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Abstract. This paper is concerned with the existence of multiple solu-

tions to the semilinear equation �Hu(⇠)+ |u(⇠)|
4

q�2
u(⇠)+g(⇠, u(⇠)) = 0

in a bounded domain ⌦ of the Heisenberg group HN with Dirichlet
boundary condition. By using the variational method, we prove that
this problem possesses at least one positive solution and at least one
sign changing solution for a class of g(⇠, u).

1. Introduction

In this paper, we study the existence and multiplicity of nontrivial solu-
tions of the following problem

(1.1)

(

��Hu(⇠) = |u(⇠)|
4

q�2u(⇠) + g(⇠, u(⇠)), ⇠ 2 ⌦,
u(⇠) = 0, ⇠ 2 @⌦,

where ⌦ ⇢ HN is a bounded domain with smooth boundary and HN is
the Heisenberg group. The �H is the Kohn Laplacian on the Heisenberg
group and q = 2N + 2 is the homogeneous dimension of HN and g is a
suitable lower order perturbation. The exponent 4/(q � 2) in (1.1) is a
critical exponent for the semilinear Dirichlet problem of the Kohn Laplacian,
as well as the exponent 4/(N � 2) is critical for the semilinear equation
��u = |u|4/(N�2)u + h(u) in a domain of RN with Dirichlet boundary
condition. The purpose of the present paper is to prove that for suitable
g(⇠, u), problem (1.1) has at least one positive solution and at least one sign
changing solution.

Equations like (1.1) arise naturally in the study of the Yamabe problem
for a Cauchy-Riemann manifold (N ,⇤), which is the problem of finding a
contact form ⇤̃ on N with constant scalar curvature and which is equivalent
to find a C1 positive function u on N such that ⇤̃ = u4/(q�2)⇤ and

��Nu+ au = |u|
4

q�2u,

where a is a suitable constant and �N is the sub-Laplacian on N , see also
[19] for more details.

Before stating the main results of the present paper, we give some notions
about the Heisenberg group. If we denote ⇠ = (x, y, t) with x, y 2 RN and
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2 J. CHEN AND E. M. ROCHA

t 2 R, then the Heisenberg group HN is identified with R2N+1 under the
group composition: for all ⇠ = (x, y, t) and ⇠0 = (x0, y0, t0),

⇠ � ⇠0 = (x+ x0, y + y0, t+ t0 + 2(x · y0 � x0 · y)),
where “·” denotes the inner product in RN . And for ⇠ 2 HN , the left trans-
lations on HN is defined by

⌧⇠ : HN ! HN , ⌧⇠(⇠
0) = ⇠ � ⇠0.

For � > 0, a family of dilation on HN is defined by

�� : HN ! HN , ��(x, y, t) = (�x,�y,�2t).

The Kohn Laplacian �H on HN is defined as

�H =
N
X

j=1

(X2
j + Y 2

j ),

where

Xj =
@

@xj
+ 2yj

@

@t
, Yj =

@

@yj
� 2xj

@

@t
.

For every u 2 C1
0 (⌦), the subelliptic gradient is defined as

rHu = (X1u, · · · , XNu, Y1u, · · · , YNu).

The closure of C1
0 (⌦) under the norm

R

⌦ |rH · |2d⇠ is denoted by S1,2
0 (⌦).

In S1,2
0 (HN ), the following Sobolev type inequality holds(see e.g. [12, 13]):

there exists Cq > 0 such that

(1.2) kuk2q/(q�2)  CqkukS1,2
0 (HN ), for all u 2 S1,2

0 (HN ),

where k·k2q/(q�2) is the norm in L2q/(q�2). The number 2q/(q � 2) is the crit-
ical Sobolev exponent, since for bounded domain ⌦ and 2 < p < 2q/(q � 2),
S1,2
0 (⌦) is compactly embedded into Lp(⌦), while this inclusion is only con-

tinuous if p = 2q/(q � 2).
Although �H is not elliptic at any point of HN , the above-mentioned

properties underline some similarities between �H and the classical Lapla-
cian � on Euclidean space RN . We point out that the Poisson equation
with critical exponent of the form

