instances from NON-
REGSDP (computation time is in seconds). 91

6.1 Summary of the characteristics of the data sets and the number of clusters
of objects used in the experiments. 131

6.2 Numerical results using the Two-Step-SDP algorithm. 133

6.3 Numerical results using the K-means algorithm. 133

6.4 Numerical results using the ALS algorithm. 133

v

LIST OF TABLES

6.5 Pseudo-confusion matrices for classification of objects of real data sets ob-
tained using the R functions TwostepSDPClust, kmeans and CDpca. The
OECD countries data is not included, since the true classes of this data set
are unknown. 135

D.1 SDP instances from the NONREGSDP database and the values of their
irregularity degrees computed with DIISalg. 148

vi

Chapter 1

Introduction

1.1 Overview and motivation

Convex optimization deals with problems of minimizing a convex objective function over
a convex set. Semidefinite programming (SDP), which refers to minimizing a linear function
subject to linear matrix inequalities (LMIs), is an important area of convex optimization.
SDP problems can also be considered as conic optimization problems, since they consist
in optimizing a linear function over the intersection of an affine space and a closed convex
cone. Sometimes, SDP is seen as a generalization of linear programming (LP), where the
vector of variables is replaced by a matrix.

SDP is an active area of research mostly due to its many applications in mechanical
and electrical engineering, combinatorial optimization, robust optimization, computational
biology, quantum chemistry, atomic physics, structural optimization, approximation the-
ory, systems and control theory, circuit design, sensor network location, signal processing,
and data analysis, among others (see, e.g., the surveys [8, 69, 146, 159]). Besides applica-
tions, there are other reasons for the increasing interest in SDP. Many convex optimization
problems can be reformulated as SDP ones. Moreover, SDP relaxations of nonconvex
optimization problems provide, in general, good approximations. The SDP models are
specially attractive since there exist efficient methods for solving them in polynomial-time
[8, 69].

The methods for solving SDP problems are based on optimality conditions. The most
known and widely used optimality conditions for SDP are the first-order necessary op-
timality conditions, also called Karush-Khun-Tucker-type (KKT) conditions [159]. The
KKT optimality conditions are usually derived under some special assumptions on the
feasible set of the problem. These assumptions are called constraint qualifications (CQs)
or regularity conditions [13, 55, 69, 159]. CQs play also an important role in deriving dual-
ity relations, sensitivity/stability analysis and convergence of computational methods [68].
One such CQs widely used in SDP is the Slater regularity condition. There exist other
notions associated to regularity, such as well-posedness and good behaviour. The regu-
larity of an optimization problem is specially important to derive optimality conditions,

1

CHAPTER 1. INTRODUCTION

guarantee the efficiency of numerical methods and stability of the solution. In practice,
the regularity conditions may be difficult to verify. Although conditions of regularity are
known in optimization, and in particular, in SDP, some are often used in a very general
sense, not permitting to verify them in a rigorous way. Sometimes, one regularity notion
is substituted by another, nevertheless the relationship between regularity notions are not
well established.

The most efficient SDP methods are based on generalizations of the interior point
method, firstly proposed by Karmarkar [67] for LP. Current popular SDP methods are the
primal-dual interior point methods, which require regularity akin to the Slater condition
of both primal and dual problems. Although in [31] it is shown that the Slater condition
holds generically for linear conic problems, including the SDP ones, in practice, there exist
many SDP instances for which the Slater condition fails to hold (e.g., [23, 38, 49, 61, 152]).
For nonregular SDP problems, the interior point methods, as well as the majority of other
known methods, can not be applied, standard SDP solvers may run into difficulties and
return solutions that can be far from the true optimal ones. Although in these cases some
special techniques can be applied, the truth is that, in practice, the SDP solvers may
still run into numerical difficulties. Therefore, the topic on (ir)regularity, strange or bad
behaviour of SDP problems on methods is timely. It is essential to develop numerical
procedures, that can be considered as presolving tools, for verifying the regularity in some
sense of a given problem, in order to guarantee the reliability of results. For testing and im-
plementing such procedures, or new stopping criteria and methods, it is important to have
libraries of nonregular SDP problems, or procedures that permit to generate nonregular
SDP problem instances.

Over the past few years, new SDP applications to data analysis have appeared, e.g., in
computational biology, involving large data sets. This usually leads to large-scale problems.
The SDP models are often nonlinear and very difficult to solve, but linear relaxations and
methods based on heuristics revealed to be very efficient on solving such problems.

This thesis is three-fold. First, we study regularity of SDP problems from both theo-
retical and numerical viewpoints, and suggest a numerical procedure for testing the Slater
condition. Second, we develop a generator of nonregular SDP instances failing the Slater
condition. The third topic covered in this thesis is related to a SDP application to data
analysis in particular to clustering and dimensionality reduction problems.

1.2 Literature review

The SDP history can be traced back to the work of Bellman and Fan [11], in 1963. It
seems to be the earliest work on SDP theory, where a SDP problem and the associated dual
were formulated, optimality conditions were described and certain results on duality were
established. It was already shown in this work that regularity of problems is needed to
prove strong duality in SDP. Since that time, the theory and methods of SDP were actively
developing, and many papers and books have appeared. Among numerous surveys and
books dedicated to SDP, its theory, applications and algorithms, we can mention [47, 69, 70,

2

CHAPTER 1. INTRODUCTION

83, 140, 146] and [8, 42, 159]. The connection of SDP to other areas of convex optimization,
such as LP and Semi-Infinite Programming (SIP), is studied in, e.g., [79, 80, 147]. Many
SDP applications are reviewed in, e.g., [8, 28, 43, 69, 86, 140, 141, 146, 149, 159]. SDP has
emerged as a powerful tool in combinatorial optimization relaxations of NP-hard problems.
One of the most widely known combinatorial problems is the max-cut problem. In [43],
it was shown that a SDP relaxation can provide good approximations for this problem
and the randomized SDP-based approximation algorithm was suggested. Since then, SDP
models has been successfully used in the development of approximation algorithms for
several classes of hard combinatorial optimization problems [83].

Establishing optimality conditions is fundamental for solving any optimization problem.
Optimality conditions for SDP are studied in, e.g., [13, 24, 36, 69, 75, 158, 159]. The KKT
conditions provide first-order necessary optimality conditions to characterize the optimality
of a feasible solution. These optimality conditions are formulated under assumption that
the constraints of the problem satisfy certain regularity conditions, so-called CQs [13, 55,
69, 159]. For convex SDP problems, the KKT conditions are proved to be both necessary
and sufficient optimality conditions [13, 69, 159].

Regularity plays an important role in deriving duality relations, sensitivity/stability
analysis and convergence of computational methods [68, 134]. An optimization problem is
usually considered to be regular if certain CQ is satisfied [55], and nonregular, otherwise.
The Slater condition, also called Slater CQ or Slater regularity condition [69], is widely
used in SDP and many authors assume in their studies that this condition holds (see, e.g.,
[23, 69, 80, 126, 159]). Besides the Slater condition, there exist other CQs, such as the
Robinson and the Mangasarian-Fromovitz CQs, and some works include indication on their
relationships (e.g., [97, 99, 132, 134, 159]). Many algorithms for convex optimization, in
particular SDP, are based on solving the KKT conditions, and thus, rely on the assumption
that the Slater condition holds.

Recently, much attention has been devoted to the failure of regularity in SDP, and
specially with respect to the Slater condition, e.g., [37, 38, 49, 61, 111, 152, 155]. When
the Slater condition does not hold, the KKT optimality conditions may fail to characterize
optimality of a feasible solution [23, 78, 156]. Therefore, there has been an increasing
interest in studying new optimality conditions that do not require CQs, called CQ-free
optimality conditions (see, e.g., [48, 62, 63, 78, 125, 126]).

In [62], a new approach to closing duality gaps for SDP without the Slater condition
is presented, strong duality results are derived under a general condition weaker than the
Slater CQ, and a sequential form of optimality conditions without CQs are derived. No
computational tests to illustrate the properties of this approach were reported. In [78], new
CQ-free optimality conditions for linear SDP problems were proposed. These conditions
are based on the notion of immobile index subspace for SDP problems and are proved
to be efficient in the cases when the KKT optimality conditions can not be applied since
the Slater condition fails to hold, and coincide with the KKT optimality conditions in
the regular cases. Nevertheless these optimality conditions are proved to be equivalent to
that in [48, 125, 126], they are more constructive, since an algorithm proposed in [78] for
constructing the immobile index subspace permits to formulate these optimality conditions

3

CHAPTER 1. INTRODUCTION

in the explicit form.
A common approach to deal with SDP problems failing the Slater condition is to fulfil

a preprocessing or regularization technique [22, 47, 69]. The idea is to construct equivalent
SDP problems satisfying the Slater condition. In [48], a presolving step to regularize
SDP problems failing the Slater condition via minimal faces of a closed convex cone was
proposed. Recently, in 2013, the paper of Cheung, Schurr and Wolkowicz [23] presented a
backward stable preprocessing technique for SDP problems for which the Slater condition
fails. The regularization procedure described in this paper applies the Borwein-Wolkowicz
facial reduction process [17] and permits to reduce the SDP problem into a smaller one
satisfying the Robinson condition. This involves finding the minimal face of the semidefinite
cone that contains the feasible set of the SDP problem. In [69], an initialization strategy
for obtaining a strictly feasible solution of a SDP problem, called self-dual embedding, was
described. The idea of a self-dual embedding technique is to transform the SDP problem
into a larger one, by embedding the primal problem with its dual. The resulting (larger)
SDP problem satisfies the Slater condition and an initial solution is known [42, 69, 120].
Therefore, the failure of the Slater condition in a given SDP should not be an issue for the
self-dual embedding technique.

In [31], it was shown that the Slater condition holds generically for linear conic pro-
grams, including SDP. This means that the set of SDP problem instances failing the Slater
condition has measure zero [5, 31]. However, this interesting theoretical result does not
mean that any given SDP problem should satisfy the Slater condition. In practice, there
are several SDP instances for which the Slater condition fails to hold and many authors
are drawing their attention to the study of theoretical and numerical difficulties that can
occur in such cases (see, e.g., [23, 37, 38, 49, 61, 111, 152, 155]). In the case of nonregular
SDP problems, a nonzero duality gap can exist, and/or the dual (or primal) optimal value
may not be attained, one of the primal or dual problems may be feasible and bounded
while the other can be infeasible [111, 112, 126, 156]. In [152], it is noticed some strange
behaviours of SDP solvers when the Slater condition fails to hold for at least one of the
primal or dual problems. It is also pointed out that in these cases there exists a significant
“discrepancy between the true and the computed optimal values”. Therefore, it is very
important to develop special procedures for testing the Slater condition on SDP problems.
Since standard SDP methods require the Slater condition to hold, it is important to check
if it is satisfied before solving the problem. According to [142], “in terms of worst-case
performance, deciding whether Slater condition holds for a given SDP problem seems no
easier than solving an SDP problem”. This is one of the reasons why no efficient numerical
procedure to verify the Slater condition has been proposed till now.

In the literature, other notions associated to regularity are often used, such as well-
posedness and good behaviour of optimization problems. Well-posedness is in general,
related to stability of the optimal solutions [29, 69, 77, 138]. In [77], different notions of
well-posedness (in particular, the well-posedness in the sense of Hadamard, Tikhonov and
Levitin-Polyak, and strong well-posedness) of convex problems are studied and compared.
It is shown that under the Slater condition, Hadamard’s well-posedness is equivalent to
that of Tikhonov. Theoretical study of well-posedness of optimization problems can be

4

CHAPTER 1. INTRODUCTION

rather difficult and its practical verification is not always easy. The problems that are not
well-posed are called ill-posed. Ill-posed problems are quite common in applications and,
according to [61], may occur due to the lack of precise mathematical formulations. With
respect to the SDP case, “a feasible problem that does not satisfy the Slater condition is
ill-posed in the sense that an arbitrary small perturbation of the problem can change its
status from feasible to infeasible” [69]. In [127], the Renegar’s condition number is defined
as the scale-invariant reciprocal of the smallest data perturbation that will render the
perturbed problem primal or dual infeasible. The Renegar’s condition number describes
the sensitivity of the problem and is used to test well-posedness. It is mentioned in [38, 59]
that the computation of the Renegar’s condition number can be rather expensive. In
[38, 61], different characterizations of well-posedness of SDP problems were proposed. In
the paper of Freund, Ordóñez and Toh [38], a numerical approach to characterization
of the well or ill-posedness based on estimating lower and upper bounds of the Renegar’s
condition number for a SDP problem was described. It is based on solving several auxiliary
SDP problems, in structure and size compatible with the original primal and dual SDP
problems. In [61], another approach to characterization of the well or ill-posedness based on
rigorous upper bounds for the optimal values of SDP problems was proposed. It is shown
that such upper bounds are related to the Renegar’s condition number and it is proposed
an algorithm for computing rigorous upper bounds. This approach is constructive and
based on obtaining rigorous upper (and lower) bounds and error bounds for the optimal
values, by properly postprocessing the output of a SDP solver. The main feature of this
approach is that it uses interval arithmetic and the computation of the rigorous bounds
takes into account all rounding errors and possible small errors presented in the input data.

More recently, Pataki introduced in [111] the notion of good behaviour of a SDP problem
and presented characterizations of well and badly-behaved problems from the standpoint of
duality, showing that it is important to verify if a given problem is well or badly-behaved
in order to avoid numerical difficulties. The proposed characterizations of good or bad
behaviour may be difficult to apply on a given SDP problem, since they are based on
special reformulations of the problems. The presented standard SDP reformulations have
a strictly feasible block, and some vanishing variables. Such reformulations involve using
a sequence of operations on the SDP system of constraints, such as deletion of some rows
and corresponding columns, rotation and contraction of all constraint matrices. In [111],
it is stated that “it is nontrivial to prove that the standard reformulation exists”.

For a long time, the most efficient method for solving SDP problems was the ellipsoid
method [46]. However, its performance revealed to be very slow in practice, which has
motivated the research community to seek more efficient methods. The success of inte-
rior point methods in LP has stimulated their application and generalization in SDP. The
special structure of SDP programs turned possible their efficient solution by interior point
methods. In the 1990s, the works of Nesterov and Nemirovski [107, 108], and Alizadeh [4]
were extremely important in developing the theory of interior point methods for SDP [103].
In [107] and [108], interior point methods based on the concept of self-concordant barrier
functions were extended for general convex programming problems. In [4], it was proposed
an interior point algorithm for SDP based on an extension of the Ye’s projective poten-

5

CHAPTER 1. INTRODUCTION

tial reduction method for LP. In [145], Vandenberghe and Boyd proposed a primal-dual
potential reduction method for convex optimization problems involving LMIs, based on
the theory developed by Nesterov and Nemirovski, and presented some numerical experi-
ments on SDP problems arising from control theory. In 1996, Helmberg, Rendl, Vanderbei
and Wolkowicz [54] developed a primal-dual interior point algorithm for SDP and showed
its applicability to max-cut and min-max eigenvalue problems. Since then, primal-dual
interior point methods become the leader choice for SDP [69, 120].

The primal-dual interior point methods attempt to solve both primal and dual SDP
problems, in order to minimize the duality gap, and rely on assumptions of regularity, i.e.,
it is assumed that both primal and dual problems satisfy the Slater condition [69]. These
methods search for a primal-dual pair of optimal solutions that satisfy the KKT optimality
conditions. This is done by using at each iteration a modified Newton method in the region
where the matrix variables are positive definite [161]. The idea is to consider a primal-
dual pair of SDP problems perturbed by a barrier parameter. Assuming that the Slater
condition holds for both, the KKT optimality conditions are formulated for the perturbed
SDP problems, resulting in a perturbed system of nonlinear equations. To get the solution
of the perturbed system, a damped Newton method is often applied in conjunction with
a reduction of the barrier parameter toward zero [8]. Forming and solving the system
of equations at each iteration can be the most time-consuming parts of any primal-dual
interior point method, in which Cholesky factorizations are usually performed [161].

Over the past few years, other algorithms have been proposed for SDP, such as, aug-
mented Lagrangian methods [20, 21, 135, 165], bundle methods [53], new Newton-type
methods [66], modified barrier methods [71], filter-trust-region methods [57], and methods
based on quadratic regularization and augmented Lagrangian techniques [96]. In [37], a
method with no regularity assumption in terms of the Slater condition was proposed to
solve SDP problems. However, there is no report on its implementation and numerical
results.

Actually, the most popular methods for solving SDP problems are the primal-dual
interior point methods [8, 42] and current efficient SDP solvers, such as CSDP [14], SDPA
[162], SDPT3 [143], and SeDuMi [136], are based on variants of these methods. The interior
point methods provide, in general, accurate solutions for problems of moderate size. There
are however some drawbacks, namely, in terms of (in)efficiency on solving large-scale and
nonregular SDP problems [42, 152, 161]. The absence of the Slater condition may affect the
performance of standard algorithms, which may present difficulties on their convergence
and efficiency, and coupled with the use of floating point arithmetic, wrong solutions may be
produced and the solvers may run into numerical difficulties (see, e.g., [23, 37, 152, 155]),
even when the self-dual embedding technique is implemented in the SDP solver, as in
SeDuMi [23, 42].

The SDPLIB [15] is a well known collection of SDP instances that is often used to test
and develop new methods or solvers. In [122], it was mentioned that it would be important
to have a library of infeasible SDP instances. In [85], an algorithm for generating infeasible
SDP instances is presented and in [155], a generator of hard SDP instances, for which strict
complementary fails, is proposed. In this light, a generator of nonregular SDP instances

6

CHAPTER 1. INTRODUCTION

failing the Slater condition with predefined properties would also be useful.
SDP has many applications that can often result in large-scale problems, such as those

arising from quantum chemistry, sensor network localization and data analysis [161]. To
handle large-scale problems, some parallel versions of current SDP solvers have been re-
cently proposed, such as SDPARA and a parallel version of CSDP [8, 16, 161], but to
benefit of the full capabilities of these solvers, one should make use of multiprocessor (with
multicore architecture) computers. When the computational resources are limited, other
methods and strategies should be developed. For example, approximation algorithms based
on some SDP relaxations have been suggested for solving specific and possibly large-scale
problems in data analysis.

Data analysis is specially important for obtaining meaningful information hidden on
(large) data sets. There exist various data analysis techniques, such as principal component
analysis and clustering. In [115, 116], an application of nonlinear SDP models to clustering
problems and an approximation algorithm for solving such models were proposed. The
algorithm is based on linear SDP relaxations and on a rounding procedure that uses some
heuristic to obtain a feasible solution for the nonlinear model. It revealed to be very
efficient for the tested data sets in [116]. Another approach to solve clustering problems
based on the nonlinear SDP model from [115, 116] was proposed in [81]. The main idea is to
obtain a low-rank SDP model and use a nonconvex optimization algorithm to solve it. The
analysis of large data sets can be made easier by considering clustering and dimensionality
reduction models. The study of regularity of such models is important to guarantee reliable
results. In spite of there is no efficient SDP method to solve clustering and dimensionality
reduction problems, an SDP-based approximation algorithm may be developed.

1.3 Aims and contributions

The purpose of this thesis is to study and classify different notions of regularity of
linear SDP problems, establish the relationships among them, and investigate the numerical
procedures that permit to state the regularity of a given SDP problem. The main aims of
the research are:

• to study different notions of regularity of linear SDP problems;

• to establish relationships between different notions of regularity;

• to develop, implement and test presolving numerical procedures to verify regularity
of SDP problems from the viewpoint of the fulfilment of the Slater condition;

• to develop and implement a generator of nonregular SDP problem instances and
create a database of linear SDP problems failing the Slater condition;

• to develop, implement and test a numerical procedure based on SDP models to solve
problems of data analysis.

7

CHAPTER 1. INTRODUCTION

The contributions of this work are as follows:

• establishment of the relationships among the regularity notions in SDP, particularly,
between the Slater condition, well-posedness and good behaviour;

• the numerical procedure SDPreg and its MATLAB implementation by the routine
SDPreg to verify the fulfilment of the Slater condition in linear SDP problems;

• the adaptation of the theoretical DIIS algorithm into the numerical procedure DIISalg
and its MATLAB implementation by the routine DIISalg to compute the irregularity
degree of SDP problems;

• results of testing numerically problems from the SDPLIB database in terms of the
fulfilment of the Slater condition and computation of their irregularity degrees with
the developed tools;

• the generator of nonregular SDP problem instances and its MATLAB implementation
by the routine nonregSDPgen;

• the NONREGSDP database of nonregular linear SDP problems with different irreg-
ularity degrees;

• the Two-Step-SDP algorithm for solving clustering and dimensionality reduction
problems and its implementation in R by the routine TwostepSDPClust.

1.4 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we present notation and basic defini-
tions and make a brief introduction to SDP, where primal-dual formulations, duality results
and optimality conditions are presented. Moreover, this chapter contains an overview of
the standard primal-dual interior point methods for solving SDP problems and a brief
survey of SDP solvers. We also point out the current limitation of SDP solvers in terms of
working only under the assumption of regularity of the problems. We finish this chapter
by presenting an example of a SDP problem for which SDP solvers run into numerical
difficulties, because of lack of regularity. Chapter 3 is devoted to the study of regularity
in SDP. We study different notions usually associated to regularity in SDP, their relations,
as well as procedures to test them. We describe the DIIS algorithm from [78] and on its
basis develop a new procedure to test the fulfilment of the Slater condition on a given SDP
problem. Another procedure, yet more complete, is proposed. It includes computation of
the irregularity degree of the SDP problem for which the Slater condition does not hold.
The computational experiments are presented in Chapter 4. We describe two presolving
numerical tools to check regularity on a SDP problem in terms of the fulfilment of the Slater
condition. Implementation details are provided and extensive numerical experiments are

8

CHAPTER 1. INTRODUCTION

carried out in order to test the efficiency of the proposed procedures1. In Chapter 5, we
develop a generator of nonregular SDP problem instances, which constructs SDP instances
failing to satisfy the Slater condition with a prescribed irregularity degree and where the
true optimal value is known. The NONREGSDP database of nonregular SDP test prob-
lems is created and used in our tests. Numerical experiments with different SDP solvers
are presented and discussed. Chapter 6 presents an application of SDP in data analysis,
in particular in clustering and dimensionality reduction problems. We first focus on a
nonlinear SDP model for the clustering problem, consider its linear SDP relaxations and
study their regularity. Then, we propose a new approach for clustering and dimensionality
reduction using an approximation algorithmic framework. The resulting procedure called
Two-Step-SDP algorithm is implemented in R, a free open source software. To show its
efficiency, we present numerical experiments on several real-life data sets, including gene
expression data sets from microarray experiments2. The final chapter of this work presents
concluding remarks and topics of future research.

The Appendix A presents a detailed description on how to construct SDP problem
instances in sparse SDPA format. A brief user guide of the developed MATLAB func-
tions SDPreg and DIISalg is presented in Appendix B. The basic instructions to use the
MATLAB function nonregSDP for generating nonregular SDP problem instances is pre-
sented in the Appendix C, and the NONREGSDP database is described in Appendix D.
Finally, the last appendix contains a detailed description of how to use the R function
TwostepSDPClust for solving clustering and dimensionality reduction problems.

1Some of the results presented in Chapter 4 are published in [91] and [95].
2The content of Chapter 6 reflects, for the most part, our results published in [92] and [94].

9

CHAPTER 1. INTRODUCTION

10

Chapter 2

Semidefinite programming

In this chapter, we introduce some notation, and summarize basic notions and results
from linear algebra and convex analysis. Then, the primal SDP problem and its dual are
formulated, as well as some duality results and optimality conditions for SDP are provided.
The final section of this chapter presents an overview of standard SDP methods and solvers,
and a discussion of their main characteristics.

2.1 Preliminaries

Let {x1, . . . , xp} be a set of p ∈ N vectors in Rn and {λ1, . . . , λp} a set of p real scalars.

A vector v ∈ Rn of the form v =
p∑
i=1

λixi is a linear combination of x1, . . . , xp. If
p∑
i=1

λi = 1,

then v is an affine combination of x1, . . . , xp. If, additionally, λi ≥ 0, for all i = 1, . . . , p,
then v is a convex combination of x1, . . . , xp. The set {x1, . . . , xp} is linearly independent
if the only null linear combination is the trivial one (i.e., all λi = 0, i = 1, ..., p).

A set S ⊂ Rn is said to be affine (resp. convex) if for all x, y ∈ S and λ ∈ R (resp.
λ ∈ [0, 1]) the convex combination λx+ (1− λ) y belongs to S.

Proposition 1 A set S ⊂ Rn is convex if and only if it contains every convex combination
of its elements.

Examples of convex sets are hyperplanes and halfspaces, which are defined, respectively,
as
{
x ∈ Rn : vTx = b

}
and

{
x ∈ Rn : vTx ≤ b

}
, where v ∈ Rn\{0} and b ∈ R. Notice that

a hyperplane divides Rn into two halfspaces.
Evidently, the intersection of a finite number of convex sets is also a convex set. For

example, a polyhedron, being an intersection of finitely many halfspaces and hyperplanes,
is a convex set.

Let S ⊂ Rn be a convex set.
A function f : S → R is said to be convex on S if for all x, y ∈ S and λ ∈ [0, 1] the

inequality
f (λx+ (1− λ)) ≤ λf (x) + (1− λ) f (y)

11

CHAPTER 2. SEMIDEFINITE PROGRAMMING

is satisfied.
The epigraph of a function f : S → R is the subset of Rn+1 defined by

epi(f) = {(x, r), x ∈ S, r ∈ R : r ≥ f(x)}.

A characterization of a convex function can be made in terms of the convexity of its
epigraph: a function is convex if and only if its epigraph is a convex set.

A simple example of a convex function is the linear function, since its epigraph is a
halfspace, which is a convex set.

A nonempty set K ⊂ Rn is called a cone if for all x ∈ K and λ ≥ 0 we have λx ∈ K.
Additionally, K is convex if x + y ∈ K for all x, y ∈ K. For example, the nonnegative
orthant Rn

+ is a convex cone.
A cone K is pointed if x,−x ∈ K imply x = 0. A pointed convex cone K in Rn defines

a partial order on Rn by x �K y ⇔ x− y ∈ K for x, y ∈ Rn.
Let V be a real finite dimensional vector space. A basis of V is a finite set of lin-

early independent vectors which span V . The dimension of V , denoted by dim(V), is the
cardinality of a basis.

Given two vectors x, y ∈ Rn, their inner product, denoted by 〈x, y〉, is defined by

〈x, y〉 =
n∑
i=1

xiyi.

A basis of a vector space V is called canonical, or standard, if its elements are or-
thonormal vectors for the usual inner product. Any two vectors x, y ∈ V are orthonormal
if 〈x, y〉 = 0, 〈x, x〉 = 1 and 〈y, y〉 = 1.

Let K be a cone in V . The set

K∗ = {z ∈ V : 〈z, x〉 ≥ 0,∀x ∈ K}

is called the dual (or polar) cone of K. A dual cone K∗ is always convex, even when the
original cone K is not [148].

A cone K is said to be self-dual, if K∗ = K. If K is self-dual, then K is convex, closed
and full, i.e., has nonempty interior.

A classic result in duality is the following ([84, 159]):

Lemma 1 Let K be a closed convex cone. Then (K∗)∗ = K.

Given integers m,n ∈ N, Rm×n denotes the set of all m × n real matrices (whose
elements are real numbers).

Given a matrix A ∈ Rm×n, the subspace of Rn spanned by the columns of A is called
column (or range) space of the matrix A and is denoted here by C(A), and the subspace
of Rm spanned by the rows of A is called its row space and is denoted by R(A).

Given a vector v ∈ Rn, diag(v) denotes the n× n matrix whose diagonal elements are
the components of the vector v and the remaining elements are zero.

12

CHAPTER 2. SEMIDEFINITE PROGRAMMING

The trace of a matrix A ∈ Rn×n, denoted by tr(A), is the sum of all the elements of
its diagonal, i.e.,

tr(A) =
n∑
i=1

aii.

The operation trace of square matrices has the following property.

Property 1 Given the matrices A,B ∈ Rn×n and scalars α, β ∈ R, the following equalities
hold:

• tr(A) = tr(AT);

• tr(αA + βB) = αtr(A) + βtr(B) (linearity of trace);

• tr(AB) = tr(BA).

A matrix A ∈ Rn×n is symmetric if AT = A, where AT denotes the transpose of the
matrix A, i.e., if aij = aji, for all i = 1, ..., n, and j = 1, ..., n.

The set of all real symmetric matrices of order n, denoted by S(n), is defined by

S(n) =
{
A ∈ Rn×n : AT = A

}
⊆ Rn×n.

The set S(n) can be considered as a vector space with the trace inner product defined
by

tr(AB) =
n∑
i=1

n∑
j=1

aijbji, (2.1)

for A, B ∈ S(n).

It is easy to see that S(n) is a 1
2
n (n+ 1)-dimensional vector space. The canonical basis

of S(n) consists of 1
2
n (n+ 1) orthonormal symmetric matrices of dimension n × n of the

form Eij such that for i = 1, ..., n, j = 1, ..., n,

if i = j, then Eii is a matrix whose entries are all zeros, except for the entry (i, i)
which is 1;

for the remaining matrices, j > i and i = 1, ..., n − 1, Eij is a matrix whose entries
are all zeros, except for the entries (i, j) and (j, i) which are 1√

2
.

Example 1 The canonical basis of S(2) is the set formed by the matrices E11 =

[
1 0
0 0

]
,

E12 =

[
0 1√

2
1√
2

0

]
and E22 =

[
0 0
0 1

]
.

13

CHAPTER 2. SEMIDEFINITE PROGRAMMING

A matrix A ∈ S(n) is positive semidefinite (A � 0), if xTAx ≥ 0, for all x ∈ Rn, and
is positive definite (A � 0), if xTAx > 0, for all nonzero x ∈ Rn.

A matrix A ∈ S(n) is negative semidefinite (respectively, negative definite), if the
matrix −A is positive semidefinite (respectively, positive definite). In this case, we write
A � 0 (respectively, A ≺ 0).

An interesting property of positive semidefinite matrices is the following ([56]).

Property 2 Let A = [aij] � 0. If akk = 0 for some k ∈ {1...., n}, then aik = aki = 0 for
each i = 1, ..., n.

Notice that a positive semidefinite matrix has nonnegative diagonal entries.
There exist different characterizations of positive semidefinite matrices that can be

summarized as follows (see, e.g., [56]):

Theorem 1 Let A ∈ S(n). The following conditions are equivalent:

• A is positive semidefinite;

• all eigenvalues of A are nonnegative;

• there exists a matrix C ∈ Rm×n such that A = CTC;

• all principal minors of A are nonnegative.

The principal minors of a matrix A ∈ Rn×n, denoted here by δJ , are the determinants
of the principal submatrices of A. The principal submatrix of a square matrix A is the
matrix AJ whose rows and columns are indexed by the set J , where J is a subset of
{1, ..., n}.

Example 2 Consider the matrix A ∈ S(3) given by A =

 −1 2 1
2 −6 −4
1 −4 −3

. This is a

negative semidefinite matrix, since the matrix −A =

 1 −2 −1
−2 6 4
−1 4 3

 is positive semidef-

inite. Indeed:

δ{1} = 1, δ{2} = 6, δ{3} = 3, δ{1,2} = 10, δ{1,3} = 2, δ{2,3} = 2, δ{1,2,3} = det(A) = 0,

where det(A) denotes the determinant of the matrix A.

For positive definite matrices, one can state the following characterizations:

Theorem 2 Let A ∈ S(n). The following conditions are equivalent:

• A is positive definite;

• all eigenvalues of A are positive;

14

CHAPTER 2. SEMIDEFINITE PROGRAMMING

• all leading (i.e., top left) principal minors of A are positive.

Example 3 Consider the matrix A ∈ S(3) given by A =

 3 −2 0
−2 2 0
0 0 2

. It is positive

definite, since

δ{1} = 3, δ{1,2} = 2, δ{1,2,3} = det(A) = 4.

Denote by P(n) the set of all n× n real positive semidefinite symmetric matrices,

P(n) = {A ∈ S(n) : A � 0} .

Proposition 2 The set P(n) is a subset of S(n) and is a convex cone.

Proof. By definition, P(n) is comprised of all symmetric positive semidefinite (n × n)
matrices. P(n) is a convex set, since any positive combination of semidefinite matrices is
semidefinite. To prove the proposition, let us show that ∀A ∈ P(n),∀λ ≥ 0⇒ λA ∈ P(n).

The following sequence of equivalences holds true.
A ∈ P(n)⇔ vTAv ≥ 0,∀v ∈ Rn ⇔ λvTAv ≥ 0,∀λ ≥ 0 ⇔ vT (λA) v ≥ 0.
Therefore, λA ∈ P(n) and the proof is completed. �

The cone P(n) induces a partial order on S(n) called the Löwner partial order as
follows: B � A if B−A � 0 [8, 125].

It is easy to see that the interior of the cone P(n) consists of all positive definite
matrices.

The dual of the cone P(n) is a closed convex cone denoted by P(n)∗ and is given by

P(n)∗ = {A ∈ S(n) : 〈A,B〉 ≥ 0, ∀B ∈ P(n)} .

In the cone of positive semidefinite symmetric matrices, P(n), the following property
holds.

Property 3 Let A, B ∈ P(n). Then tr(AB) ≥ 0 and the equality holds if and only if
AB = 0, where 0 is the null matrix of order n.

Proposition 3 The set P(n) is a self-dual cone, i.e., P(n) = P(n)∗.

Proof. First, we will prove that P(n) ⊆ P(n)∗. Let A ∈ P(n).
By the Property 3, it is easy to see that for all B ∈ P(n), 〈A,B〉 = tr(AB) ≥ 0,

meaning that A ∈ P(n)∗.
To prove that P(n)∗ ⊆ P(n), given A ∈ P(n)∗ let us show that A � 0. Let x ∈ Rn.

The matrix B = xxT is positive semidefinite and thus, 〈A,B〉 ≥ 0. Since

〈A,B〉 =
〈
A, xxT

〉
= tr(AxxT) =

n∑
i=1

n∑
j=1

aijxixj = xTAx, it follows that xTAx ≥ 0.

Hence, A ∈ P(n). �

Other necessary notation and definitions will be introduced in the corresponding sec-
tions.

15

CHAPTER 2. SEMIDEFINITE PROGRAMMING

2.2 Linear SDP Problem

Given s ∈ N, consider the space S(s) of the s×s real symmetric matrices equipped with
the trace inner product. Consider also the cone P(s) ⊂ S(s) of s× s positive semidefinite
symmetric matrices.

A linear SDP problem can be formulated as

min
x∈Rn

cTx

s.t. A(x) � 0,
(2.2)

where x ∈ Rn is the vector variable, c ∈ Rn and A(x) is a matrix-valued function defined

as A(x) :=
n∑
i=1

Aixi + A0, where Ai ∈ S(s), i = 0, 1, ..., n. The inequality A(x) � 0 is

usually called Linear Matrix Inequality (LMI).
Without loss of generality, we can assume that the matrices Ai, i = 1, ..., n, are linearly

independent, i.e., Ai, i = 1, ..., n, span a n-dimensional linear space in S(s).
Introducing a slack matrix variable S ∈ S(s) in (2.2) we obtain an equivalent SDP

problem:
min cTx

s.t.
n∑
i=1

Aixi + S = −A0,

S � 0.

(2.3)

The constraint A(x) � 0 in (2.2) can be written in the form of the cone constraint
A(x) ∈ −P(s), and then, the SDP problem takes the form

min cTx
s.t. A(x) ∈ −P(s).

(2.4)

There exist other alternative, but equivalent formulations for SDP problems [159]. A
SDP problem can be written in the trace form as follows:

min
X∈S(s)

tr (CX)

s.t. tr (AiX) = bi, ∀i = 1, . . . , n,
X � 0,

(2.5)

where X ∈ S(s) is the matrix variable, C,Ai ∈ S(s) and bi ∈ R, i = 1, ..., n.
When there is more than one matrix variable, a SDP problem can be written as

min
n∑
j=1

tr (CjXj)

s.t.
n∑
j=1

tr(AijXj) = bi, i = 1, ...,m,

Xj � 0, j = 1, ..., n,

(2.6)

16

CHAPTER 2. SEMIDEFINITE PROGRAMMING

where Cj, Aij and also the matrix variables Xj are sj × sj real symmetric matrices,
j = 1, ..., n, and bi ∈ R, i = 1, ...,m.

The SDP problem in the form (2.5) can be transformed to the form (2.2). The following
example shows such transformation.

Example 4 Consider the SDP problem given by

min tr

 1 0 0
0 0 0
0 0 0

X

s.t. tr

 0 0 0
0 1 0
0 0 0

X

 = 0,

tr

 1 0 0
0 0 1
0 1 0

X

 = 1,

X � 0.

(2.7)

where X ∈ S(3). The problem (2.7) is equivalent to

min x1

s.t. x4 = 0,
x1 + 2x5 = 1,

X =

 x1 x2 x3

x2 x4 x5

x3 x5 x6

 � 0.

This problem can be rewritten in the matrix form

min x1

s.t.

 x1 x2 x3

x2 0 1−x1
2

x3
1−x1

2
x6

 � 0,

which can be easily transformed in the form (2.2).

According to [159], one can transform the SDP problem (2.2) to the form (2.5) as
follows. First, let us introduce the slack matrix variable S in (2.2), yielding the equivalent
SDP problem (2.3).

We will show that such problem can be equivalently written as a problem in the form
(2.5), in particular, with the specific form

min tr (G0S)
s.t. tr(GjS) = gj, j = 1, ..., k,

S � 0,
(2.8)

17

CHAPTER 2. SEMIDEFINITE PROGRAMMING

where G0, Gj ∈ S(s) and gj ∈ R, j = 1, ..., k, will be defined later.
Since the matrices Ai, i = 1, ..., n, are linearly independent, they span a n-dimensional

linear subspace in S(s) and can be written as a combination of elements of the canonical
basis of S(s). Consider the affine subset of S(s)

V =

{
S = −A0 −

n∑
i=1

Aixi : x ∈ Rn

}
. (2.9)

According to [159], it can be shown that for k = 1
2
s(s + 1) − n, there exist Gj ∈ S(s),

j = 1, ..., k, and g = (g1, ..., gk) ∈ Rk, such that V can be written in the form

V = {S ∈ S(s) : tr(GjS) = gj, j = 1, ..., k} . (2.10)

The matrix G0 ∈ S(s) in (2.8) should satisfy the following conditions:

tr(G0Ai) = −ci, i = 1, ..., n,
cTx = tr(G0S) + tr(G0A0).

(2.11)

The second equality in (2.11) holds, since

S = −A0 −
n∑
i=1

Aixi ⇔
n∑
i=1

Aixi = −A0 − S

and taking into account the first condition in (2.11), we get

cTx =
n∑
i=1

cixi = −tr

(
G0

n∑
i=1

Aixi

)
= tr(G0S) + tr(G0A0).

Finally, the vector g = (g1, ..., gk) ∈ Rk in (2.8) can be defined as

gj = −tr(GjA0), j = 1, ..., k. (2.12)

Example 5 Consider the following SDP program

min x12

s.t.

 0 x12 0
x12 x22 0
0 0 1 + x12

 � 0,
(2.13)

which can be equivalently written as

min x12

s.t.

 0 −1 0
−1 0 0
0 0 −1

x12 +

 0 0 0
0 −1 0
0 0 0

x22 +

 0 0 0
0 0 0
0 0 −1

 � 0.
(2.14)

Notice that the last problem has the LMI form (2.2), with c = (1, 0)T and matrices
Ai ∈ S(3), i = 0, 1, 2, 3, given by

18

CHAPTER 2. SEMIDEFINITE PROGRAMMING

A0 =

 0 0 0
0 0 0
0 0 −1

, A1 =

 0 −1 0
−1 0 0
0 0 −1

 and A2 =

 0 0 0
0 −1 0
0 0 0

 .
Let S =

 x11 x12 x13

x12 x22 x23

x13 x23 x33

 ∈ S(3).

Following the above transformation, the matrix G0 =

 g0
11 g0

12 g0
13

g0
12 g0

22 g0
23

g0
13 g0

23 g0
33

 ∈ S(3) must

satisfy:

tr (G0Ai) = −ci, i = 1, 2 (2.15)

cTx = tr (G0S) + tr (G0A0) . (2.16)

Considering c1 = 1 and c2 = 0, it follows from condition (2.15) that

tr (G0A1) = −1⇔ −2g0
12 − g0

33 = −1⇔ g0
12 =

1− g0
33

2
tr (G0A2) = 0⇔ g0

22 = 0.

Since tr (G0A0) = −g0
33 and

tr (G0S) =

(
g0

11x11 +
1− g0

33

2
x12 + g0

13x13

)
+

(
1− g0

33

2
x12 + 0 + g0

23x23

)
+

+
(
g0

13x13 + g0
23x23 + g0

33x33

)
,

from equality (2.16) we get g0
11 = 0, g0

13 = 0, g0
23 = 0 and g0

33 = 0.

Therefore, g0
12 = 1

2
and G0 =

 0 1
2

0
1
2

0 0
0 0 0

.

The canonical basis of S(3) is B = {E11,E12,E13,E22,E23,E33}, where

E11 =

 1 0 0
0 0 0
0 0 0

 , E12 =

 0 1√
2

0
1√
2

0 0

0 0 0

 , E13 =

 0 0 1√
2

0 0 0
1√
2

0 0

 ,
E22 =

 0 0 0
0 1 0
0 0 0

 , E23 =

 0 0 0
0 0 1√

2

0 1√
2

0

 , E33 =

 0 0 0
0 0 0
0 0 1

 .
Since n = 2 and s = 3, then k = 4. In the basis B, the matrices A1 and A2 have

the form A1 = −
√

2E12 − E33 and A2 = −E22. The remaining matrices of B do not
contribute for A1 and A2: they will be used to obtain the matrices G1, G2, G3 such
that tr(GjA0) = −gj and gj = 0, for j = 1, 2, 3. Hence, one can consider G1 = E11,

19

CHAPTER 2. SEMIDEFINITE PROGRAMMING

G2 = E13, G3 = E23 or, to ease our calculus, we can just consider G1 = E11, G2 =
√

2E13,

G3 =
√

2E23, and thus, G1 =

 1 0 0
0 0 0
0 0 0

, G2 =

 0 0 1
0 0 0
1 0 0

 and G3 =

 0 0 0
0 0 1
0 1 0

.

A matrix G4 can be chosen to be a linear combination of the elements of B and g4 must

satisfy (2.12). So, consider G4 =

 0 −1
2

0
−1

2
0 0

0 0 1

 and g4 = 1.

Therefore, the problem (2.13) can be written in the trace form as

min tr

 0 1
2

0
1
2

0 0
0 0 0

S

s.t. tr

 1 0 0
0 0 0
0 0 0

S

 = 0

tr

 0 0 1
0 0 0
1 0 0

S

 = 0

tr

 0 0 0
0 0 1
0 1 0

S

 = 0

tr

 0 −1
2

0
−1

2
0 0

0 0 1

S

 = 1

S � 0,

(2.17)

where S ∈ S(3).

The SDP problem (2.2) is a convex problem. Indeed, its objective function is linear,
hence convex and its feasible set given by

X = {x ∈ Rn : A(x) � 0} (2.18)

is convex. To prove this, we will show that A(λx+ (1− λ)y) � 0 for all x, y ∈ X and for
all λ ∈ [0, 1]. In fact,

A (λx+ (1− λ)y) = A0 +
n∑
i=1

Ai(λxi + (1− λ)yi)

= A0 + λ
n∑
i=1

Aixi + (1− λ)
n∑
i=1

Aiyi

= λA0 + (1− λ)A0 + λ
n∑
i=1

Aixi + (1− λ)
n∑
i=1

Aiyi

= λA(x) + (1− λ)A(y) � 0, since 1− λ ≥ 0.

20

CHAPTER 2. SEMIDEFINITE PROGRAMMING

The feasible set of a SDP problem can be considered as an intersection of the cone P(n)
with an affine-linear space, and is called a spectrahedron.

SDP is a natural extension of linear programming (LP), which refers to minimizing a
linear objective function over a convex polyhedron. Indeed, any LP problem of the form

min
x

cTx

s.t. Bx+ b ≤ 0,
(2.19)

where B ∈ Rs×n, b, c ∈ Rn and the variable is x ∈ Rn, can be equivalently written as a
SDP problem of the form (2.2). To prove it, suppose that A0 = diag(b) and Ai = diag(Bi),
i = 1, ..., n, where Bi ∈ Rs is the i-th column of the matrix B.

2.3 Duality and optimality results in SDP

The optimality in SDP, as well as in the optimization theory in general, is closely related
to the duality aspects.

Though there exist different duality approaches (see, e.g., [126]), the dual problem is
usually derived by applying the Lagrangian approach [52]. The Lagrange function (or
Lagrangian) of the SDP problem (2.2) has the form

L(x,Z) = cTx+ tr (ZA(x)) = cTx+ tr

(
Z

(
A0 +

n∑
i=1

Aixi

))
, (2.20)

where Z ∈ P(s) and x ∈ Rn. Using the properties of the trace of a matrix, the function
(2.20) can be rewritten as

L(x,Z) = tr (ZA0) +
n∑
i=1

(tr (ZAi) + ci)xi.

Considering the min-max problem

min
x∈Rn

max
Z∈P(s)

L(x,Z),

we can easily see that it is equivalent to the problem (2.2). Reversing the order of the min
and max operations in the above problem, we get the dual problem to (2.2) in the form

max tr (A0Z)
s.t. −tr (AiZ) = ci, ∀i = 1, . . . , n,

Z � 0,
(2.21)

where Z ∈ S(s) is the dual matrix variable.
The feasible set of (2.21) is

Z = {Z ∈ P(s) : −tr (AiZ) = ci, i = 0, 1, ..., n} . (2.22)

21

CHAPTER 2. SEMIDEFINITE PROGRAMMING

Notice that the dual problem (2.21) is a SDP problem in the form (2.5). Since the for-
mulations (2.2) and (2.21) are dual to each other, there is no loss of generality in assuming
a particular form for the primal or the dual problem [8]. We just use the transforma-
tions explained in the previous section and change the sign of the objective function when
transforming maximization into minimization [149].

Unless stated otherwise, in what follows, we refer to (2.2) as the primal problem, and
to the problem (2.21) as its dual.

Theorem 3 [Weak Duality Property] Given a primal-dual pair of feasible solutions x ∈ X
and Z ∈ Z of the SDP problems (2.2) and (2.21), the inequality cTx ≥ tr(A0Z) always
holds.

Proof. Considering p = cTx and d = tr(A0Z), and using the dual formulation, we have

p−d =
n∑
i=1

cixi−tr (ZA0) =
n∑
i=1

(−tr (ZAi))xi−tr (ZA0) = tr

((
−A0 −

n∑
i=1

Aixi

)
Z

)
.

Since −A0 −
n∑
i=1

Aixi � 0 and Z � 0, then tr

((
−A0 −

n∑
i=1

Aixi

)
Z

)
≥ 0, and we

obtain the inequality p− d ≥ 0. Hence, p ≥ d, for any primal feasible solution x and dual
feasible solution Z. This completes the proof. �

Definition 1 Given a primal-dual pair of feasible solutions x ∈ X and Z ∈ Z of the SDP
problems (2.2) and (2.21), if p = cTx and d = tr(A0Z), the difference p−d is called duality
gap.

Given any pair (x,Z) of feasible solutions of the problems (2.2) and (2.21), if the duality
gap is zero, then it can be proved that x is an optimal solution of (2.2) and Z is an optimal
solution of (2.21) [52, 69]. The optimal solutions will be denoted by x∗ and Z∗, and the
optimal values of the objective functions of the primal and dual problems (2.2) and (2.21)
will be denoted here by p∗ and d∗, respectively.

In SDP, to guarantee the vanishing of the duality gap some additional assumptions have
to be made. An often used sufficient condition to ensure zero duality gap is the existence of
a strictly feasible solution. This condition is also called strict feasibility, Slater constraint
qualification, or Slater regularity condition [69].