(1.3) ��u = |u|
4

N�2u+ µu, u 2 W 1,2
0 (D), D ⇢ RN

has been studied extensively after the pioneer work of Brezis-Nirenberg [1],
see [6] for the existence and multiplicity results of (1.3). The existence of
sign changing solutions of (1.3) has been obtained in [7]. While for (1.1),
only few result is known about the existence and non-existence of solutions.
We mention that when g(⇠, u) ⌘ 0, Citti et al.[10] has proven that (1.1) has
a nontrivial solution if ⌦ has at least a nontrivial homology group, see also
Lanconelli [20]. When g(⇠, u) = au+f(⇠, u) with suitable assumptions of f ,
Citti [9] has proven a Brezis-Nirenberg type result of (1.1). We also refer the
interested readers to [2, 3, 4] for other related existence and nonexistence
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SIGN CHANGING SOLUTIONS 3

results of semilinear Kohn Lapalace equations on Heisenberg group. How-
ever, to our best knowledge, we have not seen any multiplicity results for
Kohn Lapalace equation with critical exponent, nor sign changing solutions
to the Kohn Lapalace equation with critical exponent.

The purpose of the present paper is to study the existence of positive and
sign changing solutions of (1.1) under suitable assumptions of g. Throughout
this paper, we study the model case g(⇠, u) = µ|⇠|↵Hu with ↵ > 0 and |⇠|H
the distance in HN . We always assume that 0 2 ⌦ and simply write (1.1) as

(1.4) ��Hu = |u|
4

q�2u+ µ|⇠|↵Hu, u 2 S1,2
0 (⌦).

A solution of (1.4) is equivalent to a critical point of the functional

L(u) =
1

2

Z

⌦

�

|rHu|2 � µ|⇠|↵H |u|2
�

d⇠ � 1

2⇤

Z

⌦
|u|2⇤d⇠, u 2 S1,2

0 (⌦),

where 2⇤ = 2q/(q � 2). We say that u 2 S1,2
0 (⌦) is a positive solution of

(1.4) if u is a critical point of L and u � 0 but u 6⌘ 0; u 2 S1,2
0 (⌦) is

said to be a sign changing solution of (1.4) if u is a critical point of L and
u = u+ � u� with u+ 6⌘ 0 and u� 6⌘ 0, where u+ = max{u(⇠), 0} and
u� = max{�u(⇠), 0}. For ↵ > 0, we denote

µ1 = inf

⇢

Z

⌦
|rHu|2d⇠ :

Z

⌦
|⇠|↵H |u|2d⇠ = 1

�

.

Then Lemma 2.1 implies that µ1 > 0. The main result of the present paper
is the following theorem.

Theorem 1.1. If 0 < µ < µ1, then

(i): equation (1.4) has at least one positive solution provided 0 < ↵ <
q � 4;

(ii): equation (1.4) has at least one positive solution and one sign
changing solution provided 0 < ↵ < q

2 � 3.

The method of proving Theorem 1.1 is variational. Since the embedding
relation in (1.2) is not compact, we can not use the standard variational
argument. However, as observed in Brezis-Nirenberg [1], the extremal func-
tion of inequality (1.2) should play an important role. Jerison et al. [18] has
proven that the following minimum

(1.5) S = inf
u2S1,2

0 (HN )

R

HN |rHu|2d⇠
�R

HN |u|2⇤d⇠
�

2
2⇤

is achieved by

!(x, y, t) =
C0

(t2 + (1 + |x|2 + |y|2)2)(q�2)/4
, (x, y, t) 2 HN ,

where C0 is a suitable positive constant. Moreover positive solutions of

��Hu = |u|
4

q�2u, u 2 S1,2
0 (HN )
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4 J. CHEN AND E. M. ROCHA

can be obtained from !(x, y, t) with a rescaling and are of the form

(1.6) !�,⇠0 = �
q�2
2 !(��(⌧

�1
⇠0 )), � > 0, ⇠0 2 HN .

With suitable modifications of !�,⇠0 , Citti [9] has proven the existence of
one positive solution of (1.1). We will prove the existence of one positive
solution and one sign changing solution of (1.4).

This paper is organized as follows. In section 2, we give some preliminar-
ies. Particular attention is focused on several integral estimates for solutions
of (1.4), which will play an important role in the study of multiple solutions
of (1.4). In section 3, we will prove Theorem 1.1 by studying suitable mini-
mization problems. We emphasize that unlike the method used in Citti [9],
we use neither Palais-Smale sequence, nor Ekeland variational principle.