Definition 2 The constraints of the problem (2.2) satisfy the Slater (regularity) condition
if the interior of its feasible set X is nonempty, i.e.,

∃ x̄ ∈ Rn : A(x̄) ≺ 0. (2.23)

The analogous definition can be introduced for SDP problems in the dual form.

Definition 3 The constraints of the dual SDP problem (2.21) satisfy the Slater condition
if there exists a feasible matrix Z such that Z � 0.

The following duality results are known in SDP ([23, 156]):

22

CHAPTER 2. SEMIDEFINITE PROGRAMMING

Theorem 4 [Strong Duality Property] Assume that the primal optimal value of the linear
SDP problem (2.2) p∗ is finite. Under the Slater condition, the duality gap vanishes and
the (dual) optimal value of (2.21) d∗ is attained.

Corollary 1 Let p∗ be the optimal value of the objective function of the primal problem
(2.2) and d∗ the optimal value of the dual problem (2.21).

1. If the dual SDP problem (2.21) satisfies the Slater condition with d∗ finite, then
p∗ = d∗ and this value is attained for the primal problem (2.2);

2. If both primal and dual SDP problems satisfy the Slater condition, then p∗ = d∗ and
this value is attained for both problems.

Note 1 The fulfilment of the Slater condition for the primal problem (2.2) does not imply
that the constraints of its dual (2.21) satisfy the Slater condition, or vice-versa.

Example 6 Consider the primal-dual pair of SDP problems

min x1

s.t.

[
x1 1
1 x2

]
� 0,

max 2y1

s.t.

[
1 −y1

−y1 0

]
� 0.

The primal problem satisfies the Slater condition: its feasible solution with x1 = 1 and

x2 = 2 is strictly feasible:

[
1 1
1 2

]
� 0. However, the dual problem does not have strictly

feasible solutions. In fact, y1 = 0 is the only feasible solution of the dual problem and the

matrix

[
1 0
0 0

]
is not positive definite.

Note 2 If the dual SDP problem does not satisfy the Slater condition, the primal optimal
value may not be attained even if it satisfies the Slater condition (see the Example 6, where
the primal optimal value is zero, but it is not attained).

The Slater condition is a condition that ensures strong duality. In the absence of the
Slater condition, strong duality may not hold, or the optimum may not be attained, or one
of the problems may be feasible and bounded, while the other is infeasible, as the following
examples show.

Example 7 Consider the primal SDP problem (2.13) given in the Example 5. Its dual is
given by

max y1

s.t.

 −y2
1+y1

2
−y3

1+y1
2

0 −y4

−y3 −y4 −y1

 � 0

Both problems do not satisfy the Slater condition. The primal optimal value is p∗ = 0,
while the dual is d∗ = −1, i.e., there exists a nonzero duality gap, so strong duality does
not hold.

23

CHAPTER 2. SEMIDEFINITE PROGRAMMING

Example 8 Consider the following primal SDP problem

min x1

s.t.

[
0 −1
−1 0

]
x1 +

[
0 0
0 −1

]
x2 � 0

and its dual given by
max 0

s.t. tr

([
0 −1
−1 0

]
Z

)
= −1,

tr

([
0 0
0 −1

]
Z

)
= 0,

Z =

[
z1 z2

z2 z3

]
� 0.

It is easy to see that any feasible solution of the primal problem should satisfy

−x1
2 ≥ 0 and x2 ≥ 0,

which implies that x1 = 0. Therefore, the primal problem does not satisfy the Slater
condition.

Considering the dual problem, we conclude that any feasible solution should satisfy

z2 = 1
2
, z3 = 0, z1 ≥ 0 and z1z3 − z2

2 ≥ 0.

Clearly, these conditions are incompatible, since the last condition does not hold for
z2 = 1

2
and z3 = 0. Therefore, the dual problem is infeasible.

Definition 4 A pair (x∗,Z∗) is said to be a saddle point of the Lagrange function (2.20)
if the conditions

x∗ ∈ arg min
x∈Rn
L(x,Z∗), tr (Z∗A(x∗)) = 0, A(x∗) � 0, Z∗ � 0 (2.24)

hold.

Since the Lagrange function is convex, the first condition in (2.24) is equivalent to
∇xL(x∗,Z∗) = 0 [13], and thus, the conditions (2.24) can be rewritten as

∇xL(x∗,Z∗) = 0, tr (Z∗A(x∗)) = 0, A(x∗) � 0, Z∗ � 0. (2.25)

In the SDP duality theory the following result is established [13].

Proposition 4 Given the primal-dual pair of SDP problems (2.2) and (2.21), p∗ = d∗ and
x∗ and Z∗ are optimal solutions of (2.2) and (2.21), respectively, if and only if (x∗,Z∗) is
a saddle point of the Lagrange function (2.20).

24

CHAPTER 2. SEMIDEFINITE PROGRAMMING

In convex SDP, given an optimal solution x∗, if the set Λ(x∗) of all Lagrange multiplier
matrices Z∗ satisfying the conditions (2.25) is nonempty, then it coincides with the set
of optimal solutions of the dual SDP problem (2.21) [13]. Let us formulate the following
result from [13].

Theorem 5 Let x∗ be an optimal solution of the SDP problem (2.2). The set Λ(x∗) is
nonempty and bounded if and only if the Slater condition holds for (2.2).

Considering the primal SDP problem in the form (2.3), its dual problem (2.21) and the
corresponding optimal solutions (x∗,S∗) and Z∗, notice that the duality gap is given by
tr (S∗Z∗) = 0. Using the Property 3, we can establish the following result.

Theorem 6 Let (x∗,S∗) be a primal feasible solution of (2.3) and Z∗ be a dual feasible
solution of (2.21). Then, (x∗,S∗) and Z∗ are optimal solutions if and only if S∗Z∗ = 0.

The first order necessary and sufficient optimality conditions for (convex) SDP problems
can be then formulated in the form of KKT-type conditions by the following well-known
theorem (see, e.g., [8, 69, 157, 159]).

Theorem 7 Suppose that both the primal and dual SDP problems (2.3) and (2.21) satisfy
the Slater condition. Then, the primal and dual solutions (x∗,S∗) and Z∗, with S∗,Z∗ � 0,
are optimal for (2.3) and (2.21), respectively, if and only if the following conditions hold

A0 +
n∑
i=1

Aix
∗
i + S∗ = 0 (2.26)

tr (AiZ
∗) + ci = 0, i = 1, ..., n (2.27)

S∗Z∗ = 0. (2.28)

In the Theorem 7, the condition (2.26) is called primal feasibility, the condition (2.27)
is called dual feasibility, and the condition (2.28) is called complementary condition.

The above KKT-type optimality conditions can be reformulated for the SDP problem
(2.2) as follows ([13]):

Theorem 8 Suppose that the SDP problem (2.2) satisfies the Slater condition. Then,
x∗ ∈ X is an optimal solution of (2.2) if and only if there exists a matrix Z∗ ∈ P(s) such
that

tr (AiZ
∗) + ci = 0, i = 1, ..., n, and tr (A(x∗)Z∗) = 0. (2.29)

Example 9 Let us show by applying the optimality conditions (2.29) that x∗ = 1 is an
optimal solution for the primal SDP problem

min −2x

s.t.

[
0 1
1 0

]
x+

[
−1 0
0 −1

]
� 0.

25

CHAPTER 2. SEMIDEFINITE PROGRAMMING

First, notice that the constraints of this problem satisfy the Slater condition. For in-
stance, x = 1

2
is a strictly feasible solution. So, we can apply the Theorem 8 to prove that

x∗ is optimal. Second, A(x∗) =

[
−1 1
1 −1

]
.

Now, let us show that there exists a matrix Z∗ =

[
z1 z2

z2 z3

]
∈ P(2) satisfying the

conditions (2.29). It follows that

tr

([
0 1
1 0

] [
z1 z2

z2 z3

])
− 2 = 0⇔ z2 = 1

and

tr

([
−1 1
1 −1

] [
z1 z2

z2 z3

])
= 0⇔ z1 = z3 − 2.

Thus, Z∗ =

[
z3 − 2 1

1 z3

]
with z3 ∈ R. It is easy to see that, for example, z3 = 4,

Z∗ =

[
2 1
1 4

]
∈ P(2).

Therefore, x∗ = 1 is optimal.

In the absence of the Slater condition, the optimality conditions of the Theorem 8 may
not hold. The following example illustrates such situation.

Example 10 Consider the primal SDP problem

min x

s.t.

[
0 1
1 0

]
x+

[
−1 −1
−1 0

]
� 0.

The constraints of this problem do not satisfy the Slater condition. Clearly, x∗ = 1 is
the optimal solution.

It is easy to see that A(x∗) =

[
−1 0
0 0

]
.

Consider a matrix Z∗ =

[
z1 z2

z2 z3

]
∈ P(2). From the conditions (2.29), we get

tr

([
0 1
1 0

] [
z1 z2

z2 z3

])
+ 1 = 0 and tr

([
−1 0
0 0

] [
z1 z2

z2 z3

])
= 0.

It follows that z1 = 0 and z2 = −1
2
. Therefore, Z∗ =

[
0 −1

2

−1
2

z3

]
and for any z3 the

matrix Z∗ /∈ P(2).
We can conclude that the optimality conditions of the Theorem 8 are not satisfied.

Optimality conditions that do not require the Slater condition to hold have been formu-
lated in, e.g., [48, 62, 63, 78, 125, 126]. However, most of these conditions are rather difficult
to verify in practice and, to the best of our knowledge, none of them are implemented in
a SDP method.

26

CHAPTER 2. SEMIDEFINITE PROGRAMMING

Since most popular and efficient SDP methods are based on solving systems of type
(2.26)-(2.28), the failure of the Slater condition yields numerical difficulties. Therefore,
it is of great importance to know in advance if the constraints of a given SDP problem
satisfy the Slater condition and in the case of failure, to choose some alternative strategy
for solving the problem.

A numerical procedure that permits to verify if a given SDP problem satisfies the Slater
condition will be discussed in Chapter 3. The implementation details of the proposed
procedure, as well as numerical experiments will be presented in Chapter 4.

2.4 Interior point methods for solving SDP problems

Different methods have been proposed for solving SDP problems, such as primal-dual
interior point methods, dual interior point methods, and augmented Lagrangian methods,
some of them for specific problems [8, 16, 103].

Primal-dual interior point methods are currently the most successful known methods
for solving (approximately) SDP problems [42].

In what follows, we will describe the general steps of a primal-dual (path-following)
interior point method applied to a given SDP problem in the form (2.3).

The basic idea of the method is to replace the solution of (2.3) by a sequence of approx-
imated solutions of some auxiliary barrier problems. These (perturbed) auxiliary problems
are constructed by adding the barrier function log (det(S)) to the objective function of
(2.3), and introducing a parameter in the barrier function, given by µ, which is a positive
real number called barrier parameter.

Consider the following perturbation to the SDP problem (2.3):

min cTx− µ log (det(S))

s.t.
n∑
i=1

Aixi + S = −A0

S � 0.

(2.30)

For each µ > 0, the Lagrange function associated to this problem is

L(x, S, Z) = cTx− µ log (det(S)) + tr

(
Z

(
n∑
i=1

Aixi + A0 + S

))
. (2.31)

Since this function is strictly convex [114], and under the assumption that the Slater
condition holds, we can guarantee that the following optimality conditions are both nec-
essary and sufficient:

n∑
i=1

Aixi + A0 + S = 0,

tr (AiZ) + ci = 0, i = 1, ..., n,
−µS−1 + Z = 0.

(2.32)

27

CHAPTER 2. SEMIDEFINITE PROGRAMMING

The condition −µS−1 + Z = 0 reflects the perturbation of the barrier parameter µ and
is equivalent to ZS − µIs = 0, where Is stands for the identity matrix of order s. This
condition is called perturbed complementary slackness (see [157]). Hence, the minimizers
of the problem (2.30) satisfy the following conditions.

n∑
i=1

Aixi + S = −A0

tr (AiZ) = −ci, i = 1, ..., n
ZS = µIs
S � 0,Z � 0

(2.33)

Let (xµ,Sµ,Zµ) be a solution of the system (2.33). The set

{(xµ,Sµ,Zµ) , µ > 0} (2.34)

is called central path. A solution (xµ,Sµ,Zµ) is usually called central path point. According
to [69, 140], we formulate the following theorem.

Theorem 9 Suppose that both primal SDP problem (2.3) and its dual (2.21) satisfy the
Slater condition and that the matrices Ai, i = 1, ..., n, are linearly independent. Then for
any µ > 0, the central path point (xµ,Sµ,Zµ) exists and is unique.

Suppose that (x∗,S∗) and Z∗ are the optimal solutions of the primal and the dual
problems (2.3) and (2.21), respectively. In [52], it is shown that

lim
µ→0

(xµ,Sµ,Zµ) = (x∗,S∗,Z∗). (2.35)

Thus, the idea of primal-dual interior point methods is to iteratively compute an ap-
proximate solution of the system (2.33), usually by using a modified Newton’s method,
followed by a reduction in the parameter µ, in order to minimize the perturbation. There-
fore, interior point methods are also known in the literature as path-following methods
[69, 159].

We would like to compute an approximate solution of (2.33). Let i = 1, ..., n, and

Fµ(x,S,Z) =

n∑
i=1

Aixi + S + A0

tr (AiZ) + ci
ZS− µIs

 = 0. (2.36)

On a general iteration of the method, say k, starting from a point (xk,Sk,Zk) of the
central path, we need to find a search direction 4d = (4x,4S,4Z) such that a new
point (xk +4x,Sk +4S,Zk +4Z) lies in the central path for µ. One can obtain a search
direction 4d by solving the system

Fµ(xk,Sk,Zk) +∇Fµ(xk,Sk,Zk)4dT = 0

28

CHAPTER 2. SEMIDEFINITE PROGRAMMING

using a modified Newton’s method [51].
The system (2.36) can be rewritten introducing the residuals RP , RD and RC as follows:

RP :=
n∑
i=1

Aix
k
i + A0 + Sk = 0

RD := tr
(
AiZ

k
)

+ ci = 0, i = 1, ..., n
RC := ZkSk − µIs = 0

and its linearization leads to the following system in terms of the search direction 4d:
n∑
i=1

Ai4xi +4S = −RP

tr (Ai4Z) = −RD, i = 1, ..., n
Zk4S +4ZSk = −RC .

(2.37)

In general, the matrices S and Z of (2.36) do not commute (see [51, 52]) and thus, the
third equation in (2.37) yields nonsymmetric directions. Therefore, some symmetrization
process should be applied.

To ensure the positive definiteness of the matrices Sk and Zk, a line search can be
performed to find constants αP and αD such that the matrices Sk+αP4S and Zk+αD4Z
are positive definite [54]. The new central path point can be written as

(xk+1,Sk+1,Zk+1) = (xk + αP4x,Sk + αP4S,Zk + αD4Z).

The interior point method stops when tr(ZkSk) ≤ ε, i.e., when the duality gap is
sufficiently small.

Primal-dual interior point algorithms are proved to be polynomially convergent (see,
e.g., [8, 51, 54, 69, 104, 159]).

The basic steps of a primal-dual interior point algorithm can be outlined as follows
([161]).

Algorithm 1 General scheme of a primal-dual interior point method

1: Choose a tolerance ε and an initial point (x0,S0,Z0), where S0 � 0 and Z0 � 0
2: general iteration k: given a current approximate solution (xk,Sk,Zk):
3: while tr(ZkSk) > ε do
4: compute µ
5: find 4d = (4x,4S,4Z) using a modified Newton method on the system (2.37) in order to

get smaller residuals
6: evaluate the maximum lengths of the steps

αP = max
{
α : Sk + α4S � 0

}
and αD = max

{
α : Zk + α4Z � 0

}
7: update the current point by (xk+1,Sk+1,Zk+1) = (xk + αP4x,Sk + αP4S,Zk + αD4Z)
8: set k = k + 1

9: return an approximate optimal solution (xk,Sk,Zk).

29

CHAPTER 2. SEMIDEFINITE PROGRAMMING

There exist many variants of primal-dual methods that employ different strategies to
update the parameter µ and symmetrization processes (see, e.g., [8, 54, 69, 139]). Now,
we briefly describe one possible approach introduced in [54].

For a given point in the central path (x,S,Z), we can obtain µ by applying the trace
operator to the perturbed complementary condition of the system (2.36):

tr(ZS) = tr(µIs) = sµ,

where s is the dimension of the matrices S and Z. Therefore, µ = tr(ZS)
s

. According to
[54], the parameter µ can be chosen smaller:

µ =
tr(ZS)

2s
. (2.38)

Since the matrix ZS − µI in (2.36) is not necessarily symmetric, many approaches
have been proposed to overcome this issue. One possible approach is to consider the

linear transformation HP (M) := 1
2

[
PMP−1 + (PMP−1)

T
]
, for any matrix M, where the

scaling matrix P is invertible and determines the symmetrization strategy [54, 69]. There
are different choices for P that lead to different search directions (see, e.g., [69, 139]).

According to [54], the third equation of the system (2.36) can be replaced by HP (ZS) =
µIs. Linearization results in a direction 4Z that can be written as

4Z =
4Z +4ZT

2
. (2.39)

This direction approach is referred in the literature as the “HRVW”, since it was in-
troduced by Helmberg, Rendl, Vanderbei and Wolkowicz in [54]. The idea is to replace
4Z in the system (2.37) by (2.39) and to solve the resulting system to find the direction
4d = (4x,4S,4Z).

Theoretically, SDP problems can be efficiently solved using standard interior point
methods (see [8, 69, 149, 159]). Therefore, almost all general purpose SDP solvers imple-
ment modifications of such methods [42]. The main difference between them is in how
the barrier parameter µ is updated and in the approach used for search direction (see,
e.g., [139], where several search directions are studied, and [8, 69, 103, 159], for details on
primal-dual interior point methods).

Notice that interior point methods require a strictly feasible solution to exist, which
make them impossible to be applied on SDP instances failing the Slater condition. To
overcome this difficulty, a self-dual embedding technique can be applied. Self-dual em-
bedding is a specific initialization strategy for obtaining strictly feasible problems [47, 69].
The general idea is as follows ([69, 120]):

• transform the given SDP problem into a larger one, by embedding both the primal
and dual problems into a single problem and adding some extra variables;

• the larger problem satisfies the Slater condition;

30

CHAPTER 2. SEMIDEFINITE PROGRAMMING

• the optimal solution of the original SDP problem can be recovered from the optimal
solution of the larger problem.

In [69], a self-dual embedding is proposed. Given the primal-dual pair of SDP problems
(2.3) and (2.21), consider the following strictly feasible embedding problem:

min θβ
s.t. tr(AiZ) + τci − θc̄i = 0

n∑
i=1

Aixi − τA0 + τĀ0 + S = 0

cTx− tr(A0Z) + θα− ρ = 0
−c̄Tx+ tr(Ā0Z)− τα− ν = −β
x ∈ Rn,S � 0,Z � 0, τ ≥ 0, θ ≥ 0, ρ ≥ 0, ν ≥ 0,

(2.40)

where, for i = 1, ..., n, c̄i := ci − tr(Ai), Ā0 := A0 + Is, α := 1 + tr(A0), and β := n+ 2.

A strictly feasible initial solution is given by x0 = 0, S0 = Z0 = Is and τ 0 = θ0 = ρ0 =
ν0 = 0.

According to [69], any solution (x,S,Z, τ, θ, ρ, ν) to (2.40) with τ > 0 yields an optimal
solution, which in turn yields a complementary solution (x,S,Z) to the primal-dual pair
of SDP problems (2.3) and (2.21).

This technique is implemented in the SeDuMi solver [136].

It is worth mentioning that there exist variants of interior point methods that allow
infeasible initial solutions. There are feasible-start methods, that require existence of
strictly feasible initial solutions S and Z for the primal and dual problems (2.3) and (2.21),
respectively, and infeasible-start methods, that require an initial primal-dual pair (S,Z)
satisfying S,Z � 0 [69, 159]. An infeasible interior point method, “starts with an infeasible
solution and works towards improving feasibility and optimality, simultaneously” [120].

There exist also some variants of primal-dual interior point methods that implement
a predictor-corrector step. At each iteration, one determines how much of a decrease in
the barrier parameter µ is possible and a predictor search direction is computed. Then,
a corrector step is performed for keeping the iterates close to the central path (see, e.g.,
[8, 69]).

According to [42], interior point methods can be rather slow on large-scale problems.
However, they are easy to implement and work very well in practice for small to medium-
scale problems.

Although interior point methods are the most popular choice for solving SDP problems,
other methods are also known in the literature. Some nonlinear optimization methods can
be generalized to solve SDP problems. For example, in [20], Burer and Monteiro proposed
an augmented Lagrangian method for solving SDP problems.

Considering a primal SDP problem in the form (2.5) and the associated dual, in [20]
it is assumed that both problems have nonempty optimal solution sets with zero duality
gap. An equivalent nonlinear reformulation of the primal SDP problem is obtained by
replacing the matrix variable X in (2.5) by an appropriate low-rank factorization of the

31

CHAPTER 2. SEMIDEFINITE PROGRAMMING

form X = RRT , where R is a real (s × r) matrix, with r ≤ s, yielding the following
problem in the new matrix variable R:

min
R∈Rs×r

tr
(
CRRT

)
s.t. tr

(
AiRRT

)
= bi, ∀i = 1, . . . , n,

(2.41)

Notice that the positive semidefiniteness constraint in (2.5) is implicit in (2.41), since
any X � 0 can be factored as RRT for some R. Such low-rank factorization is valid for
some or all optimal solutions, and not for all feasible solutions and it reduces the number
of variables.

Sufficient optimality conditions for the problem (2.41) can be formulated assuming that
for a local minimum R∗ the gradients of the constraints are linearly independent [20].

To solve the nonlinear problem (2.41), an augmented Lagrangian function with a
penalty parameter is considered. To perform the unconstrained minimization of the aug-
mented Lagrangian function w.r.t. R, a first-order limited memory BFGS algorithm can
be used [20]. Let R∗ be an optimal solution for the nonlinear problem (2.41). Then, the
optimal solution X∗ for the original SDP problem can be easily obtained by X∗ = R∗R∗T .

It is worth mentioning that there exist efficient methods for solving general or particular
classes of SDP problems, but all of them rely on assumptions of regularity (e.g., in terms
of the Slater condition) of the primal and/or the dual problems.

2.5 Numerical solution of SDP problems

2.5.1 Overview of existing SDP solvers

In [101] and [120], an overview of the major currently available solvers for conic prob-
lems, and in particular, for SDP, is presented. Almost all popular SDP solvers either have
an interface or are written in MATLAB.

The most widely used publicly available software packages for solving SDP problems
are CSDP [14], SDPA [162], SDPT3 [143], SeDuMi [136] and DSDP [12], which implement
different modifications of interior point methods. They can handle small to medium-scale
SDP problems with high accuracy, but some may require a considerable running time.
The sparse structure of SDP problems and also their dimension (in the case of large-scale
problems) can result into numerical difficulties. Experiments (e.g., [23, 60]) also show that
one can obtain different/wrong results using different solvers.

The solver CSDP [14] considers a SDP problem in the form (2.21) and its dual in the
form (2.3). This solver implements a predictor-corrector variant of the primal-dual interior
point method proposed in [54]. CSDP uses an infeasible interior point version and is quite
competitive with other solvers. It has a MATLAB interface and is publicly available at
[25].

SDPT3 [143] is another solver developed for solving conic problems in the form of
semidefinite-quadratic-linear programs, which include the primal SDP problem in the form
(2.5) and its dual (2.3) with maximization instead of minimization (see [101]). The most

32

CHAPTER 2. SEMIDEFINITE PROGRAMMING

recent version of SDPT3 implements an infeasible primal-dual predictor-corrector path-
following method, which is also an interior point method, and allows the user to choose a
corrector step. This solver is one of the most widely used solvers for solving SDP problems.
As well as the CSDP solver, it does not require feasible initial approximations. The basic
code is written in MATLAB and is publicly available at [130].

The SeDuMi solver [136] (the latest version was released in 2010) considers a primal SDP
problems in the form (2.5) and the corresponding dual in the form (2.3) with maximization
instead of minimization. SeDuMi applies a self-dual embedding technique to get an initial
solution. The existence of strictly feasible solutions is assumed, since this solver implements
a modification of the primal-dual interior point method with a predictor-corrector scheme,
in order to speed up the global convergence. This allows to admit iterates far from the
central path and to use long steps. The SeDuMi solver is popular because it is publicly
available at [131], can handle complex data, explore the sparsity of data, and solve relatively
large-scale problems.

Both SeDuMi and SDPT3 solvers are included in CVX, a MATLAB working package
for specifying and solving convex programs [26, 44], including SDP ones. Since CVX is a
Matlab-based modelling system for convex optimization, it allows one to introduce a SDP
problem in any form.

The solver DSDP [12] considers a SDP problem in the form (2.5) and its dual in the
form (2.3) with maximization instead of minimization. DSDP implements a dual-scaling
potential reduction interior point algorithm for SDP, assuming that the constraint matrices
of the SDP problem are linearly independent and that there exist strictly primal and dual
feasible solutions, i.e., the Slater condition holds for both primal and dual problems. It
uses only the dual solution to get a step direction [101]. The freely available code is written
in C, but it has an MATLAB interface. DSDP reveals to be quite efficient and robust,
exploiting the sparse structure of the problem. This solver can be found in [30].

The SDPA solver is one of the most efficient and stable SDP solvers [8, 162]. SDPA
considers primal SDP problems in the form (2.3) and its dual in the form (2.21). SDPA im-
plements a Mehrotra-type predictor-corrector infeasible primal-dual interior point method
based on the method proposed in [54] and its main feature is that it fully exploits the
sparsity of SDP problems. There exist some versions of the SDPA, including the SDPA-M
which is suitable to work in the MATLAB environment. The SDPA can be found in [129].

There exist some commercial SDP solvers, such as Mosek [105], PENNON and PENSDP
[72]. Mosek is a SDP solver based on a primal-dual interior point method with a predictor-
corrector step, and PENNON and PENSDP are based on a generalized augmented La-
grangian method. Recently, a free MATLAB version of PENNON and PENSDP called
PENLAB [35] was released.

Current SDP solvers are not very efficient on large-scale problems, and thus, there has
been an increasing interest in developing new software that could handle the solution of
large-scale SDP problems. Actually, the large-scale SDP problems arisen from practical ap-
plications are beyond the capabilities of a single processor, requiring a lot of computational
time and memory. Therefore, many efforts have been applied to combine standard SDP
methods with parallel computation [161]. For example, in [16], a new version of the CSDP

33

CHAPTER 2. SEMIDEFINITE PROGRAMMING

is described as a parallel implementation of the primal-dual method on a shared memory
system. Recently, new versions of the SDPA solver were presented to handle large-scale
problems [8], namely, to improve the SDPARA solver, which was originally developed in
2003. This new version SDPARA 7.3.1 [161], is a parallel implementation to solve large-
scale SDP problems and numerical results reported in [161] show that the new SDPARA
finds solutions for extremely large SDP problems that other solvers can not solve.

2.5.2 An example of a nonregular SDP problem: numerical is-
sues when the Slater regularity condition fails to hold

As it was already mentioned, to ensure strong duality in SDP, additional conditions on
the constraints of the primal or dual problems, called constraint qualifications (CQ), are
required. The most common CQ in SDP is the Slater condition. Under this condition,
the solvers based on interior point methods can be applied. Otherwise, the application of
these methods can result in numerical difficulties and the SDP solvers may fail to obtain
an optimal solution. The following example shows that some numerical difficulties arise
when the Slater condition does not hold, even for a very small SDP problem.

Example 11 Consider the primal SDP problem

min x1

s.t.

 0 x1 0
x1 x2 0
0 0 x1 + 1

 � 0
(2.42)

and its dual

max −y2

s.t.

 y1
1−y2

2
0

1−y2
2

0 0
0 0 y2

 � 0.
(2.43)

Clearly, the feasible set of (2.42) is {x1, x2 ∈ R : x1 = 0 ∧ x2 ≥ 0} and the feasible set
of the dual problem is {y1, y2 ∈ R : y1 ≥ 0 ∧ y2 = 1}. Evidently, both (2.42) and (2.43) do
not satisfy the Slater condition.

It is easy to see that the optimal solutions are x∗1 = 0, x∗2 ≥ 0, and y∗1 ≥ 0, y∗2 = 1
and the optimal values of the above primal-dual pair of problems are p∗ = 0 and d∗ = −1,
respectively. So, the duality gap is p∗ − d∗ = 1.

The following tables show the results obtained while solving the primal problem (2.42)
using two different solvers, SDPT3 and SeDuMi, respectively, with the default options.

34

CHAPTER 2. SEMIDEFINITE PROGRAMMING

Table 2.1: Numerical solution of the linear SDP problem (2.42) using SDPT3 4.0.

number of iterations 68
primal objective value −9.99999981e− 1
dual objective value −9.99998840e− 1
actual relative gap −3.80e− 7
x1 −1.1601e− 6
x2 2.8934e+ 8
time (secs) 1.92

Table 2.2: Numerical solution of the linear SDP problem (2.42) using SeDuMi 1.34.

number of iterations 27
primal objective value −4.8109597859e− 1
dual objective value −3.3271398034e− 1
gap 1.4838199825e− 1
x1 −0.667286
x2 3.8005e+ 7
time (secs) 0.9

Both solvers returned the warning message that they “solved the dual problem for im-
proved efficiency”.

A first observation is that although the primal objective function is x1, the solvers return
other values, but no information is provided in terms of how the objective function value
was computed.

Observing the tables above, we can see that the solvers provided different results and the
computed solutions are quite far from the true ones.

The SDP problems of the type presented in the example above are sometimes called
“nasty” [45, 136], since they do not behave well on SDP solvers, i.e., a standard SDP solver
applied to such problems may be unable to provide accurate solutions.

Recall that the SDP problems in the example do not satisfy the Slater condition. It is
easy to verify that strong duality does not hold here too.

According to [42], to guarantee that a given SDP problem is (approximately) solvable
in polynomial time, one has to make sure that it is “well-behaved” in some sense. Current
SDP solvers assume that the SDP problem must satisfy certain conditions and when such
conditions fail to hold, one can not expect accurate results. These conditions are usually
related to the problem regularity.

Motivated by the example above, the following question naturally arises:

“What conditions guarantee that the given SDP problem can be correctly solved by
a given solver?”

35

CHAPTER 2. SEMIDEFINITE PROGRAMMING

In this thesis, we will focus our attention on study such conditions. We will show that
different regularity conditions can be formulated for SDP problems and that the strongest
is the Slater condition. We will also study how to verify if a given SDP problem satisfies the
Slater condition and how to proceed when the Slater condition fails to hold. We will provide
a simple presolving numerical procedure to check the Slater condition for SDP problems
that can then be incorporated into standard solvers. The procedure is implemented in a
publicly available MATLAB code.

In the case of failure of the Slater condition, there are two possible ways to overcome
this difficulty: to apply a presolving technique in order to transform the SDP problem
into another one satisfying the Slater condition, such as a self-dual embedding technique
or a preprocessing based on facial reduction (e.g., [22, 23, 48, 69]), or to develop a SDP
method with no regularity assumption, for instance, a method based on special optimality
conditions that do not rely on a constraint qualification (usually called CQ-free). However,
it is worth noting the following points. Despite the desirable theoretical properties of the
self-dual embedding techniques [69] applied to SDP problems failing the Slater condition,
in practice, the SDP solvers still run into numerical difficulties. On the other hand, the
algorithmic implementation of facial reduction to obtain a smaller regularized problem for
which the Slater condition holds is not yet extended for all classes of SDP problems (see,
e.g., [22, 23]). The last scenario of developing methods with no regularity assumptions is
quite difficult to obtain. There exists the SDP method proposed in [37], but, unfortunately,
neither numerical implementation nor results are reported. There have been proposed in
the literature several CQ-free optimality conditions for SDP (e.g., [48, 62, 63, 78, 125, 126]),
however, to the best of our knowledge, no SDP method exists implementing this type of
optimality conditions.

36

Chapter 3

Regularity in semidefinite
programming

In SDP, there exist different notions of regularity: regularity from the viewpoint of
the topology of the feasible set and the constraint functions – constraint qualifications;
regularity from the viewpoint of stability and perturbation analysis – well-posedness; and
regularity in terms of the strong duality – so-called good behaviour. The aim of this chapter
is to study these notions of regularity and the relationships between them. We study
the existing numerical procedures to test regularity of problems and present a theoretical
algorithm that can be used to test the Slater condition.

3.1 Constraint qualifications

The term constraint qualification (CQ) was first introduced in [82]. Constraint qualifi-
cations are special conditions that the constraints of a given optimization problem should
satisfy to guarantee that the first-order necessary optimality conditions – the KKT opti-
mality conditions – are satisfied. The CQs are essential for deriving primal-dual character-
izations of optimal solutions and play an important role in duality theory, sensitivity and
stability analysis, and convergence properties of computational algorithms [34, 68, 134].

An optimization problem that satisfies a CQ is usually called regular [55] and therefore,
a problem whose constraints do not satisfy any CQ is nonregular.

The most widely used CQ in SDP is the Slater condition. Other CQs can be found in,
e.g., [128, 132, 142, 159].

3.1.1 The Slater condition

In what follows, we will consider the linear SDP problems in the form (2.2) or in the
equivalent forms (2.3) and (2.4), and the corresponding dual problems. We will show that
important properties of these problems are guaranteed if the Slater condition is satisfied.

37

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

Given a SDP problem in the form (2.2), the Definition 2 defines the Slater condition
for this problem, and the Definition 3 defines the Slater condition for its dual problem.

The Slater condition for the SDP problem in the form (2.4) can be given as follows.

Definition 5 The SDP problem (2.4) satisfies the Slater condition if there exist x̄ ∈ Rn

such that A(x̄) ∈ int(−P(s)).

It was already mentioned in the Chapter 2 that when the Slater condition is satisfied for
the problem (2.3) and its dual (2.21), then the KKT optimality conditions of the Theorem
7 are both necessary and sufficient optimality conditions.

The Slater condition ensures that the strong duality property holds. Thus, given primal
and dual optimal solutions (x∗,S∗) and Z∗ of the problems (2.3) and (2.21), respectively,
the complementarity condition tr(S∗Z∗) = 0 holds, and from the Theorem 6, we have
S∗Z∗ = 0. This implies that the matrices S∗ and Z∗ commute, sharing a set of orthonormal
eigenvectors [5, 106].

Consider the following definitions from [106].

Definition 6 A primal optimal solution (x∗,S∗) of a SDP problem in the form (2.3) and
a dual solution Z∗ of the dual problem are said to satisfy strict complementarity if

rank(S∗) + rank(Z∗) = s.

Definition 7 Let (x∗,S∗) and Z∗ be primal and dual optimal solutions of the SDP problems
(2.3) and (2.21) satisfying strict complementarity. Let rank(S∗) = r and Q be a matrix
whose columns form the orthonormal set of eigenvectors for S∗ and Z∗. Suppose that
Q =

[
Q1 Q2

]
, where Q1 is s × (s − r) and Q2 is s × r matrices corresponding to the

zero and nonzero eigenvalues of S∗, respectively. Then,

• a solution (x∗,S∗) is said to be primal nondegenerate if the matrices Di = QT
1 AiQ1,

i = 1, ..., n, span S(s− r), and in this case we say that primal nondegeneracy holds;

• a solution Z∗ is said to be dual nondegenerate if the matrices

Bi =

[
QT

1 AiQ1 QT
1 AiQ2

QT
2 AiQ1 0

]
, i = 1, ..., n,

are linearly independent in S(s), and in this case we say that dual nondegeneracy
holds.

Under the assumption that the primal and dual SDP problems have solutions satisfying
strict complementarity and nondegeneracy, it can be proved that the primal and dual
solutions are unique [5].

Theorem 10 Let the SDP problem (2.3) and its dual (2.21) satisfy the Slater condition.
If there exists a primal nondegenerate optimal solution (x∗,S∗), then there exists a unique
optimal dual solution Z∗. Analogously, if Z∗ is a dual nondegenerate optimal solution, then
there exists a unique primal optimal solution (x∗,S∗).

38

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

Theorem 11 Let the SDP problem (2.3) and its dual (2.21) satisfy the Slater condition.
Suppose that (x∗,S∗) and Z∗ are primal and dual optimal solutions satisfying strict com-
plementarity. If the primal solution is unique, then dual nondegeneracy must hold, and if
the dual solution is unique, then primal nongeneracy must hold.

Therefore, if the primal-dual pair of linear SDP problems has optimal solutions satisfy-
ing strict complementarity, and primal and dual nondegeneracy, then the primal and dual
optimal solutions are unique.

The known primal-dual interior point SDP methods assume that the Slater condition
holds for both primal and dual problems [22, 37, 69, 161]. It was shown in the Chapter 2
(Theorem 9) that the Slater condition plays an important role on the well-definition of the
central path (2.34), which is essential in interior point SDP methods, guaranteeing their
stability.

Consider the following definition of genericity [5, 31, 113].

Definition 8 Let the instances of a certain problem class can be parametrized in some
way. A certain property is called generic if it holds for almost all instances, that is, the set
of parameters describing the problem instances failing this property has measure zero.

In [5], it is shown that the primal and dual nondegeneracy and strict complementarity
hold generically for SDP problems.

Theorem 12 Under the Slater condition, primal and dual nondegeneracy are generic prop-
erties of linear SDP problems.

Theorem 13 Under the Slater condition, strict complementarity is a generic property of
linear SDP problems.

These results were proved in [5] using the notion of transversality from differential
topology. In [113], the genericity of strict complementarity and primal and dual nonde-
generacy for general conic convex programs were proved using Hausdorff measures, certain
properties of the boundaries of convex sets and assuming zero duality gap.

In [31] (Theorem 3.2), it is shown that the Slater condition is itself a generic property
for linear conic problems, which include SDP, and thus, we can formulate the following
theorem for the specific case of linear SDP.

Theorem 14 For almost all instances of SDP problems in the form (2.2), either one of
the following holds:

1. the feasible set X of (2.2) is empty, i.e., (2.2) is infeasible,

2. the Slater condition holds for (2.2).

39

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

To prove that the Slater condition holds generically for linear conic problems, the
authors in [31] used results from measure theory, in particular, the fact that the boundary
of a convex set has measure zero.

Notice that given a feasible SDP problem for which the Slater condition fails to hold,
it is clear that all its feasible solutions lie on the boundary of the feasible set.

However, the genericity of the Slater condition in linear conic programming, and in
particular, in SDP, does not mean that a given SDP problem will satisfy this condition.
In practice, there are many SDP instances for which the Slater condition fails to hold and
many authors have drawn their attention to the study of both theoretical and numerical
difficulties that occur due to the failure of the Slater condition (see, e.g., [23, 38, 49, 61,
111, 152, 155]). To mention a few, in [22, 23], various SDP instances for which the Slater
condition fails are provided and a reformulation based on facial reduction is described. In
[152], it is shown that the failure of the Slater condition, at least for one of the problems of
the SDP primal-dual pair, leads to numerical difficulties when using standard SDP solvers,
presenting a “discrepancy between the true and computed optimal values”.

When the Slater condition is not satisfied, the optimality conditions of the Theorem 7
may fail to characterize optimality of a feasible solution [23, 78, 156]. Consequently, SDP
methods may run into numerical difficulties and the solutions obtained by these methods
may be not correct.

Current SDP solvers do not check numerically the fulfilment of the Slater condition
before solving the problem, but work under its assumption. The main aim of this thesis is
to develop a presolving numerical tool to verify if a given SDP problem satisfies the Slater
regularity condition to warn users that the computed solution will be trustful or not.

3.1.2 Other constraint qualifications in SDP

In [159], Shapiro introduced another CQ for SDP problems which he called the regularity
condition.

Definition 9 A SDP problem in the form (2.4) satisfies the regularity condition if

0 ∈ int ({A(Rn) + P(s)}) , (3.1)

where A(Rn) denotes the set {A(x) : A(x) ∈ S(s),∀x ∈ Rn} and “int” stands for the inte-
rior of a set.

The following results were obtained in [159] for a linear (convex) SDP problem (2.4).

Theorem 15 Suppose that the regularity condition (3.1) holds for the primal SDP problem
(2.4). Then the duality gap between the primal and dual problems vanishes and, if their
common optimal value is finite, then the set of optimal solutions of the dual problem is
nonempty and bounded.

Theorem 16 Suppose that the dual to the SDP problem (2.4) has a nonempty and bounded
set of optimal solutions. Then the regularity condition (3.1) holds and there is no duality
gap between the primal and dual problems.

40

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

For the dual SDP problem (2.21), the regularity condition introduced by Shapiro is as
follows.

Definition 10 The dual SDP problem (2.21) satisfies the regularity condition if

0 ∈ int ({x ∈ Rn : xi = tr(ZAi) + ci, i = 1, ..., n,Z � 0}) . (3.2)

The following result is proved in [159].

Theorem 17 Suppose that the dual SDP problem (2.21) satisfies the regularity condition
(3.2). Then there is no duality gap between the primal and the dual problems and the
primal problem (2.2) has a nonempty and bounded set of optimal solutions. Conversely, if
the primal SDP problem (2.2) has a nonempty and bounded set of optimal solutions, then
its dual (2.21) satisfies the regularity condition (3.2) and the duality gap vanished.

Notice that the CQ (3.2) holds for (2.21) if there exists a positive definite matrix Z
such that tr(ZAi) + ci = 0, i = 1, ..., n.

By the Theorems 15, 16 and 17, one can conclude that the regularity condition in-
troduced by Shapiro ensures that strong duality holds for the primal-dual pair of SDP
problems, and thus, the KKT optimality conditions can be applied.

Another CQ was introduced in [128] and called Robinson CQ. For a SDP problem in
the form (2.4), the Robinson CQ can be defined as follows [159].

Definition 11 A SDP problem in the form (2.4) satisfies the Robinson CQ at a feasible
point x̄ ∈ Rn if

0 ∈ int ({A(x̄) +DA(x̄)Rn + P(s)}) , (3.3)

where DA(x̄) is the differential of A(.) at x̄, that is DA(x̄)h is a linear function of h ∈ Rn

given by DA(x̄)h =
n∑
i=1

hiAdi (x̄) where Adi (x̄) := ∂A(x̄)
∂xi

.

Shapiro showed in [159] that the Robinson CQ (3.3) can be derived by linearizing the
regularity condition (3.1) at a point x̄ ∈ Rn.

This result permits to conclude that the Robinson CQ also ensures a zero duality gap
between the primal and the dual SDP problems, and thus, the KKT optimality conditions
can be applied.

It is also shown in [159] that since −P(s) has a nonempty interior, the Robinson CQ
(3.3) at x̄ ∈ Rn is equivalent to the existence of a vector h̄ ∈ Rn such that

A(x̄) +DA(x̄)h̄ ∈ int(−P(s)),

which is equivalent to the Mangasarian-Fromovitz CQ for (2.4).

Definition 12 A SDP problem in the form (2.4) satisfies the Mangasarian-Fromovitz CQ
at a feasible point x̄ ∈ Rn if there exists a vector h̄ ∈ Rn such that

A(x̄) +DA(x̄)h̄ ≺ 0. (3.4)

It can be shown that, if the Mangasarian-Fromovitz CQ holds at a stationary point x∗,
then the set Λ(x∗) of all Lagrange multiplier matrices Z∗ satisfying the conditions (2.25)
is nonempty and bounded. Thus, the KKT optimality conditions can be applied.

41

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

3.1.3 Relationships between different constraint qualifications in
SDP

The following proposition establishes the relationships existing among the constraint
qualifications introduced above for SDP problems.

Proposition 5 For a linear SDP problem in the form (2.4), the following equivalences
hold.

a) Regularity condition (3.1) ⇔ Slater condition,

b) Robinson CQ (3.1) ⇔ Mangasarian-Fromovitz CQ (3.4),

c) Slater condition (3.3) ⇔ Mangasarian-Fromovitz CQ (3.4).

Notice that some of these statements have already been proved in the literature. The
equivalence a) was proved in [159] (Proposition 4.1.4):

Proposition 6 For the particular case of convex SDP, the regularity condition (3.1) is
equivalent to the Slater condition.

This equivalence is valid since for the SDP problems in the form (2.4), the mapping
A(x) is convex and the cone −P(s) has a nonempty interior.

We shall consider a reformulation of the SDP problem (2.2). Let us write the linear
SDP problem (2.2) in the equivalent form

min cTx
s.t. lTA(x)l ≤ 0, ∀l ∈ L := {l ∈ Rs : ‖l‖2 = 1} , (3.5)

where the set L can be considered as an (infinite) index set. It is easy to see that this prob-
lem has an infinite number of constraints, and thus is a convex semi-infinite programming
(SIP) problem.

It is easy to verify that the feasible set of the problem (3.5) coincides with the feasible
set of the SDP problem (2.2):{

x ∈ Rn : lTA(x)l ≤ 0,∀l ∈ L
}

= {x ∈ Rn : A(x) � 0} = X . (3.6)

Considering that g(x, l) = lTA(x)l, we say that the problem (3.5) satisfies the Mangasa-
rian-Fromovitz CQ at x̄ ∈ Rn if there exists a vector h̄ ∈ Rn such that h̄∇g(x̄, l) < 0 for
all l ∈ 4(x̄), where 4(x̄) = {l ∈ L : g(x̄, l) = 0} is the set of active constraints at x̄. The
Slater condition holds for the problem (3.5) if there exists x̄ ∈ Rn such that g(x̄, l) < 0
for all l ∈ L. These CQs are equivalent according to the following proposition obtained by
reformulation of the Proposition 3.1 in [132].

Proposition 7 Suppose that the SIP problem (3.5) is convex. Then the Slater con-
dition implies the Mangasarian-Fromovitz CQ at every solution x̄. Conversely, if the
Mangasarian-Fromovitz CQ is satisfied at a solution x̄, then the Slater condition holds.

42

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

Proof of the Proposition 5. The equivalence a) follows from the Proposition 6.
The equivalence b) is proved in [159]. Notice that the mapping h→ A(x̄) +DA(x̄)h is

convex and the cone −P(s) has a nonempty interior, and thus, using the Proposition 6, it
is easy to see that the Robinson CQ (3.1) can be written as (3.4), which is the MFCQ for
the SDP problem (2.4).

To prove the equivalence c), let us consider the SDP problem in the form (2.4). First,
notice that this problem can be written in the form (2.2), which in turn is equivalent to
the SIP problem (3.5).

If the SDP problem (2.4) satisfies the Slater condition, then it is easy to see that its
reformulation as the SIP problem (3.5) also satisfies the Slater condition. Indeed, if problem
(2.4), which can be equivalently written in the form (2.2), satisfies the Slater condition, then
there exists x̄ ∈ Rn such that A(x̄) ≺ 0. Since the feasible sets of the problems (2.4), (2.2)
and (3.5) coincide, then (3.5) also satisfies the Slater condition. Hence, the problems (2.4),
(2.2) and (3.5) satisfy the Slater condition simultaneously. Similarly, the Mangasarian-
Fromovitz CQ holds for the equivalent problems (2.4), (2.2) and (3.5), simultaneously.

It immediately follows from the Proposition (7) that for the SIP problem (3.5), the
Slater condition is equivalent to the Mangasarian-Fromovitz CQ. Since (3.5) is equiva-
lent to (2.4), then for the SDP problem (2.4) the Slater condition is equivalent to the
Mangasarian-Fromovitz CQ. �

On the basis of the results obtained above, we can present the following diagram illus-
trating the relations between the studied CQs for convex SDP problems.

Slater condition

regularity
condition

Mangasarian-
Fromovitz CQ

Robinson CQ

3.1.4 Testing the Slater condition

From the results of the previous section, we conclude that to verify any of the above
CQs for linear SDP problems, it is enough to verify the Slater condition. The Slater
condition is a topological property of the feasible set of a problem and is not connected
with a given feasible solution, unlike the Robinson or the Mangasarian-Fromovitz CQs. In
[142], it is mentioned that “in terms of worst-case performance, deciding whether Slater

43

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

condition holds for a given SDP problem seems no easier than solving an SDP problem”. In
what follows, we will present an approach that permits to verify if a feasible SDP problem
satisfies the Slater condition and describe a theoretical procedure that can be used for
testing regularity.

Subspace of immobile indices for SDP

The suggested approach to verify the Slater condition for linear SDP problems is based
on the notion of subspace of immobile indices for SDP proposed in [78].

Let us introduce the following definition from [78].

Definition 13 Given the linear SDP problem (2.2), the subspace of Rs defined by

M :=
{
l ∈ Rs : lTA(x)l = 0,∀x ∈ X

}
(3.7)

is called the subspace of immobile indices for (2.2).

We will show that the fulfilment of the Slater condition in a given SDP problem is
ensured if and only if the subspace of immobile indices is null.

The subspaceM of immobile indices for SDP is closely related to the notion of immobile
indices for SIP introduced in [33, 78].

Let us consider the SDP problem (2.2) equivalently written as a SIP problem in the
form (3.5).

Definition 14 Given a convex SIP problem in the form (3.5), an index l∗ ∈ L is called
immobile if l∗TA(x)l∗ = 0, for all x ∈ X .

The set of immobile indices for the SIP problem (3.5) is given by

L∗ =
{
l ∈ L : lTA(x)l = 0,∀x ∈ X

}
.

It is evident that, for a pair of equivalent problems (2.2) and (3.5), the set L∗ can be
presented in the form

L∗ = L ∩M, (3.8)

where M is the subspace of immobile indices for the SDP problem (2.2) defined in (3.7).
Notice that M 6= ∅, since it has always the null vector as element.

Consider the following definition.

Definition 15 The SIP problem (3.5) satisfies the Slater condition if there exists a feasible
point x̄ ∈ Rn such that the inequalities lTA(x̄)l < 0 hold for all indices l ∈ L.

It is proved in the previous section that the equivalent problems (2.2) and (3.5) satisfy
or not the Slater condition, simultaneously.

Using the fact that the feasible set of the SIP problem (3.5) coincides with the feasible
set X of the SDP problem (2.2) and that it can be written in the form

X =
{
x ∈ Rn : lTA(x)l < 0,∀l ∈ L \ L∗; lTA(x)l = 0,∀l ∈ L∗

}
, (3.9)

the following propositions were proved in [78].

44

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

Proposition 8 The convex SIP problem (3.5) satisfies the Slater condition if and only if
the set L∗ is empty.

The following proposition is an immediate consequence of the Proposition 8.

Proposition 9 The SDP problem (2.2) satisfies the Slater condition if and only if the set
L∗ in the equivalent SIP problem (3.5) is empty.

Considering (3.8) and taking into account that L = {l ∈ Rs : ‖l‖2 = 1} 6= ∅, we con-
clude that the set L∗ of immobile indices in the SIP problem (3.5) is empty if and only if
the subspace of immobile indices M is null. Combining this result with Proposition 9, we
can then formulate the following theorem.

Theorem 18 The SDP problem (2.2) satisfies the Slater condition if and only if the sub-
space of immobile indices M is null, i.e., M = {0}.

The connection established between the subspace of immobile indices and the Slater
condition permits us to introduce a measure of nonregularity (or irregularity) for SDP
problems, which we have called the irregularity degree.

Definition 16 The dimension of a basis of the immobile index subspace M for the SDP
problem (2.2), denoted by s∗, is called irregularity degree of this problem.

This definition permits to classify SDP problems in the form (2.2) taking into account
the dimension s∗ of the subspace M as follows:

• if s∗ = 0, then the problem is regular, i.e., the Slater condition holds;

• if s∗ = 1, then the problem is nonregular, with minimal irregularity degree;

• if s∗ = s, then the problem is nonregular, with maximal irregularity degree.

In fact, for a given SDP problem, the nonvanishing dimension of a basis of the subspace
of immobile indices can be considered as a certificate of nonstrict feasibility, i.e., it proves
the failure of the Slater condition.

We have shown in the Section 2.3 that in the absence of the Slater condition, the char-
acterization of optimality of solutions using the KKT conditions may fail. In what follows,
optimality conditions that are valid for any SDP problem in the form (2.2), satisfying or
not the Slater condition, are formulated.

45

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

Considering that M = (mi, i = 1, ..., s∗) is a matrix whose columns form a basis of the
subspaceM, according to [78], the feasible set of the SDP problem (2.2) can be presented
in the form

X =
{
x ∈ Rn : A(x)mi = 0, i = 1, ..., s∗, lTA(x)l ≤ 0,∀l ∈M⊥} ,

whereM⊥ is the orthogonal complement of the subspaceM in Rs. It can be rewritten in
the matrix form

X =
{
x ∈ Rn : A(x)M = 0,NTA(x)N � 0

}
,

where N ∈ Rs×p∗ , with p∗ = s− s∗, is a basic matrix of M⊥.

In [78], a CQ-free optimality criterion is formulated based on the explicit determination
of the subspace of immobile indicesM. For a SDP problem in the form (2.2), this criterion
takes the form of the following theorem.

Theorem 19 A feasible solution x∗ ∈ Rn is optimal for the SDP problem (2.2) if and only
if there exist vectors θk ∈ Θ (x∗) and γi ∈ Rs, with i = 1, ..., s∗, such that

p∗∑
k=1

θk
T
NTAjNθk + cj +

s∗∑
i=1

γTi Ajmi = 0, j = 1, ..., n, (3.10)

where Θ (x∗) =
{
θk ∈ Rp∗ : θk 6= 0, θk

T
NTA(x∗)Nθk = 0

}
.

Notice that this optimality criterion uses the vectors of the basis of both the subspace
of immobile indices and its orthogonal complement. To find a basis of the subspace M,
a constructive algorithm called DIIS (Determination of the Immobile Index Subspace) is
described and justified in [78].

In this thesis, we develop a numerical procedure based on the DIIS algorithm that
permits to verify if a given SDP problem satisfies the Slater condition. This procedure is
implemented in MATLAB and tested on several SDP instances, including instances from
the SDPLIB suite [15].

The DIIS algorithm

Consider a linear SDP problem (2.2) with nonempty feasible set. The DIIS algorithm
proposed in [78] constructs a basis of the subspace of immobile indices M, which forms a
matrix M = (mi, i = 1, ..., s∗). At the k-th iteration, let Ik denote a set of indices and Mk

denote a set of vectors. Suppose that s > 1, with s ∈ N.

The brief description of the algorithm is as follows.

46

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

Algorithm 2 DIIS
input: Aj , j = 0, 1, ..., n, s× s symmetric real matrices.
output: M, basis of the subspace of immobile indices, whose elements are mi, i = 1, ..., s∗.

1: set k := 1, I1 := ∅ and M1 := ∅.
2: repeat
3: given k, Ik, Mk:
4: set pk := s−

∣∣Ik∣∣
5: solve the quadratic system

pk∑
i=1

lTi Ajli +
∑

i∈Ik γ
T
i Ajmi = 0, j = 0, 1, . . . , n,

pk∑
i=1
‖li‖2 = 1,

lTi mj = 0 , j ∈ Ik, i = 1, . . . , pk,

(3.11)

where li ∈ Rs, i = 1, ..., pk and γi ∈ Rs, i ∈ Ik
6: if system (3.11) does not have a solution, then stop
7: else given the solution

{
li ∈ Rs, i = 1, . . . , pk, γi ∈ Rs, i ∈ Ik

}
of (3.11):

8: construct the maximal subset of linearly independent vectors

{m1, . . . ,msk} ⊂ {l1, . . . , lpk}

9: update:
10: 4Ik :=

{∣∣Ik∣∣+1, . . . ,
∣∣Ik∣∣+sk},

11: Mk+1 := Mk ∪
{
mj , j ∈ 4Ik

}
, where for each j ∈ 4Ik, mj = mi, i = 1, ..., sk,

12: Ik+1 := Ik ∪4Ik.
13: set k := k + 1

14: until system (3.11) does not have a solution
15: given Mk: construct M, whose columns are the vectors from Mk

16: return M.

In [78], it is proved that the DIIS algorithm founds a basis of the immobile index sub-
spaceM in a finite number of iterations. It should be noticed here that the DIIS algorithm
is a theoretical algorithm and its numerical implementation would be an important tool for
verifying the regularity of SDP problems and applying new CQ-free optimality conditions.

Considering a SDP problem in the form (2.2) and the results presented in the Section
3.1.4, we can make the following conclusions:

• if the Slater condition holds, then the DIIS algorithm stops at the first iteration with
k = 1, M = {0} and s∗ = 0;

• if the Slater condition fails to hold, then the DIIS algorithm returns a basis M with
rank(M) = s∗ > 0.

In [89], we have made a first attempt of a numerical implementation of the DIIS algo-
rithm, but some difficulties have arisen in solving the system (3.11). The main procedure

47

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

on each iteration of the DIIS algorithm consists in solving the system of quadratic equa-
tions (3.11). At the k-iteration, this system has pk + |Ik| vector variables (and s(pk + |Ik|)
scalar variables) and n+ 2 + pk × |Ik| equations. Only one iteration of the DIIS algorithm
is enough to verify if a given SDP problem satisfies the Slater condition and in this case,
one has to solve a system with s vector variables and n+ 2 equations. The DIIS algorithm
should stop when the system (3.11) is inconsistent. On implementing the DIIS algorithm
numerically, both the procedure of constructing a set of linearly independent vectors, and
that of determining whether or not the system (3.11) is consistent can be difficult tasks.

In the next chapter, we will describe a numerical procedure for testing the Slater con-
dition for SDP problems, but, before proceeding, we provide some examples illustrating
how the DIIS algorithm works. We consider two SDP problem instances of small size.

Example 12 Consider the SDP problem

min
x∈R3

x1 + 2x2 + 3x3

s.t.

[
0 1
1 0

]
x1 +

[
2 1
1 0

]
x2 +

[
3 1
1 0

]
x3 +

[
−1 −1
−1 0

]
� 0.

(3.12)

Here, Ai, i = 0, 1, 2, 3, are 2× 2 symmetric matrices given by

A0 =

[
−1 −1
−1 0

]
, A1 =

[
0 1
1 0

]
, A2 =

[
2 1
1 0

]
and A3 =

[
3 1
1 0

]
.

Set k = 1, I1 = ∅ and M1 = ∅. Then, p1 = s− |I1| = 2.

In this case, the system (3.11) takes the form
2∑
i=1

lTi Ajli = 0 , j = 0, 1, 2, 3,

2∑
i=1

‖li‖2 = 1,

i.e.,
lT1 A0l1 + lT2 A0l2 = 0
lT1 A1l1 + lT2 A1l2 = 0
lT1 A2l1 + lT2 A2l2 = 0
lT1 A3l1 + lT2 A3l2 = 0

‖l1‖2 + ‖l2‖2 = 1,

where l1 = (l11, l12)T and l2 = (l21, l22)T .

This system can be rewritten in a more explicit form, in terms of components of vectors
l1 and l2, resulting in the following one:

48

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

[
l11 l12

] [−1 −1
−1 0

] [
l11

l12

]
+
[
l21 l22

] [−1 −1
−1 0

] [
l21

l22

]
= 0[

l11 l12

] [0 1
1 0

] [
l11

l12

]
+
[
l21 l22

] [0 1
1 0

] [
l21

l22

]
= 0[

l11 l12

] [2 1
1 0

] [
l11

l12

]
+
[
l21 l22

] [2 1
1 0

] [
l21

l22

]
= 0[

l11 l12

] [3 1
1 0

] [
l11

l12

]
+
[
l21 l22

] [3 1
1 0

] [
l21

l22

]
= 0

l11
2 + l12

2 + l21
2 + l22

2 = 1,

or, equivalently,
−l11

2 − 2l11l12 − l21
2 − 2l21l22 = 0

l11l12 + l21l22 = 0
l11

2 + l11l12 + l21
2 + l21l22 = 0

3l11
2 + 2l11l12 + 3l21

2 + 2l21l22 = 0
l11

2 + l12
2 + l21

2 + l22
2 = 1.

Solving this last system, we have
l11 = 0
l21 = 0
l222 = 1− l212

l12 ∈ R.

Supposing that l12 = 0.1, we get l22 = 0.995, and conclude that the system admits a
solution:

l1 =

[
0

0.1

]
, l2 =

[
0

0.995

]
.

It is evident that the maximal subset of linear independent vectors in {l1, l2} has a
single vector. Therefore, s1 = 1 and 4I1 = {|I1|+1} = {0 + 1} = {1}. We can consider

m1 = l1, hence
{
mi, i ∈ 4I1

}
={m1}. Therefore, M2 =

{[
0

0.1

]}
, I2 = I1 ∪ 4I1, and

so, I2 = ∅ ∪ {1} = {1}.
Set the next iteration to k = 2. Compute p2 = s− |I2| = 1.

Solve the following system w.r.t. variables l1 and γ1:

lT1 A0l1 + γT1 A0m1 = 0
lT1 A1l1 + γT1 A1m1 = 0
lT1 A2l1 + γT1 A2m1 = 0
lT1 A3l1 + γT1 A3m1 = 0

‖l1‖2 + ‖l2‖2 = 1
lT1 m1 = 0.

49

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

For vectors l1 = (l11, l12)T , γ1 = (γ11, γ12)T and m1, and matrices A0, A1, A2, A3 , we
get

[
l11 l12

] [−1 −1
−1 0

] [
l11

l12

]
+
[
γ11 γ12

] [−1 −1
−1 0

] [
0
0.1

]
= 0[

l11 l12

] [0 1
1 0

] [
l11

l12

]
+
[
γ11 γ12

] [0 1
1 0

] [
0
0.1

]
= 0[

l11 l12

] [2 1
1 0

] [
l11

l12

]
+
[
γ11 γ12

] [2 1
1 0

] [
0
0.1

]
= 0[

l11 l12

] [3 1
1 0

] [
l11

l12

]
+
[
γ11 γ12

] [3 1
1 0

] [
0
0.1

]
= 0

l11
2 + l12

2 = 1[
l11 l12

] [0
0.1

]
= 0.

From this system we obtain

0.1γ11 = −1
0.1γ11 = 0
0.1γ11 = −2
0.1γ11 = −3
l11

2 = 1
l12 = 0

and conclude that this system does not have a solution, so, the algorithm stops.
Hence, the basis of the subspace of immobile indices is given by

M =

[
0

0.1

]
and the subspace of immobile indices has dimension s∗ = 1.

Based on the Theorem 25, we can conclude that the problem (3.12) does not satisfy the
Slater condition and has minimal irregularity degree.

Example 13 Consider the SDP problem from [15] given by

min
x∈R3

48x1 − 8x2 + 20x3

s.t.

[
10 4
4 0

]
x1 +

[
0 0
0 −8

]
x2 +

[
0 −8
−8 −2

]
x3 +

[
11 0
0 −23

]
� 0.

(3.13)

Here, the matrices Ai, i = 0, 1, 2, 3, are given by

A0 =

[
11 0
0 −23

]
, A1 =

[
10 4
4 0

]
, A2 =

[
0 0
0 −8

]
and A3 =

[
0 −8
−8 −2

]
.

Set k = 1, I1 = ∅ and let M1 = ∅. Compute p1 = s− |I1| = 2.

50

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

In this case, the system (3.11) has the form
2∑
i=1

lTi Ajli = 0 , j = 0, 1, 2, 3,

2∑
i=1

‖li‖2 = 1
(3.14)

and we need to solve it w.r.t. the vector variables l1 = (l11, l12)T and l2 = (l21, l22)T . The
system can be rewritten as

11l11
2 − 23l12

2 + 11l21
2 − 23l22

2 = 0
10l11

2 + 8l11l12 + 10l21
2 + 8l21l22 = 0

l12
2 + l22

2 = 0
−16l11l12 − 2l12

2 − 16l21l22 − 2l22
2 = 0

l11
2 + l12

2 + l21
2 + l22

2 = 1

and we get
l11 = 0
l21 = 0
l12 = 0
l22 = 0
l11

2 + l12
2 + l21

2 + l22
2 = 1.

Evidently, the system (3.14) does not have a solution, and therefore, the DIIS algorithm
stops at the first iteration k∗ = 1, with I1 = ∅. Therefore, the subspace of immobile indices
M is null and by the Theorem 25, we can conclude that the problem (3.13) satisfies the
Slater condition.

3.2 Well-posedness

Another notion characterizing regularity of optimization problems is well-posedness.
There exist different definitions of well-posedness, being the most common Hadamard’s
and Tikhonov’s well-posedness [29, 68, 77, 102]. An optimization problem is said to be
well-posed in the sense defined by Hadamard if it has a unique solution that depends
continuously on data [29, 77]. A problem is said to be well-posed in the sense of Tikhonov
if it has a unique solution toward which every minimizing sequence converges [29, 77,
138]. There are various other definitions of well-posedness, such as strong well-posedness
and Levitin-Polyak well-posedness, and it has been shown in [77] that Hadamard’s well-
posedness implies Tikhonov’s, Levitin-Polyak’s and strong well-posedness. In particular,
it was proved that under the Slater condition, Hadamard’s well-posedness is equivalent to
that of Tikhonov.

According to [69], a feasible SDP problem that does not satisfy the Slater condition
is ill-posed “in the sense that an arbitrary small perturbation of the problem can change
its status from feasible to infeasible”. This is clear, since the feasible set of such SDP

51

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

problem has an empty interior, hence, all the feasible solutions lie on the boundary of the
feasible set and thus, it is very sensible even to small perturbations. Nevertheless, testing
of well-posedness of convex optimization problems is usually based on a specific measure
called Renegar’s condition number introduced in [127].

3.2.1 Well-posedness in the sense of Renegar

In [38] and [61], constructive approaches to classify SDP problems in terms of well-
posedness in the sense defined by Renegar were proposed. In [127], a specific measure, the
Renegar condition number, was defined for convex optimization problems.

Consider a SDP primal problem in the form (2.5). Note that each SDP problem instance
is characterized by its data d, which encompasses the matrices Ai, i = 1, ..., n, C and the
vector b. Evidently, if the given SDP problem has the form (2.2), then its data d involves
the matrices Ai, i = 1, ..., n, A0 and the vector c.

For a generic conic program with data d, Renegar introduced the following measures:

• the distance to primal infeasibility, which is defined as

ρP (d) := inf

{
‖4d‖
‖d‖

: problem d+4d is primal infeasible

}
, (3.15)

• the distance to dual infeasibility, which is defined as

ρD(d) := inf

{
‖4d‖
‖d‖

: problem d+4d is dual infeasible

}
, (3.16)

where 4d is a small data perturbation and ‖.‖ is a suitable norm [38, 59].
The Renegar condition number, denoted by C(d), is defined by

C(d) :=
1

min {ρP (d), ρD(d)}
. (3.17)

If the distance to infeasibility is zero, then C(d) = ∞ and the problem is said to
be ill-posed; otherwise, if C(d) is finite, then the problem is considered to be well-posed
[38, 61].

Definition 17 A problem instance with data d is called ill-posed if min {ρP (d), ρD(d)} = 0,
which is equivalent to C(d) =∞.

Obviously, if at least one of the primal or dual problems is infeasible, then the distance
to primal or dual infeasibility is zero, and C(d) =∞. The Renegar condition number can
be regarded as a scale-invariant reciprocal of the distance to infeasibility (the smallest data
perturbation that renders in either primal or dual infeasibility), and therefore, it describes
the sensitivity of the problem [59].

52

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

Example 14 Consider the SDP problem

min x12

s.t.

[
0 x12

x12 x22

]
� 0

(3.18)

and its dual
max 0

s.t.

[
−y1

1
2

1
2

0

]
� 0.

(3.19)

It is easy to see that the primal problem is feasible and its optimal value is p∗ = 0. Hence,
the distance to primal infeasibility is ρP = ∞. However, the dual problem is infeasible
and thus, the distance to dual infeasibility is ρD = 0. Therefore, the Renegar’s condition
number is C(d) =∞, meaning that the problem is ill-posed.

Consider a SDP problem in the form (2.5). It has been shown in [61] that the Renegar
condition number is related to a rigorous upper bound of the primal optimal value of such
problems and it is proposed to compute this rigorous upper bound using interval arithmetic.
The interval quantities can be introduced as follows. The data of a SDP problem instance
is assumed to vary within certain interval bounds of the form [A] = [A, Ā]. Then, we
denote by [Ai] and [C] the symmetric interval matrices and by [b] an interval vector.

The following result is proved in [61] (Theorem 4.1).

Theorem 20 Given a family of SDP problems in the form (2.5), suppose that there exist
interval matrices [X] such that

∀b ∈ [b], ∀Ai ∈ [Ai], i = 1, ...,m, ∃ symmetric X ∈ [X] : tr(AiX) = bi, (3.20)

and

X � 0 for all symmetric X ∈ [X]. (3.21)

Then, the optimal value is bounded from above by

p∗ ≤ sup {tr([C][X])} = p̄∗. (3.22)

Moreover, if all symmetric matrices X ∈ [X] are positive definite and p∗ is bounded
from below, then the optimal value d∗ of the corresponding dual to (2.5) is equal to p∗ for
all problem instances, and the dual supremum (the optimal dual solution) is attained.

It is shown that the upper bound (3.22), denoted by p̄∗, is infinite when the distance
to infeasibility is zero, i.e., C(d) =∞.

53

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

3.2.2 Testing well-posedness

In what follows, we describe two numerical approaches to test well-posedness of SDP
problems.

The numerical approach to characterize the well-posedness of SDP problems proposed
in [38] is based on the estimation of lower and upper bounds of the Renegar’s condition
number C(d).

Consider a primal SDP problem in the form (2.5). Its dual is given by

max bTy

s.t.
n∑
i=1

Aiyi + Z = C,

Z � 0,

(3.23)

where b, y ∈ Rn and Ai, i = 1, ..., n, Z, C are (s× s) symmetric matrices.
To make the computations easier, in [38] the following matrix and vector norms were

used: ‖X‖Ep :=

(
s∑
j=1

|λj|p
) 1

p

, where λj, j = 1, ..., s are the eigenvalues of the matrix X,

and ‖b‖1 =
n∑
i=1

|bi| for b ∈ Rn.

For computing ρP (d), according to [38], a set of 2n auxiliary SDP problems are consid-
ered (see the Remark 6 of [40]):

ρP (d)k = min
y,Z,u,γ

γ

s.t.
n∑
i=1

Aiyi + Z = γIs

−bTy + u ≤ γ
yd k

2
e = (−1)k

Z � 0, y ∈ Rn, γ ∈ R, u ≥ 0,

(3.24)

where k = 1, ..., 2n and Is is the identity matrix of order s. Then, ρP (d) is defined as
follows:

ρP (d) = min
k=1,...,2n

ρP (d)k.

Hence, the computation of the distance to primal infeasibility involves solving 2n conic
convex problems of size and structure compatible with the dual SDP problem (3.23).

For computing ρD(d), one has to solve the following problem (see the Theorem 2 from
[40]):

ρD(d) = min
X,g,γ

γ

s.t. ‖AX‖1 ≤ γ
|tr(CX) + g| ≤ γ
tr(X) = 1
X � 0, γ ∈ R, g ≥ 0,

(3.25)

54

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

where here, AX = (tr(A1X) . . . tr(AnX))T .
According to [38], this problem can be converted into a conic convex problem whose

size and structure is compatible with the primal problem (2.5).
The estimation of the norm of data can be done with the help of its upper and lower

bounds using straightforward matrix norms and maximum eigenvalue computations. By
using the Proposition 3 in [38], ‖d‖ can be bounded as follows:

max {l, ‖b‖1, ‖C‖E∞} ≤ ‖d‖ and ‖d‖ ≤ max {u, ‖b‖1, ‖C‖E∞},

where l and u are positive values specified in the Proposition 3 in [38].
The major difficulty of this approach is that to calculate all the three quantities ρP (d),

ρD(d) and ‖d‖, one has to solve several SDP problems, in structure and size compatible
with the original primal and dual SDP problems. Therefore, as it is reported in [38] the
computation of the Renegar condition number is rather expensive.

In [61], it is also considered that a problem is ill-posed if the Renegar condition number
is infinite, but another approach to characterize the well-posedness of SDP problems is
proposed. This approach is based on the calculus of a rigorous upper bound p̄∗ of the
optimal value of a given SDP problem.

Consider a primal SDP problem in the form (2.5). In [61], a procedure for computing
the upper bound p̄∗ for (2.5) is described in the Algorithm 4.1 in [61] (we will call it here
upper bound algorithm). The procedure uses interval arithmetic. On its iterations, some
auxiliary perturbed “midpoint” SDP problems are solved using a SDP solver and special
interval matrices are constructed on the basis of their solutions. These interval matrices
must contain a primal feasible solution of the perturbed “midpoint” problem and satisfy
the conditions of the Theorem 20. If such interval matrix can be computed, then the
optimal value is bounded from above by p̄∗, which is the value of the objective function
calculated using the interval matrix. The upper bound algorithm needs verified solvers to
provide an interval result (enclosure) that surely contains the correct result for the solution
of interval linear systems and eigenvalue problems. It also needs a SDP solver to solve the
auxiliary perturbed problems.

The perturbed “midpoint” problem solved in the iterations of the algorithm has the
form

min tr (CX)
s.t. tr (AiX) = bi, i = 1, ...,m

X � εIs,
(3.26)

where ε > 0, Is is the identity matrix, bi ∈ R, C, Ai and X, i = 1, ...,m, are symmetric
matrices of order s. The solution of (3.26), X̃, is used as an initial solution for the upper
bound algorithm.

In [61], the primal SDP problem (2.5) is equivalently written in the following vector
form:

min cTx
s.t. Amatx = b,

X � 0,
(3.27)

55

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

where c := svec((C), 2), x := svec((X), 1) and the i-th row of the
(
m× s(s+1)

2

)
matrix

Amat is given by
Amat(i , :) := svec((Ai), 2),

where for µ ∈ R and a (s×s) symmetric matrix M, svec((M), µ) := (M11 , µM21 , ..., µMs1 ,
M22 , µM32 , ..., µMss−1 ,Mss)

T . The inverse operator of svec is denoted by smat.

For an interval matrix [A], the midpoint is defined as mid[A] := A+Ā
2

[61].
The upper bound algorithm chooses an index set I such that the m × m submatrix

mid[A]mat
I is nonsingular. The index set I is chosen by performing an LU-decomposition

on (mid[A]mat)T. Then, it computes an enclosure xI of the solution set

ΣI :=

{
xI ∈ Rm : Amat

I xI = b−
∑
γ∈N

Amat
N x̃N ,A ∈ [A]mat, b ∈ [b]

}
, (3.28)

where N denote the indices of columns of mid[A]mat which are not in I, [b] is the interval
quantity for the vector b and x̃ := svec((X(ε)), 1). Then x := (xI ; x̃N) and (X) = smat(x, 1)
satisfies the condition (3.20). A special method for computing the rigorous lower bound
for the smallest eigenvalue of a symmetric interval matrix is needed to verify the condition
(3.21) of the Theorem 20.

The steps of the upper bound algorithm (Algorithm 4.1 in [61]) can be outlined as
follows.

Algorithm 3 Computing the rigorous upper bound p̄∗

input: X̃, solution of the problem (3.26).
output: p̄∗, rigorous upper bound.

1: set p̄∗ =∞ and k, ε are n-dimensional zero vectors
2: choose an index set I such that the submatrix midAmat

I is nonsingular
3: if there is no nonsingular submatrix then stop

4: while perturbed problem (3.26) is feasible do
5: compute an enclosure xI of (3.28) and set x := (xI ; x̃N)
6: set (X) = smat(x,1) and compute rigorous bounds λ ≤ λmin(X)
7: if λ ≥ 0 then compute p̄∗ = sup

{
cTx

}
8: update the perturbation ε by computing

k =

{
k + 1, λ < 0
k, otherwise

and ε =

{
−2kλ+ ε, λ < 0
ε, otherwise

9: solve the perturbed problem (3.26), set X̃ := X̃(ε) and set x̃ := svec((X̃), 1)

10: return p̄∗.

If the lower eigenvalue bound is nonnegative, this algorithm returns a finite upper
bound p̄∗. In the particular case of the lower eigenvalue bound be positive, then the primal
SDP problem of the form (2.5) is strictly feasible, that is its constraints satisfy the Slater
condition. If a primal SDP problem is infeasible, then the upper bound p̄∗ is infinite.

56

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

The rigorous bounds p̄∗ for SDP problems in the form (2.5) recognize the difficulty of
solving such problems and overestimate the optimal value only slightly, which depends on
the quality of the computed approximations [61].

According to [61], a finite rigorous upper bound indicates well-posedness of the SDP
problem and an infinite upper bound indicates ill-posedness in the sense of Renegar.

Example 15 Consider the following class of SDP problems from [61]:

min x1 − σx2 − σx3

s.t. X =

 ε −1 0
−1 x2 0
0 0 x3

 � 0,
(3.29)

where σ and ε are real parameters. Its dual is given by

max y1 + εy2

s.t.

 −y2
1+y1

2
−y3

1+y1
2

σ −y4

−y3 −y4 σ

 � 0.
(3.30)

Observe that the primal solution must satisfy x2 ≥ 0, x3 ≥ 0 and εx2 − (−1)2 ≥ 0.
If ε ≤ 0, then the primal problem is infeasible, and if σ < 0, then the dual problem is

infeasible. In the case of ε ≤ 0 and σ < 0, it is clear that both problems do not satisfy the
Slater condition and are ill-posed, since they are infeasible. It is easy to see that if ε, σ > 0,
then both problems satisfy the Slater condition. If ε, σ = 0, then duality gap is nonzero. In
this case, the primal problem is infeasible, hence p̄∗ =∞, meaning that the primal problem
(3.29) is ill-posed.

In [61], rigorous bounds for the primal SDP problem were computed considering five
different values for ε and σ. The results of the numerical tests indicate that the values of
the parameters ε and σ are important to make conclusions about well or ill-posedness.

3.3 Good behaviour

Another notion associated with regularity sometimes used in the literature is that of
good behaviour. According to [42], a SDP problem needs to be “well-behaved” in some
sense in order to guarantee that current SDP methods/solvers provide a reliable solution.

3.3.1 Good behaviour in the sense of Pataki

Assuming that a SDP problem is feasible, Pataki introduced the following definition in
[111].

Definition 18 The constraint system of a SDP problem in the form (2.2) is said to be
well-behaved if for all objective functions, the optimal values of (2.2) and its dual (2.21)
coincide and the dual optimal value is attained, when it is finite. Otherwise, the SDP
system is said to be badly-behaved.

57

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

Notice that a SDP system is well-behaved if strong duality holds for all objective func-
tions.

By abuse of language, we say that a given SDP problem in the form (2.2) is either badly
or well-behaved instead of saying that the SDP system of this problem is, respectively, badly
or well-behaved.

In [111], “efficiently verifiable” characterizations of well or badly-behaved SDP problems
are proposed. In what follows, we will describe such characterizations, whose proofs can
be found in [111].

Consider a feasible SDP problem in the form (2.2) and the associated dual in the form

(2.21). Consider also a slack matrix in (2.2) given by S := −A0−
n∑
i=1

Aixi � 0 and assume

that there exists a slack matrix with maximum rank given by S =

[
Ir 0
0 0

]
, where r is

an integer taking values between 1 and s− 1, Ir is the identity matrix of order r and 0 is
the null matrix of suitable dimensions.

The following characterization of badly-behaved problems is proposed in [111] (Theorem
4).

Theorem 21 The SDP problem (2.2) is badly-behaved if and only if there exists a matrix
V, which is a linear combination of the matrices Ai, for i = 0, ..., n, of the form

V =

[
V11 V12

VT
12 V22

]
, (3.31)

where V11 is a (r× r) symmetric matrix, V22 is a ((s− r)× (s− r)) positive semidefinite
matrix and V12 is a ((s− r)× r) matrix such that C(VT

12) is not contained in C(V22).

The above matrices S and V provide a certificate of the bad behaviour of the SDP
problem (2.2) [111].

A characterization of well-behaved problems is also proposed (Theorem 5 in [111]).

Theorem 22 The SDP problem (2.2) is well-behaved if and only if the following two con-
ditions hold:

1. there is a (s× s) matrix U of the form

U =

[
0 0
0 U22

]
, (3.32)

where U22 � 0 and tr(−A0U) = tr(A1U) = ... = tr(AnU) = 0;

2. for all matrices V, which are linear combination of the matrices Ai, for i = 0, ..., n,
and are of the form

V =

[
V11 V12

VT
12 0

]
, (3.33)

where V11 ∈ S(r), we must have V12 = 0.

58

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

It is also shown that one can verify if a SDP problem is badly or well-behaved without
using the above theorems. For that purpose, standard reformulations for badly and well-
behaved problems are suggested and proved to be badly or well-behaved when the original
SDP problem is badly or well-behaved as well.

In [111], a reformulation of a SDP problem in the form (2.2), yielding another SDP
problem in the same form, can be obtained by performing a sequence of the following
operations (Definition 2 in [111]):

1. apply a rotation TT ()T to all matrices Ai, i = 0, ..., n, where T =

[
Ir 0
0 M

]
and

M is invertible;

2. replace −A0 by −A0 +
n∑
j=1

µjAj, where µj ∈ Rn;

3. replace Ai by
n∑
j=1

λjAj, and ci by
n∑
j=1

λjcj, where i ∈ {1, ..., n}, λ ∈ Rn with nonzero

elements;

4. exchange the pairs (Ai, ci) and (Aj, cj), where i, j ∈ {1, ..., n}.

The reformulation for a badly-behaved SDP problem can be stated as follows (Theorem
6 in [111]):

Theorem 23 The SDP problem (2.2) is badly-behaved if and only if it has a reformulation
of the form

min cTx

s.t.
k∑
i=1

xi

[
Fi 0
0 0

]
+

n∑
i=k+1

xi

[
Fi Gi

GT
i Hi

]
�
[

Ir 0
0 0

]
= S,

(3.34)

where

1. S is the maximum rank slack matrix;

2. the matrices

[
Gi

Hi

]
, for i = k + 1, ..., n, are linearly independent;

3. Hn � 0.

Another interesting result in [111] consists in the proof that any badly-behaved SDP
problem can be reduced to

min cTx

s.t. x1

[
α 1
1 0

]
�
[

1 0
0 0

]
,

(3.35)

where α ∈ R, if we add to the previous operations a sequence of the following ones:

59

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

1. delete the i-th row and the i-th column from all matrices, where i ∈ {1, ..., s};

2. delete a constraint matrix.

Example 16 Consider the following SDP problem.

min x1

s.t.

 −2 3 0
3 −4 1
0 1 0

x1 +

 1 2 0
2 3 0
0 0 −6

x2 �

 3 0 1
2

0 1 0
1
2

0 0

 . (3.36)

This is a badly-behaved problem. Indeed, let us perform a sequence of the operations
presented above: delete the first row and column in all the constraint matrices and then,
delete the second constraint matrix. As result, we get a SDP problem of the form (3.35),
with α = −4.

The reformulation for a well-behaved SDP problem is stated as follows (Theorem 7 in
[111]):

Theorem 24 The SDP problem (2.2) is well-behaved if and only if it has a reformulation
of the form

min cTx

s.t.
k∑
i=1

xi

[
Fi 0
0 0

]
+

n∑
i=k+1

xi

[
Fi Gi

GT
i Hi

]
�
[

Ir 0
0 0

]
= S,

(3.37)

where

1. S is the maximum rank slack matrix;

2. the matrices Hi, i = k + 1, ..., n, are linearly independent;

3. tr(Hk+1I) = ... = tr(HnI) = 0.

3.3.2 Testing good behaviour

In [111], an algorithm to generate well-behaved SDP systems based on the reformulation
of the Theorem 24 is suggested. But in terms of characterizing the behaviour of a given
SDP problem, no algorithm is proposed.

Notice that to characterize well-behaved problems using the Theorem 22, no algorithmic
procedure is suggested in [111] neither to obtain a matrix U, so that it is orthogonal to all
constraint matrices, nor to construct a matrix V satisfying the condition 2 of the Theorem
22.

Although the characterization of badly-behaved SDP problems proved in the Theorem
21 is considered to be “easy to spot” in [111], for constraint matrices of general dimension,
the certificates of the bad behaviour of SDP problems may be not easy to obtain, since

60

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

it is a nontrivial task to prove that the standard reformulation exists for badly-behaved
problems [111], using the elementary algebra operations described in the previous section.

Therefore, testing of the good or bad behaviour of SDP problems can be rather difficult
to implement in the form of a numerical procedure.

Motivated by the characterizations of badly-behaved problems from [111], we developed
an algorithm for generating a class of SDP problems that are badly-behaved, that in turn
fail to satisfy the Slater condition. This algorithm will be presented in the Chapter 5.

3.4 Relationships between different notions of regula-

rity in SDP

In the previous sections, we have discussed different notions of regularity in SDP and
showed that they are important for efficient solution of the problems. It was shown that
these notions are not so easy to verify in practice and only few numerical procedures are
proposed for checking the regularity in some sense of a given problem.

In this section, we will recall known results about relationships between such regularity
notions and establish some new ones, that should permit to clarify the connections and
when it is possible and useful to replace the check of one regularity condition by another.

Nevertheless the notions of regularity of SDP problems introduced above are different,
there exist a deep connection between them. In what follows, we will show that the Slater
condition is closely related to the notion of well-posedness and also of good behaviour.

According to [156], the lack of regularity in terms of the Slater condition is an indication
of ill-posedness of the problem. In [154, 155], it is pointed out that measure of strict
feasibility is also called distance to infeasibility, which in turn is used for computing the
Renegar’s condition number to check well-posedness of a problem. Therefore, the Slater
condition is related to the Renegar’s condition number.

The following lemma can be proved.

Lemma 2 If the linear SDP problem in the form (2.2) does not satisfy the Slater condition,
then the problem is ill-posed.

Proof. Indeed, if the Slater condition is not satisfied, all the feasible solutions of the given
SDP problem lie on the boundary of the feasible set. Hence, there exist arbitrarily small
data perturbations that lead to the loss of feasibility, rendering an infeasible problem. Thus,
for the given problem, the distance to infeasibility is zero and, therefore, the Renegar’s con-
dition number is infinite. Hence, according to the Definition 17, the problem is ill-posed. �

Notice that the reciprocal of Lemma 2 is not true. The following example shows that
there exist problems that are ill-posed, but do satisfy the Slater condition.

Example 17 Consider the particular case of the primal SDP problem from Example 15,

61

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

with ε = 1 and σ = −1. The problem can be easily written in the form (2.2) as follows.

min x1 − x2 − x3

s.t.

 0 0 0
0 −1 0
0 0 0

x2 +

 0 0 0
0 0 0
0 0 −1

x3 +

 −1 1 0
1 0 0
0 0 0

 � 0.
(3.38)

The dual problem to (3.38) has the form

max y1 + y2

s.t.

 −y2
1+y1

2
−y3

1+y1
2

−1 −y4

−y3 −y4 −1

 � 0.
(3.39)

The constraints of the primal problem (3.38) satisfy the Slater condition, since there
exists a strictly feasible solution: e.g., x = [1 2 1]T . However, the problem (3.38) is ill-
posed, since its Renegar condition number is infinite. Indeed, it is easy to see that the
dual problem (3.39) is infeasible, i.e., there is no possible feasible solution satisfying the
constraints, and hence, the distance to dual infeasibility is zero.

Notice that a SDP problem is well-behaved in the sense of Pataki [111] if strong duality
holds, which can be ensured in SDP if a regularity condition, such as the Slater condition,
holds. Therefore, the good behaviour of a SDP problem is closely connected to the Slater
condition.

The following result was proved in [111] (Corollary 2).

Proposition 10 If the constraints of the SDP problem (2.2) satisfy the Slater condition,
then the problem is well-behaved.

Evidently, we can formulate the following lemma.

Lemma 3 If the SDP problem (2.2) is badly-behaved, then it does not satisfy the Slater
condition.

From Lemmas 2 and 3, we can then establish the following connection.

Lemma 4 If the SDP problem (2.2) is badly-behaved, then it is ill-posed.

Summarizing the relations between the notions of regularity addressed in this work, for
a given SDP problem we can construct the following diagram.

Slater conditionwell-posedness good behaviour

62

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

3.5 Conclusions

In this chapter, we have studied different notions usually associated to regularity in
SDP, namely, CQs, well-posedness, and good behaviour. In terms of CQs, we proved that
for the convex SDP problems considered in this thesis, the Slater condition is equivalent
to the regularity condition of Shapiro, Robinson CQ and to the Mangasarian-Fromovitz
CQ. We also established connections between different notions associated to regularity, and
realized that all have some relation to the Slater condition: a badly-behaved SDP problem
implies that the Slater condition fails to hold, which in turn implies that the given SDP
problem is ill-posed.

It is important to emphasize once again that, in spite of the Slater condition has been
shown to be a generic property for SDP, in practice, there exist many SDP instances failing
this condition. Current SDP solvers require the Slater condition to hold for both primal
and dual SDP problems, but do not check its fulfilment. Although the Slater condition
seems to be not easy to verify on a given SDP problem, we have presented an approach to
test the Slater condition in SDP based on the DIIS algorithm. We have shown that the
nonvanishing dimension of a basis of the immobile index subspace of a SDP problem can
be regarded as a certificate of the failure of the Slater condition.

In the next chapter, we will propose an original numerical tool to test the regularity of
a given SDP problem in terms of the Slater condition and present numerical experiments.

63

CHAPTER 3. REGULARITY IN SEMIDEFINITE PROGRAMMING

64

Chapter 4

Testing of regularity in SDP

In this chapter, we suggest a numerical procedure to test if a given SDP problem is
regular in terms of the fulfilment of the Slater condition and present details of its imple-
mentation. The procedure is based on the DIIS algorithm from [78] and uses two numerical
approaches for solving the system of quadratic equations. Numerical experiments show-
ing the efficiency of the proposed procedure are presented. These experiments are carried
out using SDP instances from the available SDP literature and from the well known SDP
database, SDPLIB. A comparative analysis with other results on regularity available in
the literature is also made.

4.1 SDPreg: a numerical procedure to test the Slater

condition in SDP problems

Based on the Theorem 18, we have constructed a procedure to determine if a given
feasible SDP problem in the form (2.2) has a null subspace of immobile indices M, and
hence verify if the Slater condition holds. The proposed procedure focuses on a single
iteration of the DIIS algorithm 2.

At the first iteration of the DIIS algorithm, the basis of the subspace M is empty and
the number of vector variables is p1 = s. The system of quadratic equations (3.11) takes
the form

s∑
i=1

lTi Ajli = 0, j = 0, 1, . . . , n,

s∑
i=1

‖li‖2
2 = 1,

where li ∈ Rs, i = 1, ..., s, are the vector variables, Aj ∈ S(s), j = 0, 1, ..., n, and n is the
dimension of the variable space of the SDP problem (2.2).

If this system is consistent, then the dimension s∗ of the subspace of immobile indices
M is nonzero, otherwise,M = {0} and s∗ = 0. In the first case, one can conclude that the
Slater condition is violated, while in the latter, one can conclude that the Slater condition
is satisfied.

65

CHAPTER 4. TESTING OF REGULARITY IN SDP

Therefore, the algorithm for testing if a given SDP problem satisfies the Slater condition
can be outlined as follows.

Basic Algorithm 4 Testing the Slater condition on SDP
input: Aj , j = 0, 1, ..., n, s× s real constraint matrices of a SDP problem in the form (2.2);
output: result on regularity in terms of the fulfilment of the Slater condition.

1: solve the system of quadratic equations:
s∑
i=1

lTi Ajli = 0, j = 0, 1, . . . , n,

s∑
i=1
‖li‖22 = 1

(4.1)

w.r.t. li ∈ Rs, i = 1, ..., s
2: if the system (4.1) is consistent then
3: return the SDP problem does not satisfy the Slater condition
4: else the system (4.1) is inconsistent
5: return the SDP problem satisfies the Slater condition

Since the numerical methods for solving the system (4.1) provide only approximate
solutions, the important question in the Step 2 of the Basic Algorithm 4 in terms of the
consistency of the system (4.1) can only be answered within a certain degree of certainty.

In our case, we are interested in obtaining accurate solutions for the system (4.1), or
guaranteeing that this system is not consistent. In what follows, we present two numerical
approaches that are aimed to approximately decide whether the system (4.1) is consistent
or not, within a desirable tolerance. These approaches are included into the numerical
procedure for testing the Slater condition. This procedure is described in the Section 4.1.1
and tested in the Section 4.3.

Numerical Approach I

Let us rewrite the system (4.1) in the following componentwise form
Fj(`) =

s∑
i=1

lTi Ajli = 0, j = 0, 1, . . . , n,

Fn+1(`) =
s∑
i=1

‖li‖2
2 − 1 = 0,

(4.2)

where the vector variable ` is constructed by stacking the vectors l1, l2, . . . , ls ∈ Rs, each
one with s scalar variables, on top of each other as follows:

` =

l1
l2
...
ls

 =

`1

`2
...
`m

 ∈ Rm,

66

CHAPTER 4. TESTING OF REGULARITY IN SDP

where `i ∈ R, i = 1, ...,m, and m = s2.

The system (4.2) has n + 2 nonlinear equations and m unknowns. In general, we
have m ≥ n + 2 and thus, the system (4.2) is underdetermined. The functions Fj, j =
0, 1, . . . , n+1 are quadratic real valued functions defined in Rm, hence they are continuous
and smooth. For every j = 0, 1, ..., n, the function Fj is convex if and only if the symmetric
matrix Aj is positive semidefinite, which may not hold. The function Fn+1 is convex by
construction.

Any solution of the system (4.2) is a minimizer of the function
∑n+1

j=0 F
2
j (`) and thus,

we can formulate the following unconstrained nonlinear least-squares problem:

min
`∈Rm

G(`) =
n+1∑
j=0

F 2
j (`). (4.3)

Notice that G(`) ≥ 0, ∀` ∈ Rm.

Considering the unconstrained optimization problem (4.3) and denoting by `∗ its solu-
tion, one of the following two situations can occur:

1. if G(`∗) = 0, then `∗ is a solution of the system (4.2) and, consequently, the system
(4.1) is consistent;

2. if G(`∗) > 0, then the system (4.2) is not consistent, as well as system (4.1).

The problem (4.3) is a global optimization problem and may have multiple local minima.
Therefore, its solution may be not unique. There exist various optimization algorithms
that can be used to solve the nonlinear least-squares problem (4.3), such as the Levenberg-
Marquardt algorithm, the Gauss-Newton algorithm and the Trust-Region-Reflective algo-
rithm [109]. These algorithms are included in the MATLAB function lsqnonlin, a specific
routine to solve unconstrained nonlinear least-squares problems. These are iterative meth-
ods, that starting from a given initial approximation, find an approximation to a local
minimum with a predefined tolerance. Since the problem (4.3) may have multiple local
minima, the algorithms may not reach the global minimum for some initial approximation.
Running the algorithm with several starting points may increase the degree of certainty
that the system (4.2) is not consistent. Moreover, the cross-check of results obtained
by different algorithms may also increase that certainty. We use the MATLAB routine
lsqnonlin with the Levenberg-Marquardt algorithm for solving the problem (4.3).

Numerical Approach II

Another numerical approach to solve the system (4.1) is based on solving a nonlinear
programming (NLP) problem with equality constraints.

67

CHAPTER 4. TESTING OF REGULARITY IN SDP

Consider the following problem:

min
y∈Rn+2,li∈Rs

H(y) = ‖y‖2
2

s.t.
s∑
i=1

lTi Ajli + yj+1 = 0, j = 0, 1, . . . , n,

s∑
i=1

‖li‖2
2 + yn+2 − 1 = 0,

(4.4)

where y =
[
y1 y2 · · · yn+2

]T
.

Let y∗ ∈ Rn+2 be a solution of the problem (4.4). The following two situations can
occur:

1. if H(y∗) = 0, then the system (4.1) is consistent;

2. if H(y∗) > 0, then the system (4.1) is not consistent.

There exist many algorithms for solving NLP problems, such as the interior point al-
gorithm, trust-region-reflective algorithm, active-set algorithm, or a sequential quadratic
programming algorithm [109]. Here, the problem (4.4) is solved using interior point meth-
ods, which have proved to be effective in practice on solving this type of nonlinearly
constrained problems [109]. The algorithm may not reach the global minimum for some
initial approximation, so it is recommended to run the algorithm with different starting
points. We use the MATLAB routine fmincon for solving the problem (4.4).