Notations: Throughout this paper, the norm in S1,2
0 (⌦) is denoted by

k · k. All integrals are taken over ⌦ unless stated otherwise. A ball in HN

with center at ⇠ and radius R is denoted by B(⇠, R). O("�) means that
|O("�)"�� |  C; o("�) means |o("�)"�� | ! 0 as " ! 0, and o(1) is an
infinitesimal value. The ! denotes strong convergence and the * denotes
weak convergence.

2. Preliminaries

We start with a compact embedding relation from S1,2
0 (⌦) into L2(⌦, |⇠|↵Hd⇠),

where L2(⌦, |⇠|↵Hd⇠) is a weighted Sobolev space.

Lemma 2.1. Let ⌦ ⇢ HN be a bounded open domain. Then S1,2
0 (⌦) is

compactly embedded into L2(⌦, |⇠|↵Hd⇠).

Proof. Note that ↵ > 0. We can get the conclusion by a combination of [21,
Lemma 3.2] and [8, Lemma 2.6]. The detailed proof is omitted. ⇤

Next, let !�,⇠0 be defined as in (1.6). !�,0 is simply denoted by !�. Then
from the characterization of S, we may deduce that

(2.1)

Z

HN

|r!�|2d⇠ =
Z

HN

|!�|2
⇤
d⇠ = S

q
2 .

Choose a R > 0 such that B(0, 2R) ⇢ ⌦ and a function � 2 C1
0 (B(0, 2R))

such that �(⇠) ⌘ 1 for ⇠ 2 B(0, R) and �(⇠) ⌘ 0 for ⇠ 2 ⌦\B(0, 2R). Denote

v�(⇠) := �(⇠)!�(⇠).

Lemma 2.2. [11] (Heisenberg polar coordinates) Let f : R+ ! R and
R > 0. Then

Z

B(0,R)
f(|⇠|H)d⇠ =

Z R

0
f(⇢)⇢q�1d⇢, q = 2N + 2,

whenever one of the previous integral exists.
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SIGN CHANGING SOLUTIONS 5

Lemma 2.3. [9] Let v� be defined as above. Then v� satisfies the following
estimates: as �! +1,

(2.2)

Z

⌦
|rHv�|2d⇠ = S

q
2 +O(��(q�2))

and

(2.3)

Z

⌦
|v�|2

⇤
d⇠ = S

q
2 +O(��q).

Moreover, we can prove the following lemma, which will paly an important
role in the proof of Theorem 1.1.

Lemma 2.4. Let 0 < ↵ < q � 4. Then as �! +1,
Z

⌦
|⇠|↵H |v�|2d⇠ = O(��(2+↵)).

Proof. Note that
Z

⌦
|⇠|↵H |v�|2d⇠ =

Z

|⇠|H<2R
|⇠|↵H!2

�(��(⇠))d⇠

= ��2�↵

Z

|⌘|H<2�R
|⌘|↵H!2(⌘)d⌘

= ��2�↵

 

Z

|⌘|H<1
|⌘|↵H!2(⌘)d⌘ +

Z

1<|⌘|H<2�R
|⌘|↵H!2(⌘)d⌘

!

 C��2�↵

✓

1 +

Z 2�R

1
⇢4�q+↵�1d⇢

◆

= O((��1)2+↵) +O((��1)q�2) for � large enough.

Therefore 0 < ↵ < q � 4 implies that for � large enough,
Z

⌦
|⇠|↵H |v�|2d⇠ = O(��(2+↵)).

The proof is complete. ⇤

Next, we prove a regularity result for the solutions of (1.4). The idea is
originated from Brezis-Kato[5], see also Struwe [22]. The following lemma
will play a key role in the process of getting sign changing solutions.

Lemma 2.5. If u 2 S1,2
0 (⌦) is a solution of (1.4), then u 2 Lr(⌦) for each

r 2 (1,+1).

Proof. Since u is a weak solution of (1.4), we test the equation with a test
function ' = umin{|u|2s,m2}, where s � 0 and m > 1. Then we have that
Z

rHurH(umin{|u|2s,m2})d⇠ =

Z

|u|2⇤ min{|u|2s,m2}d⇠

+µ

Z

|⇠|↵Hu2min{|u|2s,m2}d⇠.
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6 J. CHEN AND E. M. ROCHA

For each su�ciently large K > 0, we deduce that
Z

|rH(umin{|u|s,m})d⇠

 (2s+ 2)

Z

|u|2⇤ min{|u|2s,m2}d⇠ + C

Z

u2min{|u|2s,m2}d⇠

= (2s+ 2)

Z

|u|K
|u|2⇤ min{|u|2s,m2}d⇠ + C

Z

u2min{|u|2s,m2}d⇠

(2s+ 2)

Z

|u|>K
|u|2⇤ min{|u|2s,m2}d⇠

 (2s+ 2)meas(⌦)K2⇤+2s + C

Z

u2min{|u|2s,m2}d⇠

(2s+ 2)

 

Z

|u|>K
|u|2⇤d⇠

!