4.1.1 Description of the SDPreg procedure

To test if the Slater condition holds for SDP problems in the form (2.2), we propose the
numerical procedure SDPreg. Since this procedure uses methods that approximately solve
a system of quadratic equations, we introduce a specific tolerance denoted by SCQ that is
the desired accuracy on the test of the Slater condition. When the Approach I is being
used, the condition G(`∗) < SCQ guarantees with a given accuracy that the Slater condition
does not hold for the SDP problem (2.2). When the Approach II is being used, one can
conclude that the SDP problem (2.2) does not satisfy the Slater condition if H(y∗) < SCQ.
It is worth mentioning that the SDPreg procedure does not check the feasibility of the
SDP problems: here, we always assume that their feasible sets are nonempty. The detailed
algorithmic scheme of the SDPreg procedure can be outlined as follows.

68

CHAPTER 4. TESTING OF REGULARITY IN SDP

Algorithm 5 SDPreg: Procedure for testing regularity on SDP problems
input: Aj , j = 0, 1, ..., n, s× s real constraint matrices of a SDP problem in the form (2.2);

SCQ, numerical tolerance.
output: result on regularity in terms of the fulfilment of the Slater condition.

1: choose a numerical approach:
2: if Approach I is selected, then
3: solve the nonlinear least squares problem (4.3), and get `∗

4: compute G(`∗)
5: if G(`∗) < SCQ, then the system (4.1) is consistent
6: return the SDP problem does not satisfy the Slater condition
7: else the system (4.1) is inconsistent
8: return the SDP problem satisfies the Slater condition

9: else Approach II is selected:
10: solve the nonlinear problem (4.4), and get y∗

11: compute H(y∗)
12: if H(y∗) < SCQ, then the system (4.1) is consistent
13: return the SDP problem does not satisfy the Slater condition
14: else the system (4.1) is inconsistent
15: return the SDP problem satisfies the Slater condition

The two numerical approaches in the SDPreg procedure 5 are important for a cross-
check, i.e., comparison, of results. It should be emphasized that the cross-check of different
numerical approaches permits to increase the reliability on the results.

4.1.2 Implementation details

Since many SDP solvers have an interface or work with MATLAB, the SDPreg pro-
cedure was implemented entirely in MATLAB language under the name SDPreg. We are
focused on the practical use of our routine, so our intention was to construct a simple code,
publicly available for MATLAB users. The SDPreg routine can be found in [90].

On the iterations of the SDPreg algorithm, the existence of solution of the system of
quadratic equations (4.1) is verified using the Approaches I or II. The algorithm allows the
user to specify which of the two approaches to use. A cross-check of results can be done
by running the SDPreg algorithm for one approach, and then for the other, in order to
establish their reasonableness.

The solvers lsqnonlin and fmincon incorporated into the SDPreg procedure stop when
one of the following stopping criteria is satisfied:

• ||F (`(i))− F (`(i+1))||∞ < TolFun, where TolFun is a tolerance on the function value;

• ||`(i) − `(i+1)||∞ < TolX, where TolX is a tolerance on the argument variable value;

• ||c(`)|| > TolCon, where TolCon is a tolerance for constraints violation (only for the
Approach II).

69

CHAPTER 4. TESTING OF REGULARITY IN SDP

The tolerances TolFun, TolX and TolCon might be specified by users. The SDPreg
implemented in MATLAB has these tolerances set by default to 10−8.

The proposed SDPreg procedure also needs a pre-specified value on the accuracy of the
regularity test, which is given by the parameter SCQ. In SDPreg this parameter is set to
10−4 by default.

It should be stressed out once again that the SDPreg procedure is based on the approx-
imate solution of the nonlinear least-squares problem (4.3) and the NLP problem (4.4).
In order to increase the reliability on the results, the following techniques were used in an
initial testing phase:

• each solver was run 10 times with different random starting points for each problem;

• each solver was restarted using the last computed approximation;

• different tolerances were used;

• both numerical and analytical Jacobians were used.

Experiments showed that the most powerful technique is running the solver several
times with different starting points. Therefore, by default, our program uses randomly
chosen starting points while performing the Approaches I and II. The user does not interact,
unless the user decided to change the code.

The implementation of the SDPreg procedure in the form of the MATLAB routine
SDPreg involves auxiliary functions to construct the problems (4.3) and (4.4), and we
decided to use nested functions, i.e., there is a main function that calls other functions
that are inside it. This permits to use less memory.

Given a SDP problem in the form (2.2), the user needs to present the problem in SDPA
sparse format [162] (dat-s), as it is explained in the Appendix A. The dat-s file with the
problem data must be saved in the working directory, which is opened to choose a problem
after calling the program SDPreg. To read the SDP instances in dat-s format, the SDPreg

uses the function read data.m from the SDPA package, publicly available in [129].
The user must define the desired accuracy on the regularity test specified by SCQ. The

basic calling statement structure of the SDPreg procedure is:

> SDPreg(SCQ)

The working directory will be opened and the user chooses a SDP problem for testing
regularity.

After choosing the particular SDP problem, the user must specify which approach to
use:

• 1 – for the numerical Approach I,

• 2 – for the Approach II.

When SDPreg stops, it will deliver a message reporting that the tested problem satisfies
or not the Slater condition.

In Section 4.3, we will test the SDPreg procedure on several SDP problems.

70

CHAPTER 4. TESTING OF REGULARITY IN SDP

4.2 DIISalg: a numerical procedure to determine the

irregularity degree of SDP problems

Testing of regularity on SDP problems can also be done by performing all iterations of
the DIIS algorithm from [78]. In Section 3.1.4, we have shown that the dimension s∗ of a
basis of the immobile index subspace can be considered as an irregularity degree of a given
SDP problem and if s∗ 6= 0, then it can be regarded as a certificate of the failure of the
Slater condition.

We have implemented the DIIS algorithm for our numerical tests. The MATLAB
function is called DIISalg and can be found in [90].

On the first iteration of the DIISalg routine, one of the above presented Approach I or
Approach II can be used. The user must specify which approach to use. Similar to SDPreg,
the user needs to specify the desired accuracy on the regularity test using the parameter
SCQ.

In MATLAB, the basic calling statement structure of the function DIISalg is as follows:

> DIISalg(SCQ)

If the dimension of the immobile index subspace is zero, then DIISalg delivers the
message that the tested problem satisfies the Slater condition. Otherwise, the DIISalg

routine will return a basis of the immobile index subspace, as well as its dimension and
the conclusion about the nonregularity of the tested SDP problem.

4.3 Numerical experiments

In this section, we present several numerical experiments on testing the regularity of
linear SDP problems using instances from a collection of 50 SDP problems found in the
literature and also instances from the well know database SDPLIB. On the basis of these
tests, we will make some conclusions about relationships between regularity notions in
terms of the Slater condition and well-posedness in SDP.

4.3.1 Description of the experiments and numerical results

The numerical experiments were run on a computer with an Intel Core i7-2630QM
processor CPU@2.0GHz, with Windows 7 (64 bits) and 12 GB RAM, using MATLAB
(v.7.12 R2013a).

We have implemented the SDPreg procedure and also the DIIS algorithm in MATLAB
language under the functions SDPreg and DIISalg, respectively. Both implementations
handle block diagonal matrices and the SDP problems to be tested must be in dat-s format.

For the numerical tests we have used problems from the literature and from the SD-
PLIB suite, a collection of 92 linear SDP test problems, provided by Brian Borchers [15]
and available at http://euler.nmt.edu/~brian/sdplib/sdplib.html. The SDPLIB is a

71

http://euler.nmt.edu/~brian/sdplib/sdplib.html

CHAPTER 4. TESTING OF REGULARITY IN SDP

SDP database containing problems ranging in size from 6 variables and 13 constraints up to
7000 variables and 7000 constraints. The problems are drawn from a variety of applications,
such as truss topology design, control systems engineering and relaxations of combinatorial
optimization problems. Due to the limited computational resources, we were only able to
test 26 small to medium-scale problems from SDPLIB. Notice that all the tested problems
from SDPLIB are feasible. The test problems collected from the literature are feasible and
were constructed or adapted from [15, 39, 41, 42, 52, 74, 76, 78, 87, 100, 109, 111, 114] and
from [121, 137, 140, 149, 164], and can be found in [90]. Notice here that the dimensions
of the problems from the literature are rather small. This is explained by the fact that
these problems present mostly academic examples, small and easy to solve, but often not
regular by construction.

We have chosen empirically the tolerances for the stopping criteria. In our computa-
tional experiments with the programs SDPreg and DIISalg, we have set the tolerances
TolFun, TolX and TolCon to 10−8 for all the tests. The numerical experiments have shown
that for the used tolerances, the numerical results get stabilized, i.e., for termination tol-
erances less than 10−8 all the solvers stop at the same point. Therefore, the value 10−8 is
considered to be safe to conclude about the fulfilment of the Slater condition. Notice that
numerical tests with such small tolerance can be rather time consuming.

In our experiments, we have set the parameter SCQ to 10−4. This choice for the value
of SCQ was considered to be reasonable in practice when large scale problems are involved.
If we force a smaller value for this parameter, our procedures will be less efficient, since
the computation time of the experiments increases in a non acceptable way.

For a large system in the form (4.1), even with sparse matrices Aj, j = 0, 1, . . . , n, the
memory needed to allocate the data is so large that solving such system is quite difficult
in a common desktop computer. To reduce the computational time in such cases special
procedures for solving systems with sparse data can be developed.

SDP instances from literature

First, we will present the numerical experiments using the MATLAB routine SDPreg.
Since the test problems collected from the literature are small-scale SDP problems, we will
also present the results using the MATLAB function DIISalg, in order to compute the
irregularity degree of SDP problems when the Slater condition does not hold.

The results obtained using the SDPreg procedure to test the regularity on 50 prob-
lems collected from the literature are displayed in the Table 4.1. The first column of the
table contains the instance’s name. The second and third columns contain the number
of variables, n, and the dimension of the constraint matrices, s, respectively. The next
three columns represent the obtained results and conclusions about the fulfilment of the
Slater condition using the Approach I, where the solver lsqnonlin was applied for solving
the quadratic system (4.1). The last columns of the table contain the results and conclu-
sions about the fulfilment of the Slater condition using the Approach II, where the solver
fmincon was applied for solving the quadratic system.

Considering the results obtained using the routine SDPreg and reported in Table 4.1,

72

CHAPTER 4. TESTING OF REGULARITY IN SDP

Table 4.1: Numerical results using SDPreg on problems collected from literature (compu-
tation time is in seconds).

Problem n s lsqnonlin Slater fmincon Slater
G(`∗) time condition H(y∗) time condition

example3isa 2 2 1.1363e− 25 0.036052 no 6.9483e− 15 0.155928 no
FreundSun 2 3 5.8581e− 1 0.070417 yes 5.8581e− 1 0.172609 yes
helmberg1 2 3 5.4540e− 24 0.060488 no 1.5165e− 13 0.180284 no
janssondual 4 3 4.5386e− 23 0.072950 no 2.4628e− 14 0.281306 no
Jansson1 3 3 3.2587e− 2 0.138249 yes 3.2587e− 2 0.105394 yes
Jansson2 3 3 3.2619e− 3 0.073290 yes 3.2619e− 3 0.143587 yes
Jansson3 3 3 3.3027e− 1 0.060724 yes 3.3027e− 1 0.097528 yes
Jansson4 3 3 1.4601e− 1 0.069686 yes 1.4601e− 1 0.093127 yes
Jansson5 3 3 3.2127e− 1 0.071036 yes 3.2127e− 1 0.099324 yes
kojima1SDP2006 2 4 9.5204e− 1 0.223964 yes 9.5204e− 1 0.188890 yes
kojimaSDP2006 4 3 2.5000e− 1 0.023337 yes 2.5000e− 1 0.109484 yes
K-Tn1 1 2 2.5841e− 23 0.023267 no 1.3029e− 14 0.118685 no
K-Tn2 2 2 3.4530e− 24 0.044250 no 5.5507e− 15 0.216425 no
K-Tn3 3 2 5.8301e− 23 0.039288 no 6.3543e− 15 0.124848 no
K-Tn4 4 2 1.8636e− 23 0.041151 no 3.8451e− 15 0.159502 no
K-Tn5 5 2 1.8835e− 22 0.042491 no 1.1144e− 15 0.190099 no
K-Tn6 6 2 3.8912e− 21 0.043691 no 1.7715e− 15 0.183893 no
K-Tn7 7 2 3.6967e− 22 0.048549 no 1.8502e− 15 0.270957 no
K-Tn8 8 2 3.4387e− 21 0.050035 no 6.6118e− 16 0.214851 no
K-Tn9 9 2 6.4710e− 22 0.055816 no 2.1353e− 16 0.274397 no
K-Tn10 10 2 1.5483e− 20 0.058125 no 4.1765e− 17 0.340125 no
LuoSturmZhang 2 3 1.0255e− 23 0.066404 no 7.3305e− 15 0.404231 no
Mitchell2004 2 3 5.0000e− 1 0.045751 yes 5.0000e− 1 0.423425 yes
pataki1 1 2 4.2345e− 24 0.025313 no 1.6671e− 14 0.187986 no
pataki1alpha1 1 2 9.1435e− 24 0.024894 no 4.1820e− 12 0.048927 no
pataki1alpha2 1 2 5.2021e− 23 0.024497 no 2.8976e− 14 0.189384 no
pataki1alpha3 1 2 7.6752e− 25 0.024970 no 2.6538e− 17 0.066301 no
pataki1alpha4 1 2 2.1773e− 25 0.031795 no 1.4323e− 14 0.183482 no
pataki1alpha5 1 2 1.5810e− 22 0.026075 no 7.3292e− 15 0.213028 no
pataki1alpha-1 1 2 6.0371e− 25 0.030338 no 1.7755e− 14 0.148022 no
pataki1alpha-2 1 2 5.5582e− 25 0.037817 no 9.7994e− 15 0.145855 no
pataki1alpha-3 1 2 4.2037e− 26 0.038157 no 4.7202e− 15 0.151887 no
pataki1alpha-4 1 2 2.3310e− 26 0.034479 no 9.2661e− 15 0.227901 no
pataki1alpha-5 1 2 2.7032e− 23 0.024885 no 1.9230e− 14 0.195679 no
pataki2 2 3 1.0996e− 23 0.068269 no 4.6525e− 15 0.443608 no
pataki2.-1 2 3 2.1120e− 22 0.060252 no 1.0909e− 14 0.433127 no
pataki2.32 2 3 5.3683e− 21 0.058523 no 1.9661e− 14 0.284285 no
pataki2.33 2 3 1.2313e− 22 0.065221 no 1.5303e− 14 0.392578 no
polik1 1 2 4.3130e− 24 0.024449 no 4.0894e− 15 0.142294 no
polik2 2 3 2.8493e− 23 0.060726 no 3.2616e− 14 0.411495 no
polik3 1 2 1.6265e− 26 0.026367 no 5.6213e− 15 0.163265 no
polik4 2 3 3.4310e− 24 0.063227 no 9.2481e− 15 0.364975 no
polik5 4 3 1.8360e− 24 0.078022 no 1.7116e− 14 0.575205 no
polik6 2 2 7.3225e− 25 0.040701 no 2.6444e− 14 0.146335 no
polik7 2 2 1.9659e− 24 0.028269 no 1.7242e− 16 0.134994 no
polik8 2 2 3.3333e− 1 0.010292 yes 3.3333e− 1 0.068612 yes
SturmZhang 3 5 6.4972e− 2 0.442867 yes 6.4972e− 2 0.326788 yes
Todd 2 2 3.1557e− 23 0.029669 no 2.2196e− 15 0.140185 no
VandBoyd1 2 3 1.5896e− 23 0.025929 no 5.1099e− 15 0.137883 no
YumingZhang1995 4 4 1.4186e− 22 0.125032 no 8.9888e− 17 0.407860 no

73

CHAPTER 4. TESTING OF REGULARITY IN SDP

we can see that for the feasible problems collected from the literature, both numerical
approaches, Approach I and Approach II, performed very well and the obtained results
coincide for the two proposed approaches. We can also see that SDPreg is quite fast.

From Table 4.1, we can see that 39 of the 50 tested problems do not satisfy the Slater
condition, while 11 do satisfy.

To complement the information on (ir)regularity, we have also applied to these 50
problems the routine DIISalg. In this case, the computation time is expected to be larger
than using the SDPreg. The Table 4.2 displays the results using all the iterations of the
DIISalg for the 50 problems collected from the literature.

The first column in Table 4.2 contains the instance’s name. The next two columns
contain the number of variables, n, and the dimension of the constraint matrices, s. The
remaining columns contain the numerical results using the Approach I and the Approach
II in the DIIS algorithm. These columns contain the dimension of the immobile index
subspace, s∗, the number of iterations, the computation time, in seconds, and the result
on regularity.

74

CHAPTER 4. TESTING OF REGULARITY IN SDP

Table 4.2: Numerical results using DIISalg on problems collected from literature (compu-
tation time is in seconds).

Problem n s lsqnonlin Slater fmincon Slater
s∗ iter time condition s∗ iter time condition

example3isa 2 2 1 2 0.226202 no 1 2 0.539775 no
FreundSun 2 3 0 1 0.146649 yes 0 1 0.259852 yes
helmberg1 2 3 1 2 0.178968 no 1 2 0.658152 no
janssondual 4 3 2 2 0.140688 no 2 2 0.507312 no
Jansson1 3 3 0 1 0.244887 yes 0 1 0.170550 yes
Jansson2 3 3 0 1 0.109592 yes 0 1 0.193711 yes
Jansson3 3 3 0 1 0.525396 yes 0 1 0.279601 yes
Jansson4 3 3 0 1 0.114246 yes 0 1 0.127950 yes
Jansson5 3 3 0 1 0.101950 yes 0 1 0.144949 yes
kojima1SDP2006 2 4 0 1 0.387002 yes 0 1 0.303760 yes
kojimaSDP2006 4 3 0 1 0.032463 yes 0 1 0.174287 yes
K-Tn1 1 2 1 2 0.072533 no 1 2 0.447973 no
K-Tn2 2 2 1 2 0.093047 no 1 2 0.447500 no
K-Tn3 3 2 1 2 0.083016 no 1 2 0.538221 no
K-Tn4 4 2 1 2 0.097496 no 1 2 0.637090 no
K-Tn5 5 2 1 2 0.120930 no 1 2 0.670066 no
K-Tn6 6 2 1 2 0.140890 no 1 2 0.762693 no
K-Tn7 7 2 1 2 0.142380 no 1 2 0.766286 no
K-Tn8 8 2 1 2 0.148806 no 1 2 0.877893 no
K-Tn9 9 2 1 2 0.145744 no 1 2 0.873110 no
K-Tn10 10 2 1 2 0.135638 no 1 2 0.907883 no
LuoSturmZhang 2 3 1 2 0.162486 no 1 2 0.518502 no
Mitchell2004 2 3 0 1 0.070062 yes 0 1 0.634781 yes
pataki1 1 2 1 2 0.121993 no 1 2 0.433417 no
pataki1alpha1 1 2 1 2 0.100748 no 1 2 0.806680 no
pataki1alpha2 1 2 1 2 0.129894 no 1 2 0.497163 no
pataki1alpha3 1 2 1 2 0.071018 no 1 2 0.458166 no
pataki1alpha4 1 2 1 2 0.127574 no 1 2 0.428617 no
pataki1alpha5 1 2 1 2 0.180141 no 1 2 0.479815 no
pataki1alpha-1 1 2 1 2 0.170281 no 1 2 0.419834 no
pataki1alpha-2 1 2 1 2 0.099228 no 1 2 0.525398 no
pataki1alpha-3 1 2 1 2 0.074760 no 1 2 0.555413 no
pataki1alpha-4 1 2 1 2 0.099995 no 1 2 0.824851 no
pataki1alpha-5 1 2 1 2 0.131180 no 1 2 0.445150 no
pataki2 2 3 1 2 0.177333 no 1 2 0.523884 no
pataki2.-1 2 3 1 2 0.201498 no 1 2 0.620947 no
pataki2.32 2 3 1 2 0.227159 no 1 2 0.559715 no
pataki2.33 2 3 1 2 0.191399 no 1 2 0.667981 no
polik1 1 2 1 2 0.091698 no 1 2 0.392195 no
polik2 2 3 1 2 0.165904 no 1 2 0.611956 no
polik3 1 2 1 2 0.084446 no 1 2 0.431411 no
polik4 2 3 1 2 0.151859 no 1 2 0.642326 no
polik5 4 3 1 2 0.319945 no 1 2 1.059643 no
polik6 2 2 1 2 0.097512 no 1 2 0.527270 no
polik7 2 2 1 2 0.114855 no 1 2 0.477063 no
polik8 2 2 0 1 0.020385 yes 0 1 0.110016 yes
SturmZhang 3 5 0 1 0.507338 yes 0 1 0.380577 yes
Todd 2 2 1 2 0.089365 no 1 2 0.561483 no
VandBoyd1 2 3 1 2 0.086054 no 1 2 0.422023 no
YumingZhang1995 4 4 3 2 0.301380 no 3 2 1.424340 no

Observing Table 4.2, we can see that all the nonregular problems, i.e., for which the
Slater condition fails to hold, exhibit minimal irregularity degree, with the exception of
the problems janssondual and YumingZhang1995 that present irregularity degrees equal
to 2 and 3, respectively.

75

CHAPTER 4. TESTING OF REGULARITY IN SDP

Based on the experiments on these small-scale SDP problems, we conclude that SDPreg
is an efficient procedure to verify the Slater condition on SDP. We also conclude that the
DIIS algorithm permits to complement the information about the (non)regularity of the
SDP problem, providing an irregularity degree of problems that do not satisfy the Slater
condition.

SDP instances from SDPLIB

Here, we present the numerical experiments with SDPreg and DIISalg on SDP instances
from the SDPLIB database. The description of the contents of the tables is quite similar
to the above ones, so, we omit it. The lack of results in Tables 4.3 and 4.4 corresponds to
the cases when we were unable to complete the test, since the running time increased in
an unacceptable way.

The Table 4.3 presents the numerical results obtained while testing the regularity of
SDP problems using the SDPreg procedure on SDP instances from the SDPLIB suite.

Table 4.3: Numerical results using SDPreg on problems from SDPLIB (computation time
is in seconds).

Problem n s lsqnonlin Slater fmincon Slater
G(`∗) time condition H(y∗) time condition

control1 21 15 3.3333e− 1 601.1 yes 3.3333e− 1 49.0 yes
control2 66 30 3.3333e− 1 38720.5 yes 3.3333e− 1 924.1 yes
control3 136 45 3.3333e− 1 251020.6 yes 3.3333e− 1 9921.5 yes
hinf1 13 14 3.2289e− 3 390.3 yes 3.2289e− 3 25.2 yes
hinf2 13 16 1.1797e− 6 517.0 no 1.1797e− 6 199.5 no
hinf3 13 16 1.7767e− 7 606.7 no 1.7767e− 7 99.1 no
hinf4 13 16 4.4624e− 5 1050.7 no 4.4622e− 5 62.7 no
hinf5 13 16 2.7754e− 9 2587.2 no 2.7754e− 9 203.1 no
hinf6 13 16 6.9476e− 9 457.5 no 6.9476e− 9 100.7 no
hinf7 13 16 1.6784e− 10 176.9 no 1.6786e− 10 153.9 no
hinf8 13 16 1.2890e− 7 221.1 no 1.2890e− 7 108.3 no
hinf9 13 16 2.2907e− 11 166.4 no 2.2022e− 11 185.6 no
hinf10 21 18 4.2815e− 5 325.2 no 4.2813e− 5 113.6 no
hinf11 31 22 3.5093e− 4 446.8 yes 3.5089e− 4 307.2 yes
hinf12 43 24 1.8611e− 5 908.6 no 1.8611e− 5 562.8 no
hinf13 57 30 6.4114e− 9 25491.2 no 4.3625e− 9 2998.5 no
hinf14 73 34 2.3778e− 6 4327.7 no
hinf15 91 37 7.9113e− 10 19670.0 no
qap5 136 26 4.7906e− 1 114006.8 yes 4.7904e− 1 2911.1 yes
qap6 229 37 4.8191e− 1 429849.5 yes 4.8191e− 1 17965.0 yes
qap7 358 50 4.8414e− 1 428798.8 yes 4.8048e− 1 52047.2 yes
qap8 529 65 4.8192e− 1 516925.5 yes 4.8193e− 1 120428.9 yes
theta1 104 50 4.9999e− 1 15068.3 yes
truss1 6 13 1.4285e− 1 4.1 yes 1.4284e− 1 7.1 yes
truss3 27 31 3.2258e− 2 180.1 yes 3.2256e− 2 399.9 yes
truss4 12 19 7.6923e− 2 19.9 yes 7.6923e− 2 29.1 yes

From the Table 4.3, we can observe that the SDPreg with the Approach I, based on the
lsqnonlin solver for solving (4.1), was able to test 23 instances, while SDPreg with the
Approach II, based on the fmincon solver for solving (4.1), tested the regularity of all the
26 problems. Based on these experiments, the Approach II seems to be the most efficient,

76

CHAPTER 4. TESTING OF REGULARITY IN SDP

since the computation time is better for almost all problems and it was able to check the
regularity of all the 26 SDP problems.

Considering the results in Table 4.3, we can see that for 23 of the 26 tested problems the
results using both numerical approaches do coincide. Our experiments show that 12 tested
problems satisfy the Slater condition, while 11 do not satisfy. Notice that the procedure
with the Approach I was not able to check the regularity of 3 SDP problems, since the
computation time have increased in an unacceptable way. The tests using SDPreg with the
Approach II showed that 13 instances satisfy the Slater condition, while other 13 do not.

A more detailed analysis of the results presented in the Table 4.3 permits to observe
that the SDPreg procedure may return slightly different numerical values of the objective
functions of the problems (4.3) and (4.4), when the Approach I or the Approach II is used,
respectively. Therefore, when using the SDPreg procedure to check the Slater condition we
recommend to run the procedure a couple of times, for different starting points, in order
to increase the quality of the results.

The following table presents the results obtained when the DIIS algorithm was applied
to test regularity of SDPLIB instances.

Table 4.4: Numerical results using DIISalg on problems from SDPLIB (computation time
is in seconds).

Problem n s lsqnonlin Slater fmincon Slater
s∗ iter time condition s∗ iter time condition

control1 21 15 0 1 939.7 yes 0 1 50.5 yes
control2 66 30 0 1 42405.0 yes 0 1 1287.2 yes
control3 136 45 0 1 259224.2 yes 0 1 12657.3 yes
hinf1 13 14 0 1 461.9 yes 0 1 26.1 yes
hinf2 13 16 16 2 816.8 no 16 2 230.6 no
hinf3 13 16 16 2 5301.1 no 16 2 135.0 no
hinf4 13 16 16 2 13675.2 no 16 2 86.2 no
hinf5 13 16 16 2 22167.8 no 16 2 221.6 no
hinf6 13 16 16 2 101429.0 no 16 2 122.3 no
hinf7 13 16 16 2 23130.5 no 16 2 202.4 no
hinf8 13 16 16 2 1825.3 no 16 2 151.5 no
hinf9 13 16 16 2 1562.2 no 16 2 827.9 no
hinf10 21 18 18 2 161.1 no
hinf11 31 22 0 1 375.0 yes
hinf12 43 24 24 2 1038.6 no
hinf13 57 30 30 2 5902.5 no
hinf14 73 34 34 2 10123.4 no
hinf15 91 37 37 2 55173.8 no
qap5 136 26 0 1 118064.7 yes 0 1 3508.2 yes
qap6 229 37 0 1 432101.6 yes 0 1 21827.1 yes
qap7 358 50 0 1 433254.7 yes 0 1 57981.6 yes
qap8 529 65 0 1 518749.0 yes 0 1 121362.1 yes
theta1 104 50 0 1 18840.7 yes
truss1 6 13 0 1 4.0 yes 0 1 7.5 yes
truss3 27 31 0 1 178.5 yes 0 1 408.5 yes
truss4 12 19 0 1 20.0 yes 0 1 30.6 yes

First of all, let us observe that the computation time is much better when we use
the fmincon solver of the Approach II for solving the quadratic system (4.1). The only
exceptions are the problems truss1, truss3 and truss4.

77

CHAPTER 4. TESTING OF REGULARITY IN SDP

Considering the results displayed in Table 4.4, we can observe that for 19 of the 26 tested
problems the results using both numerical approaches do coincide. The experiments show
that for both cases 11 tested problems satisfy the Slater condition, while 8 do not satisfy.
Notice that for 7 SDP problems, the lsqnonlin solver, that is used in the implementation
of the Approach I to provide a solution of the system (4.1), was unable to complete its
task, since the computation time increased in an unacceptable way. From the Table 4.4,
we can see that testing the regularity using DIISalg is more time consuming than SDPreg,
since more iterations are performed.

Observing the Table 4.4, we can conclude that all the nonregular problems present
maximal irregularity degree.

Based on these experiments, we can assert that the numerical procedure SDPreg is quite
fast and efficient.

4.3.2 Comparison of regularity results

In what follows, we compare the results of the numerical testing of regularity in terms
of the fulfilment of the Slater condition obtained in the previous section with the results
on testing of well-posedness in the same SDP problems reported in [38] and [61]. The
numerical results on well-posedness presented in [38] and [61] seem to be the only available
results on testing regularity of SDP problems in some sense, and were obtained using
implementations of the procedures described in the Section 3.2. While in [61] a detailed
algorithm (the upper bound algorithm) was presented to check well-posedness of a SDP
problem, in [38] no specific algorithm was included.

For the comparison, we use our numerical results obtained for 26 instances from SDPLIB
presented in the previous section using SDPreg and DIISalg with the Approach II, which
showed to be the most efficient numerical approach for solving the quadratic system (4.1).
Notice that all the feasible problems from SDPLIB (including the above 26 instances) were
tested in [38] and [61], since more powerful computational resources were used.

To compare our numerical results with those from [38] and [61], we present all these
results in the Table 4.5. The first column of the table contains the instance’s name used in
the SDPLIB database. The next two columns refer to the number of variables, n, and the
dimension of the constraint matrices, s. The fourth column contains the results obtained
with the SDPreg procedure (i.e., the problem satisfies or not the Slater condition). The
next column contains the dimension of a basis of the immobile index subspace, s∗, found
by the DIIS algorithm. Column 6 contains the lower and upper bounds of the condition
number C reported in [38] and the last column presents the upper bound for the primal
objective function from [61].

78

CHAPTER 4. TESTING OF REGULARITY IN SDP

Table 4.5: Numerical results on testing regularity using: SDPreg to check the Slater condi-
tion, DIISalg (if s∗ = 0, then the Slater condition holds for the SDP problem), the lower
and upper bounds of the Renegar condition number from [38] and the rigorous upper bound
of the optimal value from [61] (if C or p̄∗ is finite, then the SDP problem is well-posed).

SDPreg DIISalg Results from [38] Results from [61]
Problem n s Slater s∗ C p̄∗

condition lower bound upper bound

control1 21 15 yes 0 8.3× 105 1.8× 106 −1.7782× 101

control2 66 30 yes 0 3.9× 106 1.3× 107 −8.2909× 100

control3 136 45 yes 0 2.0× 106 1.2× 107 −1.3615× 101

hinf1 13 14 yes 0 ∞ ∞ ∞
hinf2 13 16 no 16 3.5× 105 5.6× 105 −7.1598× 100

hinf3 13 16 no 16 ∞ ∞ ∞
hinf4 13 16 no 16 ∞ ∞ ∞
hinf5 13 16 no 16 ∞ ∞ ∞
hinf6 13 16 no 16 ∞ ∞ ∞
hinf7 13 16 no 16 ∞ ∞ ∞
hinf8 13 16 no 16 ∞ ∞ ∞
hinf9 13 16 no 16 2.0× 107 3.6× 107 ∞
hinf10 21 18 no 18 ∞ ∞ ∞
hinf11 31 22 yes 0 ∞ ∞ ∞
hinf12 43 24 no 24 ∞ ∞ ∞
hinf13 57 30 no 30 ∞ ∞ ∞
hinf14 73 34 no 34 ∞ ∞ ∞
hinf15 91 37 no 37 ∞ ∞ ∞
qap5 136 26 yes 0 ∞ ∞ ∞
qap6 229 37 yes 0 ∞ ∞ ∞
qap7 358 50 yes 0 ∞ ∞ ∞
qap8 529 65 yes 0 ∞ ∞ ∞
theta1 104 50 yes 0 2.0× 102 2.1× 102 −2.3000× 101

truss1 6 13 yes 0 2.2× 102 3.0× 102 9.0000× 100

truss3 27 31 yes 0 7.4× 102 1.9× 103 9.1100× 100

truss4 12 19 yes 0 3.6× 102 7.7× 102 9.0100× 100

Table 4.6: Summary of regularity tests in terms of the fulfilment of the Slater condition
and well-posedness according to [38].

Slater condition
Regular Nonregular

well-posed 7 2
ill-posed 6 11

Table 4.7: Summary of regularity tests in terms of the fulfilment of the Slater condition
and well-posedness according to [61].

Slater condition
Regular Nonregular

well-posed 7 1
ill-posed 6 12

79

CHAPTER 4. TESTING OF REGULARITY IN SDP

As can be seen in the Table 4.5, the results on well-posedness obtained in [38] and [61]
do not always coincide. In order to ease the comparison of results of regularity in terms of
the Slater condition with that of well-posedness, we construct the Tables 4.6 and 4.7.

In Table 4.6, the lines correspond to well and ill-posed problems classified in the basis of
the test from [38], and the columns correspond to regular and nonregular problems in terms
of the Slater condition, i.e., the results of our numerical tests with the SDPreg procedure.
On the intersection, we have the number of problems that satisfy both corresponding
conditions. Table 4.7 is constructed in a similar way, but the lines correspond to the
number of the well and ill-posed problems classified on the basis of the experiments in [61].

From the Table 4.6, we can see that 18 of the tested problems either satisfy the Slater
condition and are well-posed, or do not satisfy the Slater condition and are ill-posed,
simultaneously, and 6 of the ill-posed problems do satisfy the Slater condition. The only
exceptions are the problems hinf2 and hinf9 that are nonregular in terms of the fulfilment
of the Slater condition and well-posed according to [38]. This contradiction to the Lemma
2 can be explained by the fact that our numerical procedures and those used in [38] are
based on approximated calculus and may be not precise.

Comparing now our regularity results of testing the Slater condition with those from
[61] where the same problems were tested in terms of well-posedness, observing the Table
4.7 we conclude that for 19 problems these results coincide, i.e., the problems satisfy the
Slater condition and are well-posed, or do not satisfy the Slater condition and are ill-posed,
simultaneously. It can also be observed that there is also a contradiction to the Lemma
2: the problem hinf2 does not satisfy the Slater condition, but is well-posed according to
[61].

Moreover, notice that the numerical results of well-posedness obtained in [38] and in [61]
do not coincide: the problem hinf9 is well-posed according to [38] and ill-posed according
to [61]. This can be connected with the fact that nevertheless the condition number C is
finite, it is rather big and the problem is very close to be ill-posed. It may also be due to the
tests were performed in nonexact arithmetic and/or with different numerical procedures.

Finally, notice that in [61], it is reported that the problem hinf8 is well-posed, although
the results presented in the same paper (and also in [38]) show that this problem is ill-posed.
Our numerical tests show that this problem does not satisfy the Slater condition.

The comparison of our tests with those reported in [38] and [61] confirm the conclusions
about the relationship between the regularity notions in SDP.

It is worthwhile mentioning that there are no reports of numerical tests of the good
behaviour in the sense of Pataki on SDP problems.

4.4 Conclusions

In this chapter, we have presented the numerical procedure SDPreg for testing the Slater
condition in SDP. We have implemented the SDPreg procedure in MATLAB, as well as
the DIIS algorithm that determines the irregularity degree of SDP problems. Numerical
experiments are carried out on several SDP instances, some collected from the literature,

80

CHAPTER 4. TESTING OF REGULARITY IN SDP

and other from the SDPLIB suite. These experiments permit to conclude that both the
DIIS algorithm and the SDPreg procedure are efficient for testing the Slater condition.
Furthermore, the outputs of our implementation of the DIIS algorithm can be applied to
verify the optimality of some feasible solution using the optimality criterion formulated
in the Theorem 19, and also in the development of new SDP methods. The majority
of results obtained in the experiments confirm our conclusions about the relationships
between the tested regularity notions. Nevertheless, some technical difficulties should be
mentioned. Both the construction of a set of linearly independent vectors, and solution of
the problems (4.3) and (4.4) presented in the Approaches I and II, are difficult tasks from
the numerical viewpoint.

In the following chapter, we will present an algorithm for generating nonregular SDP
problem instances, i.e., for which the Slater condition fails to hold.

81

CHAPTER 4. TESTING OF REGULARITY IN SDP

82

Chapter 5

Generating nonregular instances in
semidefinite programming

In this chapter, we describe a class of nonregular SDP problems with optimal value
zero and a prescribed irregularity degree, and construct an algorithm for generating such
problems. The resulting set of nonregular SDP instances is used to numerically test the
behaviour of popular SDP solvers in solving nonregular problems. Numerical results are
presented and discussed.

5.1 An algorithm for generating nonregular SDP in-

stances

In the previous chapters, we defined different notions of regularity and showed that they
play an important role in solving SDP problems. The existing libraries of test problems do
not have indication if their instances are regular or not. It is known that the behaviour of
SDP solvers may be compromised in the case of nonregularity. Therefore, it is important
to have access to information about certain regularity properties of the test problems of
the existing SDP libraries, or to create new ones, for example, just containing nonregular
SDP test problems. This idea of creating libraries of “bad” instances in some sense is not
new. Thus, as remarked in [122], it would be important to have a library of infeasible SDP
instances to test and develop new stopping criteria for SDP methods. In [85], an algorithm
for generating infeasible SDP instances is proposed. In this light, we propose a generator
of nonregular SDP problem instances with predefined properties.

In this chapter, we present a procedure for generating a class of SDP problems that fails
the Slater condition, based on the characterization of badly-behaved systems introduced
by Pataki in [111].

83

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING

5.1.1 A class of nonregular SDP problems

Nonregular SDP instances are not so rare in practice and various studies show that
state-of-the-art SDP solvers can run into numerical difficulties in obtaining their solution
(see, e.g., [23, 38, 49, 61, 152]). Although popular SDP solvers use some special techniques
to handle SDP problems failing the Slater condition (such as self-dual embedding), they
may still produce erroneous results. As shown in the Example 11, the SDP solvers SDPT3
and SeDuMi were used to solve a nonregular SDP instance and both have failed to obtain
the true solution. Nonregular SDP problems are a challenge to current SDP solvers. It is
important to have a set of nonregular SDP test problems to evaluate the performance and
efficiency of SDP solvers.

Before proceeding further, let us consider some nonregular SDP instances collected
from the SDP literature. For these instances, we have tested the regularity in terms of
the Slater condition and determined their irregularity degrees in the Section 4.3 with our
procedure DIISalg. We now take a closer look to their structure.

Example 18 The problem helmberg1 is given by

min x1

s.t.

 0 x1 0
x1 x2 0
0 0 x1 + 1

 � 0.

The constraint matrix has a diagonal entry equal to zero, and to be positive semidefinite,
it should satisfy the condition x1 = 0. Therefore, any feasible solution has the form (0, x2),
x2 ∈ R, and the optimal value of this problem is 0.

Applying the DIISalg on the above problem, it shows that the problem is nonregular
with irregularity degree s∗ = 1.

Example 19 The problem Janssondual of the set of problems collected from the SDP lit-
erature has the form

min x1

s.t.

 −x2
1+x1

2
−x3

1+x1
2

0 −x4

−x3 −x4 0

 � 0.

Its constraint matrix has two null diagonal entries and it is easy to see that for any
feasible solution we have x3 = x4 = 0 and x1 = −1. Therefore, the optimal value is −1.

The procedure DIISalg shows that the problem is nonregular with irregularity degree
s∗ = 2.

Example 20 The problem YumingZhang1995 can be written as

min 10x4

s.t.

0 −1− x4 x2 0

−1− x4 x1 x3 0
x2 x3 0 0
0 0 0 0

 � 0.

84

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING

The constraint matrix has three null diagonal entries, and any feasible solution must
satisfy x2 = x3 = 0 and x4 = −1. Therefore, the optimal value is −10.

The irregularity degree of this nonregular problem computed by DIISalg is s∗ = 3.

Empirical evidence in several examples of nonregular problems suggests that the number
of zeros in the main diagonal of the constraint matrix is equal to the value of the irregularity
degree of the problem.

Based on the Theorems 21 and 23, we propose an algorithm to construct a class of
nonregular SDP problems with a desired irregularity degree s∗, 1 ≤ s∗ ≤ s − 1, where its
optimal value is p∗ = 0. The following proposition establishes conditions to construct such
nonregular problems.

Proposition 11 Suppose that a SDP problem in the form (2.2) satisfies the conditions:

1. integers s ≥ 2, 1 ≤ n ≤ s(s+1)
2

and r = 1, ..., s− 1,

2. c is a n-dimensional vector with cT =
[

1 0 . . . 0
]
,

3. A0 = −
[

Dr 0
0 0

]
s×s

, where Dr = diag(β1, . . . , βr) with βi ∈ R+, i = 1, ..., r,

4. for i = 1, ..., n,

Ai =

[
Fi Gi

GT
i Hi

]
s×s

, (5.1)

where Fi ∈ S(r), i = 1, ..., n; Gi ∈ Rr×(s−r), i = 1, ..., n− s, are linearly independent
matrices chosen to be multiples of a vector of the canonical basis of Rr×(s−r); G1 6= 0,
but it is allowed to be a linear combination of the vectors of the canonical basis of
Rr×(s−r); for i ≥ s, Gi = 0; Hi ∈ S(s−r), i = 1, ..., n, has null diagonal and H1 = 0.

Then, this problem is nonregular with irregularity degree s∗ = s − r and optimal value
p∗ = 0, since by construction any feasible solution has x1 = 0.

Using this proposition we can construct a generator of nonregular SDP instances in the
form (2.2), with a pre-specified irregularity degree, for which the optimal value is known
to be equal to zero.

5.1.2 Generating nonregular SDP instances

In this section, we present an algorithm for constructing nonregular SDP instances
with a pre-specified irregularity degree, based on the Proposition 11. We can outline the
algorithm as follows.

85

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING

Algorithm 6 Generating SDP instances with pre-specified irregularity degree s∗

input: n, number of variables in the SDP problem;
s, dimension of the constraint matrices;
s∗, desired irregularity degree.

output: Ai, i = 0, ..., n, constraint matrices;
c, vector of coefficients of an objective function.

1: compute r = s− s∗
2: choose an arbitrary (r × r) diagonal matrix Dr with r positive entries

3: set the (s× s) matrix A0 to A0 = −
[
Dr 0

0 0

]
4: generate randomly symmetric (r × r) matrices Fi, i = 1, ..., n
5: generate the canonical basis of Rr×s∗ , T = {Tj , j = 1, ..., rs∗}
6: choose the matrix G1 6= 0 ∈ Rr×s∗ to be a linear combination of the elements of the basis T

with arbitrary coefficients
7: choose the matrices Gi ∈ Rr×s∗ , i = 2, ..., n − s, such that Gi = αTj , Tj ∈ T, α ∈ R, and

the set formed by the matrices Gi and G1 is linearly independent
8: for i ≥ s do
9: Gi = 0

10: set H1 = 0
11: choose Hi ∈ S(s∗), i = 2, ..., n, having a null diagonal
12: for i = 1, ..., n do

13: Ai =

[
Fi Gi

GT
i Hi

]
14: set the coefficient vector of the objective function to c1 = 1 and ci = 0, for i = 2, ..., n
15: return Ai, i = 0, 1, ..., n, and c.

We can establish the following results.

Theorem 25 Given positive integers s, n ≤ s(s+1)
2

and s∗ with 1 ≤ s∗ ≤ s− 1 as input in
the Algorithm 6, the following properties hold for any problem of the form (2.2) generated
by the Algorithm 6:

1. the generated problem is feasible;

2. any feasible solution is optimal with x1 = 0 and the corresponding optimal value is
p∗ = 0;

3. the Slater condition is not satisfied.

Proof. A problem generated by the Algorithm 6 is a SDP problem of the form (2.2). It is
feasible, since it admits the trivial solution.

By construction, the constraint matrices Ai, i = 1, ..., n, have the form (5.1) and have
at least s∗ zeros on the same entries of the main diagonal, while A0 has exactly s∗ zeros.
Additionally, for i = 1, ..., n − s, the matrices Ai are linearly independent. Thus, the
constraint matrix of the problem will have s∗ zeros on the diagonal. Since the matrices Gi,

86

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING

i = 2, ..., n− s, and G1 form a linearly independent set, using the Property 2 for positive
semidefinite matrices, it follows that any feasible solution has x1 = 0. Since the objective
function is x1, then the objective value of the generated problem is always zero. Hence, it
is easy to see that all feasible solutions are optimal and the optimal value is p∗ = 0.

It remains to show the failure of the Slater condition on such SDP problem. The essen-
tial observation is that, by construction, the constraint matrix of the generated problem
is always negative semidefinite for any feasible solution, since its main diagonal has s∗

elements equal to zero. Therefore, the problem can not satisfy the Slater condition. �

It is evident that the SDP instances generated by the Algorithm 6, which are specially
constructed to fail the Slater condition and to have optimal value zero, can be used to test
SDP solvers and new methods, as well as procedures that verify regularity properties, such
as SDPreg and DIISalg. In the following section, we present some numerical experiments.

5.2 Implementation and numerical experiments

We begin this section by describing the implementation of the Algorithm 6. Then,
we present a new test set of nonregular SDP instances called NONREGSDP. Numerical
experiments on randomly generated instances are carried out to evaluate the performance
of popular SDP solvers, namely SDPT3 and SeDuMi, available on the CVX package.

5.2.1 nonregSDPgen: a nonregular SDP instance generator

We have implemented the Algorithm 6 in MATLAB programming language, since many
SDP solvers are either coded in MATLAB, or have interface with MATLAB. The result-
ing function is called nonregSDPgen and generates nonregular SDP instances with a pre-
specified irregularity degree, s∗, from 1 up to s−1. The nonregSDPgen function is publicly
available in [90].

In the steps of the Algorithm 6, one has to generate random symmetric (r×r) matrices
Fi, i = 1, ..., n. We have implemented a procedure to obtain such matrices as a linear
combination of elements of the canonical basis of S(r).

The generated instances have a specific structure and have integer entries in their con-
straint matrices. The nonregSDPgen function returns a nonregular SDP instance written
in dat-s format in a new file, whose name should be pre-specified by users.

In the MATLAB environment, the user starts by choosing the parameters n, s and
d, which correspond to the number of variables of the SDP problem, dimension of the
constraint matrices and desired irregularity degree, respectively. The name for the new
file that will be created to store the generated data, e.g., examplename.dat-s, should be
specified as well. The basic calling statement structure of the nonregSDPgen function is as
follows.

> nonregSDPgen(n,s,d,’examplename.dat-s’)

87

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING

The nonregSDPgen will create a new dat-s file with a nonregular SDP instance of a
pre-specified irregularity degree, which can be used by any SDP solver that requires this
input format.

5.2.2 NONREGSDP: a nonregular SDP database

It is known that it is important to have access to collections of test problems “for com-
paring the performance and robustness of software for solving these optimization problems.
Such comparisons have led to significant improvements in the speed and robustness of op-
timization software” [15]. The SDPLIB [15] is a library of linear SDP test problems with
a wide range of sizes, which is usually used to test the performance of solvers. In [38], it
is mentioned that it would be interesting to have “a reasonably-sized set of SDP problem
instances that might be better suited to empirically examine issues related to the com-
putational behaviour of algorithms for SDP”. Since the performance of SDP solvers may
be compromised when the Slater condition fails to hold, thus, it makes sense to have a
collection of moderate-sized nonregular SDP instances, that is, failing the Slater condition.
In this light, we have created a new SDP database.

We have generated 100 nonregular SDP instances using the routine nonregSDPgen

and we have called this collection of test problems NONREGSDP. The current version of
this new database is publicly available at [90] and is described in the Appendix D. The
NONREGSDP database is a moderate-sized set of SDP problem instances that can be used
for testing the behaviour of SDP algorithms and new stopping criteria. The SDP problems
from NONREGSDP were obtained for different values of n and s, with n varying from 1
to 12, s from 2 to 30, and with irregularity degree d varying from 1 up to 29. We have
tested the instances from NONREGSDP with the developed MATLAB function DIISalg

in order to confirm the irregularity degree of the SDP instances.
In the following section, we used 54 instances from the NOREGSDP database to test

the computational behaviour of the popular SDP solvers SDPT3 and SeDuMi.

5.2.3 Numerical results and discussion

All computations were performed on a computer with an Intel Core i7-2630QM pro-
cessor CPU@2.0GHz, with Windows 7 (64 bits) and 12 GB RAM, using MATLAB (v.7.12
R2013a). We tried to solve some generated instances using two different solvers available
on the package CVX, SDPT3 and SeDuMi, and we used their default precision or tolerance
values.

The numerical results of the tests are displayed in the Tables 5.1 and 5.2. In these
tables, the first column contains the NONREGSDP instance’s name. The next three
columns contain the number of variables, n, the dimension of the constraint matrices, s,
and the desired irregularity degree, d, respectively. The fifth column presents the computed
irregularity degree, s∗, obtained using the DIISalg function. The last columns of the Tables
5.1 and 5.2 contain the outputs of the SDP solvers SDPT3 and SeDuMi, respectively,
where iter is the number of iterations, time is the computational time, val is the returned

88

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING

optimal value, p∗ and d∗ are the primal and dual optimal values, respectively, gap is the
actual duality gap, and obs stands for observations which are (warning) output messages
returned by solvers. The symbol ∗ in the last column of the tables means that the solver
solved the dual problem to get the solution of the given (primal) SDP problem. The lack
of results in the tables correspond to the cases when the solvers were not able to provide
such results.

89

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING
T

ab
le

5.
1:

N
u
m

er
ic

al
re

su
lt

s
u
si

n
g
D
I
I
S
a
l
g

an
d

S
D

P
T

3
on

S
D

P
in

st
an

ce
s

fr
om

N
O

N
R

E
G

S
D

P
(c

om
p
u
ta

ti
on

ti
m

e
is

in
se

co
n
d
s)

.
P
ro

b
le
m

n
s

d
D
I
I
S
a
l
g

S
D
P
T
3

s
∗

it
ti
m
e

v
a
l

p
∗

d
∗

g
a
p

o
b
s

n
o
n
re
g
1

2
2

1
1

1
6

0
.1
9

−
1
.1
7
7
5
e
−

3
−
1
.1
7
7
5
e
−

3
0
.0
0
0
0

−
1
.1
8
e
−

3
S
o
lv
e
d

n
o
n
re
g
2

3
3

1
1

2
4

0
.2
4

N
a
N

−
2
.4
3
2
9
e
−

2
8
.7
6
9
1
e
−

9
−
2
.3
8
e
−

2
p
ro

g
re

ss
is

b
a
d
;
F
a
il
e
d

n
o
n
re
g
3

3
3

2
2

5
8

0
.6
1

−
In

f
∗

p
ri
m
a
l
p
ro

b
le
m

is
su

sp
e
c
te

d
o
f
b
e
in

g
in

fe
a
si
b
le
;
U
n
b
o
u
n
d
e
d

n
o
n
re
g
4

4
4

1
1

2
4

0
.2
6

−
1
.7
3
1
5
e
−

7
1
.0
2
1
8
e
−

7
1
.7
3
1
5
e
−

7
−
7
.1
0
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
5

4
4

2
2

3
1

0
.3
5

−
8
.7
3
2
2
e
−

7
4
.9
0
0
6
e
−

7
8
.7
3
2
2
e
−

7
−
3
.8
3
e
−

7
∗

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
6

4
4

3
3

3
4

0
.3
6

−
1
.2
8
5
1
e
−

7
7
.0
8
9
4
e
−

8
1
.2
8
5
1
e
−

7
−
5
.7
6
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
7

5
4

3
3

2
6

0
.2
8

−
3
.8
8
5
9
e
−

5
1
.9
3
9
3
e
−

5
3
.8
8
5
9
e
−

5
−
1
.9
5
e
−

5
∗

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
8

3
4

2
2

2
4

0
.2
6

−
1
.1
3
7
2
e
−

6
6
.4
8
8
5
e
−

7
1
.1
3
7
2
e
−

6
−
4
.8
8
e
−

7
∗

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
9

6
2

2
2

1
9

0
.3
1

N
a
N

7
.3
1
6
1
e
−

6
8
.0
4
6
1
e
−

4
−
7
.9
7
e
−

4
∗

F
a
il
e
d

n
o
n
re
g
1
0

1
4

2
2

2
2

0
.1
9

−
1
.1
4
6
4
e
−

7
6
.6
9
2
0
e
−

8
1
.1
4
6
4
e
−

7
−
4
.7
7
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
1
1

5
1
0

1
1

2
8

0
.6
2

−
2
.5
5
0
3
e
−

8
2
.3
1
3
6
e
−

8
2
.5
5
0
3
e
−

8
−
2
.3
7
e
−

9
∗

S
o
lv
e
d

n
o
n
re
g
1
2

5
1
0

2
2

2
2

0
.2
6

−
7
.1
7
5
6
e
−

7
6
.4
8
8
6
e
−

7
7
.1
7
5
6
e
−

7
−
6
.8
7
e
−

8
∗

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
1
3

5
1
0

3
3

2
1

0
.2
6

−
8
.7
6
7
1
e
−

7
8
.1
7
5
0
e
−

7
8
.7
6
7
1
e
−

7
−
5
.9
2
e
−

8
∗

la
c
k

o
f
p
ro

g
re

ss
in

in
fe
a
s;

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
1
4

5
1
0

4
4

2
8

0
.3
3

−
2
.2
1
1
8
e
−

8
1
.5
1
3
3
e
−

8
2
.2
1
1
8
e
−

8
−
6
.9
8
e
−

9
∗

S
o
lv
e
d

n
o
n
re
g
1
5

5
1
0

5
5

2
7

0
.3
0

−
2
.0
5
1
8
e
−

8
1
.5
9
2
1
e
−

8
2
.0
5
1
8
e
−

8
−
4
.6
0
e
−

9
∗

S
o
lv
e
d

n
o
n
re
g
1
6

5
1
0

6
6

2
8

0
.3
1

−
2
.0
0
1
4
e
−

8
1
.4
4
5
6
e
−

8
2
.0
0
1
4
e
−

8
−
5
.5
6
e
−

9
∗

S
o
lv
e
d

n
o
n
re
g
1
7

5
1
0

7
7

2
7

0
.3
0

−
1
.9
7
6
7
e
−

8
1
.3
1
8
1
e
−

8
1
.9
7
6
7
e
−

8
−
6
.5
9
e
−

9
∗

S
o
lv
e
d

n
o
n
re
g
1
8

5
1
0

8
8

3
0

0
.3
0

−
3
.6
3
9
1
e
−

8
2
.1
5
8
0
e
−

8
3
.6
3
9
1
e
−

8
−
1
.4
8
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
1
9

5
1
0

9
9

3
2

0
.3
4

−
2
.7
4
8
7
e
−

8
1
.4
7
8
9
e
−

8
2
.7
4
8
7
e
−

8
−
1
.2
7
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
2
0

2
1
0

1
1

2
4

0
.2
3

−
2
.5
2
9
3
e
−

8
2
.3
0
6
3
e
−

8
2
.5
2
9
3
e
−

8
−
2
.2
3
e
−

9
∗

S
o
lv
e
d

n
o
n
re
g
2
1

1
2

1
0

1
1

2
3

0
.2
6

−
3
.4
1
4
8
e
−

8
2
.9
7
8
6
e
−

8
3
.4
1
4
8
e
−

8
−
4
.3
6
e
−

9
∗

S
o
lv
e
d

n
o
n
re
g
2
2

6
4

1
1

2
9

0
.3
1

N
a
N

−
1
.2
6
6
4
e
−

9
1
.6
7
6
2
e
−

2
−
1
.6
5
e
−

2
∗

p
ro

g
re

ss
is

b
a
d
;
F
a
il
e
d

n
o
n
re
g
2
3

6
4

3
3

2
1

0
.2
0

−
6
.9
6
2
1
e
−

5
1
.8
8
8
4
e
−

6
6
.9
6
2
1
e
−

5
−
6
.7
7
e
−

5
∗

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
2
4

1
2

1
1

1
7

0
.2
5

−
4
.6
1
2
4
e
−

6
2
.4
7
9
8
e
−

6
4
.6
1
2
4
e
−

6
−
2
.1
3
e
−

6
∗

p
ro

g
re

ss
in

d
u
a
li
ty

g
a
p

h
a
s
d
e
te

ri
o
ra

te
d
;
In

a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
2
5

3
2

1
1

2
1

0
.2
5

−
1
.4
4
4
9
e
−

3
−
1
.4
4
4
9
e
−

3
0
.0
0
0
0

−
1
.4
4
e
−

3
p
ro

g
re

ss
is

b
a
d
;
In

a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
2
6

4
2

1
1

2
2

0
.2
6

−
In

f
p
ro

g
re

ss
is

b
a
d
;
d
u
a
l
p
ro

b
le
m

is
su

sp
e
c
te

d
o
f
b
e
in

g
in

fe
a
si
b
le
;
U
n
b
o
u
n
d
e
d

n
o
n
re
g
2
7

1
3

1
1

3
2

0
.2
9

−
2
.2
1
2
0
e
−

7
1
.2
6
8
9
e
−

7
2
.2
1
2
0
e
−

7
−
9
.4
3
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
2
8

1
3

2
2

3
1

0
.2
9

−
5
.2
7
1
3
e
−

7
2
.8
4
7
3
e
−

7
5
.2
7
1
3
e
−

7
−
2
.4
2
e
−

7
∗

S
o
lv
e
d

n
o
n
re
g
2
9

2
3

1
1

5
1

0
.4
1

−
3
.7
9
5
2
e
−

7
7
.0
3
2
1
e
−

1
4

3
.7
9
5
2
e
−

7
−
3
.8
0
e
−

7
∗

S
o
lv
e
d

n
o
n
re
g
3
0

2
4

1
2

3
0

0
.2
9

−
3
.3
8
0
6
e
−

7
1
.8
2
3
1
e
−

7
3
.3
8
0
6
e
−

7
−
1
.5
6
e
−

7
∗

S
o
lv
e
d

n
o
n
re
g
3
1

1
4

1
1

1
9

0
.2
2

−
5
.9
6
9
0
e
−

8
4
.1
9
9
0
e
−

8
5
.9
6
9
0
e
−

8
−
1
.7
7
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
3
2

1
4

3
3

2
6

0
.1
9

−
4
.3
5
7
7
e
−

7
2
.4
2
3
7
e
−

7
4
.3
5
7
7
e
−

7
−
1
.9
3
e
−

7
∗

S
o
lv
e
d

n
o
n
re
g
3
3

2
4

1
1

3
6

0
.3
1

−
2
.2
0
3
0
e
−

7
1
.2
8
3
1
e
−

7
2
.2
0
3
0
e
−

7
−
9
.2
0
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
3
4

2
4

2
2

2
9

0
.2
5

−
1
.6
8
0
6
e
−

7
9
.5
6
3
6
e
−

8
1
.6
8
0
6
e
−

7
−
7
.2
4
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
3
5

2
4

3
3

3
5

0
.3
4

−
1
.4
5
3
7
e
−

7
8
.9
6
3
5
e
−

8
1
.4
5
3
7
e
−

7
−
5
.5
7
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
3
6

3
4

1
1

1
9

0
.2
2

−
3
.2
6
5
3
e
−

8
2
.6
8
2
0
e
−

8
3
.2
6
5
3
e
−

8
−
5
.8
3
e
−

9
∗

S
o
lv
e
d

n
o
n
re
g
3
7

3
4

3
3

3
2

0
.3
0

−
3
.4
0
0
0
e
−

7
1
.8
9
2
6
e
−

7
3
.4
0
0
0
e
−

7
−
1
.5
1
e
−

7
∗

p
ro

g
re

ss
is

b
a
d
;
S
o
lv
e
d

n
o
n
re
g
3
8

5
4

1
1

3
0

0
.3
4

−
2
.6
5
5
1
e
−

7
1
.5
2
3
1
e
−

7
2
.6
5
5
0
e
−

7
−
1
.1
3
e
−

7
∗

S
o
lv
e
d

n
o
n
re
g
3
9

5
4

2
2

2
0

0
.3
9

−
1
.6
5
4
8
e
−

5
1
.1
0
7
7
e
−

5
1
.6
5
4
8
e
−

5
−
5
.4
7
e
−

6
∗

la
c
k

o
f
p
ro

g
re

ss
in

in
fe
a
s;

S
o
lv
e
d

n
o
n
re
g
4
0

1
5

1
1

2
1

0
.2
3

−
2
.0
8
8
8
e
−

7
6
.0
0
0
0
e
−

1
6
.0
0
0
0
e
−

1
−
3
.3
1
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
4
1

1
5

2
2

2
1

0
.1
8

−
5
.4
6
6
2
e
−

8
3
.5
4
6
8
e
−

8
5
.4
6
6
2
e
−

8
−
1
.9
2
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
4
2

1
5

3
3

2
5

0
.3
0

−
1
.1
9
8
5
e
−

7
6
.8
4
4
5
e
−

8
1
.1
9
8
5
e
−

7
−
5
.1
4
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
4
3

1
5

4
4

2
9

0
.2
3

−
2
.8
8
7
7
e
−

7
1
.5
7
5
0
e
−

7
2
.8
8
7
6
e
−

7
−
1
.3
1
e
−

7
∗

S
o
lv
e
d

n
o
n
re
g
4
4

2
5

1
1

2
1

0
.2
1

−
5
.5
5
2
9
e
−

8
3
.7
6
1
7
e
−

8
5
.5
5
2
9
e
−

8
−
1
.7
9
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
4
5

2
5

2
2

2
8

0
.2
9

−
4
.9
8
7
4
e
−

8
3
.3
6
2
8
e
−

8
4
.9
8
7
4
e
−

8
−
1
.6
2
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
4
6

2
5

3
3

3
2

0
.3
4

−
1
.3
1
2
9
e
−

7
7
.4
8
4
3
e
−

8
1
.3
1
2
9
e
−

7
−
5
.6
5
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
4
7

2
5

4
4

3
0

0
.2
0

−
1
.7
9
1
3
e
−

7
9
.8
0
6
6
e
−

8
1
.7
9
1
3
e
−

7
−
8
.1
1
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
4
8

3
5

1
1

2
4

0
.2
6

−
1
.4
1
5
1
e
−

7
8
.6
1
3
0
e
−

8
1
.4
1
5
1
e
−

7
−
5
.5
4
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
4
9

3
5

2
2

2
7

0
.2
7

−
7
.2
9
3
6
e
−

8
4
.5
6
1
5
e
−

8
7
.2
9
3
6
e
−

8
−
2
.7
3
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
5
0

3
5

3
3

3
0

0
.3
2

−
1
.1
4
8
5
e
−

7
5
.9
6
6
2
e
−

8
1
.1
4
8
5
e
−

7
−
5
.5
2
e
−

8
∗

S
o
lv
e
d

n
o
n
re
g
5
1

3
5

4
4

3
0

0
.3
2

−
2
.4
3
1
9
e
−

7
1
.3
2
7
3
e
−

7
2
.4
3
1
9
e
−

7
−
1
.1
0
e
−

7
∗

S
o
lv
e
d

n
o
n
re
g
5
2

7
4

1
1

5
6

0
.5
6

N
a
N

8
.0
6
9
8
e
−

4
6
.8
4
3
6
e
−

2
−
6
.3
3
e
−

2
∗

la
c
k

o
f
p
ro

g
re

ss
in

d
u
a
l
in

fe
a
s;

F
a
il
e
d

n
o
n
re
g
5
3

7
4

2
2

2
1

0
.2
7

−
1
.0
2
9
1
e
−

3
6
.4
2
2
4
e
−

6
1
.0
2
9
1
e
−

3
−
1
.0
2
e
−

3
∗

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
5
4

7
4

3
3

2
8

0
.4
2

N
a
N

5
.6
3
4
8
e
−

7
1
.9
3
5
5
e
−

3
−
1
.9
3
e
−

3
∗

F
a
il
e
d

90

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING
T

ab
le

5.
2:

N
u
m

er
ic

al
re

su
lt

s
u
si

n
g
D
I
I
S
a
l
g

an
d

S
eD

u
M

i
on

S
D

P
in

st
an

ce
s

fr
om

N
O

N
R

E
G

S
D

P
(c

om
p
u
ta

ti
on

ti
m

e
is

in
se

co
n
d
s)

.
P
ro

b
le
m

n
s

d
D
I
I
S
a
l
g

S
e
D
u
M

i
s
∗

it
e
r

ti
m
e

v
a
l

p
∗

d
∗

g
a
p

o
b
s

n
o
n
re
g
1

2
2

1
1

5
0
.3
0

−
1
.6
6
7
2
e
−

1
−
1
.6
6
7
2
e
−

1
0
.0
0
0
0

−
1
.6
7
e
−

1
R
u
n

in
to

n
u
m
e
ri
c
a
l
p
ro

b
le
m
s;

S
o
lv
e
d

n
o
n
re
g
2

3
3

1
1

2
5

0
.3
0

−
7
.1
3
9
1
e
−

2
−
7
.1
3
9
1
e
−

2
−
1
.1
3
2
4
e
−

9
−
7
.1
4
e
−

2
S
o
lv
e
d

n
o
n
re
g
3

3
3

2
2

2
5

0
.5
0

−
4
.5
5
1
1
e
−

2
0
.0
0
0
0

4
.5
5
1
1
e
−

2
−
4
.5
5
e
−

2
∗

S
o
lv
e
d

n
o
n
re
g
4

4
4

1
1

2
3

0
.3
0

−
9
.1
2
3
1
e
−

5
7
.4
7
2
6
e
−

5
9
.1
2
3
1
e
−

5
−
1
.6
5
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
5

4
4

2
2

1
8

0
.2
0

−
9
.4
0
6
2
e
−

5
6
.3
4
2
7
e
−

5
9
.4
0
6
2
e
−

5
−
3
.0
6
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
6

4
4

3
3

1
6

0
.2
0

−
5
.1
7
0
8
e
−

5
3
.1
2
4
7
e
−

5
5
.1
7
0
8
e
−

5
−
2
.0
5
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
7

5
4

3
3

2
0

0
.3
0

−
2
.6
7
1
3
e
−

4
1
.6
3
9
4
e
−

4
2
.6
7
1
3
e
−

4
−
1
.0
3
e
−

4
∗

S
o
lv
e
d

n
o
n
re
g
8

3
4

2
2

1
9

0
.2
0

−
2
.2
4
8
9
e
−

5
1
.7
5
6
1
e
−

5
2
.2
4
8
9
e
−

5
−
4
.9
3
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
9

6
2

2
2

1
6

0
.4
0

−
1
.1
9
7
1
e
−

1
1
.8
6
9
6
e
−

6
1
.1
9
7
1
e
−

1
−
1
.2
0
e
−

1
∗

R
u
n

in
to

n
u
m
e
ri
c
a
l
p
ro

b
le
m
s;

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
1
0

1
4

2
2

1
9

0
.3
0

−
4
.0
1
8
6
e
−

5
3
.4
6
4
3
e
−

5
4
.0
1
8
6
e
−

5
−
5
.5
4
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
1
1

5
1
0

1
1

2
3

0
.5
0

−
2
.8
7
2
6
e
−

5
1
.8
9
8
8
e
−

5
2
.8
7
2
6
e
−

5
−
9
.7
4
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
1
2

5
1
0

2
2

2
2

0
.5
0

−
1
.4
6
3
3
e
−

5
9
.3
8
4
2
e
−

6
1
.4
6
3
3
e
−

5
−
5
.2
5
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
1
3

5
1
0

3
3

2
3

0
.4
0

−
1
.0
4
6
9
e
−

5
6
.8
6
8
8
e
−

6
1
.0
4
6
9
e
−

5
−
3
.6
0
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
1
4

5
1
0

4
4

2
2

0
.3
0

−
4
.3
3
4
1
e
−

5
2
.8
5
8
8
e
−

5
4
.3
3
4
1
e
−

5
−
1
.4
7
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
1
5

5
1
0

5
5

2
2

0
.3
0

−
8
.1
0
1
9
e
−

6
5
.0
5
6
6
e
−

6
8
.1
0
1
9
e
−

6
−
3
.0
4
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
1
6

5
1
0

6
6

2
1

0
.3
0

−
8
.6
9
6
6
e
−

6
7
.1
9
3
6
e
−

6
8
.6
9
6
6
e
−

6
−
1
.5
0
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
1
7

5
1
0

7
7

1
9

0
.2
0

−
9
.4
6
8
3
e
−

6
8
.2
2
1
4
e
−

6
9
.4
6
8
3
e
−

6
−
1
.2
5
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
1
8

5
1
0

8
8

2
0

0
.2
0

−
1
.0
9
5
9
e
−

5
8
.8
1
3
7
e
−

6
1
.0
9
5
9
e
−

5
−
2
.1
4
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
1
9

5
1
0

9
9

1
8

0
.2
0

−
8
.6
5
0
2
e
−

6
5
.5
0
1
1
e
−

6
8
.6
5
0
2
e
−

6
−
3
.1
5
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
2
0

2
1
0

1
1

2
5

0
.4
0

−
1
.7
1
1
2
e
−

5
1
.5
5
4
6
e
−

5
1
.7
1
1
2
e
−

5
−
1
.5
7
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
2
1

1
2

1
0

1
1

2
4

0
.3
0

−
5
.0
0
6
2
e
−

5
3
.6
9
9
3
e
−

5
5
.0
0
6
2
e
−

5
−
1
.3
1
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
2
2

6
4

1
1

2
7

0
.4
0

−
7
.9
8
4
2
e
−

2
−
1
.5
6
3
2
e
−

9
7
.9
8
4
2
e
−

2
−
7
.9
8
e
−

2
∗

S
o
lv
e
d

n
o
n
re
g
2
3

6
4

3
3

1
9

0
.4
0

−
6
.6
6
6
6
e
−

2
2
.0
0
3
6
e
−

7
6
.6
6
6
6
e
−

2
−
6
.6
7
e
−

2
∗

R
u
n

in
to

n
u
m
e
ri
c
a
l
p
ro

b
le
m
s;

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
2
4

1
2

1
1

1
8

0
.3
0

−
1
.7
4
5
1
e
−

5
1
.1
6
1
4
e
−

5
1
.7
4
5
1
e
−

5
−
5
.8
4
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
2
5

3
2

1
1

2
6

0
.4
0

−
4
.1
9
1
9
e
−

2
−
4
.1
9
1
9
e
−

2
0
.0
0
0
0

−
4
.1
9
e
−

2
S
o
lv
e
d

n
o
n
re
g
2
6

4
2

1
1

2
6

0
.3
0

−
9
.0
0
9
4
e
−

3
−
9
.0
0
9
4
e
−

3
0
.0
0
0
0

−
9
.0
1
e
−

3
S
o
lv
e
d

n
o
n
re
g
2
7

1
3

1
1

1
8

0
.2
0

−
5
.0
6
5
0
e
−

5
4
.1
6
7
7
e
−

5
5
.0
6
5
0
e
−

5
−
8
.9
7
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
2
8

1
3

2
2

1
7

0
.2
0

−
6
.5
9
0
5
e
−

5
4
.7
2
6
3
e
−

5
6
.5
9
0
5
e
−

5
−
1
.8
6
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
2
9

2
3

1
1

2
4

0
.3
0

−
1
.4
0
6
4
e
−

2
2
.3
3
4
4
e
−

9
1
.4
0
6
4
e
−

2
−
1
.4
1
e
−

2
∗

S
o
lv
e
d

n
o
n
re
g
3
0

2
4

1
2

1
9

0
.3
0

−
1
.7
6
7
0
e
−

5
1
.1
0
1
0
e
−

5
1
.7
6
7
0
e
−

5
−
6
.6
6
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
3
1

1
4

1
1

2
0

0
.2
0

−
3
.2
9
7
9
e
−

5
2
.9
2
8
6
e
−

5
3
.2
9
7
9
e
−

5
−
3
.6
9
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
3
2

1
4

3
3

1
5

0
.1
0

−
2
.8
3
0
8
e
−

5
1
.6
8
2
1
e
−

5
2
.8
3
0
8
e
−

5
−
1
.1
5
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
3
3

2
4

1
1

2
2

0
.3
0

−
1
.7
3
6
5
e
−

4
1
.0
9
5
8
e
−

4
1
.7
3
6
5
e
−

4
−
6
.4
1
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
3
4

2
4

2
2

1
9

0
.3
0

−
3
.2
2
2
6
e
−

5
2
.7
2
1
1
e
−

5
3
.2
2
2
6
e
−

5
−
5
.0
1
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
3
5

2
4

3
3

1
8

2
0

−
8
.0
2
9
9
e
−

5
5
.2
2
3
1
e
−

5
8
.0
2
9
9
e
−

5
−
2
.8
1
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
3
6

3
4

1
1

2
0

0
.2
0

−
2
.5
4
9
3
e
−

5
2
.2
4
3
5
e
−

5
2
.5
4
9
3
e
−

5
−
3
.0
6
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
3
7

3
4

3
3

1
6

0
.2
0

−
4
.2
5
5
5
e
−

5
2
.6
3
3
7
e
−

5
4
.2
5
5
5
e
−

5
−
1
.6
2
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
3
8

5
4

1
1

2
2

0
.3
0

−
4
.1
2
7
3
e
−

5
3
.4
2
0
8
e
−

5
4
.1
2
7
3
e
−

5
−
7
.0
6
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
3
9

5
4

2
2

1
8

0
.2
0

−
3
.7
7
4
6
e
−

5
2
.4
5
7
0
e
−

5
3
.7
7
4
6
e
−

5
−
1
.3
2
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
4
0

1
5

1
1

2
2

0
.2
0

−
2
.8
4
7
5
e
−

5
6
.0
0
0
1
e
−

1
6
.0
0
0
2
e
−

1
−
1
.0
0
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
4
1

1
5

2
2

1
9

0
.2
0

−
1
.5
8
5
8
e
−

5
1
.3
8
6
6
e
−

5
1
.5
8
5
8
e
−

5
−
1
.9
9
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
4
2

1
5

3
3

2
0

0
.2
0

−
4
.7
8
6
1
e
−

5
3
.9
9
8
0
e
−

5
4
.7
8
6
1
e
−

5
−
7
.8
8
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
4
3

1
5

4
4

1
8

0
.2
0

−
2
.1
8
1
6
e
−

5
1
.3
3
9
9
e
−

5
2
.1
8
1
6
e
−

5
−
8
.4
2
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
4
4

2
5

1
1

2
1

0
.2
0

−
3
.4
2
4
6
e
−

5
3
.1
2
1
3
e
−

5
3
.4
2
4
6
e
−

5
−
3
.0
3
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
4
5

2
5

2
2

2
0

0
.2
0

−
1
.4
6
1
3
e
−

5
1
.2
8
5
5
e
−

5
1
.4
6
1
3
e
−

5
−
1
.7
6
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
4
6

2
5

3
3

1
9

0
.2
0

−
7
.0
7
5
9
e
−

5
5
.4
7
7
5
e
−

5
7
.0
7
5
9
e
−

5
−
1
.6
0
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
4
7

2
5

4
4

1
6

0
.2
0

−
1
.7
1
3
1
e
−

5
1
.1
5
9
0
e
−

5
1
.7
1
3
1
e
−

5
−
5
.5
4
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
4
8

3
5

1
1

2
3

0
.2
0

−
3
.6
2
8
5
e
−

5
3
.2
5
4
5
e
−

5
3
.6
2
8
5
e
−

5
−
3
.7
4
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
4
9

3
5

2
2

1
9

0
.2
0

−
3
.3
6
0
3
e
−

5
2
.9
0
1
1
e
−

5
3
.3
6
0
3
e
−

5
−
4
.5
9
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
5
0

3
5

3
3

2
0

0
.2
0

−
6
.7
1
2
6
e
−

5
5
.1
6
5
5
e
−

5
6
.7
1
2
6
e
−

5
−
1
.5
5
e
−

5
∗

S
o
lv
e
d

n
o
n
re
g
5
1

3
5

4
4

1
8

0
.2
0

−
1
.8
7
0
6
e
−

5
1
.1
9
0
7
e
−

5
1
.8
7
0
6
e
−

5
−
6
.8
0
e
−

6
∗

S
o
lv
e
d

n
o
n
re
g
5
2

7
4

1
1

2
9

0
.4
0

−
2
.2
8
0
5
e
−

1
7
.0
9
9
2
e
−

9
2
.2
8
0
5
e
−

1
−
2
.2
8
e
−

1
∗

S
o
lv
e
d

n
o
n
re
g
5
3

7
4

2
2

2
4

0
.5
0

−
3
.0
3
1
0
e
−

2
5
.2
9
3
5
e
−

8
3
.0
3
1
0
e
−

2
−
3
.0
3
e
−

2
∗

R
u
n

in
to

n
u
m
e
ri
c
a
l
p
ro

b
le
m
s;

In
a
c
c
u
ra

te
;
S
o
lv
e
d

n
o
n
re
g
5
4

7
4

3
3

1
7

0
.4
0

−
2
.8
4
6
1
e
−

1
1
.3
7
6
1
e
−

6
2
.8
4
6
1
e
−

1
−
2
.8
5
e
−

1
∗

R
u
n

in
to

n
u
m
e
ri
c
a
l
p
ro

b
le
m
s;

In
a
c
c
u
ra

te
;
S
o
lv
e
d

91

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING

While solving the generated nonregular SDP problems, one of the first observations we
can make from the experiments is that the number of warning messages delivered by the
SDPT3 solver is quite higher than that by SeDuMi. Another observation is that for these
nonregular instances the solvers chose to solve the dual problem instead of the given primal
one for almost all tested SDP instances.

Observing the Table 5.1, we can see that for 7 generated instances the returned value p∗

was quite far from the true one, which is zero. In terms of the returned optimal value val,
we can see that SDPT3 provided wrong values for 13 instances (i.e., NaN - not a number;
−Inf - unbounded; or values far from the true optimal ones). We can also see that the most
accurate optimal value p∗ was computed for the problem nonreg29 with p∗ = 7.0321e−14.
However, since the solver has chosen to solve the dual problem, the returned optimal value
val was −3.7952e− 7.

As can be seen from this table, in 19 out of 54 instances the solver SDPT3 returned
warning messages related to numerical issues.

For all the 18 nonregular SDP instances with n ≥ s, the solver ran into numerical
difficulties and returned wrong solutions or values far from the true optimal values. The
exceptions are the problems nonreg4, nonreg6, nonreg21 and nonreg38, whose computed
values can be considered roughly close to (the optimal) zero.

No general assertion about some correlation between the level of nonregularity and the
number of iterations used by SDPT3 can be made. It may be due to the use of the dual to
solve the given problem. However, there are some examples supporting that large values
of the irregularity degree correlate well with large number of iterations of the solver (e.g.,
nonreg40−nonreg43, nonreg44−nonreg47, nonreg48−nonreg51).

From Table 5.2, it can be observed that SeDuMi reported 5 warning messages about
numerical problems on solving the given SDP instances.

While the results provided by SDPT3 permit to consider many of them to be rather
close to the true optimal value, notice that the results from SeDuMi can not be considered
so good. Moreover, SeDuMi had never reported that it failed to solve some instances. A
closer analysis on the results presented in the Table 5.2 permits to conclude that there
are significant discrepancies between the computed optimal values and the true ones, even
when the solver has reported “Solved”. See, for example, the problems nonreg2, nonreg3,
nonreg7, nonreg22, nonreg25, nonreg26, nonreg29, nonreg33, nonreg52. Notice that the
closest value to zero in val is −8.1019e− 6 for the problem nonreg15.

Regarding the computed value for p∗, only for the problem nonreg3 SeDuMi had re-
turned zero, and for almost all other instances, the computed optimal values are fairly far
from the true ones. The closest value to zero corresponds to the problem nonreg22.

Based on the results presented in the Table 5.2, there is no empirical evidence that there
exists some correlation between the level of nonregularity and the number of iterations, or
computational time spent by SeDuMi.

It is worth mentioning that in both tables, the problem nonreg40 is particularly nasty,
since both solvers behaved poorly, returning similar values for p∗ and d∗ (close to 0.6), and
a different optimal value val of the given problem, which should be zero.

Based on the numerical results presented in this section, we can conclude that they

92

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING

support the conclusion that standard SDP solvers applied to nonregular problems may be
unable to provide accurate solutions.

5.3 Conclusions

In this chapter, we have presented an algorithm for generating nonregular SDP instances
with a pre-specified irregularity degree. We have implemented this algorithm in MATLAB
by the function nonregSDPgen. The routine nonregSDPgen is very simple to use and returns
a dat-s file containing the generated nonregular SDP instance, that in turn can be used as
input in popular SDP solvers. By construction, all the generated instances are feasible and
have optimal value equal to zero. We have generated nonregular SDP instances and formed
a new SDP database with nonregular SDP problems called NONREGSDP. This collection
of nonregular SDP test problems was used to evaluate the performance and robustness of
two popular SDP solvers.

The numerical experiments showed that the tested SDP solvers do not have a reliable
behaviour on nonregular SDP instances. Although SeDuMi uses a self-dual embedding
technique to regularize the nonregular problem, many examples showed that it may still
return inaccurate solutions.

We have also used DIISalg on such generated nonregular instances to test their non-
regularity and compute the associated irregularity degree. The routine DIISalg confirmed
that all instances fail the Slater condition and returned the correct values of the irregularity
degrees.

In the next chapter, we will focus on a particular SDP application to data analysis,
where large-scale data is expected.

93

CHAPTER 5. GENERATING NONREGULAR INSTANCES IN SEMIDEFINITE PROGRAMMING

94

Chapter 6

Application of semidefinite
programming in data analysis

In this chapter, we are concerned specifically with one interesting application of semidef-
inite programming in data analysis for clustering and dimensionality reduction techniques.
These tasks are important to the analysis of (large) data sets, where it is often needed not
only to reduce the dimension of the attribute space (dimensionality reduction), but also
to reveal some patterns among the objects (clustering). Here, we describe some models
of a minimum sum-of-squares clustering problem, where the distances between pairs of
objects are used to measure (dis)similarities. We will focus on a nonlinear SDP model and
its linear SDP relaxations. We study the regularity of these SDP models and methods for
solving them. We propose a SDP-based approximation algorithm for solving clustering and
dimensionality reduction problems. Numerical experiments are carried out using various
data sets.

6.1 Brief introduction and motivation

The advances of computer technology have enabled to store large databases, such as,
for example, data sets of sequenced genomes. When dealing with real data sets, it is often
needed not only to reduce the dimension of the attribute space (dimensionality reduction),
but also to reveal some patterns hidden on data (clustering).

Clustering methods and principal component analysis (PCA) are powerful techniques,
very important for data visualization. These techniques have been widely studied and ap-
plied to many real-life data, and in areas such as statistics, data mining, machine learning,
pattern recognition, engineering, computational biology and image processing [7, 73, 160].

The reduction of the object space is usually done by applying a clustering method to
a given data set. Clustering is an unsupervised learning technique that aims to partition
a given finite set of objects into a finite number of subsets, called clusters, based on some
similarity criterion. The clusters are constructed in such a way that the objects within a
cluster are more similar to one another, than the objects belonging to different clusters.

95

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

There are different types of clustering techniques, such as hierarchical and partitional clus-
tering. We focus on partitional clustering, where nonoverlapping clusters are constructed.
In such a problem, each object can be considered as a point in a n-dimensional space
and each cluster can be identified by its centre, called centroid, a non-observable object
calculated by taking the mean of all the objects assigned to this cluster [73, 151, 160].
To express similarity between objects, i.e., homogeneity inside a cluster, several similarity
measures have been proposed, such as a metric defined on the data set [6, 10]. One of the
most used (dis)similarity measures is the squared Euclidean distance [7, 3, 50, 73, 160].
Given a number of objects, the idea is to minimize the sum of the squared distances
between each object and the corresponding cluster centroid. The resulting problem is
called in the literature the minimum sum-of-squares clustering (MSSC) problem (see, e.g.,
[3, 6, 9, 50, 73, 116, 153, 160]). The MSSC problem is usually formulated as a binary
integer programming problem [6, 115, 116, 153], that in turn can be rewritten either as
a (0,1) - semidefinite programming (SDP) problem [81, 115, 116], or as an unconstrained
nonsmooth and nonconvex nonlinear problem [3, 9, 10, 153]. The MSSC problem is NP-
hard [3, 58]. Many clustering algorithms have been developed to solve it, the most popular
of them being, by far, the K-means algorithm [7, 9, 50, 73, 160]. Here, we focus on a non-
linear SDP-based model for MSSC and its linear SDP relaxations proposed in [115, 116],
and study their regularity and appropriate methods that can be used to solve them.

PCA is a common statistical technique for unsupervised dimension reduction of data.
It finds linear combinations of all the original attributes, called components or principal
components, that are able to explain the maximum variability of the data, i.e., the data
compression based on correlated attributes is done with minimum information loss [27, 64].
PCA uses an orthogonal projection of the data onto a lower dimensional space along the
direction where the data present the highest variability. This technique can be performed in
an equivalent form as either an eigendecomposition of the data covariance (or correlation)
matrix, or a Singular Value Decomposition (SVD) of the column-centred (or standardized)
data matrix. The resulting components are mutually uncorrelated and can be ordered
by variance [50]. In PCA, there are as many principal components as the number of the
original attributes and typically, the coefficients of the components, also called loadings,
are nonzero, which can be considered a shortcoming for interpretation [50, 64]. Various
PCA-based methodologies have been proposed to obtain disjoint or sparse components,
i.e., with zero loadings (see, e.g., [7, 27, 32, 65, 88, 151, 166]). Some of these approaches to
get more interpretable components involve an attribute clustering (see, e.g., [7, 32, 151]).
The resulting components are disjoint, meaning that each attribute contributes at most to
a single component.

A new methodology of PCA called clustering and disjoint principal component anal-
ysis (CDPCA) was proposed by Vichi and Saporta in [151]. CDPCA permits to cluster
the objects along a set of centroids and, at the same time, partition the attributes into
a reduced set of components, in order to maximize the between cluster deviance. The
resulting problem is formulated as a quadratic mixed integer programming problem and
an alternating least-squares (ALS) algorithm is proposed to solve it in [151]. The ALS
algorithm can be considered as a heuristic that guarantees only local solutions. In [93],

96

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

we have implemented the ALS algorithm to perform CDPCA in R [124], a widely used
open source software for data analysis, very popular in statistics. Recently, in [94], we
have developed a new scheme of the ALS algorithm to improve the implementation of the
CDPCA model in terms of estimating the parameters.

The main aim of this chapter is to present a new SDP-based approach to clustering
and dimensionality reduction. Inspired by recent work [94, 115, 116, 151], we propose a
new approach to CDPCA. This approach results in a SDP-based approximation algorithm,
called Two-Step-SDP algorithm, that permits to cluster objects and attributes. The Two-
Step-SDP algorithm can be considered as an improvement on the ALS algorithm proposed
in [151]. The Two-Step-SDP algorithm is implemented in a easy-to-use software application
using R and several numerical experiments are carried out to evaluate its efficiency.

6.1.1 Clustering: preliminaries

In what follows, by objects we mean entities to be clustered, and attributes are charac-
teristics of the objects.

Clustering consists in partitioning a given set ofm objects into p nonempty and nonover-
lapping clusters Cj, j = 1, ..., p, where 2 ≤ p < m is a given integer. These clusters are
constructed in such a way that each object is assigned to a single cluster.

Each object i is characterized by a n-dimensional row vector di of n attributes (also
called variables or features).

A data matrix is a (m × n) matrix D = [dij], where the m rows correspond to the
objects and the n columns correspond to the attributes characterizing these objects.

Given a (m× n) data matrix D, if we want to assign the m objects into p, 2 ≤ p < m,
clusters, the assignments can be stored in a (m × p) binary matrix U = [uij] defined as
follows:

uij =

1, if object i ∈ Cj,

0, otherwise.
(6.1)

This matrix is called assignment or cluster indicator matrix. By construction, U is a
binary row stochastic matrix, that has only one nonzero element per row and the sum of
all entries in each row is equal to 1, i.e.,

Uep = em,

where ek ∈ Rk is a vector with all entries equal to 1, k ∈ N. Notice that rank(U) = p and
that an assignment matrix is not unique, since one can permute columns.

Each cluster can be identified by its cluster centre, called centroid, usually, a non-
observable object that is the mean of all the objects assigned to this cluster [73, 151, 160].
Therefore, if the objects are assigned with an assignment matrix U, then the centroid
cj ∈ Rn of the cluster Cj, for j = 1, ..., p, can be defined as

cj =
1

m∑
t=1

utj

m∑
t=1

utjdt. (6.2)

97

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

The (p × n) object cluster centroid matrix, whose rows correspond to the clusters
presented by their centroids cj, is denoted here by D̄. This matrix can be written as
follows ([151]):

D̄ =
(
UTU

)−1
UTD. (6.3)

The similarity measure that we use here is the Euclidean distance between a pair of
objects. In the minimum sum-of-squares clustering (MSSC) problem [3, 6, 9, 50, 73, 116,
153, 160] one is interested in minimizing the sum of the distances between the objects in
each cluster. The sum of the squared distances between each object and the centroid of

the cluster to which it belongs is equal to
p∑
j=1

m∑
i=1

uij‖di − cj‖2
2, where the cluster centroid

cj is defined in (6.2).
Given a (m×n) data matrix D, a partition of the set of n attributes into k, 2 ≤ k < n,

disjoint subsets Sj, j = 1, ..., k, called components, can be considered as a clustering
problem over the attributes. The assignment of attributes can be stored in a (n × k)
binary assignment matrix V = [vij] where

vij =

1, if attribute i ∈ Sj,

0, otherwise.
(6.4)

Notice that V is a binary row stochastic matrix satisfying Vek = en and rank(V) = k.

6.2 Integer programming model for clustering and its

solution

6.2.1 Integer programming model

Consider the clustering problem introduced in the previous section. The minimum sum-
of-squares clustering (MSSC) model can be formulated w.r.t. the variables uij, i = 1, ...,m,
and j = 1, ..., p, as follows ([3, 6, 73, 81, 115, 116, 160]):

min
uij

p∑
j=1

m∑
i=1

uij

∥∥∥∥∥∥di −
m∑
t=1

utjdt

m∑
t=1

utj

∥∥∥∥∥∥
2

2

s.t.
p∑
j=1

uij = 1, i = 1, ...,m,

m∑
i=1

uij ≥ 1, j = 1, ..., p

uij ∈ {0, 1}.

(6.5)

The first constraint in (6.5) ensures that each object is assigned to a single cluster
and the second constraint ensures that each cluster has at least one object assigned. Any
feasible solution of problem (6.5) is an assignment matrix U.

98

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

The problem (6.5) is a binary integer programming problem and is known to be NP-hard
(see [3, 6, 58, 116, 153]).

6.2.2 K-means algorithm

The MSSC problem (6.5) is very difficult to solve due to its variables take only discrete
values and the nonlinearity and nonconvexity of its objective function [115, 116]. Many
approaches have been proposed to solve it either by exact algorithms, or heuristics (e.g.,
[3, 6, 9, 81, 115, 116]). By far, the most popular algorithm to solve the MSSC problem
(6.5) is the K-means algorithm [50, 58].

In essence, the classical K-means algorithm starts by randomly assigning each object to
some cluster. Then, the algorithm performs a re-assignment of the objects to the clusters,
based on minimizing the sum of the squared distances between the objects and the cluster
centroids.

These steps can be outlined as follows ([58]):

Basic Algorithm 7 K-means
1: Choose an initial partition of p clusters (or generate it randomly) and find the corresponding

centroids,
2: Assign each object i, i = 1, ...,m, to the closest centroid,
3: Update the centroids using the current assignments.

Steps 2 and 3 are repeated until the within cluster sum of squares is no longer reduced.
Numerical tests show that the K-means algorithm returns well-separated clusters having
a convex-shaped geometry, i.e., spherical or elliptical [50, 58].

It is worthwhile mentioning that the K-means algorithm should be used on scaled data,
since it relies on the Euclidean distances. Moreover, the K-means algorithm returns a local
optimum and depends on the initial choice of the centroids [9, 58, 73]. To overcome this
drawback, it is recommended to consider several random initializations [58]. For example,
in [151], a “tandem analysis” (i.e., PCA followed by applying the K-means algorithm using
only the first few components) was carried out with 10000 random starts of the K-means
algorithm using the first two principal components of a particular data set. The data set
consists of 20 objects and 6 attributes, and the aim was to obtain 3 clusters of objects.

There exist extensions and modifications of the K-means algorithm, such as the K-
medoids, where each cluster is represented by its medoid, which is the most centrally
located object in the cluster, or fuzzy algorithms, that allows nonconvex shapes of the
clusters (see, e.g., [9, 50, 58, 73]).

99

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

6.3 Semidefinite programming-based model for clus-

tering and its properties

This section is devoted to the study of an equivalent formulation for the clustering
problem (6.5) that was proposed in [115, 116]. We will first outline some basic definitions.

6.3.1 SDP-based model

Consider an assignment matrix U defined in (6.1). By construction, the columns ui,
i = 1, ..., p, of the matrix U are linearly independent and orthogonal. Therefore, U has a
zero nullspace and rank (U) = p. Hence, UTU is a (p× p) diagonal and invertible matrix,
where each diagonal entry is the sum of the elements of the corresponding column of U:

UTU = diag

(
m∑
i=1

ui1,
m∑
i=1

ui2, ...,
m∑
i=1

uip

)
= diag (‖u1‖2

2, ‖u2‖2
2, ..., ‖up‖2

2) . (6.6)

Given an assignment matrix U, the subspace of Rm spanned by its columns is denoted
by C(U).

Let M be a (m × p) matrix. Consider an orthogonal projection of the space Rm onto
the subspace spanned by the columns of M. The following theorem is valid [163].

Theorem 26 Let M be a (m× p) matrix whose p columns are linearly independent. The
matrix P of the orthogonal projection of the space Rm onto the subspace spanned by the
columns of M has the form P = M(MTM)−1MT .

It is known from linear algebra [1, 98, 163] that an orthogonal projection matrix P
satisfies the following properties:

1. P2 = P, ensuring that P is a projection matrix,

2. P is symmetric, i.e., PT = P,

3. rank (P) = tr (P),

4. rank (P) = p,

5. the eigenvalues of P are only 0 or 1.

From the last property, it follows that any orthogonal projection matrix is positive
semidefinite.

Let us consider a (m×m) matrix Z = [zij] in the following form ([115, 116]):

Z = U(UTU)−1UT , (6.7)

where U is defined in (6.1). It is easy to verify that Z has nonnegative elements. Evidently,
Z is the orthogonal projection matrix onto the space C(U) spanned by the columns of the

100

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

matrix U. Hence, Z satisfies the properties (1)-(5). Moreover, since C(U) is a p-dimensional
subspace of Rm, it follows that rank (Z) = rank (U) = p.

In spite of the fact that matrix U is not unique (e.g., one can permute the columns of
U getting another assignment matrix), the matrix Z defined in (6.7) is.

From the definition of the matrix Z and since each object is assigned to a single cluster,
each row of the matrix Z has sum equal to 1, i.e., it should satisfy Zem = em.

Example 21 Consider the assignment matrix

U =

1 0 0
1 0 0
0 0 1
0 0 1
0 1 0
0 1 0

,

specifying the assignment of m = 6 objects into p = 3 clusters. By (6.7), the matrix Z has
the form

Z =

0.5 0.5 0 0 0 0
0.5 0.5 0 0 0 0
0 0 0.5 0.5 0 0
0 0 0.5 0.5 0 0
0 0 0 0 0.5 0.5
0 0 0 0 0.5 0.5

.

Evidently, the matrix Z is symmetric, Z2 = Z, rank (Z) = tr (Z) = 3, and the sum of
the elements in each row is equal to 1.

Notice that both matrices U and Z represent the same partition: the objects 1 and 2
are assigned to one cluster, 3 and 4 belong to another cluster, and the objects 5 and 6 are
assigned to a third cluster.

In [115, 116], it is shown that the objective function in the MSSC problem (6.5) is equal
to the function tr

(
DDT (Im − Z)

)
and the following optimization problem is formulated:

min
Z

tr
(
DDT (Im − Z)

)
s.t. ZT = Z,

Z2 = Z,
tr(Z) = p,
Zem = em,
zij ≥ 0, ∀i, j = 1, 2, ...,m.

(6.8)

The first two constraints in (6.8) imply that Z is an orthogonal projection matrix and
the next constraint ensures that there are exactly p clusters. The last equality constraint
in problem (6.8) means that each object is assigned to a single cluster, i.e., each row of the
matrix Z has sum equal to 1. The inequality constraint ensures that Z has nonnegative
elements.

101

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

In [116], it is proved that problem (6.8) is equivalent to (6.5). In [115, 116], the model
(6.8) is called 0-1 SDP model, since the first two constraints imply that Z is positive
semidefinite, with eigenvalues 0 or 1. Nevertheless, (6.8) does not have a standard SDP
form, and thus, we will call it the SDP-based model of the clustering problem (6.5).

The problem (6.8) can be rewritten as

max
Z

tr(DDTZ)

s.t. ZT = Z,
Z2 = Z,
tr(Z) = p,
Zem = em,
zij ≥ 0, ∀i, j = 1, 2, ...,m.

(6.9)

Both problems, (6.8) and (6.9), are difficult to solve due to the nonlinearity of the
second constraints. Moreover, since these problems do not have the standard SDP form,
current SDP methods can not be applied to solve them. Therefore, other strategies should
be applied.

For example, in [81], it is showed that the problem (6.9) is equivalent to

max
Z

tr(DDTZ)

s.t. tr(Z) = p,
Zem = em,
rank(Z) = p,
Z � 0,
zij ≥ 0, ∀i, j = 1, 2, ...,m.

(6.10)

and this problem is solved using nonconvex algorithms.
Notice that to obtain this problem, the first two constraints in (6.9) were replaced by

the nonconvex rank constraint and the positive semidefiniteness condition on the matrix
Z. Due to the rank constraint, (6.10) is a low-rank SDP problem that can not be solved
using standard SDP methods, and thus, special methods are needed. In [81], the authors
developed a general nonconvex optimization algorithm based on an algorithm that uses low-
rank factorizations to optimize full-rank SDP problems proposed by Burer and Monteiro
(see all the details in [81]).

6.3.2 General properties of the SDP-based model

The nonlinear SDP-based model (6.9) is very difficult to solve [115, 116]. The problem
can possibly be solved using commercial and open-source solvers, such as the LGO Solver
Package for Global and Local Nonlinear Optimization [118], PENNON and PENLAB [35],
but it is required to rewrite the problem either explicitly, or using polynomial matrix
inequalities. This augments crucially the number of variables and constraints.

According to [116], there are two groups of algorithms that can be used for solving the
nonlinear model (6.9) in the implicit form: feasible iterative algorithms and approximation

102

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

algorithms based on LP or SDP relaxations. The feasible iterative algorithms use some
kind of heuristics, such as the classical K-means algorithm. The second group of algorithms
is the most popular in the literature, and is based on constructing and solving LP or SDP
relaxations for the nonlinear SDP-based model, and then use some rounding procedure to
obtain a feasible solution to (6.9).

Given a clustering problem, it is always possible to get a randomly chosen assignment
matrix U and a matrix Z using (6.7). Then the SDP-based problem (6.9) is always feasible.

Example 22 Suppose we are interested in clustering a set of 6 objects into 4 clusters, i.e.,
m = 6 and p = 4. Consider the following random assignment matrix

U1 =

1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1

 .

Therefore, a feasible solution to problem (6.9) may be given by (6.7), yielding the matrix

Z1 =

0.5 0.5 0 0 0 0
0.5 0.5 0 0 0 0
0 0 1 0 0 0
0 0 0 0.5 0 0.5
0 0 0 0 1 0
0 0 0 0.5 0 0.5

 .

It is easy to see that matrix Z1 satisfies all the constraints of the problem (6.9).

6.3.3 Study of regularity of the SDP-based model

In this section, we study the regularity in terms of the Slater condition of the SDP-
based model (6.9). Let us consider the analogous definition of the Slater condition for the
nonlinear SDP-based model.

Definition 19 The nonlinear SDP-based problem (6.9) satisfies the Slater condition if
there exists Z̄ ∈ Rm×m with nonnegative entries, such that Z̄ � 0 and the equality con-
straints in (6.9) are satisfied.

The following theorem states that problem (6.9) is nonregular.

Theorem 27 The SDP-based problem (6.9) does not satisfy the Slater condition.

103

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Proof. Let a (m×m) matrix Z be a feasible solution of the problem (6.9).
Since Z can be considered as an orthogonal projection matrix, then it satisfies the

condition rank(Z) = tr(Z) = p, with 2 ≤ p < m, and its eigenvalues are either 0 or 1,
which implies Z � 0.

Hence, Z has exactly p eigenvalues equal to 1 and m−p zero eigenvalues. Since p < m,
then the matrix Z can not be positive definite. Notice that Z � 0 if and only if all eigen-
values are positive, and this only happens for p = m. Therefore, the SDP-based problem
(6.9) does not satisfy the Slater condition. �

This result about the nonregularity of the SDP-based problem (6.9) shows that special
attention should be given to the numerical methods for solving it. Since the model is
nonregular, then it is important to have specific efficient methods to handle such problems.

6.3.4 Recovering the assignments

Suppose that the problem (6.9) is solved and matrix Z is its solution. Now, let us
discuss how to recover a cluster assignment matrix U.

It can be pointed out that Z can be considered as a block similarity matrix, where each
block reflects some kind of similarity between the corresponding objects. This fact can be
used to obtain the desired p clusters of objects.

The recovering of an assignment matrix U can be done by considering a factorization
of Z in a particular form, or simply by reducing the matrix Z to its row echelon form. In
what follows, we will describe both procedures.

The first procedure is based on the following lemma.

Lemma 5 Let Z be a (m×m) matrix defined in (6.7). Then there exists a (m×p) matrix
Q, satisfying QTQ = Ip, such that Z can be decomposed in the form Z = QQT and the
columns of Q form an orthonormal basis for the range space of Z.

Proof. Let Z be the matrix of rank p defined in (6.7). Consider a basis of the column space
of U, say v1, v2, ..., vp (not necessarily the basis formed by the columns of U). Consider
also an orthonormal basis given by the vectors q1, q2, ..., qp, where qi = vi

‖vi‖2 , i = 1, ..., p,

and the matrix Q, whose columns are these vectors. By construction, QTQ = Ip.
The matrix U can be written as

U = QR, (6.11)

where R is a full rank square (p× p) matrix given by

R = diag (‖v1‖2, ‖v2‖2, ..., ‖vp‖2) .

Therefore, taking into account (6.1) and (6.11), we get

Z = U(UTU)−1UT = (QR)
[
(QR)T (QR)

]−1
(QR)T

= QR
(
RTQTQR

)−1
RTQT = QR

(
RT IpR

)−1
RTQT

= QR (R)−1 (RT
)−1

RTQT = QQT .

104

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Since rank (Q) = p = rank (Z), then the columns of Q form an orthonormal basis for
the range space of matrix Z. This completes the proof of Lemma 5. �

According to [123], the matrix Q from Lemma 5 can be considered as a weighted cluster
indicator matrix, giving information of the allocation of the m objects into p clusters.
Therefore, it is related to the assignment matrix U.

The matrix Q is not unique, nevertheless it has a particular form. For example, its
elements can be defined as

qij =

1√
|Cj |

, if i ∈ Cj,

0, otherwise,

(6.12)

where |Cj| is the number of objects in cluster Cj.
According to [81], the structure of the matrix Q is given by (6.12), but if Q is a column

orthonormal matrix, whose columns are qi, i = 1, ..., p, then the matrix Q̄, whose columns
are q̄i = αiqi, is also a column orthonormal matrix if and only if αi = ±1. This is the
reason why we say that Q is not unique, but has a special form.

Notice that the nonzero entries in Q correspond to the nonzero entries in U. In order
to get an assignment matrix U, we can replace each nonzero element in Q by 1.

The matrix Q satisfying the conditions of Lemma 5 can be obtained via Singular Value
Decomposition (SVD) of the matrix Z ([98, 115, 133]):

Z = CΣNT ,

where C and N are orthogonal matrices and Σ = diag(σ1, σ2, ..., σm) contains the singular
values of Z in decreasing order. The singular values of Z are the square roots of the
eigenvalues of the matrix ZTZ. Since rank (Z) = p, Z has p nonzero singular values.

The columns of the matrix C corresponding to the nonzero singular values of Z form
an orthonormal basis of the range space of Z. Therefore, it follows from Lemma 5 that
these columns form the matrix Q. The columns of the matrix N corresponding to the zero
singular values of Z form an orthonormal basis of the null space of Z.

The SVD is a standard decomposition in numerical analysis, and many algorithms exist
for its computation [50].

We can outline the following procedure to recover an assignment matrix U.

Basic Algorithm 8 Recovering the assignments via SVD

input: Z, solution of the problem (6.9).
output: U, an assignment matrix.

1: Apply SVD to the matrix Z and obtain Q,
2: Replace each nonzero element of Q by 1 to obtain the assignment matrix, U.

Notice that the matrix |Q|, whose elements are the absolute values of the elements of
Q, has the structure defined in (6.12).

105

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Example 23 Considering the matrix Z from Example 21 and using the above proce-
dure, let us obtain an assignment matrix from Z. Applying the SVD to Z, we get Σ =
diag(1, 1, 1, 0, 0, 0) and

C = N =

−0.7071 0 0 −0.7071 0 0
−0.7071 0 0 0.7071 0 0

0 0 −0.7071 0 −0.7071 0
0 0 −0.7071 0 0.7071 0
0 −0.7071 0 0 0 −0.7071
0 −0.7071 0 0 0 0.7071

 .

Then

Q =

−0.7071 0 0
−0.7071 0 0

0 0 −0.7071
0 0 −0.7071
0 −0.7071 0
0 −0.7071 0

 .
This matrix already gives us an idea of the assignment. We can see that the elements

of the matrix

|Q| =

0.7071 0 0
0.7071 0 0

0 0 0.7071
0 0 0.7071
0 0.7071 0
0 0.7071 0

have the special form (6.12).

Replacing each nonzero element of the matrix Q by 1 yields the assignment matrix

U =

1 0 0
1 0 0
0 0 1
0 0 1
0 1 0
0 1 0

 .

Therefore, we get the following assignments: the first two objects are assigned to one
cluster, objects 5 and 6 are assigned to a second one, and a third cluster contains the objects
3 and 4.

Although the common procedure of recovering an assignment matrix is using SVD, the
same result can be obtained by applying the Gauss elimination method to the matrix Z.
Recall that the Gauss elimination method of a matrix is a row reduction method that
uses a sequence of elementary row operations and returns a matrix with all the linearly

106

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

independent rows on top (row echelon form of Z). The vectors on the top form the basis of
the column space of Z that can be used to recover U. Let L be the (m× p) matrix whose
columns are these vectors. This matrix can be considered as a weighted cluster indicator
matrix.

An assignment matrix U can be recovered by replacing each nonzero element in L by
1.

We can then describe the recovering procedure as follows.

Basic Algorithm 9 Recovering the assignments via row echelon form

input: Z, solution of the problem (6.9).
output: U, an assignment matrix.

1: Get a row echelon form of the matrix Z and construct the matrix L whose columns
are the linearly independent rows of Z,

2: Replace each nonzero element of L by 1 to obtain the assignment matrix, U.

Example 24 Considering the matrix Z from Example 21, in the Step 2 of the above pro-
cedure, we can see that its row echelon form is

0.5 0.5 0 0 0 0
0 0 0.5 0.5 0 0
0 0 0 0 0.5 0.5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

The weighted cluster indicator matrix L as the form:

L =

0.5 0 0
0.5 0 0
0 0.5 0
0 0.5 0
0 0 0.5
0 0 0.5

 .

Replacing each nonzero element of L by 1, we get the assignment matrix

U =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 .

It is easy to see that this matrix represents the same assignments obtained in Example
23, and after a permutation of the second and third columns, the assignment matrices
coincide.

107

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

6.4 Approximation algorithm for solving the SDP-

based model

Approximation algorithms are widely used to solve hard optimization problems (see,
e.g., [3, 42, 43, 116]). The general idea of an approximation algorithm is to first solve a
relaxation of the hard problem, and then apply some rounding procedure to the obtained
solution to finally find a feasible solution of the original problem. It is known that SDP
relaxations provide good approximations [8, 83]. The first attempt to use a SDP-based
approximation algorithm dates back to 1995, when Goemans and Williamson [43] suggested
the randomized approximation algorithm for the max-cut problem, a well known NP-
hard problem [83]. Since then, SDP has been successfully applied in the development of
approximation algorithms for several classes of hard combinatorial optimization problems.
It is also known that standard interior point SDP methods, such as the primal-dual interior
point methods [8, 42, 149], are not so efficient for large scale problems and thus, different
strategies have been developed [35, 81, 115].

In [115], an approximation algorithm that uses a linear SDP relaxation is proposed to
obtain an approximate solution of (6.9).

6.4.1 Linear SDP relaxations of the SDP-based model

In [115, 116], some relaxations of the SDP-based problem (6.9) are suggested, including
linear SDP relaxations. One of such relaxations was obtained by replacing the first two
constraints in (6.9) by a condition of positive semidefiniteness of matrix Z, yielding the
following linear SDP problem

max
Z

tr(DDTZ)

s.t. tr(Z) = p,
Zem = em,
Z � 0,
zij ≥ 0, ∀i, j = 1, 2, ...,m.

(6.13)

This is a convex problem, since its objective function is linear, and its feasible set is
the intersection of the convex cone of the positive semidefinite matrices with the convex
set described by a finite number of linear equalities (notice that the last constraint can be
incorporated in the positive semidefinite constraint).

Theoretically, the SDP problem (6.13) can be solved using standard SDP methods (see
[8, 81, 115, 116, 149]), but, in practice, such methods are not so efficient for large-scale
problems [42], because of the curse of dimensionality, which encompasses storage issues.
In what follows, we will discuss this phenomenon.

From the computational viewpoint, the constraint Zem = em is equivalent to tr(BiZ) =

108

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

1, where for each i = 1, ...,m, Bi = [brq] is a m×m matrix defined as

brq =

1, if r = q = i,
1
2
, if r = i and q 6= i,

1
2
, if q = i and r 6= i,

0, otherwise

(6.14)

and the constraint on the nonnegativity of the elements of Z can be incorporated in the
positive semidefinite constraint. Therefore, the problem (6.13) can be written in terms of

a
(
m(m+1)

2
× m(m+1)

2

)
matrix variable Z̄ in a block diagonal form as follows:

max
Z̄

tr

([
DDT 0

0 0

]
Z̄

)
s.t. tr

([
Im 0
0 0

]
Z̄

)
= p,

tr

([
Bi 0
0 0

]
Z̄

)
= 1, i = 1, 2, ...,m,

Z̄ =

[
Zm×m 0

0 Dk

]
� 0,

(6.15)

where k = m(m−1)
2

, Dk = diag (zij), for all i = 1, ...,m− 1 and j > i , and Bi, i = 1, ...,m,
are defined in (6.14).

Recall that typically, in a clustering problem the dimension of the data can be extremely
large, which results in huge matrices in (6.15). Therefore, the numerical solution of such
problems can be computationally expensive, or even impossible. It is known that standard
interior point SDP methods suffer from lack of performance for large-scale problems.

Another relaxation of the problem (6.9) can be obtained by replacing the last two
constraints in (6.13) by the matrix inequality Im � Z � 0, yielding the following SDP
problem [115, 116]:

max
Z

tr(DDTZ)

s.t. tr(Z) = p,
Zem = em,
Im � Z � 0.

(6.16)

The linear SDP problem (6.16) is convex, since its objective function is linear, and
its feasible set is the intersection of a compact convex subset of the linear space of the
real symmetric matrices [83, 110] with a convex set described by a finite number of linear
equalities.

Observation 1 The solutions of the relaxed problems (6.13) and (6.16) may not coincide
with the solution of the original problem (6.9).

Observation 2 The relaxed problems (6.13) and (6.16) can also be considered as relax-
ations of (6.10), since problems (6.9) and (6.10) are equivalent.

109

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

In the following sections, we study the regularity of the presented relaxations and then,
we focus on the SDP problem (6.16) and describe a procedure to solve it and to extract a
feasible solution to the SDP-based problem (6.9).

6.4.2 Study of regularity of the SDP relaxations

It was shown above that the SDP relaxations (6.13) and (6.16) are convex. It was also
shown that any matrix Z in the form (6.7) is a feasible solution of (6.9), and thus, it is
feasible for the relaxed problems (6.13) and (6.16). Therefore, the SDP relaxations (6.13)
and (6.16) are always feasible.

Theoretically, the SDP problems (6.13) and (6.16) can be solved in polynomial time
using standard SDP methods (see [8, 81, 115, 116, 149]), such as interior point methods,
which perform very well on small to medium scale SDP problems, but are not so efficient
for large scale problems. All standard SDP methods rely on assumptions of regularity
[4, 8, 23, 37, 54]. Therefore, it is very important to know in advance if a given SDP
problem is regular.

The following theorem states that the relaxed problem (6.13) is regular.

Theorem 28 The Slater condition holds for the SDP problem (6.13).

Proof. Let us show that there exists a feasible solution of the problem (6.13) that is a
positive definite matrix.

For this purpose, consider a positive (m×m) symmetric matrix Z̄ defined as follows:

z̄ij =

p
m
, i = j,

m−p
m(m−1)

, i 6= j,
(6.17)

where 2 ≤ p < m.
It is easy to see that the matrix Z̄ is a feasible solution of (6.13).
The matrix Z̄ has m positive eigenvalues: one equal to 1, and the remaining equal to

p−1
m−1

. Let us prove this result.

Each eigenvalue λ of Z̄ is a solution of the equation det(Z̄− λIm) = 0, i.e.,

det

p
m
− λ m−p

m(m−1)
m−p

m(m−1)
· · · m−p

m(m−1)
m−p

m(m−1)
p
m
− λ m−p

m(m−1)
· · · m−p

m(m−1)
m−p

m(m−1)
m−p

m(m−1)
p
m
− λ · · · m−p

m(m−1)
...

...
...

. . .
...

m−p
m(m−1)

m−p
m(m−1)

m−p
m(m−1)

· · · p
m
− λ

 = 0.

Let us find the expression for det(Z̄−λIm). First, subtract the last row from the other
rows of the matrix and then, sum the last column of the obtained matrix with all the
previous columns. Taking into account the properties of the determinants, we get:

110

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

d
et

(Z̄
−
λ
I m

)
=

d
et

 p m
−
λ
−

m
−
p

m
(m
−

1
)

0
0

··
·

m
−
p

m
(m
−

1
)
−
(p m
−
λ
)

0
p m
−
λ
−

m
−
p

m
(m
−

1
)

0
··
·

m
−
p

m
(m
−

1
)
−
(p m
−
λ
)

0
0

p m
−
λ
−

m
−
p

m
(m
−

1
)
··
·

m
−
p

m
(m
−

1
)
−
(p m
−
λ
)

. . .
. . .

. . .
. .

.
. . .

m
−
p

m
(m
−

1
)

m
−
p

m
(m
−

1
)

m
−
p

m
(m
−

1
)

··
·

p m
−
λ

=
m
−
p

m
(m
−

1)
d
et

 p m
−
λ
−

m
−
p

m
(m
−

1
)

0
0

··
·

m
−
p

m
(m
−

1
)
−
(p m
−
λ
)

0
p m
−
λ
−

m
−
p

m
(m
−

1
)

0
··
·

m
−
p

m
(m
−

1
)
−
(p m
−
λ
)

0
0

p m
−
λ
−

m
−
p

m
(m
−

1
)
··
·

m
−
p

m
(m
−

1
)
−
(p m
−
λ
)

. . .
. . .

. . .
. .

.
. . .

1
1

1
··
·

(p m
−
λ
) m(m

−
1
)

m
−
p

=
m
−
p

m
(m
−

1)
d
et

 p m
−
λ
−

m
−
p

m
(m
−

1
)

0
0

··
·

0

0
p m
−
λ
−

m
−
p

m
(m
−

1
)

0
··
·

0

0
0

p m
−
λ
−

m
−
p

m
(m
−

1
)
··
·

0
. . .

. . .
. . .

. .
.

. . .

1
1

1
··
·
(p m
−
λ
) m(m

−
1
)

m
−
p

+
m
−

1

111

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

and since p
m
− λ − m−p

m(m−1)
= p−1

m−1
− λ, then the last determinant can be rewritten in the

form

m− p
m(m− 1)

det

p−1
m−1
− λ 0 0 · · · 0

0 p−1
m−1
− λ 0 · · · 0

0 0 p−1
m−1
− λ · · · 0

...
...

...
. . .

...

1 1 1 · · ·
(
p
m
− λ
) m(m−1)

m−p +m− 1

 ,

which is equal to

m− p
m(m− 1)

(
p− 1

m− 1
− λ
)m−1((p

m
− λ
) m(m− 1)

m− p
+m− 1

)
.

Hence, the eigenvalues of Z̄ are the solutions of the equation

m− p
m(m− 1)

(
p− 1

m− 1
− λ
)m−1((p

m
− λ
) m(m− 1)

m− p
+m− 1

)
= 0.

Since m(m− 1) 6= 0 and m− p 6= 0, we get the equivalent equation(
p− 1

m− 1
− λ
)m−1((p

m
− λ
) m(m− 1)

m− p
+m− 1

)
= 0

⇔
(
p− 1

m− 1
− λ
)m−1

= 0 ∨ (p− λm)(m− 1) + (m− 1)(m− p) = 0

⇔ λ =
p− 1

m− 1
∨ λ = 1.

Hence, the eigenvalues of the matrix Z̄ are λ = p−1
m−1

with algebraic multiplicity equal to
m− 1, and λ = 1, with algebraic multiplicity 1. Since p < m, then the smallest eigenvalue
of Z̄ is 0 < p−1

m−1
< 1 and the largest eigenvalue is 1.

Therefore, we have constructed a feasible matrix Z̄ such that Z̄ � 0 and we can con-
clude that the SDP problem (6.13) satisfies the Slater condition. �

Example 25 Consider the problem (6.13) for m = 5 and p = 2. It is easy to verify that
the (5× 5) matrix

Z̄ =

0.4 0.15 0.15 0.15 0.15
0.15 0.4 0.15 0.15 0.15
0.15 0.15 0.4 0.15 0.15
0.15 0.15 0.15 0.4 0.15
0.15 0.15 0.15 0.15 0.4

is positive definite and satisfies the constraints of the problem (6.13). Indeed, tr(Z̄) = 2
and Z̄ is row stochastic, with 5 positive eigenvalues: 1.0, 0.25, 0.25, 0.25, 0.25. Therefore,
we can conclude that the interior of the feasible set of problem (6.13) is nonempty, i.e., the
problem satisfies the Slater condition.

112

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

In the following example, we use the SDPreg procedure 5 introduced in Section 4.1 to
test the regularity of the SDP problem (6.13).

Example 26 Let us consider the feasible SDP problem (6.13) for m = 4 and p = 2.

The problem (6.13) is written in the trace form and, to check the regularity using the
MATLAB routine SDPreg, we have to write its constraints in the LMI form. For that
purpose, we use the reformulation (6.15) and consider matrices of order 10, where the
variable is a block diagonal matrix. In this case, the constraints are

z11 + z22 + z33 + z44 = 2

z11 + z12 + z13 + z14 = 1

z12 + z22 + z23 + z24 = 1

z13 + z23 + z33 + z34 = 1

z14 + z24 + z34 + z44 = 1

Z̄ =

[
Z4×4 0
0 D6

]
� 0,

where Z4×4 =

z11 z12 z13 z14

z12 z22 z23 z24

z13 z23 z33 z34

z14 z24 z34 z44

 and D6 = diag (z12, z13, z14, z23, z24, z34), which in

turn can be written in the LMI form as

A1z22 + A2z33 + A3z44 + A4z13 + A5z14 + A0 � 0,

where

A0 =

2 −1 0 0
−1 0 1 1

0 1 0 0
0 1 0 0

0

0 diag (−1, 0, 0, 1, 1, 0)

A1 =

−1 1 0 0

1 1 −1 −1
0 −1 0 1
0 −1 1 0

0

0 diag (1, 0, 0,−1,−1, 1)

A2 =

−1 1 0 0

1 0 −1 0
0 −1 1 0
0 0 0 0

0

0 diag (1, 0, 0,−1, 1, 0)

113

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

A3 =

−1 1 0 0

1 0 0 −1
0 0 0 0
0 −1 0 1

0

0 diag (1, 0, 0, 0,−1, 0)

A4 =

0 −1 1 0
−1 0 0 1

1 0 0 −1
0 1 −1 0

0

0 diag (−1, 1, 0, 0, 1,−1)

A5 =

0 −1 0 1
−1 0 1 0

0 1 0 −1
1 0 −1 0

0

0 diag (−1, 0, 1, 1, 0,−1)

 .
The SDPreg procedure with the tolerance SCQ equal to 10−4 and the remaining tolerances

equal to 10−8, reported that the problem satisfies the Slater condition, and thus, is regular.

Considering now the relaxation model (6.16), we can also show that it is regular.

Theorem 29 The Slater condition holds for the SDP problem (6.16).

Proof. Let us show that there exists a feasible solution of the problem (6.16) that is a
positive definite matrix.

For that purpose, consider again a positive (m×m) symmetric matrix Z̄ defined as in
(6.17). The matrix Z̄ is positive definite with entries lying in]0, 1[, and its largest entry
is in the diagonal. It is easy to see that Im − Z̄ � 0. Indeed, the matrix Im − Z̄ has m
nonnegative eigenvalues: m− 1 equal to 1− p−1

m−1
and one equal to zero.

Therefore, there exists a feasible matrix Z̄ � 0 and we can conclude that the SDP
problem (6.16) satisfies the Slater condition. �

Since the SDP relaxations (6.13) and (6.16) satisfy the Slater condition, then standard
SDP solvers can be used to solve them, at least for small to medium scale problems. For
large problems more efficient strategies should be used.

6.4.3 SDP-based approximation algorithm

Before proceeding, consider an example consisting of synthetic data specially chosen to
be a well clusterable data set [2]. The example shows that if the data matrix represents a
well clusterable data set, then the solution of the SDP relaxation (6.13) is also the solution
of the SDP-based problem (6.9).

114

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Example 27 Consider the data set consisting of m = 11 objects and n = 3 attributes with
data matrix D given as follows:

D =

5.03 −4.99 −3.08
5.40 −4.84 −2.59
−5.66 3.96 2.81
−4.84 3.01 1.96
−4.53 4.63 3.92
−5.33 4.07 2.17
4.91 4.09 2.52
5.55 4.55 3.70
4.87 3.88 3.11
−4.24 4.92 2.66
−4.47 4.81 1.99

.

Suppose we are interested in obtaining a partition of these 11 objects into 3 clusters.

We have constructed the SDP model (6.13). Then, we solved it numerically by using
the CSDP solver in R, with the tolerance 10−8, and get the following solution, displayed
here with only 4 decimals:

Z =

0.5 0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0 0.0 0.1667 0.1667 0.1667 0.1667 0.0000 0.0000 0.0000 0.1667 0.1667
0.0 0.0 0.1667 0.1667 0.1667 0.1667 0.0000 0.0000 0.0000 0.1667 0.1667
0.0 0.0 0.1667 0.1667 0.1667 0.1667 0.0000 0.0000 0.0000 0.1667 0.1667
0.0 0.0 0.1667 0.1667 0.1667 0.1667 0.0000 0.0000 0.0000 0.1667 0.1667
0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333 0.0000 0.0000
0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333 0.0000 0.0000
0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333 0.0000 0.0000
0.0 0.0 0.1667 0.1667 0.1667 0.1667 0.0000 0.0000 0.0000 0.1667 0.1667
0.0 0.0 0.1667 0.1667 0.1667 0.1667 0.0000 0.0000 0.0000 0.1667 0.1667

.

The solution matrix Z has three eigenvalues equal to 1 and eight eigenvalues equal to
0. Therefore, it is positive semidefinite.

It is easy to see that, within a given tolerance, the matrix Z satisfies the nonlinear
constraint of the 0-1 SDP model (6.9), thus, it is also a solution of problem (6.9). Notice
that the structure of Z already permits to see the relations between objects. Applying the
recovering method suggested in Section 6.3 using the row echelon form of Z, we get the
assignment matrix

115

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

U =

1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0

.

Therefore, the objects 1 and 2 can be assigned to one cluster, objects 3, 4 5, 6, 10 and 11
to another, and the objects 7, 8 and 9 to a third cluster.

In the following example, we use a real data set, presented in [150] and also analysed in
[151], describing a short-term macroeconomic scenario of 20 OECD countries characterized
by 6 economic indicators, with the aim of clustering the data into 3 clusters. It can be
shown that the solution of the SDP relaxation (6.13) is not feasible for the SDP-based
model (6.9).

Example 28 Consider the (20× 6) data matrix from [150] given by

D =

1.81760 −0.03755 2.13484 0.09760 −1.2 −0.25160
−0.88325 −0.38487 −0.25765 −0.74250 0.014 −0.53603
−0.66426 −0.43180 −0.47237 0.46823 0.782 0.57978

0.64966 −0.10795 0.32513 0.17173 −1.1 −0.05470
−0.95625 −0.32855 0.01840 −0.59424 −1.1 0.31724

1.16063 −0.44119 −0.74842 1.01182 −0.42 1.52056
−0.00730 −0.42007 −0.22698 0.98711 −0.52 0.44851
−1.10224 −0.40834 −1.05515 0.44352 −0.42 −0.07658

0.64966 1.45968 −0.25765 0.64119 −0.34 −2.22068
−1.02924 0.14081 −0.56438 1.13537 −0.29 0.53603
−1.61321 −1.11236 1.21465 −0.86604 1.47 −0.14221
−0.00730 3.63982 1.27600 −1.11313 0.859 −0.40475

0.43068 −0.42007 0.04908 −0.86604 1.65 1.12675
−0.66426 −0.23702 −0.16563 −1.08842 1.47 1.14863

0.35768 −0.15019 −2.74217 −0.69308 1.19 −2.30819
0.94165 −0.15254 0.32513 2.79085 0.065 −0.14221
1.30663 −0.30038 −0.10429 0.29527 −1.4 1.12675
−0.88325 −0.85422 0.20244 −0.96488 0.986 0.55790
−0.81025 0.52098 1.06129 −0.32245 −1.2 −0.51415

1.30663 0.02581 −0.01227 −0.79191 −0.60 −0.71106

.

Let us assign these 20 objects to 3 clusters. The numerical solution of the linear SDP model
(6.13), obtained using the CSDP solver in R with the tolerance 10−8, is displayed here with
4 decimals. It is a (20× 20) matrix Z given by

116

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Z
=

 0
.1
3
3
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
0
4
4

0
.0
3
4
1

0
.0
8
7
4

0
.0
7
9
2

0
.0
0
8
1

0
.0
5
5
1

0
.0
3
7
2

0
.0
0
0
0

0
.0
8
7
7

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
9
4
8

0
.1
0
4
0

0
.0
0
0
0

0
.0
8
6
7

0
.0
8
8
2

0
.0
0
0
0

0
.0
9
8
5

0
.0
8
5
5

0
.0
0
4
9

0
.0
5
9
8

0
.0
0
7
5

0
.0
1
2
6

0
.0
7
0
6

0
.0
4
6
8

0
.0
4
3
0

0
.1
0
4
6

0
.0
0
0
0

0
.1
0
4
6

0
.1
0
4
6

0
.0
9
9
3

0
.0
0
6
5

0
.0
0
5
3

0
.1
0
4
6

0
.0
1
4
8

0
.0
2
6
4

0
.0
0
0
0

0
.0
8
5
5

0
.0
9
9
5

0
.0
1
8
9

0
.0
7
4
9

0
.0
2
8
6

0
.0
3
4
5

0
.0
7
3
5

0
.0
0
0
0

0
.0
6
5
2

0
.1
0
9
4

0
.0
0
0
0

0
.1
0
9
4

0
.1
0
9
4

0
.0
0
7
7

0
.0
2
4
9

0
.0
2
0
3

0
.1
0
9
4

0
.0
2
3
2

0
.0
0
5
9

0
.1
0
4
4

0
.0
0
4
9

0
.0
1
8
9

0
.1
1
0
9

0
.0
4
9
7

0
.1
0
9
9

0
.1
0
3
5

0
.0
3
4
1

0
.0
1
5
6

0
.0
6
6
8

0
.0
0
0
0

0
.0
1
7
6

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
1
1
9

0
.1
1
4
5

0
.0
0
0
0

0
.0
6
7
3

0
.0
6
9
7

0
.0
3
4
1

0
.0
5
9
8

0
.0
7
4
9

0
.0
4
9
7

0
.0
6
8
2

0
.0
5
5
9

0
.0
5
7
9

0
.0
6
0
8

0
.0
0
0
0

0
.0
6
6
7

0
.0
7
6
0

0
.0
0
0
0

0
.0
7
6
0

0
.0
7
6
0

0
.0
0
0
0

0
.0
5
4
2

0
.0
5
2
1

0
.0
7
6
0

0
.0
3
6
4

0
.0
2
5
0

0
.0
8
7
4

0
.0
0
7
5

0
.0
2
8
6

0
.1
0
9
9

0
.0
5
5
9

0
.1
1
6
8

0
.1
1
1
9

0
.0
4
6
9

0
.0
0
3
4

0
.0
8
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
1
5
8

0
.1
1
4
6

0
.0
0
0
0

0
.0
6
1
0

0
.0
6
0
3

0
.0
7
9
2

0
.0
1
2
6

0
.0
3
4
5

0
.1
0
3
5

0
.0
5
7
9

0
.1
1
1
9

0
.1
0
8
0

0
.0
5
0
4

0
.0
0
2
3

0
.0
8
0
9

0
.0
0
6
7

0
.0
0
0
0

0
.0
0
6
7

0
.0
0
6
7

0
.0
0
0
0

0
.1
1
0
2

0
.1
0
8
1

0
.0
0
6
7

0
.0
5
8
3

0
.0
5
5
5

0
.0
0
8
1

0
.0
7
0
6

0
.0
7
3
5

0
.0
3
4
1

0
.0
6
0
8

0
.0
4
6
9

0
.0
5
0
4

0
.0
7
7
0

0
.0
3
5
2

0
.0
6
6
4

0
.0
6
4
6

0
.0
0
0
0

0
.0
6
4
6

0
.0
6
4
6

0
.0
8
2
2

0
.0
4
2
1

0
.0
3
6
2

0
.0
6
4
6

0
.0
2
6
4

0
.0
3
1
6

0
.0
5
5
1

0
.0
4
6
8

0
.0
0
0
0

0
.0
1
5
6

0
.0
0
0
0

0
.0
0
3
4

0
.0
0
2
3

0
.0
3
5
2

0
.2
1
0
5

0
.0
0
0
0

0
.0
0
0
0

0
.2
1
0
6

0
.0
0
0
0

0
.0
0
0
0

0
.2
2
3
3

0
.0
0
5
1

0
.0
0
7
2

0
.0
0
0
0

0
.0
7
8
0

0
.1
0
6
6

0
.0
3
7
2

0
.0
4
3
0

0
.0
6
5
2

0
.0
6
6
8

0
.0
6
6
7

0
.0
8
0
0

0
.0
8
0
9

0
.0
6
6
4

0
.0
0
0
0

0
.0
8
0
5

0
.0
4
7
1

0
.0
0
0
0

0
.0
4
7
1

0
.0
4
7
1

0
.0
0
5
1

0
.0
7
5
6

0
.0
7
0
3

0
.0
4
7
1

0
.0
4
2
6

0
.0
3
1
1

0
.0
0
0
0

0
.1
0
4
6

0
.1
0
9
4

0
.0
0
0
0

0
.0
7
6
0

0
.0
0
0
0

0
.0
0
6
7

0
.0
6
4
6

0
.0
0
0
0

0
.0
4
7
1

0
.1
4
3
7

0
.0
0
0
0

0
.1
4
3
7

0
.1
4
3
7

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
4
3
7

0
.0
1
6
6

0
.0
0
0
0

0
.0
8
7
7

0
.0
0
0
0

0
.0
0
0
0

0
.0
1
7
6

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.2
1
0
6

0
.0
0
0
0

0
.0
0
0
0

0
.4
4
0
7

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
5
5
0

0
.0
8
8
4

0
.0
0
0
0

0
.1
0
4
6

0
.1
0
9
4

0
.0
0
0
0

0
.0
7
6
0

0
.0
0
0
0

0
.0
0
6
7

0
.0
6
4
6

0
.0
0
0
0

0
.0
4
7
1

0
.1
4
3
7

0
.0
0
0
0

0
.1
4
3
7

0
.1
4
3
7

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
4
3
7

0
.0
1
6
6

0
.0
0
0
0

0
.0
0
0
0

0
.1
0
4
6

0
.1
0
9
4

0
.0
0
0
0

0
.0
7
6
0

0
.0
0
0
0

0
.0
0
6
7

0
.0
6
4
6

0
.0
0
0
0

0
.0
4
7
1

0
.1
4
3
7

0
.0
0
0
0

0
.1
4
3
7

0
.1
4
3
7

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
4
3
7

0
.0
1
6
6

0
.0
0
0
0

0
.0
0
0
0

0
.0
9
9
3

0
.0
0
7
7

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
8
2
2

0
.2
2
3
3

0
.0
0
5
1

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.4
6
3
6

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
1
8
8

0
.0
9
4
8

0
.0
0
6
5

0
.0
2
4
9

0
.1
1
1
9

0
.0
5
4
2

0
.1
1
5
8

0
.1
1
0
2

0
.0
4
2
1

0
.0
0
5
1

0
.0
7
5
6

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
1
6
1

0
.1
1
6
5

0
.0
0
0
0

0
.0
6
2
1

0
.0
6
3
9

0
.1
0
4
0

0
.0
0
5
3

0
.0
2
0
3

0
.1
1
4
5

0
.0
5
2
1

0
.1
1
4
6

0
.1
0
8
1

0
.0
3
6
2

0
.0
0
7
2

0
.0
7
0
3

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
1
6
5

0
.1
1
9
0

0
.0
0
0
0

0
.0
6
3
5

0
.0
6
8
4

0
.0
0
0
0

0
.1
0
4
6

0
.1
0
9
4

0
.0
0
0
0

0
.0
7
6
0

0
.0
0
0
0

0
.0
0
6
7

0
.0
6
4
6

0
.0
0
0
0

0
.0
4
7
1

0
.1
4
3
7

0
.0
0
0
0

0
.1
4
3
7

0
.1
4
3
7

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
4
3
7

0
.0
1
6
6

0
.0
0
0
0

0
.0
8
6
7

0
.0
1
4
8

0
.0
2
3
2

0
.0
6
7
3

0
.0
3
6
4

0
.0
6
1
0

0
.0
5
8
3

0
.0
2
6
4

0
.0
7
8
0

0
.0
4
2
6

0
.0
1
6
6

0
.1
5
5
0

0
.0
1
6
6

0
.0
1
6
6

0
.0
0
0
0

0
.0
6
2
1

0
.0
6
3
5

0
.0
1
6
6

0
.0
9
0
4

0
.0
6
7
8

0
.0
8
8
2

0
.0
2
6
4

0
.0
0
5
9

0
.0
6
9
7

0
.0
2
5
0

0
.0
6
0
3

0
.0
5
5
5

0
.0
3
1
6

0
.1
0
6
6

0
.0
3
1
1

0
.0
0
0
0

0
.0
8
8
4

0
.0
0
0
0

0
.0
0
0
0

0
.1
1
8
8

0
.0
6
3
9

0
.0
6
8
4

0
.0
0
0
0

0
.0
6
7
8

0
.0
9
2
3

117

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Despite the obtained matrix Z satisfies the constraints of the relaxed SDP problem
(6.13), it can be verified that it does not satisfy the nonlinear constraint of the SDP-based
problem (6.9).

The considerations and the examples above show that, generally, the nonlinear SDP-
based model (6.9) is very difficult to solve using direct methods, and its linear relaxations
can provide infeasible solutions. One of the reasons of this issue may be the lack of
regularity. Therefore, specific strategies should be used to solve the problem (6.9). One
such strategies is to use approximation algorithms.

In [115], an approximation algorithm that uses a linear SDP relaxation is proposed to
obtain an approximate solution of the problem (6.9). First, the SDP relaxation is solved
using a procedure based on the characterization of the sum of the largest eigenvalues of
a symmetric matrix introduced in [110]. Then, a rounding procedure is used to extract a
feasible solution of (6.9). In what follows, we consider the two steps of this approximation
algorithm.

First step: solving the linear SDP relaxation

Consider a feasible solution Z of the SDP problem (6.16). First, notice that one of its
eigenvalues is equal to 1 and the corresponding eigenvector is 1√

m
em. Moreover, any matrix

Z can be written as

Z = Z1 +
1

m
em(em)T , (6.18)

where Z1 is a (m×m) column and row centred matrix by the orthogonal projection matrix(
Im − 1

m
em(em)T

)
, i.e.,

Z1 =

(
Im −

1

m
em(em)T

)
Z =

(
Im −

1

m
em(em)T

)
Z

(
Im −

1

m
em(em)T

)
. (6.19)

Notice that
(
Im − 1

m
em(em)T

)
is a (m×m) matrix that satisfies(

Im −
1

m
em(em)T

)2

=

(
Im −

1

m
em(em)T

)
.

Since tr(Z) = p, then by using (6.18) we get

tr (Z1) + tr

(
1

m
em(em)T

)
= p,

and it is easy to see that
tr (Z1) = p− 1. (6.20)

Applying the same transformation to the matrix DDT , we get the matrix W1, which
is given by

W1 =

(
Im −

1

m
em(em)T

)
DDT

(
Im −

1

m
em(em)T

)
. (6.21)

118

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Second, notice that the objective function in (6.16) can be written as

tr(DDTZ) = tr

(
DDTZ1 +

1

m
DDT

)
and since the last term is constant, then maximizing tr(DDTZ) is equivalent to maximizing
tr(DDTZ1).

Now, we need to establish a relation between tr(DDTZ1) and tr(W1Z1). For this
purpose, notice that

tr (W1Z1) = tr
(
DDT

(
Im − 1

m
em(em)T

)2
Z
(
Im − 1

m
em(em)T

)2
)

= tr
(
DDT

(
Im − 1

m
em(em)T

)
Z
(
Im − 1

m
em(em)T

))
= tr

(
DDTZ1

)
.

Hence, maximizing the objective function in (6.16) is equivalent to maximizing tr(W1Z1).
Then, the SDP problem (6.16) can be rewritten in the form of the following problem w.r.t.
the matrix variable Z1:

max
Z1

tr(W1Z1)

s.t. tr(Z1) = p− 1,
Im � Z1 � 0.

(6.22)

Based on the results from [110] and [115], it can be shown that the optimal solution of
the SDP problem (6.22) can be achieved if and only if

tr(W1Z1) =

p−1∑
i=1

λi,

where λ1, ..., λm are the eigenvalues of the matrix W1 listed in decreasing order.
Any solution Z1 of the SDP problem (6.22) has the form Z1 = FFT , where F is the

(m × (p − 1)) matrix whose columns are the eigenvectors associated to the p − 1 largest
eigenvalues of the matrix W1 [83, 110, 115].

Hence, after obtaining a solution Z1 of the SDP problem (6.22), we replace it in (6.18)
to get the solution of the SDP relaxed problem (6.16).

Therefore, a procedure to obtain a solution Z of the relaxed problem (6.16) can be
outlined as follows ([115]):

Algorithm 10 Solving the SDP relaxed problem (6.16)

1: Compute the matrix W1 by using (6.21),
2: Apply SVD to obtain the p − 1 largest eigenvalues of the matrix W1 and the associ-

ated eigenvectors, v1, ..., vp−1, and construct the matrix F, whose columns are these
eigenvectors,

3: Set Z = FFT + 1
m
em(em)T .

119

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

The solution of the SDP problem (6.16), obtained using the Algorithm 10, can be used
as an approximate solution of the SDP-based problem (6.9). This solution is not necessarily
feasible. To find a feasible solution of (6.9), a rounding procedure is needed.

Although in [116] it was proposed another form to get the solution Z of the relaxed
problem (6.16), we think that presumably it may have some mistyped steps, specifically
when it is considered a diagonal matrix variable Γ, which according to their procedure was
only symmetric and not diagonal. So, we have followed the approach proposed in [115].
Nevertheless, we will use here the rounding procedure to get the feasible solution for (6.9)
suggested in [116].

Second step: Rounding the approximate solution

It can be observed that if Z is a solution of problem (6.9), then ZD has at least p
different rows. Notice that ZD can be considered as an object centroid based matrix,
where each object is identified by the cluster centroid to which it belongs. Based on this
observation, in [116], the following rounding procedure is suggested.

Algorithm 11 Rounding procedure for the SDP-based problem (6.9)

1: Given the data matrix D and the solution Z of the relaxed problem (6.16), select p different
rows of ZD and define the initial centroids,

2: Apply K-means to problem (6.5) using the initial centroids to obtain U,
3: Set Z = U(UTU)−1UT .

Notice that the SDP-based approximation algorithm, described by the Algorithms 10
and 11, performs a PCA (principal component analysis) step, by reducing the problem into
(6.22) and solving it using SVD, and a K-means step.

6.5 Clustering and dimensionality reduction

High-dimensional data sets are challenging and it is often needed not only to cluster
objects, but also reduce the dimension of the attribute space to facilitate the data analysis.
Although principal component analysis (PCA) is a widely used tool in statistics for di-
mensionality reduction, an alternative way is to consider an attribute clustering and many
authors have used this approach (see, e.g., [7, 32, 151]). In this section, we describe a
statistical technique proposed in [151] that provides not only clusters of objects, but also
attributes.

6.5.1 Clustering and disjoint PCA

A new methodology called Clustering and Disjoint Principal Component Analysis (re-
ferred to hereafter as CDPCA) was proposed by Vichi and Saporta in [151] for obtaining

120

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

not only nonoverlapping clusters of objects, but also a partition of the attribute space into
disjoint subsets.

Given a data set, CDPCA groups m objects into p, 2 ≤ p < m, clusters identified
by their centroids and, simultaneously, partitions n attributes into k, 2 ≤ k < n, disjoint
subsets of attributes, called components. Basically, the idea is to perform K-means in the
reduced space of the components obtained via PCA. In what follows, we briefly describe
the CDPCA methodology (see [94, 151] for further details).

The CDPCA model results from applying PCA to the transformed data matrix UD̄,
where each object is replaced by its cluster centroid, obtained as a result of applying the
K-means algorithm to the original data matrix D. Hence, the data matrix D would be
fitted by the CDPCA model as follows ([151]):

D = UȲAT + E, (6.23)

where

• U is the object assignment matrix introduced in (6.1),

• Ȳ is a (p× k) object centroid matrix in the reduced space of the components,

• A is the (n× k) component loading matrix,

• E is a (m× n) error matrix.

In [151], it is proposed to consider a decomposition of the matrix A in order to include a
binary and row stochastic matrix V, specifying the partition of n attributes into k disjoint
components. The positions of the nonzero elements in A are identified by the positions of
the unit elements in V. The component loading matrix A is given by A = BV, where

B =
k∑
q=1

diag(vq)diag(cq) is a diagonal matrix of order n specifying the loadings of each

component, where vq is the q-th column of V, cq is the eigenvector associated to the largest
eigenvalue of the matrix (UD̄diag(vq))

TUD̄diag(vq) and D̄ is defined in (6.3). The matrix
A has a unique nonzero element per row, i.e., each row (attribute) contributes to a single
column (component), and satisfies the conditions rank(A) = k and ATA = Ik.

The object centroid matrix in the reduced space Ȳ is given by Ȳ = D̄A.
We shall include one more definition that will be used later. The (m × k) component

score matrix Y = [yiq] is given by Y = DA, where yiq is the value of the i-th object for
the q-th component.

It is natural to try to minimize the error in the CDPCA model (6.23), i.e., minimize
the norm of the error matrix: ‖D − UȲAT‖2

2. It is easy to see that this problem is
equivalent to maximizing ‖UȲAT‖2

2. Since the columns Ai, i = 1, ..., k, of the matrix
A are orthogonal, i.e., ATA = Ik, the matrix Ȳ is given by Ȳ = D̄A, and the trace
of a square matrix equals the trace of its transpose, then maximizing ‖UȲAT‖2

2 is the
same as maximizing ‖UD̄A‖2

2, the between cluster deviance in the reduced space. In-
deed, ‖UȲAT‖2

2 = tr
(
(UȲAT)(UȲAT)T

)
= tr

(
UȲATAȲTUT

)
= tr

(
UȲȲTUT

)
=

121

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

tr
(
U(D̄A)(D̄A)TUT

)
= tr

(
(UD̄A)(UD̄A)T

)
= ‖UD̄A‖2

2. Hence, we get the optimiza-
tion problem

max
U,D̄,A

‖UD̄A‖2
2, (6.24)

where U is a binary and row stochastic matrix, A is a columnwise orthonormal matrix
and D̄A is an object centroid matrix in the reduced space.

Considering that we seek nonempty clusters of objects and nonempty disjoint compo-
nents, the CDPCA problem can be formulated as the following quadratic mixed integer
programming problem:

max
U,V,A

‖UD̄A‖2
2

s.t. uij ∈ {0, 1} , i = 1, ...,m; j = 1, ..., p
p∑
j=1

uij = 1, i = 1, ...,m

m∑
i=1

uij > 0, j = 1, ..., p

vij ∈ {0, 1} , i = 1, ..., n; j = 1, ..., k
k∑
j=1

vij = 1, i = 1, ..., n

n∑
i=1

vij > 0, j = 1, ..., k

n∑
i=1

a2
ij = 1, j = 1, ..., k

n∑
i=1

(aijair)
2 = 0, j = 1, ..., k − 1; r = j + 1, ..., k

k∑
j=1

a2
ij > 0, i = 1, ..., n.

(6.25)

The first two constraints in the problem (6.25) correspond to the assignment of m ob-
jects into p clusters and the next two constraints represent the assignment of n attributes
into k disjoint components. The remaining constraints are associated to the PCA im-
plementation: guarantee that we get a columnwise orthonormal matrix A where for any
two different columns one of the corresponding entries is zero, and that all the original
attributes are included in the new components. The objective function value given by
‖UD̄A‖2

2 can be computed either by tr
(
UD̄A(UD̄A)T

)
, which corresponds to the be-

tween cluster distances, or by tr
(
(UD̄A)TUD̄A

)
, which represents the total variance of

the data in the reduced space, where the objects are identified by their centroids.

6.5.2 An alternating least-squares algorithm

The problem (6.25) is difficult to solve due to the presence of discrete variables. In
[151], a four step Alternating Least-Squares (ALS) algorithm was proposed to solve this

122

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

problem. In [94], we showed that each iteration of the ALS algorithm can be summarily
described by two basic steps: the assignment of objects using K-means, and the reduction
of the attribute space applying PCA to the resulting centroids. The simplified version of
the ALS algorithm can be described as follows.

Algorithm 12 Alternating Least-Squares (Two-Step version of ALS) ([94])
input: D, data matrix of m objects and n attributes;

p and k, the desired numbers of clusters of objects and attributes, respectively;
ε, numerical tolerance.

output: U, object assignment matrix;
V, attribute assignment matrix;
A, component loading matrix;
‖UD̄A‖22, the between cluster deviance in the reduced space of the components.

repeat

1. K-means step (for the objects):

• assign m objects into p clusters, obtaining matrix U,

• calculate the centroids in the space of the observed attributes and find matrix D̄,

• identify the objects by their cluster centroids in the space of the observed attributes
and get UD̄.

2. PCA step (for the attributes):

• assign n attributes into k subsets and obtain matrix V,

• obtain the loadings of the CDPCA components and get matrix A,

• calculate the centroids in the reduced space of k CDPCA components and define
matrix Ȳ = D̄A,

• identify the objects in the reduced space of k CDPCA components and calculate
matrix Y = DA.

until the difference between two consecutive computations of the between cluster deviance in
the reduced space is smaller than ε.

At the beginning, the m objects are assigned into p clusters by means of the matrix
U. Next, each row of the data matrix is replaced by its corresponding object centroid,
yielding the matrix UD̄. The assignment of n attributes into k disjoint subsets is specified
in the matrix V and the CDPCA component loadings are specified in the matrix A.
These two matrices are obtained using an iterative procedure working row-by-row and
column-by-column on the matrices V and A in order to maximize the objective function
of problem (6.25). Such iterative procedure for updating V and A is described in detail
in [94] and can be briefly summarized as follows. For updating V, the assignment of
each original attribute to a component will be evaluated in order to find which component
leads to a higher value of the objective function of (6.25), assuming that all remaining
attributes are fixed. The first row of V is updated by detecting for which column j, with
j = 1, · · · , k, the assignment of its nonzero element yields better results in the sense of

123

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

the maximization of the objective function. Concretely, fixing the first row (attribute), the
best column (component) among k is selected by solving k PCA subproblems associated to
the submatrices of UD̄ restricted to the original attributes assigned into the j-th column
of V, assuming the k possible positions of the nonzero element into the first row of the
potential updated matrix of V. In the j-th PCA subproblem, the first principal component
is calculated determining the update of the j-th column of A. At this point, Ȳ and the
objective function value of (6.25) are evaluated using A. This process is done repeatedly
to select the best component to assign the first row (attribute) in V, which will coincide
with the component that yields the highest value of the objective function value of (6.25).
Then, the same process is repeated for the remaining rows of V. Hence, for each original
attribute there are solved k assignment subproblems. In each subproblem, a subspace
of attributes is considered and the best direction (eigenvector) with maximum variability
explained is obtained performing a PCA step. Each attribute will be included into a
component associated to the subproblem that maximizes the objective function. Since
there are n original attributes, then there are n × k subproblems to be solved in order
to obtain V and A. The best assignment will maximize the between cluster deviance in
the reduced space of the components. Having obtained the component loading matrix A,
the component score matrix Y, the object centroid matrix in the reduced space Ȳ, and
the value of the objective function of (6.25) are computed. Therefore, at the end of each
iteration of the algorithm, m objects of the data matrix are assigned to p clusters, and
simultaneously displayed in a reduced space of k disjoint components. The value of the
between cluster deviance is also computed to evaluate the quality of the clustering. The
iterative procedure of the Algorithm 12 stops when the difference between two consecutive
computations of the value of the objective function of problem (6.25) is smaller than a
pre-specified tolerance.

Since the objective function of problem (6.25) is bounded above, the algorithm con-
verges to a stationary point, which is a local maximum of problem [151]. The ALS proce-
dure can be considered as a heuristic and thus, to increase the possibility to achieve the
global maximum, it has been suggested to run the algorithm several times for different
initial assignment matrices U and V, randomly chosen at the beginning of each run.

The difference between the four step ALS algorithm proposed in [151] and its simplified
version described in [94], and summarized in Algorithm 12, consists in the way matrices
V and A are updated. In the general iteration of the Two-Step version of ALS, these
matrices are sequentially constructed by an iterative procedure applied to their rows and
columns, in order to maximize the between cluster deviance in the reduced space, while
in the four step ALS algorithm the matrices V and A are updated separately. Numerical
experiments show that the ALS algorithm in its simplified Two-Step version 12 is faster
than the original four step version.

124

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

6.6 A new SDP-based approach to clustering and di-

mensionality reduction

In this section, a new approach to clustering and dimensionality reduction that uses
SDP models is presented. The new Two-Step-SDP algorithm based on a modification of
the ALS algorithm to solve the CDPCA problem (6.25) is described and some differences
between these algorithms are discussed. Numerical experiments using an R implementation
of the Two-Step-SDP algorithm are also included.

6.6.1 Description of the new approach

In this section, we propose a new approach to solve the CDPCA problem (6.25) by
combining SDP models and the CDPCA methodology. The new approach is called Two-
Step-SDP, since two clustering problems are considered and solved using a SDP-based
approximation algorithmic framework, and since we modify and improve the ALS algo-
rithm in its Two-Step version summarized in Algorithm 12 in order to use SDP models
for clustering objects and attributes. There are two main modifications on the Algorithm
12. In the first modification, we suggest to apply the SDP-based approximation algorithm
described in Section 6.4 to construct the initial matrices U and V, instead of a random
choice. It is expected that this approximation algorithm returns almost optimal solutions
quite fast. The second modification on the Algorithm 12 consists in updating the compo-
nent loading matrix A using the current assignment matrix V. Both modifications improve
the Algorithm 12 not only in terms of computational time, but also in efficiency.

The idea of the Two-Step-SDP approach for solving the problem (6.25) is to obtain not
only a solution of the SDP-based problem defined in (6.9) for clustering objects, but also
a solution of a SDP-based problem for clustering attributes into disjoint subsets, using an
approximation algorithm based on the framework described in the previous section. The
solutions of such problems are computed in order to maximize the between cluster deviance
in the reduced space of the components. Therefore, the Two-Step-SDP approach can be
considered as an alternative to CDPCA.

Consider the SDP-based model (6.9) for the clustering problem. Recall that for clus-
tering objects into groups, in (6.9) we use the matrix Z defined in (6.7) as an unknown
orthogonal projection matrix defined by the assignment matrix U. For clustering attributes
into disjoint subsets, we use the same model. For this purpose, we consider the assignment
matrix V and the unknown (n× n) matrix H = [hij] defined as

H = V(VTV)−1VT , (6.26)

which is an orthogonal projection matrix of Rn onto C(V). The matrix H satisfies the
properties (1)-(5). Using the model (6.9) with the matrix variable H, we get a SDP-based
problem for clustering attributes.

As it was mentioned above, the SDP-based models of the form (6.9) are difficult to
solve. Let us relax the nonlinear constraints of the SDP-based problems using the approach

125

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

described in the previous section. Therefore, for the SDP-based problem for clustering
objects, we get the relaxed SDP problem (6.16),

max
Z

tr(DDTZ)

s.t. tr(Z) = p,
Zem = em,
Im � Z � 0,

and for the SDP-based problem for clustering attributes, we get the following relaxation:

max
H

tr(DTDH)

s.t. tr(H) = k,
Hen = en,
In � H � 0.

(6.27)

To solve the linear SDP problems (6.16) and (6.27) one can use the approach described
in Section 6.4, and the solution of the original SDP-based models can be obtained using a
rounding procedure.

The rounding procedure used in the Two-Step-SDP approach can be summarized as
follows. Given assignment matrices U and V, apply the CDPCA methodology to obtain
the component loading matrix A, as well as the component score matrix Y, and the
object centroid matrix in the reduced space, Ȳ. Next, perform the K-means algorithm for
clustering the objects in the reduced space, i.e., apply K-means to the matrix Y and use
Ȳ as initial centroids. Finally, compute the between cluster deviance in the reduced space
of the components. The algorithm stops when the between cluster deviance is no longer
increased.

Motivated by the works [94, 115, 116] and [151], we propose a new approach to clustering
and dimensionality reduction by combining SDP models and the CDPCA methodology.
We modify and improve the ALS algorithm in order to use SDP models on the steps for
clustering objects and attributes. The new algorithm is called Two-Step-SDP.

6.6.2 Two-Step-SDP algorithm

The algorithmic scheme of the Two-Step-SDP algorithm for clustering and dimension-
ality reduction can be described as follows.

126

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Algorithm 13 Two-Step-SDP
input: D, data matrix of m objects and n attributes;

p and k, the desired number of clusters of objects and attributes, respectively;
ε, numerical tolerance.

output: U, object assignment matrix;
V, attribute assignment matrix;
A, component loading matrix;
‖ZDA‖22, the between cluster deviance in the reduced space of the components.

1: Solve approximately the SDP-based model for clustering objects:

a) Considering the relaxed model (6.16), compute the matrix W1 by using (6.21),

b) Use SVD to obtain the p − 1 largest eigenvalues of the matrix W1 and the associated
eigenvectors, v1, ..., vp−1, and construct the matrix F, whose columns are these eigen-
vectors,

c) Set the approximate solution: Z̄ = FFT + 1
me

m(em)T .

2: Solve approximately the SDP-based model for clustering attributes:

a) Considering the relaxed model (6.27), compute the matrix W2 by using (6.21) on the
matrix DTD,

b) Use SVD to obtain the k − 1 largest eigenvalues of the matrix W2 and the associ-
ated eigenvectors, w1, ..., wk−1, and construct the matrix G, whose columns are these
eigenvectors,

c) Set the approximate solution: H̄ = GGT + 1
ne

n(en)T .

3: Rounding procedure:
Initialization: randomly select p different rows from Z̄D, and k different rows from

H̄DT , as initial centroids on the K-means algorithm to get the initial matrices U, and V,
respectively.

a) Compute Z∗ = U(UTU)−1UT and D̄ = (UTU)−1UTD.

b) Compute A by fixing each column vq, q = 1, ..., k, of V and replacing the nonzero
elements in vq by the elements of the eigenvector associated to the largest eigenvalue

of the matrix (Z∗D[c])T Z∗D[c], where c is a row vector containing the row indices of
nonzero elements of vq, i.e., the attributes that contribute to the component q, and [c]
means that only the columns specified in c are used.

c) Update U by performing the K-means algorithm in the reduced space, i.e., applying it
to the matrix Y = DA with initial centroids Ȳ = D̄A. Randomly select k different
rows from H̄DT as initial centroids on K-means and get V.

d) Compute the between cluster deviance in the reduced space, ‖Z∗DA‖22.

Stopping criterion: The rounding procedure stops when the difference between two con-
secutive computations of the between cluster deviance in the reduced space is smaller than
the pre-specified tolerance value ε.

Since the Two-Step-SDP algorithm uses the approximate solutions of the nonlinear
SDP-based problems for clustering objects and attributes, which are close to the final
solutions, the clustering process is expected to be finite.

127

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

The main feature of the Two-Step-SDP algorithm is that it constructs the clusters of
attributes and uses them to cluster the objects by maximizing the between cluster deviance
in the reduced space of the components, i.e., the K-means algorithm is performed in lower
dimensions. Moreover, the Two-Step-SDP algorithm provides not only the allocation of
objects and attributes into clusters, but also the component loadings of such allocation
of attributes. The quality of the clustering can be measured by considering the between
cluster deviance in the reduced space of the components, or the within sum of squared
distances between each object and the cluster centroids.

6.6.3 Two-Step-SDP and ALS algorithms

Notice that both the Two-Step-SDP and the ALS algorithms use iterative schemes to
obtain the best solution. Nevertheless, there are some differences. In particular, in the
ALS algorithm, the update of the matrices V and A is done using an alternating procedure
that works row-by-row and column-by-column on these matrices by obtaining components
that explain the largest variance in order to maximize the between cluster deviance in the
reduced space. Such alternating procedure has to be performed nk times at each iteration
of the main algorithm. Therefore, it may be quite expensive in terms of computation
time and memory. In the Two-Step-SDP algorithm, the matrix V is obtained using the
solution of the SDP relaxation problem (6.27), and therefore, it is expected to be close to
the optimal assignment. Hence, at each iteration of the rounding procedure, the update
of the matrix A requires only one step. Notice that in the Two-Step-SDP algorithm, the
dimensionality reduction is done by finding a partition of the attributes specified by V,
and then the component loadings specified in the matrix A for this particular partition
are computed. It follows that the dimensionality reduction may not explain the largest
variance. Hence, the Two-Step-SDP algorithm can be regarded as a simplified version of
the ALS algorithm, which results in a new version with a considerable improvement on the
efficiency.

6.6.4 Implementation and numerical results

In what follows, several numerical experiments using the statistical software R [124],
which is an open source software widely used by the statistical community, are carried
out. Details on how to use our implementation of the Two-Step-SDP algorithm, as well
as some examples are presented. A comparison of the results obtained using the proposed
Two-Step-SDP algorithm and other existing techniques is made.

Implementation details

In [94], we have implemented the two-step version of the ALS algorithm for CDPCA
in a easy-to-use software application using R. This function is available from the authors
upon request. The R function was called CDpca and its main features include plotting
the data’s projection onto the two dimensional space defined by the first two CDPCA

128

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

components, and constructing a pseudo-confusion matrix, which is important to show the
(mis)classification of the objects when the true classification is known. We will use the
function CDpca to compare the efficiency of implementations.

Here, we have implemented the Two-Step-SDP algorithm 13 and in order to solve the
problems more efficiently, we used two strategies concerning computation of eigenvalues
and eigenvectors. In the steps of the algorithm, we need to compute eigenvalues and
eigenvectors of possibly huge covariance matrices of the form MTM, where M is a matrix
with more columns than rows. In these cases, we used the approach suggested in [119] and
considered the smaller matrix MMT . It is shown that the nonzero eigenvalues of MTM
and MMT coincide, and each unit eigenvector w of MTM associated to the eigenvalue λ
is related to the unit eigenvector v of the smaller matrix MMT by w = MT v√

λ
. In the

rounding procedure step of the Two-Step-SDP algorithm, we need to compute the largest
eigenvalue and the corresponding eigenvector of a matrix. Here, we have implemented the
Power Method [18], which proved to be faster than the standard methods for computing
eigenvalues and eigenvectors.

The Two-Step-SDP algorithm was implemented in R by the function TwostepSDPClust,
and is available in [90]. This function is suitable for data matrices with numeric elements
and starts by standardizing the data (the description of the standardize step can be found
in [94]). To use the routine TwostepSDPClust, the user needs to specify some arguments:
data, the data matrix; p and k, the number of clusters of objects and attributes, respec-
tively. It is also needed to define a parameter class which is a vector of integers with the
true classification of objects, or 0, when the true class is unknown. The stopping criteria
are specified in the parameters tol, a small convergence tolerance value, and maxit, which
is the maximum number of iterations of the algorithm.

The routine TwostepSDPClust provides much more information than the standard K-
means function in R, e.g., besides returning the clusters of both objects and attributes,
it returns the loadings of each original attribute to each component in the reduced space,
and, when the true objects classification is known, a pseudo-confusion matrix. See all the
output list in the Appendix E.

In the R environment, after defining the input arguments, the user can use the following
command to apply the function TwostepSDPClust:

> example <- TwostepSDPClust(data,p,k,class,tol,maxit)

Data sets

The experiments were made using some standard problems from cluster analysis liter-
ature. Both data sets with more objects than attributes and with more attributes than
objects have been selected. The following real-world data sets are available in the UCI
repository [144], in the R package plsgenomics and in [150]:

• OECD countries – the data set of 20 objects and 6 attributes from [150], representing
the short-term macroeconomic scenario (1999) of OECD countries; notice that, al-

129

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

though the true classes are not known, the experiments reported in [150, 151] suggest
to divide the objects into 3 clusters.

• Breast Cancer – the Winsconsin Breast Cancer data from UCI repository; contains
683 instances (originally, there were 699 instances, but 16 of them were excluded,
since they contain missing values), each instance is described by 9 attributes with
integer values in the range 1 − 10 and a real binary class label, which divides the
instances into two clusters, representing the type of tumor (benign or malignant).

• Diabetes – the Pima Indians Diabetes data set from UCI repository, contains 768
objects and 8 attributes, divided into two classes, representing the results on testing
diabetes (positive or negative).

• Colon – the data set from microarray experiments on colon tissue samples, available
in the the R package plsgenomics; contains 62 samples and 2000 genes, divided into
2 classes, representing the type of tumor (benign or malignant).

• leukemia – the leukemia data set, available in the package plsgenomics; contains 38
samples and 3051 genes, also divided into two classes, representing the type of tumor
(benign or malignant).

• SRBCT – the gene expression data set from microarray experiments on small round
blue cell tumors, also available in package plsgenomics; contains 83 objects (called
samples) and 2308 attributes (genes), divided into 4 groups, representing four cancer
variants.

• Iris – the Fisher’s Iris data set, available in the UCI repository, the most famous
data set for clustering experiments; contains 150 objects described by 4 attributes,
and the true classification of the objects in 3 clusters is known, representing the three
species of the Iris flower.

• Soybean – the Soybean data set from UCI repository contains 47 objects described
by 35 attributes, where the four true classes of objects are also known, and represent
four soybean diseases.

We have also tested the Two-Step-SDP algorithm on a synthetic data set, called Syn-
thetic, specially constructed in [94] to satisfy the CDPCA model (6.23). It contains 15
objects and 3 attributes, divided into 3 classes.

Numerical results

To test the efficiency of the Two-Step-SDP algorithm implemented in the R function
TwostepSDPClust, several numerical experiments have been carried out on a computer
with an Intel Core i7-2630QM processor CPU@2.0GHz,, with Windows 7 (64 bits) and
12GB RAM, using R version 3.1.2 (2014). It is of interest to make a comparison of the
performance of the Two-Step-SDP algorithm with other freely-available R functions. One

130

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

such function is kmeans, the standard K-means algorithm which is available in R. The
other function is our R implementation of the ALS algorithm, under the name CDpca,
firstly implemented in [93] and recently improved in [94].

For the numerical tests using the Two-Step-SDP algorithm we have set the tolerance
value to 10−8 and the maximum number of iterations to 100. The K-means heuristic was
executed using all the data sets previously scaled, the multiple random start was set to
1000, and the maximum number of iterations was 100000. The tolerance for the ALS
algorithm was set to 10−5 and the maximum number of iterations was 100. To augment
the efficiency of the ALS algorithm, the numerical tests were run 1000 times, with the
exception of the gene expression data Colon, leukemia and SRBCT. For the data sets
Colon and leukemia, 20 runs were performed, and for SRBCT, only 10 runs were performed,
because the computation time of the ALS algorithm increased in an unreasonable way in
these cases. For the Soybean data set, the standardize step on the experiments was not
executed, since the data matrix presents null columns.

Following the analysis presented in [151] for the OECD countries data set, let us con-
sider only two principal components for all the tested data sets, i.e., k = 2. Table 6.1
summarizes the characteristics of the data sets. It also contains the desired number of
clusters of objects, represented by p.

Table 6.1: Summary of the characteristics of the data sets and the number of clusters of
objects used in the experiments.

Number of Number of Desired number of
Dataset objects, m attributes, n clusters of objects, p

OECD countries 20 6 3
Breast Cancer 683 9 2
Diabetes 768 8 2
Colon 62 2000 2
leukemia 38 3051 2
SRBCT 83 2308 4
Iris 150 4 3
Soybean 47 35 4
Synthetic 15 3 3

For all the presented data, the true classes are known, with exception for the OECD
countries data set.

The detailed numerical results are presented in Tables 6.2, 6.3 and 6.4. The Tables
6.2 and 6.3 contain the results obtained using the Two-Step-SDP algorithm and the K-
means algorithm, respectively, while Table 6.4 contains the results obtained using the ALS
algorithm. The first column of Tables 6.2, 6.3 and 6.4 contains the name of the data set,
and the second column contains the computational time in seconds. In these tables, iter is
the number of iterations, wssd is the within sum of squared distances, i.e., within cluster
deviance, bcd is the between cluster deviance, bcdr is the between cluster deviance in the

131

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

reduced space of the components, bcdrp is the between cluster deviance of the total variance,
e is the error associated to the CDPCA model (6.23), Usize and Vsize represent the sizes of
the clusters of objects and attributes, respectively, and Exp.var. is the explained variance
of the components. It should be noticed that, according to the information provided by
the algorithms, the Tables 6.2, 6.3 and 6.4 contain a different number of columns.

132

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS
T

ab
le

6.
2:

N
u
m

er
ic

al
re

su
lt

s
u
si

n
g

th
e

T
w

o-
S
te

p
-S

D
P

al
go

ri
th

m
.

D
a
ta

se
t

ti
m

e
it

er
w

ss
d

b
cd

b
cd

r
b

cd
rp

er
r
o
r

U
si

ze
s

V
si

ze
s

ex
p

la
in

ed
v
a
r.

B
re
a
st

C
a
n
ce
r

1
.1

9
2

2
7
2
8
.1

5
3
4
1
8
.8

5
3
4
1
8
.8

5
7
5
.6

0
.0

7
2
3
0
,

4
5
3

8
,

1
6
2
.5

2
,

1
1
.1

3
D
ia
be
te
s

1
.2

2
2

5
1
2
1
.9

1
0
2
2
.0

9
1
0
2
2
.0

9
3
8
.7

0
.0

9
3
0
9
,

4
5
9

2
,

6
2
6
.6

2
,

1
6
.4

5
Ir
is

0
.0

3
2

1
4
1
.0

3
4
5
8
.9

6
4
5
4
.5

8
0
.5

0
.0

8
4
8
,

5
0
,

5
2

1
,

3
6
9
.6

0
,

2
5
.1

7
S
o
y
be
a
n

0
.0

5
6

4
5
3
.1

2
2
7
6
0
.8

7
2
5
5
7
.1

8
9
9
.6

0
.5

4
9
,

1
1
,

1
3
,

1
4

1
0
,

2
5

1
.5

1
,

1
.3

8
O
E
C
D

co
u
n
tr
ie
s

0
.0

0
2

7
2
.1

5
4
7
.8

4
3
1
.5

7
7
0
.0

0
.4

7
3
,

7
,

1
0

4
,

2
2
2
.3

9
,

1
7
.1

7
C
o
lo
n

1
4
.6

6
2

8
4
6
3
1
.7

9
3
9
3
6
8
.2

1
3
9
3
6
8
.2

1
6
1
.4

4
.6

9
1
8
,

4
4

5
8
1
,

1
4
1
9

3
7
.5

6
,

1
5
.0

3
le
u
ke
m
ia

6
0
.7

8
2

1
0
2
6
8
1
.7

1
3
2
5
6
.2

7
1
3
2
5
6
.2

7
7
5
.9

8
.4

3
1
7
,

2
1

1
3
7
4
,

1
6
7
7

7
.8

3
,

7
.6

3
S
R
B
C
T

2
8
.9

7
2

1
5
6
9
4
7
.7

3
4
6
1
6
.2

6
1
9
4
3
8
.9

9
8
6
.2

4
.9

9
1
3
,

1
6
,

1
8
,

3
6

1
2
9
3
,

1
0
1
5

6
.2

8
,

5
.6

3
S
y
n
th
et
ic

0
.0

0
2

1
2
.9

6
3
2
.0

3
3
1
.3

5
8
5
.6

0
.2

4
4
,

5
,

6
2
,

1
5
1
.4

7
,

3
5
.7

1

T
ab

le
6.

3:
N

u
m

er
ic

al
re

su
lt

s
u
si

n
g

th
e

K
-m

ea
n
s

al
go

ri
th

m
.

D
a
ta

se
t

ti
m

e
w

ss
d

b
cd

U
si

ze
s

V
si

ze
s

B
re
a
st

C
a
n
ce
r

0
.4

9
2
7
2
8
.1

5
3
4
1
8
.8

5
2
3
0
,

4
5
3

8
,

1
D
ia
be
te
s

0
.7

3
5
1
2
1
.9

1
0
2
2
.0

9
3
0
9
,

4
5
9

2
,

6
Ir
is

0
.1

7
1
3
9
.8

2
4
6
0
.1

7
4
7
,

5
0
,

5
3

1
,

3
S
o
y
be
a
n

0
.2

1
2
0
5
.9

6
4
8
4
.2

1
0
,

1
0
,

1
3
,

1
4

1
2
,

2
3

O
E
C
D

co
u
n
tr
ie
s

0
.1

2
7
2
.1

5
4
7
.8

4
3
,

7
,

1
0

4
,

2
C
o
lo
n

1
0
.2

7
8
4
6
3
1
.7

9
3
9
3
6
8
.2

1
1
8
,

4
4

5
8
1
,

1
4
1
9

le
u
ke
m
ia

9
.8

3
1
0
2
6
8
1
.7

1
3
2
5
6
.2

7
1
7
,

2
1

1
3
7
4
,

1
6
7
7

S
R
B
C
T

2
5
.7

6
1
5
1
6
0
3
.6

3
9
9
6
0
.3

7
1
7
,

1
8
,

2
2
,

2
6

1
2
7
8
,

1
0
3
0

S
y
n
th
et
ic

0
.1

0
1
2
.9

6
3
2
.0

3
4
,

5
,

6
2
,

1

T
ab

le
6.

4:
N

u
m

er
ic

al
re

su
lt

s
u
si

n
g

th
e

A
L

S
al

go
ri

th
m

.
D
a
ta

se
t

ti
m

e
lo

o
p

it
er

b
cd

r
b

cd
rp

er
r
o
r

U
si

ze
s

V
si

ze
s

ex
p

la
in

ed
v
a
r.

B
re
a
st

C
a
n
ce
r

1
0
7
.6

2
3
2
9

4
3
4
1
8
.8

5
7
9
.8

0
.0

7
2
3
0
,

4
5
3

5
,

4
3
9
.1

1
,

3
0
.6

7
D
ia
be
te
s

2
7
6
.5

4
7

1
4

1
0
2
2
.0

9
4
4
.5

0
.0

9
3
0
9
,

4
5
9

7
,

1
2
4
.9

6
,

1
2
.5

2
Ir
is

5
8
.3

3
5
6
6

1
0

4
5
4
.5

8
0
.5

0
.0

8
4
8
,

5
0
,

5
2

3
,

1
6
9
.6

0
,

2
5
.1

7
S
o
y
be
a
n

1
7
5
.7

6
1

4
2
7
3
6
.3

1
9
9
.3

0
.4

1
0
,

1
1
,

1
3
,

1
3

1
4
,

2
1

1
3
.1

1
,

1
.3

1
O
E
C
D

co
u
n
tr
ie
s

2
6
.1

7
9
8

5
4
5
.9

8
7
7
.8

0
.4

3
3
,

6
,

1
1

3
,

3
2
8
.6

5
,

2
3
.1

8
C
o
lo
n

3
1
9
8
.5

3
1
7

4
3
9
3
6
8
.2

1
7
1
.1

4
.6

9
1
8
,

4
4

1
0
1
9
,

9
8
1

2
3
.3

9
,

2
1
.9

6
le
u
ke
m
ia

3
3
8
8
.1

9
1
3

5
1
3
2
5
6
.2

7
7
8
.4

8
.4

3
1
7
,

2
1

1
5
5
9
,

1
4
9
2

7
.7

5
,

7
.2

3
S
R
B
C
T

1
2
7
8
6
.9

5
5

1
5

2
5
8
7
3
.2

2
9
0
.4

4
.9

1
6
,

1
7
,

2
4
,

2
6

1
3
0
2
,

1
0
0
6

8
.7

5
,

6
.3

7
S
y
n
th
et
ic

7
.0

4
5
1

3
3
1
.3

5
8
5
.6

0
.2

4
4
,

5
,

6
2
,

1
5
1
.4

7
,

3
5
.7

1

133

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Comparing the results obtained using the Two-Step-SDP algorithm presented in the
Table 6.2 and the standard K-means algorithm displayed in the Table 6.3, we can conclude
that in general, in terms of computational time and solution, both approaches are quite
efficient. For the leukemia data set, the K-mean algorithm performs quite faster. Notice
that the K-means had to be executed for clustering attributes and objects, thus, the com-
putational time is the sum of the running times of both procedures. With respect to the
clusters of attributes, the K-means algorithm does not provide further information on the
variance explained by the resulting components, while the Two-Step-SDP algorithm does.
It can be observed that in almost all cases, the values of the within and between cluster
deviances obtained using the Two-Step-SDP or the K-means algorithms are quite similar.
The major difference in the performance of these algorithms is for the Soybean data set.
The Two-Step-SDP algorithm returned the within cluster deviance equal to 453.12 and
the between cluster deviance equal to 2760.87, while the K-means algorithm returned the
within cluster deviance equal to 205.96 and the between cluster deviance equal to 484.2.
Regarding the clusters of the attributes, it can be observed that the Two-Step-SDP and
the K-means algorithms return clusters of equal sizes, with exception for the Soybean and
SRBCT data sets. With respect to the clusters of objects, these algorithms have returned
different clusters for the Iris, Soybean and SRBCT data sets.

Comparing the results presented in Tables 6.2 and 6.4, we can conclude that the Two-
Step-SDP algorithm is faster than the ALS algorithm. In a couple of iterations, it founds
a solution that either yields the same value of the between cluster deviance in the reduced
space as that returned by the ALS algorithm, or is very close to it. It can also be observed
that the errors of solving the CDPCA model (6.23) using the Two-Step-SDP and the
ALS algorithms are very similar. Regarding the results of the clustering of objects, it
can be observed that for the Breast Cancer, Diabetes, Iris, Colon, leukemia and Synthetic
data sets, the sizes of each cluster coincide for both approaches. With respect to the
clusters of attributes, there are some differences, which induce differences in the variance
explained by the obtained components. The ALS algorithm provides better results for
the Soybean, OECD countries and SRBCT data sets in terms of the value of the between
cluster deviance in the reduced space and in the explained variance by the components.
It can also be observed that for the Breast Cancer and the Colon data sets, the variances
presented by the first component are, respectively, 62.52% and 37.56% for the Two-Step-
SDP algorithm, and 39.11% and 23.39% for the ALS algorithm.

In order to compare the quality of the object clusters obtained using the three algo-
rithms, we present pseudo-confusion matrices, summarizing the (mis)classification of the
objects when the true classes are known. In a pseudo-confusion matrix, the rows corre-
spond to the true classes and the columns correspond to the classes returned by algorithms.
Notice that the order of the predicted classes may be different to that chosen for the true
ones. The analysis of the performance of each algorithm can be complemented by com-
puting its accuracy. Here, we measure the accuracy of an algorithm by the number of the
correct predictions of objects divided by the total number of objects.

134

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

Table 6.5: Pseudo-confusion matrices for classification of objects of real data sets obtained
using the R functions TwostepSDPClust, kmeans and CDpca. The OECD countries data is
not included, since the true classes of this data set are unknown.

Data set TwostepSDPClust kmeans CDpca

Breast Cancer

Two-Step-SDP
True 1 2

1 10 434
2 220 19

K-means
True 1 2

1 10 434
2 220 19

CDPCA
True 1 2

1 434 10
2 19 220

Diabetes

Two-Step-SDP
True 1 2

1 156 356
2 153 103

K-means
True 1 2

1 156 356
2 153 103

CDPCA
True 1 2

1 156 356
2 153 103

Iris

Two-Step-SDP
True 1 2 3

1 50 0 0
2 0 41 9
3 0 11 39

K-means
True 1 2 3

1 50 0 0
2 0 11 39
3 0 36 14

CDPCA
True 1 2 3

1 0 0 50
2 9 41 0
3 39 11 0

Soybean

Two-Step-SDP
True 1 2 3 4

1 0 4 0 6
2 8 0 2 0
3 0 1 5 4
4 3 8 2 4

K-means
True 1 2 3 4

1 0 10 0 0
2 0 0 0 10
3 5 0 5 0
4 9 0 8 0

CDPCA
True 1 2 3 4

1 5 0 5 0
2 4 0 6 0
3 1 4 0 5
4 0 9 0 8

Colon

Two-Step-SDP
True 1 2

1 6 16
2 12 28

K-means
True 1 2

1 6 16
2 12 28

CDPCA
True 1 2

1 16 6
2 28 12

leukemia

Two-Step-SDP
True 1 2

1 16 11
2 1 10

K-means
True 1 2

1 11 16
2 10 1

CDPCA
True 1 2

1 11 16
2 10 1

SRBCT

Two-Step-SDP
True 1 2 3 4

1 4 13 9 3
2 0 0 8 3
3 0 0 12 6
4 9 3 7 6

K-means
True 1 2 3 4

1 12 8 6 3
2 0 4 4 3
3 0 3 9 6
4 5 7 7 6

CDPCA
True 1 2 3 4

1 7 6 4 12
2 0 4 7 0
3 4 9 5 0
4 13 7 0 5

Considering the pseudo-confusion matrices presented in the Table 6.5, we can conclude
that all the approaches to clustering provide the same results in terms of classification
of the objects for the Breast Cancer data, and the corresponding accuracy is very high,
96%; the Diabetes data, presenting the accuracy equal to 66%; the Colon data, with the
accuracy equal to 55% and the leukemia data, with the accuracy equal to 68%. For the
SRBCT and Soybean data sets, all the approaches present different cluster structures.
The K-means presents the lowest accuracy for the SRBCT data, which is 37%, while the
ALS algorithm had the highest accuracy, 47%, that is quite close to that obtained using
the Two-Step-SDP algorithm, equal to 45%. For the Soybean data, the Two-Step-SDP
algorithm yielded an accuracy of 57%, the ALS algorithm had an accuracy of 53% and the

135

CHAPTER 6. APPLICATION OF SEMIDEFINITE PROGRAMMING IN DATA ANALYSIS

K-means algorithm presented the highest accuracy: 72%. For the Iris data set, the Two-
Step-SDP and ALS algorithms obtained the same classifications, presenting an accuracy
of 87%, while the K-means algorithm returned an accuracy of 83%.

The results of the numerical experiments on these seven real data sets, where the true
class of objects is known, show that for four of them, namely, the Breast Cancer, Diabetes,
Colon, and leukemia, the accuracy of the Two-Step-SDP algorithm is equal to that of
the ALS and K-means algorithms. For the Iris data set, the Two-Step-SDP and the
ALS algorithms provided the best solution on clustering objects with only 20 out of 150
objects misclassified, comparing to the standard K-means algorithm, in which 25 objects
were misclassified. The K-means algorithm provided the best solution for the Soybean
data, with 13 out of 47 objects misclassified, while 20 objects were misclassified using
the Two-Step-SDP algorithm. For the SRBCT data set, the ALS algorithm provided the
best solution, with 42 out of 83 objects misclassified, while the Two-Step-SDP algorithm
had misclassified 46 objects. The K-means algorithm returned the worst solution, with 52
misclassified objects.

6.7 Conclusions

In this chapter, we have presented a new approach to clustering and dimensionality
reduction based on SDP models. The Two-Step-SDP algorithm is presented for clustering
both objects and attributes. The new algorithm is implemented in a easy-to-use software
application using R, and we have included tests that show the efficiency of the Two-Step-
SDP algorithm. A comparison with other clustering algorithms, namely, the ALS and the
K-means algorithms, was performed.

The experiments show that the Two-Step-SDP algorithm is comparable to the K-means
algorithm in terms of the execution time, and that the Two-Step-SDP algorithm is signif-
icantly faster than the ALS algorithm. Although the computational time of K-means is
slightly better than the Two-Step-SDP algorithm in several cases, the K-means algorithm
ends up returning less information than the Two-Step-SDP algorithm. In particular, K-
means does not provide further information on the partition of the attribute space, namely,
about the component loadings and the variance explained by the components, while the
Two-Step-SDP algorithm does. We can conclude that the Two-Step-SDP algorithm for
clustering and dimensionality reduction can be considered as a modified or simplified ver-
sion of the ALS algorithm, since it provides almost the same information, but it is much
faster in obtaining the assignments, and the loss on the information of the explained vari-
ance by the components is quite insignificant.

Finally, it can also be mentioned that another way to obtain more tight approximations
for the clustering problem is to develop specific numerical methods to handle the nonlinear
SDP-based models. However, it encompasses two main difficulties: the nonlinearity and
nonregularity of the model.

136

Chapter 7

Concluding remarks and future
research topics

This thesis studies the phenomenon of regularity in SDP. Regularity is usually as-
sociated with notions such as constraint qualifications (CQs), well-posedness and good
behaviour of the problems. With the aim of clarifying the notion of regularity, in this work
we have studied these notions and established relations. Regarding CQs, we have proved
that all the studied CQs are actually equivalent to each other for linear SDP problems, so
we focused our study on the Slater condition, a widely used CQ in SDP. We have estab-
lished relationships between different notions of regularity, in particular, we proved that
the Slater condition (and hence, other CQs) is a necessary condition for well-posedness and
a sufficient condition for good behaviour. CQs play an important role in duality theory,
optimality conditions and sensitivity analysis in SDP. Popular SDP solvers use primal-dual
interior point methods, which require that both primal and dual SDP problems satisfy the
Slater condition. Although it was proved that the Slater condition is a generic property
of linear conic problems, which include SDP, the truth is that one can not guarantee that
a given SDP problem satisfies it. In practice, there exist many SDP instances failing the
Slater condition (e.g., in our numerical experiments, 78% of the tested SDP instances col-
lected from literature fail the Slater condition, and half of the tested instances from the
SDPLIB suite do not satisfy this condition as well). When the Slater condition fails to
hold, the solvers run into numerical difficulties and may provide unreliable or wrong solu-
tions. Therefore, it is very important to verify the fulfilment of the Slater condition before
solving the SDP problem, but, as far as we know, there is no efficient procedure for doing
this. One of the aims of this thesis was to develop a presolving numerical tool to easily
verify if a given SDP problem satisfies the Slater regularity condition, warning the users
that the computed solution with standard SDP solvers will be trustful or not.

We have developed here two numerical presolving tools, implemented in MATLAB: the
SDPreg and DIISalg routines. We chose to use MATLAB since popular SDP solvers have
interface with it. The SDPreg just verifies the Slater condition, and DIISalg determines
the irregularity degree of a given SDP problem. These finite procedures can be applied
to any linear SDP problem with constraints in the form of LMI. With the help of simple

137

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH TOPICS

transformations, the problem in a trace form, can be rewritten as a LMI form as well. We
have proposed two numerical approaches to handle the system of quadratic equations that
lies in the basis of the SDPreg procedure. To carry out numerical experiments, we used
the SDPLIB suite and we have created a collection of small dimension, mostly nonregular,
SDP problems found in literature. Our numerical experiments show that the numerical
presolving tool SDPreg is quite fast and efficient on checking regularity on SDP problems
from both literature and SDPLIB collections. Numerous SDP instances were classified as
nonregular. Based on our numerical experiments, we conclude that all nonregular problems
from SDPLIB present maximal irregularity degree and only two iterations of DIISalg

were fulfilled. We think that the DIIS algorithm stopped at the second iteration since
our computations were performed in nonexact arithmetic, thus, the construction of sets
of linearly independent vectors may be compromised. We have compared the numerical
results on regularity with others available in the literature regarding well-posedness of SDP
problems and can make the following conclusions:

– the presolving procedures SDPreg and DIISalg developed in this thesis perform well
and permit to verify the Slater condition for small to medium sized SDP problems
in a reasonable time;

– the numerical experiments confirm the conclusions about the relationships between
different notions of regularity in SDP;

– the output of the numerical procedure DIISalg permits to develop new numerical
methods for solving SDP problems that are not based on the assumption of some
CQ.

The main advantage of the developed routines is that one does not need to solve auxiliary
SDP problems to test the regularity of a given problem in terms of the Slater condition,
while testing well-posedness requires the use of SDP solvers. Our numerical tests on the ful-
filment of the Slater condition and the available numerical results of testing well-posedness
show the efficiency of the SDPreg procedure.

The results of this part of the work motivate some future research topics. A first direc-
tion for further research is to improve the SDPreg and DIIS procedures by implementing
a pre-step to verify the feasibility of SDP problems, since at the moment these procedures
can only be applied on feasible SDP problems. Another subject not fully addressed in this
thesis is to focus on the solution of nonlinear (quadratic) systems of equations by devel-
oping a special and more efficient algorithm, and implementing it in our procedures. The
other numerical issue is whether there is the need to check linear independence of vectors
in the developed MATLAB routine. It would also be important to improve our implemen-
tations SDPreg and DIISalg with respect to accuracy requirements and computation time,
specially for large-scale problems. Another interesting topic of research is connected with
the development of a CQ-free SDP method that could be safely applied to nonregular SDP
problems, based on the optimality criterion that uses the information of the basis of the
immobile index subspace returned by our DIISalg routine. Although we restricted our

138

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH TOPICS

study of regularity to SDP, taking into account that some SIP problems can be formulated
in terms of LMIs, working on presolving tools to verify regularity in SIP is also a future
insight. So, we intend to extend our approach to verify regularity in terms of the Slater
condition to other classes of problems.

One more contribution of this thesis consists in the development of a generator of non-
regular SDP problem instances. Based on a reformulation of badly-behaved SDP problems
and on empirical evidence of several SDP instances, we have developed an algorithm for
generating nonregular SDP instances with a pre-specified irregularity degree. There is a
lack of available libraries or generators of nonregular SDP instances with particular prop-
erties. These are very important tools not only for testing new stopping criteria and SDP
methods, but also procedures that permit to check regularity of problems. Here, we have
implemented a MATLAB generator of nonregular SDP instances called nonregSDPgen and
created the NONREGSDP, a collection of 100 nonregular SDP instances of small to mod-
erate sizes and different irregularity degrees. We analysed the behaviour of popular SDP
solvers on some instances from NONREGSDP and our numerical results reinforce that fur-
ther improvements should be developed on solvers in order to handle nonregular problems.
The instances from NONREGSDP have a special structure that may be exploited by new
solvers. All the SDP instances from NONREGSDP, or generated by nonregSDPgen, are in
sparse SDPA format, a very common input format in SDP software.

In the final part of the work, we have given a particular attention to a SDP application
in data analysis, more specifically in clustering and dimensionality reduction problems.
First, we focused on a nonlinear SDP model for clustering and proved that it fails to
satisfy the Slater condition, but its linear SDP relaxations are regular. We have proposed
a Two-Step-SDP-based approximation algorithmic approach to analyse possibly large data
sets. These approach permits to obtain clusters of both objects and attributes, in order to
maximize the between cluster deviance in a reduced space. A new algorithm for clustering
and dimensionality reduction is developed and called Two-Step-SDP algorithm. It is based
on the ALS algorithm for performing CDPCA, an efficient statistical technique to analyse
data. We have implemented the new algorithm in a easy-to-use software application using
R by the function TwostepSDPClust. The algorithm was programmed in R, because it
is a widely used open source software with lots of specific routines for different types of
problems. We have compared the performance of the Two-Step-SDP algorithm with that
of the ALS and K-means heuristics applied to real data sets, and can conclude that all
of them present quite similar solutions. The main conclusion we can make here is that
the Two-Step-SDP algorithm appears to be competitive in terms of computational time,
and is more complete than K-means in terms of data analysis, since it provides additional
important information about the partition of the attribute space, namely, the component
loadings and the variance explained by the components. We can also conclude that the
Two-Step-SDP algorithm is a modified version of ALS for performing CDPCA. Our method
is an efficient tool for data analysis and can be used in different application areas such as
economics and marketing, e.g., in product recommendation based on sales and/or costumer
choices, telecommunications, e.g., in localization of wireless sensors, computational biology,
e.g., in protein structure prediction (very important for drug design) and gene or cancer

139

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH TOPICS

classification,...

140

Appendix A

Sparse SDPA format

In what follows, we describe how to create a sparse SDPA (dat-s) file in MATLAB (see
also the details in [41]).

Consider the following SDP problem adapted from the Example 3 in [111], which we
have used in our tests under the name patakibadalpha2.dat-s.

min 5x1 + 8x1 + 2x1

s.t. x1

 0 0 1
0 1 −3
1 −3 8

+ x2

 0 1 −3
1 0 1
−3 1 −6

+ x3

 1 1 −1
1 1 −2
−1 −2 2

 �
 2 2 −3

2 2 −4
−3 −4 4

 .
To write the data of the SDP problem in sparse SDPA format and create the corre-

sponding dat-s file in MATLAB, we just need to open a new M-file and, after writing down
the data, save it with the extension dat-s.

The first line of the file contains a comment and it must be written with quotation
marks.

The next three lines contain the number of variables in the SDP problem, the number
of diagonal blocks and the dimension of each block.

The fifth line contains the coefficient vector of the objective function.
The remaining lines should contain the nonzero elements on each of the symmetric

matrices Ai, i = 0, 1, ..., n. Each one of these lines has the form:

i b j k value,

where i is the index of the matrix Ai, b is the number of the block, j and k identify
the entry (j, k) of the matrix, and value correspond to the element on that entry of the
matrix.

We should only include the nonzero elements of the matrices and since they are sym-
metric, then we only need to store their upper (or lower) triangular part.

The dat-s file corresponding to the above SDP problem is as follows:

141

APPENDIX A. SPARSE SDPA FORMAT

“Example patakibadalpha2: mDim = 3, nBLOCK = 1, {3}”
3 = mDIM
1 = nBLOCK
3 = bLOCKsTRUCT
{ 5 8 2 } = obj func coefs
0 1 1 1 -2.00
0 1 1 2 -2.00
0 1 2 2 -2.00
0 1 1 3 3.00
0 1 2 3 4.00
0 1 3 3 -4.00
1 1 2 2 1
1 1 1 3 1
1 1 2 3 -3
1 1 3 3 8
2 1 1 2 1
2 1 1 3 -3
2 1 2 3 1
2 1 3 3 -6
3 1 1 1 1
3 1 1 2 1
3 1 2 2 1
3 1 1 3 -1
3 1 2 3 -2
3 1 3 3 2

142

Appendix B

The MATLAB functions SDPreg and
DIISalg

The MATLAB function SDPreg implements the SDPreg procedure 5 and the function
DIISalg implements the DIIS algorithm 2 to determine the irregularity degree of SDP
problems. Both functions are publicly available in [90]. In what follows, we give a brief
guidance for using our functions.

First, the user must copy the functions SDPreg, 2, as well as the auxiliary functions
read data and rounddec (also available in [90]) into a working directory. The former
auxiliary function is part of the SDPA project [129] and the latter function was constructed
by Peter J. Acklam, but apparently, the site where we have found it is no longer available.

The SDP instance for testing regularity must be in sparse SDPA format and supplied
on the working directory.

For testing the regularity in terms of the Slater condition of a given SDP problem using
SDPreg, the user must specify the following input arguments:

• SCQ – a small numerical tolerance for conclusion on regularity, by default SCQ=10−4,

• tolparam – a small numerical tolerance for the solvers, by default tolparam=10−8.

After specifying these arguments, the SDPreg function can be called as follows:

>>SDPreg(SCQ,tolparam)

Next, two options, 1 and 2, for specifying the numerical approach to use in the regu-
larity test will appear. The user must choose one of them. Then, the function provides
information on the regularity of the tested SDP problem and the computation time as
outputs.

With respect to the use of the DIISalg function, the user must specify the same above
input arguments.

After calling the function using

>>DIISalg(SCQ,tolparam)

143

APPENDIX B. THE MATLAB FUNCTIONS SDPREG AND DIISALG

two options will appear. Here, the user must choose one of them by selecting 1 or 2. Notice
that only the first iteration may use the option 2. All the remaining iterations will use the
option 1.

Then, the following output parameters are provided:

• M, a basis of the immobile index subspace,

• s∗, the irregularity degree of the problem,

• information on regularity of the SDP problem,

• number of iterations of the DIIS algorithm,

• computation time.

144

Appendix C

The MATLAB function nonregSDPgen

The MATLAB function for generating nonregular SDP instances nonregSDPgen is pub-
licly available at [90].

The user only needs to specify the following parameters:

• n – the number of variables in the SDP problem,

• s – the dimension of the symmetric constraint matrices,

• d – the desired irregularity degree, which should take integer values from 1 to s-1,

• ’examplename.dat-s’ – where examplename is a name for saving the generated data
in sparse SDPA format (dat-s).

Then, one can call the generator as follows:

>>nonregSDPgen(n,s,d,’examplename.dat-s’)

As output, the generator returns a dat-s file with the SDP problem data. The generated
SDP instance is known to have zero optimal value and fails the Slater condition, having
an irregularity degree equal to d.

145

APPENDIX C. THE MATLAB FUNCTION NONREGSDPGEN

146

Appendix D

NONREGSDP: a collection of
nonregular SDP test problems

The NONREGSDP is a collection of nonregular linear SDP instances created using
the generator nonregSDPgen. These SDP test problems failing the Slater condition are
stored in sparse SDPA format, which is a common input data format for SDP solvers. The
NONREGSDP database is publicly available at [90].

The nonregular SDP problems from NONREGSDP have the form (2.2). Currently, the
NONREGSDP database contains a total of 100 SDP instances of different values of n and
s, with n varying from 1 to 12, s from 1 to 29, and with irregularity degree d varying
from 1 up to 29. These problems have optimal value p∗ equal to zero. All the problems
of the NONREGSDP database were tested using the DIISalg procedure to confirm their
nonregularity and irregularity degrees.

147

APPENDIX D. NONREGSDP: A COLLECTION OF NONREGULAR SDP TEST PROBLEMS

Table D.1: SDP instances from the NONREGSDP database and the values of their irreg-
ularity degrees computed with DIISalg.

Problem n s d DIISalg Problem n s d DIISalg

s∗ s∗

nonreg1 2 2 1 1 nonreg51 3 5 4 4
nonreg2 3 3 1 1 nonreg52 7 4 1 1
nonreg3 3 3 2 2 nonreg53 7 4 2 2
nonreg4 4 4 1 1 nonreg54 7 4 3 3
nonreg5 4 4 2 2 nonreg55 2 20 2 2
nonreg6 4 4 3 3 nonreg56 4 21 1 1
nonreg7 5 4 3 3 nonreg57 2 30 29 29
nonreg8 3 4 2 2 nonreg58 3 11 9 9
nonreg9 6 2 2 2 nonreg59 10 15 10 10
nonreg10 1 4 2 2 nonreg60 1 27 25 25
nonreg11 5 10 1 1 nonreg61 10 30 29 29
nonreg12 5 10 2 2 nonreg62 6 24 11 11
nonreg13 5 10 3 3 nonreg63 5 13 10 10
nonreg14 5 10 4 4 nonreg64 5 13 1 1
nonreg15 5 10 5 5 nonreg65 12 30 29 29
nonreg16 5 10 6 6 nonreg66 12 30 1 1
nonreg17 5 10 7 7 nonreg67 2 25 5 5
nonreg18 5 10 8 8 nonreg68 7 28 2 2
nonreg19 5 10 9 9 nonreg69 7 28 7 7
nonreg20 2 10 1 1 nonreg70 7 28 12 12
nonreg21 12 10 1 1 nonreg71 7 28 19 19
nonreg22 6 4 1 1 nonreg72 7 28 27 27
nonreg23 6 4 3 3 nonreg73 12 11 10 10
nonreg24 1 2 1 1 nonreg74 12 11 2 2
nonreg25 3 2 1 1 nonreg75 12 25 1 1
nonreg26 4 2 1 1 nonreg76 12 25 12 12
nonreg27 1 3 1 1 nonreg77 12 25 24 24
nonreg28 1 3 2 2 nonreg78 2 18 4 4
nonreg29 2 3 1 1 nonreg79 9 23 1 1
nonreg30 2 4 1 2 nonreg80 9 23 11 11
nonreg31 1 4 1 1 nonreg81 9 23 22 22
nonreg32 1 4 3 3 nonreg82 4 17 2 2
nonreg33 2 4 1 1 nonreg83 4 17 12 12
nonreg34 2 4 2 2 nonreg84 10 30 1 1
nonreg35 2 4 3 3 nonreg85 10 30 5 5
nonreg36 3 4 1 1 nonreg86 10 30 10 10
nonreg37 3 4 3 3 nonreg87 10 30 15 15
nonreg38 5 4 1 1 nonreg88 10 30 20 20
nonreg39 5 4 2 2 nonreg89 10 30 25 25
nonreg40 1 5 1 1 nonreg90 1 30 1 1
nonreg41 1 5 2 2 nonreg91 1 30 10 10
nonreg42 1 5 3 3 nonreg92 1 30 20 20
nonreg43 1 5 4 4 nonreg93 1 30 29 29
nonreg44 2 5 1 1 nonreg94 8 21 1 1
nonreg45 2 5 2 2 nonreg95 8 21 8 8
nonreg46 2 5 3 3 nonreg96 8 21 15 15
nonreg47 2 5 4 4 nonreg97 8 21 20 20
nonreg48 3 5 1 1 nonreg98 12 30 22 22
nonreg49 3 5 2 2 nonreg99 12 30 8 8
nonreg50 3 5 3 3 nonreg100 12 30 17 17

148

Appendix E

The R function TwostepSDPClust

The R function TwostepSDPClust implements the Two-Step-SDP algorithm 13 and is
available in [90]. The user must specify the following input arguments:

• data – the numeric data matrix,

• p – the number of clusters of objects,

• k – the number of clusters of attributes,

• class – the vector of integers with the true classification of objects, or 0,

• tol – a small convergence tolerance value,

• maxit – the maximum number of iterations.

The R function TwostepSDPClust returns the following information:

• Dscale – the scaled data matrix,

• U – the object assignment matrix,

• cluster – the vector of integers identifying the clusters of objects,

• Usizes – the vector whose coordinates are the sizes of each cluster of objects,

• Z0 – the approximate solution of the SDP-based problem for clustering objects,

• Z – the solution to the SDP-based problem for clustering objects,

• bcdr – the between cluster deviance in the reduced space of the k components,

• bcdrp – the between cluster deviance of the total variance,

• wssd – the within cluster deviance for clustering of objects,

• ofrelaxZ – the value of the objective function of the SDP problem (6.16),

149

APPENDIX E. THE R FUNCTION TWOSTEPSDPCLUST

• iter – the number of iterations in the refinement solution step,

• V – the attribute assignment matrix,

• H0 – the approximate solution of the SDP-based problem for clustering attributes,

• H – the solution of the SDP-based problem for clustering attributes,

• Vsizes – the vector with the sizes of each cluster of attributes,

• wssdat – the within cluster deviance for clustering of attributes,

• bcdat – the between cluster deviance for clustering of attributes,

• Ybar – the object centroid matrix in the reduced space,

• Dbar – the object centroid matrix,

• Y – the component score matrix,

• A – the component loading matrix,

• explvar – the vector of explained variance of each component,

• E – the error associated to the CDPCA model,

• compt – the computational time,

• pcm – the pseudo-confusion matrix, when the true classes are known.

After specifying the input arguments in the R environment, the basic call of the function
TwostepSDPClust is as follows:

> example <- TwostepSDPClust(data,p,k,class,tol,maxit)

To access the output matrices, say the component loading matrix A, one just need to
write

> example$A

150

Bibliography

[1] Abadir, K.M. and Magnus, J.R., Matrix Algebra, Cambridge University Press, 2005.

[2] Ackerman, M. and Ben-David, S., Clusterability: A theoretical study, Proceedings of the
12th International Conference on Artificial Intelligence and Statistics, JMLR: W&CP,
5, pp. 1-8, 2009.

[3] Akteke-Ozturk, B., Weber, G.-W. and Kropat, E., Continuous Optimization Ap-
proaches for Clustering via Minimum Sum of Squares, Proc. 20th Mini-EURO Conf.
Continuous Optimization and Knowledge-Based Technologies, Lithuania, pp. 253-258,
2008.

[4] Alizadeh, F., Interior point methods in semidefinite programming with applications to
combinatorial optimization, SIAM J.Opt., 5, pp. 13-51, 1995.

[5] Alizadeh, F., Haeberly, J.-P.A. and Overton, M.L, Complementarity and nondegeneracy
in semidefinite programming, Mathematical Programming, 77(1), Springer, pp. 111-
128, 1997.

[6] Aloise, D. and Hansen, P., A branch-and-cut sdp-based algorithm for minimum sum-
of-squares clustering, Pesquisa Operacional, 29(3), pp. 503-516, 2009.

[7] Ames, B.P.W., Guaranteed clustering and biclustering via semidefinite programming,
Mathematical Programming, 147(1-2), Springer Berlin Heidelberg, pp. 429-465, 2014.

[8] Anjos, M.F. and Lasserre, J.B. (Eds.), Handbook of Semidefinite, Conic and Polynomial
Optimization: Theory, Algorithms, Software and Applications, International Series in
Operational Research and Management Science, 166, Springer, 2012.

[9] Bagirov, A.M., Modified global k-means algorithm for minimum sum-of-squares cluster-
ing problems, Pattern Recognition, 41, pp. 3192-3199, 2008.

[10] Bagirov, A.M., Rubinov, A.M., Soukhoroukova, N.V. and Yearwood, J., Unsuper-
vised and Supervised Data Classification via Nonsmooth and Global Optimization, TOP,
11(1), pp. 1-75, 2003.

151

BIBLIOGRAPHY

[11] Bellman, R. and Fan, K., On systems of linear inequalities in Hermitian matrix vari-
ables, In: Convexity, Proceedings of Symposia in Pure Mathematics, 7, American
Mathematical Society, Providence, RI, pp. 1-11, 1963.

[12] Benson, S.J. and Ye, Y., DSDP5 user guide - software for semidefinite programming,
Technical Report, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 2005.

[13] Bonnans, J.F. and Shapiro, A., Perturbation Analysis of Optimization Problems,
Springer-Verlag, New-York, 2000.

[14] Borchers, B., CSDP: a C library for semidefinite programming, Optimization Methods
and Software, 11(1-4), pp. 613-623, 1999.

[15] Borchers, B., SDPLIB 1.2, A library of Semidefinite Programming Test Problems,
Optimization Methods and Software, 11(1-4), pp. 683-690, 1999.

[16] Borchers, B. and Young, J., Implementation of a Primal-Dual Method for SDP on a
Shared Memory Parallel Architecture, Comp. Opt. Appl., 37, pp. 355-369, 2007.

[17] Borwein, J.M. and Wolkowicz, H., Facial reduction for a cone-convex programming
problem, J. Austral. Math. Soc. Ser. A, 30(3), pp. 369-380, 1980/81.

[18] Bronson, R. and Costa, G.B., Matrix Methods: Applied Linear Algebra, 3rd Ed.,
Academic Press, Elsevier, 2009.

[19] Burer, S., SDPlr code, available at http://sburer.github.io/projects.html, 2009.

[20] Burer, S. and Monteiro, R.D.C., A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization, Math. Program., Ser. B, 95, pp. 329-
357, 2003.

[21] Burer, S., Monteiro, R.D.C. and Zhang, Y., Solving a class of semidefinite programs
via nonlinear programming, Mathematical Programming, 93, pp. 97-122, 2002.

[22] Cheung, Y., Preprocessing and Reduction for Semidefinite Programming via Facial
Reduction: Theory and Practice, PhD Thesis, University of Waterloo, Canada, 2013.

[23] Cheung, Y., Schurr, S. and Wolkowicz, H., Preprocessing and Reduction for Degenerate
Semidefinite Programs, Computational and Analytical Mathematics Springer Proceed-
ings in Mathematics & Statistics, 50, pp. 251-303, 2013.

[24] Craven, B. and Mond, B., Linear programming with matrix variables, Linear Algebra
Appl., 38, pp. 73-80, 1981.

[25] CSDP solver https://projects.coin-or.org/Csdp

152

http://sburer.github.io/projects.html
https://projects.coin-or.org/Csdp

BIBLIOGRAPHY

[26] CVX Research, Inc., CVX: Matlab Software for Disciplined Convex Programming,
version 2.0, http://cvxr.com/cvx, August, 2012.

[27] d’Aspremont, A., El Ghaoui, L., Jordan, M.I., Lanckriet, G.R.G. A Direct Formulation
for Sparse PCA Using Semidefinite Programming, SIAM, 49(3), pp. 434-448, 2007.

[28] Donath, W.E. and Hoffman, A.J., Lower bounds for the partitioning of graphs, IBM
J. of Research and Development, 17, pp. 420-425, 1973.

[29] Dontchev, A. L., Zolezzi, T., Well-Posed Optimization Problems, in Lecture Notes in
Mathematics, 1543, Springer-Verlag, Berlin, 1993.

[30] DSDP site http://www.mcs.anl.gov/hs/software/DSDP/

[31] Dür, M., Jargalsaikhan, B. and Still, G., The Slater condition is generic in linear
conic programming, Nov 2012, available at http://www.optimization-online.org/

DB_FILE/2012/11/3675.pdf

[32] Enki, D.G., Trendafilov, N.T. and Jolliffe, I.T., A clustering approach to interpretable
principal components, Journal of Applied Statistics, 40(3), pp. 583-599, 2013.

[33] Fajardo, M.D. and López, M.A., Some results about the facial geometry of convex
semi-infinite systems, Optimization, 55(5-6), pp. 661-684, 2006.

[34] Fiacco, A.V., Sensitivity and Stability in NLP, Floudas, C. A. and Pardalos, P. M.
(Eds.): Encyclopedia of Optimization, Second Edition, Springer, pp. 3450-3454, 2009.

[35] Fiala, J., Kočvara, M. and Stingl, M., PENLAB: A MATLAB solver for nonlin-
ear semidefinite optimization, Nov 2013, available at http://arxiv.org/pdf/1311.

5240v1.pdf

[36] Fletcher, R., Semidefinite matrix constraints in optimization, SIAM J. Control Optim.,
23, pp. 493-513, 1985.

[37] Freund, R.M., Complexity of an Algorithm for Finding an Approximate Solution of
a Semi-Definite Program, with no Regularity Condition, Technical Report OR 302-94,
Op. Research Center, MIT, 1994, Revised December 1995.

[38] Freund, R.M., Ordóñez, F. and Toh, K.C., Behavioral Measures and their Correlation
with IPM Iteration Counts on Semi-Definite Programming Problems, Math. Program-
ming, 109(2), pp. 445-475, 2007.

[39] Freund, R.M. and Sun, J., Semidefinite Programming I: Introduction
and minimization of polynomials, System Optimization, available at http:

//www.myoops.org/cocw/mit/NR/rdonlyres/Sloan-School-of-Management/

15-094Systems-Optimization--Models-and-ComputationSpring2002/

1B59FD11-A822-4C80-9301-47B127500648/0/lecture22.pdf, 2002.

153

http://cvxr.com/cvx
http://www.mcs.anl.gov/hs/software/DSDP/
http://www.optimization-online.org/DB_FILE/2012/11/3675.pdf
http://www.optimization-online.org/DB_FILE/2012/11/3675.pdf
http://arxiv.org/pdf/1311.5240v1.pdf
http://arxiv.org/pdf/1311.5240v1.pdf
http://www.myoops.org/cocw/mit/NR/rdonlyres/Sloan-School-of-Management/15-094Systems-Optimization--Models-and-ComputationSpring2002/1B59FD11-A822-4C80-9301-47B127500648/0/lecture22.pdf
http://www.myoops.org/cocw/mit/NR/rdonlyres/Sloan-School-of-Management/15-094Systems-Optimization--Models-and-ComputationSpring2002/1B59FD11-A822-4C80-9301-47B127500648/0/lecture22.pdf
http://www.myoops.org/cocw/mit/NR/rdonlyres/Sloan-School-of-Management/15-094Systems-Optimization--Models-and-ComputationSpring2002/1B59FD11-A822-4C80-9301-47B127500648/0/lecture22.pdf
http://www.myoops.org/cocw/mit/NR/rdonlyres/Sloan-School-of-Management/15-094Systems-Optimization--Models-and-ComputationSpring2002/1B59FD11-A822-4C80-9301-47B127500648/0/lecture22.pdf

BIBLIOGRAPHY

[40] Freund, R.M. and Vera, J.R., Some characterization and properties of the “distance
to ill-posedness” and the condition measure of a conic linear system, Mathematical
Programming, 86(2), pp. 225-260, 1999.

[41] Fujisawa, K., Futakata, Y., Kojima, M., Matsuyama, S., Nakamura, S., Nakata, K. and
Yamashita, M., SDPA-M (SemiDefinite Programming Algorithm in MATLAB) User’s
Manual-Version 6.2.0, Series B: Operations Research Department of Mathematical and
Computing Sciences, Tokyo Institute of Technology, May 2005.

[42] Gärtner, B. and Matoušek, J., Approximation Algorithms and Semidefinite Program-
ming, Springer-Verlag, 2012.

[43] Goemans, M.X. and Williamson, D.P., Improved Approximation Algorithms for Maxi-
mum Cut and Satisfiability Problems Using Semidefinite Programming, J. ACM, 42(6),
pp. 1115-1145, 1995.

[44] Grant, M. and Boyd, S., Graph implementations for nonsmooth convex programs, in
Recent Advances in Learning and Control, Lecture Notes in Control and Information
Sciences Series, eds. Blondel, V., Boyd, S. and Kimura, H., Springer-Verlag Limited,
pp. 95-110, 2008, available at http://stanford.edu/~boyd/graph_dcp.html

[45] Grant, M. and Boyd, S., The CVX Users’ Guide, Release 2.1, 2015, available at
http://cvxr.com/cvx/doc/CVX.pdf

[46] Grötschel, M., Lovász, L. and Schrijver, A., Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

[47] Gruber, G., On Semidefinite Programming and Applications in Combinatorial Opti-
mization, PhD Thesis, University of Technology, Graz, Austria, 2000.

[48] Gruber, G., Kruk, S., Rendl, F. and Wolkowicz, H., Presolving for Semidefinite pro-
gram without Constraint Qualifications, Technical Report CORR 98-32, University of
Waterloo, Waterloo, Ontario, 1998.

[49] Gruber, G. and Rendl, F., Computational Experience with Ill-Posed Problems in
Semidefinite Programming, Computational Optimization and Applications, 21, pp.
201-212, 2002.

[50] Hastie, T., Tibshirani, R. and Friedman, J., The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd ed., Springer Series in Statistics, 2009.

[51] Helmberg, C., Semidefinite programming, European Journal of Operational Research
137, pp. 461-482, 2002.

[52] Helmberg, C., Semidefinite Programming for Combinatorial Optimization, ZIB Re-
port, Berlin, 2000.

154

http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx/doc/CVX.pdf

BIBLIOGRAPHY

[53] Helmberg, C., Rendl, F., A Spectral Bundle Method for Semidefinite Programming,
SIAM Journal on Optimization, 10, pp. 673-696, 1997.

[54] Helmberg, C., Rendl, F., Vanderbei, R.J. and Wolkowicz, H., An Interior-Point
Method for Semidefinite Programming, SIAM J. Optim., 6(2), pp. 342-361, 1996.

[55] Hernández-Jiménez, B., Rojas-Medar, M.A., Osuna-Gómez, R., Beato-Moreno, A.,
Generalized convexity in non-regular programming problems with inequality-type con-
straints, J. Math. Anal. Appl., 352, pp. 604-613, 2009.

[56] Horn, R.A. and Johnson, C.R., Matrix Analysis, 2nd edn., Cambridge University
Press, 2012.

[57] Huang, A. and Xu, C., A trust region method for solving semidefinite programs,
Springer, Comput. Optim. Appl., 55, pp. 49-71, 2013.

[58] Jain, A.K., Data Clustering: 50 Years Beyond K-means, Pattern Recogn. Lett. 31(8),
Elsevier Science Inc., pp. 651-666, 2010.

[59] Jansson, C., On Verified Numerical Computations in Convex Programming, Springer-
Verlag, Japan J. Indust. Appl. Math., 26(2-3), pp. 337-363, 2009.

[60] Jansson, C., VSDP: a Matlab software package for Verified Semidefinite Programming,
NOLTA, pp. 327-330, 2006.

[61] Jansson, C., Chaykin, D. and Keil, C., Rigorous Error Bounds for the Optimal Value
in SDP, SIAM Journal on Numerical Analysis, 46(1), pp. 180-200, 2007.

[62] Jeyakumar, V. and Dihn, N., Avoiding Duality Gaps in Convex Semidefinite Program-
ming without Slater’s Condition, Applied Mathematics Report AMR04/6, University
of New SouthWales, Sydney, Australia, 2004.

[63] Jeyakumar, V. and Nealon, M.J., Complete Dual Characterizations of Optimality for
Convex Semidefinite Programming, in Théra, M. (ed) “Constructive, Experimental and
Nonlinear Analysis”, CMS Conference Proceedings American Mathematical Society,
27, pp. 165-174, 2000.

[64] Jolliffe, I.T., Principal Component Analysis, Second edition, Springer-Verlag, New
York, 2002.

[65] Jolliffe, I.T., Trendafilov, N.T., Uddin, M., A modified principal component technique
based on the lasso, J. of Computational and Graphical Statistics, 12(3), pp. 531-547,
2003.

[66] Kanzow, C. and Nagel, C., Semidefinite programs: new search directions, smoothing-
type methods, and numerical results, SIAM Journal on Optimization, 13(1), pp. 1-23,
2002.

155

BIBLIOGRAPHY

[67] Karmarkar, N.K., A new polynomial-time algorithm for linear programming, Combi-
natorica, 4, pp. 373-395, 1984.

[68] Klatte, D., First Order Constraint Qualifications, Floudas, C. A. and Pardalos, P. M.
(Eds.): Encyclopedia of Optimization, 2nd edn, Springer, pp. 1055-1060, 2009.

[69] Klerk, E. de, Aspects of Semidefinite Programming - Interior Point Algorithms and
Selected Applications, Applied Optimization, 65, Kluwer, 2004.

[70] Klerk, E. de, Roos, C. and Terlaky, T., A short survey on semidefinite programming,
Ten Years LNMB, PhD Research and Graduate Courses of the Dutch Network of Op-
erations Research (W.K.K.H. et al., ed.), 122, Amsterdam, The Netherlands: Centrum
for Mathematics and Informatics (CWI), pp. 323-339, 1997.

[71] Kočvara, M. and Stingl, M., On the solution of large-scale SDP problems by the mod-
ified barrier method using iterative solvers, Mathematical Programming, 109(2-3), pp.
413-444, 2007.

[72] Kočvara, M. and Stingl, M., PENNON - A Code for Convex Nonlinear and Semidef-
inite Programming, Optimization Methods and Software 18(3), pp. 317-333, 2003.

[73] Kogan, J., Nicholas, C., Teboulle, M. (Eds.), Grouping Multidimensional Data: Recent
Advances in Clustering, Springer, XII, 2006.

[74] Kojima, M., Introduction to Semidefinite Programs (Semidefinite Programming and
Its Application), Institute for Mathematical Sciences National University of Singapore,
2006.

[75] Kojima, M., Kojima, S. and Hara, S., Linear algebra for semidefinite programming,
Technical report, Dept. of Mathematical and Computing Sciences, Tokyo Institute of
Technology, Tokyo, Japan, 1994.

[76] Kolman, B. and Beck, R.E., Elementary Linear Programming with Applications , 2nd
edn, Academic Press, San Diego, 1995.

[77] Konsulova, A.S. and Revalski,J.P., Constrained convex optimization problems - well-
posedness and stability, Numerical Functional Analisys and Optimization, 15(7-8), pp.
889-907, 1994.

[78] Kostyukova, O.I. and Tchemisova, T.V., Optimality Criterion without Constraint
Qualification for Linear Semidefinite Problems, Journal of Mathematical Sciences,
Springer US, 182(2), pp. 126-143, 2012.

[79] Krishnan, K., Linear Programming Approaches to Semidefinite Programming prob-
lems, PhD thesis, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY
12180, July 2002.

156

BIBLIOGRAPHY

[80] Krishnan, K. and Mitchell, J., Semi-Infinite Linear programming approaches to SDP
problems, In: Novel approaches to hard discrete optimization problems, edited by
Pardalos, P. and Wolkowicz, H., Fields Institute Communications Series, AMS, 37,
pp. 123-142, 2003.

[81] Kulis, B., Surendran, A.C. and Platt, J.C., Fast low-rank semidefinite programming
for embedding and clustering, in Proceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics, AISTATS 2007, San Juan, Puerto Rico, pp.
235-242, 2007.

[82] Kuhn, H.W. and Tucker, A.W., Nonlinear programming, in Neyman, J., ed. Pro-
ceedings of Second Berkeley Symposium of Mathematical Statistics and Probability,
University of California Press, Berkeley, pp. 481-492, 1950.

[83] Laurent, M. and Rendl, F., Semidefinite programming and integer programming, In
Nemhauser, G., Aardal, K. and Weismantel, R., editors, Handbook on Discrete Opti-
mization, Elsevier, pp. 393-514, 2005.

[84] Laurent, M. and Vallentin, F., Semidefinite Optimization, Lecture Notes, available at
http://page.mi.fu-berlin.de/fmario/sdp/laurentv.pdf, 2012.

[85] Liu, M. and Pataki, G., Exact duals and short certificates of infeasibility and weak
infeasibility in conic linear programming, July 2015, available at http://arxiv.org/

pdf/1507.00290v1.pdf

[86] Lovász, L., On the Shannon capacity of a graph, IEEE Transactions on Information
Theory, 25(1), pp. 1-7, 1979.

[87] Luo, Z., Sturm, J. and Zhang, S., Duality results for conic convex programming, Econo-
metric Institute Report No. 9719/A, 1997.

[88] Ma, Z., Sparse principal component analysis and iterative thresholding, The Annals of
Statistics 41(2), pp. 772-801, 2013.

[89] Macedo, E., Estudo prático de regularidade de problemas de Programação
Semidefinida, MSc. Thesis, University of Aveiro, 2010.

[90] Macedo, E., https://sites.google.com/site/macedoelocat/

[91] Macedo, E., Testing Regularity on Linear Semidefinite Optimization Problems, In:
Almeida, J.P., Oliveira, J.F. and Pinto, A.A. (eds.) Operational Research, CIM Series
in Mathematical Sciences, Springer, 4, pp. 213-236, 2015.

[92] Macedo, E., Two-Step-SDP Approach to Clustering and Dimensionality Reduction,
Stat., Optim. Inf. Comput., 3(3), pp. 294-311, 2015.

157

http://page.mi.fu-berlin.de/fmario/sdp/laurentv.pdf
http://arxiv.org/pdf/1507.00290v1.pdf
http://arxiv.org/pdf/1507.00290v1.pdf
https://sites.google.com/site/macedoelocat/

BIBLIOGRAPHY

[93] Macedo, E. and Freitas, A., Statistical Methods and Optimization in Data Mining,
In: III International Conference of Optimization and Applications OPTIMA2012, pp.
164-169, 2012.

[94] Macedo, E. and Freitas, A., The Alternating Least-Squares Algorithm for CDPCA,
In: Plakhov, A. et al (eds.) Optimization in the Natural Sciences, Communications in
Computer and Information Science (CCIS), Springer, 499, pp. 173-191, 2015.

[95] Macedo, E. and Sá Esteves, J., A Least-Squares Approach for Testing the Slater Con-
dition in Semidefinite Programs, Proceedings of the 12th International Conference on
Computational and Mathematical Methods in Science and Engineering - CMMSE2012,
July 2-5, Múrcia, Spain, 2, pp. 773-784, 2012.

[96] Malick, J., Povh, J., Rendl, F. and Wiegele, A., Regularization methods for semidefi-
nite programming, SIAM Journal on Optimization, 20(1), pp. 336-356, 2009.

[97] Mangasarian, O.L. and Fromovitz, S., The Fritz-John necessary optimality conditions
in presence of equality and inequality constraints, J. Math. Anal. Appl. 17, pp. 37-47,
1967.

[98] Meyer, C., Matrix analysis and applied linear algebra, Society for Industrial and Ap-
plied Mathematics, Philadelphia, 2000.

[99] Minchenko, L. and Stakhovski, S., On relaxed constant rank regularity condition in
mathematical programming, Optimization, 60(4), pp. 429-440, 2011.

[100] Mitchell, J. and Krishnan, K., A unifying framework for several cutting plane methods
for semidefinite programming, Technical Report, Dept. of Computational and Applied
Mathematics, Rice University, December 2003.

[101] Mittelmann, H.D., The State-of-the-Art in Conic Optimization Software, in Anjos,
M.F. and Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Op-
timization, International Series in Operations Research & Management Science, 166,
Springer, pp. 671-686, 2012.

[102] Moldovan, A. and Pellegrini, L., On Regularity for Constrained Extremum Problems
Part 1: Sufficient Optimality Conditions, JOTA, 142(1), pp. 147-163, 2009.

[103] Monteiro, R.D.C., First- and second-order methods for semidefinite programming,
Math. Program., Ser. B 97, pp. 209-244, 2003.

[104] Monteiro, R.D.C. and Tsuchiya, T., Polynomial convergence of a new family of
primal-dual algorithms for semidefinite programming, SIAM J. OPTIM., 9(3), pp. 551-
577, 1999.

[105] Mosek ApS, available at http://www.mosek.com

158

http://www.mosek.com

BIBLIOGRAPHY

[106] Nayakkankuppam, M.V. and Overton, M.L., Conditioning of semidefinite programs,
Math. Program., 85, Springer, pp. 525-540, 1999.

[107] Nesterov, Y.E. and Nemirovski, A.S., Conic formulation of a convex programming
problem and duality, Optim. Methods Software, 1(2), pp. 95-115, 1992.

[108] Nesterov, Y.E. and Nemirovski, A.S., Interior Point Polynomial Algorithms in Con-
vex Programming, SIAM, Philadelphia, USA, 1994.

[109] Nocedal, J. and Wright, S.J., Numerical Optimization, Springer, 1999.

[110] Overton, M.L. and Womersley, R.S., Optimality Conditions and Duality Theory for
Minimizing Sums of the Largest Eigenvalues of Symmetric Matrices, Mathematical
Programming, 62, pp. 321-357, 1993.

[111] Pataki, G., Bad semidefinite programs: they all look the same, available at http:

//arxiv.org/pdf/1112.1436.pdf, july, 2014.

[112] Pataki, G., Strong Duality in Conic Linear Programming: Facial Reduction and
Extended Duals, in Bailey, D.H. et al, Springer Proceedings in Mathematics & Statistics,
Computational and Analytical Mathematics, 50, Springer New York, pp. 613-634, 2013.

[113] Pataki, G. and Tunçel, L., On the generic properties of convex optimization problems
in conic form, Math. Program., Ser. A 89, Springer, pp. 449-457, 2001.

[114] Pedregal, P., Introduction to Optimization, Springer, 2004.

[115] Peng, J. and Wei, Y., Approximating k-means-type clustering via semidefinite pro-
gramming, SIAM J. OPTIM., 18(1), pp. 186-205, 2007.

[116] Peng, J. and Xia, Y., A New Theoretical Framework for K-Means-Type Clustering,
Foundations and Advances in Data Mining Studies in Fuzziness and Soft Computing,
180, pp. 79-96, 2005.

[117] Petrov, Y.P. and Sizikov, V.S., Well-posed, Ill-posed, and Intermediate Problems with
Applications (Inverse and Ill-Posed Problems), Brill Academic Publishers, 2005.

[118] Pintér, J.D., LGO - A Model Development and Solver System for Nonlinear (Global
and Local) Optimization, Users Guide, Distributed by Pintér Consulting Services, Inc.,
Canada, http://www.pinterconsulting.com/, 2014.

[119] Pinto Da Costa, J.F., Alonso, H. and Roque, L., A weighted principal component
analysis and its application to gene expression data, IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 8(1), pp. 246-252, 2011.

[120] Polik, I., Conic optimization software, Wiley Encyclopedia of Operations Research
and Management Science, 2010.

159

http://arxiv.org/pdf/1112.1436.pdf
http://arxiv.org/pdf/1112.1436.pdf
http://www.pinterconsulting.com/

BIBLIOGRAPHY

[121] Polik, I., Semidefinite programming Feasibility and duality, available at http://

imre.polik.net/wp-content/uploads/IE496/POLIK_IE496_04_duality.pdf, 2009.

[122] Polik, I. and Terlaky, T., New stopping criteria for detecting infeasibility in conic
optimization, Springer, Optim. Lett., 3(2), pp. 187-198, 2009.

[123] Pompili, F., Gillis, N, Absil, P.A. and Glineur, F., Two algorithms for orthogonal
nonnegative matrix factorization with application to clustering, Neurocomputing 141,
pp. 15-25, 2014.

[124] R Development Core Team, R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria, http://www.

R-project.org, 2015.

[125] Ramana, M.V., An Exact Duality Theory for Semidefinite Programming and its Com-
plexity Implications, DIMACS Technical report 95-02R, RUTCOR, Rutgers University,
New Brunswick, NJ, 1995.

[126] Ramana, M.V., Tunçel, L. and Wolkowicz, H., Strong Duality for Semidefinite Pro-
gramming, SIAM J. Optimization, 7(3), 1997.

[127] Renegar, J., Some Perturbation-Theory for Linear-Programming, Mathematical Pro-
gramming, 65(1) pp.73-91, 1994.

[128] Robinson, S.M., First order conditions for general nonlinear optimization, SIAM J.
Appl. Math., 30(4), pp. 597-607, 1976.

[129] SDPA Project available at http://sdpa.sourceforge.net/

[130] SDPT3 site http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

[131] SeDuMi site http://sedumi.ie.lehigh.edu/?page_id=58

[132] Shapiro, A., Directional differentiability of the optimal value function in convex semi-
infinite programming, Mathematical Programming 70, pp. 149-157, 1995.

[133] Shores, T., Applied Linear Algebra and Matrix Analysis, Undergraduate Texts in
Mathematics, Springer, 2007.

[134] Solodov, M.V., Constraint Qualifications, Encyclopedia of Operations Research and
Management Science, James J. Cochran, et al. (editors), John Wiley & Sons, Inc., 2010.

[135] Stingl, M., On the Solution of Nonlinear Semidefinite Programs by Augmented La-
grangian Methods, PhD thesis, University of Erlangen-Nürnberg, 2006.

[136] Sturm, J.F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmet-
ric cones, Optimization Methods and Software, 11, pp. 625-653, 1999.

160

http://imre.polik.net/wp-content/uploads/IE496/POLIK_IE496_04_duality.pdf
http://imre.polik.net/wp-content/uploads/IE496/POLIK_IE496_04_duality.pdf
http://www.R-project.org
http://www.R-project.org
http://sdpa.sourceforge.net/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://sedumi.ie.lehigh.edu/?page_id=58

BIBLIOGRAPHY

[137] Sturm, J.F. and Zhang, S., On Sensitivity of Central Solutions in Semidefinite Pro-
gramming, Mathematical Programming, 90(2), Springer, pp. 205-227, 2001.

[138] Tikhonov, A.N. and Arsenin, V.Y., Solutions of ill-posed problems, John Wiley and
Sons, 1977.

[139] Todd, M.J., A study of search directions in primal-dual interior-point methods for
semidefinite programming, Optimization Methods and Software, 11(1-4), pp. 1-46,
1999.

[140] Todd, M.J., Semidefinite Optimization, in Acta Numerica, Cambridge University
Press, Cambridge, UK, 10, May, pp. 515-560, 2001.

[141] Tunçel, L., Some Applications of Semidefinite Optimization from an Operations Re-
search Viewpoint, Iranian Journal of Operations Research 1(2), pp. 1-29, 2009.

[142] Tunçel, L. and Wolkowicz, H., Strong duality and minimal representations for cone
optimization, Computational Optimization and Applications, 53(2), Springer US, pp.
619-648, 2012.

[143] Tutuncu, R.H, Toh, K.C. and Todd, M.J., Solving semidefinite-quadratic-linear pro-
grams using SDPT3, Mathematical Programming Ser. B, 95, pp. 189-217, 2003.

[144] UCI Repository: http://archive.ics.uci.edu/ml/

[145] Vandenberghe, L. and Boyd, S., A Primal-Dual Potential Reduction Method for Prob-
lems Involving Matrix Inequalities, Mathematical Programming, Series B, 69(1), pp.
205–236, 1995.

[146] Vandenberghe, L. and Boyd, S., Applications of Semidefinite Programming, Applied
Numerical Mathematics, 29(3), pp. 283-299, 1999.

[147] Vandenberghe, L. and Boyd, S., Connection between Semi-Infinite and Semidefinite
Programming, in Reemtsen, R. and Ruckmann, J.J., Eds, chapter 8 of Semi-Infinite
Programming, Kluwer Academic Publishers, pp. 277-294, 1998.

[148] Vandenberghe, L. and Boyd, S., Convex Optimization, Cambridge University Press,
2009.

[149] Vandenberghe, L. and Boyd, S., Semidefinite Programming, SIAM REVIEW, 38(1),
pp. 49-95, 1996.

[150] Vichi, M. and Kiers, H.A.L., Factorial k-means analysis for two-way data, Compu-
tational Statistics & Data Analysis, 37(1), pp. 49-64, 2001.

[151] Vichi, M. and Saporta, G., Clustering and Disjoint Principal Component Analysis,
Computational Statistics & Data Analysis 53, pp. 3194-3208, 2009.

161

BIBLIOGRAPHY

[152] Waki, H., Nakata, M. and Muramatsu, M., Strange behaviors of interior-point meth-
ods for solving semidefinite programming problems in polynomial optimization, Com-
putational Optimization and Applications, 53(3), Springer, pp. 823-844, 2012.

[153] Weber, G.-W., Taylan, P., Ozogur, S. and Akteke-Ozturk, B., Statistical Learning
and Optimization Methods in Data Mining, in Ayhan, H. O. and Batmaz, I. (eds.):
Recent Advances in Statistics, Turkish Statistical Institute Press, Ankara, pp. 181–
195, 2007.

[154] Wei, H., Numerical Stability in Linear Programming and Semidefinite Programming,
PhD Thesis, University of Waterloo, Ontario, Canada, 2006.

[155] Wei, H. and Wolkowicz, H., Generating and measuring instances of hard semidefinite
programs, Math. Program., 125(1), Ser. A, pp.31-45, 2010.

[156] Wolkowicz, H., Duality for semidefinite programming, edited by Floudas, C. A. and
Pardalos, P. M., in Encyclopedia of Optimization, Springer, 2nd edn, pp. 811-813, 2009.

[157] Wolkowicz, H., Semidefinite Programming, Research Report CORR 2002-
04, 2002, available at http://www.math.uwaterloo.ca/~hwolkowi/henry/reports/

sdpstats.pdf

[158] Wolkowicz, H., Some applications of optimization in matrix theory, Linear Algebra
and Appl. 40, pp. 101-118, 1981.

[159] Wolkowicz, H., Saigal, R. and Vandenberghe, L., Handbook of semidefinite program-
ming: theory, algorithms, and applications, Kluwer Academic Publishers, Boston, 2000.

[160] Xu, R. and Wunsch, D., Survey of Clustering Algorithms, IEEE Transactions on
Neural Networks, 16(3), pp. 645-648, 2005.

[161] Yamashita, M., Fujisawa, K., Fukuda, M., Nakata, K., and Nakata, M., Algorithm
925: Parallel solver for semidefinite programming problem having sparse Schur comple-
ment matrix, ACM Transactions on Mathematical Software, 39(1), Article 6 (Novem-
ber), 2012.

[162] Yamashita, M., Fujisawa, K. and Kojima, M., Implementation and evaluation of
SDPA 6.0 (SemiDefinite Programming Algorithm 6.0), Optimization Methods and Soft-
ware 18, pp. 491-505, 2003.

[163] Yanai, H., Takeuchi, K. and Takane, Y., Projection Matrices, Generalized Inverse
Matrices, and Singular Value Decomposition, Statistics for Social and Behavioral Sci-
ences, Springer, 2011.

[164] Zhang, Y., Semidefinite Programming, Lecture 2, available at http://rutcor.

rutgers.edu/~alizadeh/CLASSES/95sprSDP/NOTES/lecture2.ps, 1995.

162

http://www.math.uwaterloo.ca/~hwolkowi/henry/reports/sdpstats.pdf
http://www.math.uwaterloo.ca/~hwolkowi/henry/reports/sdpstats.pdf
http://rutcor.rutgers.edu/~alizadeh/CLASSES/95sprSDP/NOTES/lecture2.ps
http://rutcor.rutgers.edu/~alizadeh/CLASSES/95sprSDP/NOTES/lecture2.ps

BIBLIOGRAPHY

[165] Zhao, X.-Y., Sun, D. and Toh, K.-C., A Newton-CG augmented Lagrangian method
for semidefinite programming, SIAM Journal on Optimization, 20(4), pp. 1737-1765,
2010.

[166] Zou, H., Hastie, T., Tibshirani, R., Sparse principal component analysis, J. of Com-
putational and Graphical Statistics, 15(2), pp. 262-286, 2006.

163

BIBLIOGRAPHY

164

Index

badly-behaved, 57
basis, 12

central path, 28
certificate of nonstrict feasibility, 45
clustering, 97
cone, 12
constraint qualification, 37
CQ-free optimality criterion, 46

dimensionality reduction, 120
distance to infeasibility, 52
dual, 22
dual nondegeneracy, 38
duality gap, 22

facial reduction, 36

genericity, 39
good behaviour, 57

ill-posed, 51
immobile index, 44
interior point methods, 27
irregularity, 45
irregularity degree, 45

Lagrangian, 21
linear SDP problem, 16
LMI, 16

Mangasarian-Fromovitz CQ, 41
matrix

assingment, 97
column space, 12
positive definite, 14
positive semidefinite, 14
row space, 12

symmetric, 13
trace, 13

nonregular, 37
nonregularity, 45

optimal solution, 22
optimality conditions, 25

partial order, 15
primal, 22
primal nondegeneracy, 38

regular, 37
regularity, 37
regularity condition, 40
Robinson CQ, 41

self-dual, 12
self-dual embedding, 30
set

affine, 11
convex, 11

SIP problem, 42
Slater condition, 37
Slater constraint qualification, 22
Slater regularity condition, 22
strict complementarity, 38
strict feasibility, 22
strong duality, 23
subspace of immobile indices, 44

weak duality, 22
well-behaved, 57
well-posedness, 51

165

	Contents
	List of Tables
	Introduction
	Overview and motivation
	Literature review
	Aims and contributions
	Structure of the thesis

	Semidefinite programming
	Preliminaries
	Linear SDP Problem
	Duality and optimality results in SDP
	Interior point methods for solving SDP problems
	Numerical solution of SDP problems
	Overview of existing SDP solvers
	An example of a nonregular SDP problem: numerical issues when the Slater regularity condition fails to hold

	Regularity in semidefinite programming
	Constraint qualifications
	The Slater condition
	Other constraint qualifications in SDP
	Relationships between different constraint qualifications in SDP
	Testing the Slater condition

	Well-posedness
	Well-posedness in the sense of Renegar
	Testing well-posedness

	Good behaviour
	Good behaviour in the sense of Pataki
	Testing good behaviour

	Relationships between different notions of regularity in SDP
	Conclusions

	Testing of regularity in SDP
	SDPreg: a numerical procedure to test the Slater condition in SDP problems
	Description of the SDPreg procedure
	Implementation details

	DIISalg: a numerical procedure to determine the irregularity degree of SDP problems
	Numerical experiments
	Description of the experiments and numerical results
	Comparison of regularity results

	Conclusions

	Generating nonregular instances in semidefinite programming
	An algorithm for generating nonregular SDP instances
	A class of nonregular SDP problems
	Generating nonregular SDP instances

	Implementation and numerical experiments
	nonregSDPgen: a nonregular SDP instance generator
	NONREGSDP: a nonregular SDP database
	Numerical results and discussion

	Conclusions

	Application of semidefinite programming in data analysis
	Brief introduction and motivation
	Clustering: preliminaries

	Integer programming model for clustering and its solution
	Integer programming model
	K-means algorithm

	Semidefinite programming-based model for clustering and its properties
	SDP-based model
	General properties of the SDP-based model
	Study of regularity of the SDP-based model
	Recovering the assignments

	Approximation algorithm for solving the SDP-based model
	Linear SDP relaxations of the SDP-based model
	Study of regularity of the SDP relaxations
	SDP-based approximation algorithm

	Clustering and dimensionality reduction
	Clustering and disjoint PCA
	An alternating least-squares algorithm

	A new SDP-based approach to clustering and dimensionality reduction
	Description of the new approach
	Two-Step-SDP algorithm
	Two-Step-SDP and ALS algorithms
	Implementation and numerical results

	Conclusions

	Concluding remarks and future research topics
	Sparse SDPA format
	The MATLAB functions SDPreg and DIISalg
	The MATLAB function nonregSDPgen
	NONREGSDP: a collection of nonregular SDP test problems
	The R function TwostepSDPClust
	Bibliography
	Index