2⇤�2
2⇤ ✓

Z

(umin{|u|2s,m2})2⇤d⇠
◆

2
2⇤

 C +
1

2

Z

|rH(umin{|u|s,m})|2d⇠ + C

Z

u2min{|u|2s,m2}d⇠,

which implies that
Z

|rH(umin{|u|s,m})d⇠  4(s+1)meas(⌦)K2⇤+2s+C1

Z

u2min{|u|2s,m2}d⇠.

Letting m ! +1, we obtain that
Z

|rH(u|u|s)|2d⇠  4(s+ 1)meas(⌦)K2⇤+2s + C1

Z

|u|2(s+1)d⇠.

Now iterate, letting s0 = 0, sj + 1 = (sj�1 + 1) q
q�2 , if j � 1, to obtain the

conclusion. ⇤

3. Existence of a positive solution

In this section, we will prove the existence of at least one positive solution
of (1.4). The 0 < µ < µ1 will be assumed throughout this section. Define
another functional

I(u) =

Z

|rHu|2d⇠ � µ

Z

|⇠|↵H |u|2d⇠ �
Z

|u|2⇤d⇠, u 2 S1,2
0 (⌦)

and denote the Nehari set

M =
n

u 2 S1,2
0 (⌦)\{0} : I(u) = 0

o

.

Define the following minimization problem

(3.1) c1 = inf
u2M

L(u).

Next, we will prove that c1 is achieved and a minimizer of (3.1) is a
positive solution of (1.4). The following several lemmas will be useful in
what follows.
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SIGN CHANGING SOLUTIONS 7

Lemma 3.1. For any u 2 S1,2
0 (⌦)\{0}, there is a unique ✓(u) > 0 such that

✓(u)u 2 M. Moreover, if I(u) < 0, then 0 < ✓(u) < 1.

Proof. For any u 2 S1,2
0 (⌦)\{0} and ✓ > 0,

L(✓u) =
✓2

2

Z

�

|rHu|2 � µ|⇠|↵H |u|2
�

d⇠ � ✓2
⇤

2⇤

Z

|u|2⇤d⇠.

Hence

@

@✓
L(✓u) = ✓

✓

Z

�

|rHu|2 � µ|⇠|↵H |u|2
�

d⇠ � ✓2
⇤�2

Z

|u|2⇤d⇠
◆

,

which implies that there is a unique

✓(u) =

✓

Z

�

|rHu|2 � µ|⇠|↵H |u|2
�

d⇠

◆

1
2⇤�2

✓

Z

|u|2⇤d⇠
◆

1
2�2⇤

such that ✓(u)u 2 M. Clearly ✓(u) > 0 since 0 < µ < µ1. Moreover if
I(u) < 0, i.e.,

R �

|rHu|2 � µ|⇠|↵H |u|2
�

d⇠ <
R

|u|2⇤d⇠, then we know that
0 < ✓(u) < 1. ⇤

Lemma 3.2. Let (un)n2N ⇢ M be such that un * u weakly in S1,2
0 (⌦) and

I(un) ! d, but un does not converge strongly to u in S1,2
0 (⌦). Then one of

the following conclusions holds:

: (1) d � 1
qS

q
2 provided u = 0;

: (2) d > L(✓(u)u) provided u 6= 0 and I(u) < 0;
: (3) d � L(✓(u)u) + 1

qS
q
2 in the case that u 6= 0 and I(u) � 0.

Proof. The idea is originated from Hirano et al.[17]. Note that un * u in
S1,2
0 (⌦), by Lemma 2.1,

R

|⇠|↵H |un � u|2d⇠ ! 0 as n ! 1. We may assume
that as n ! 1,

Z

|rH (un � u) |2d⇠ ! a2 and

Z

|un � u|2⇤d⇠ ! b2
⇤
.

Since un does not converge strongly to u in S1,2
0 (⌦), we have that a 6= 0.

(1) In the case of u = 0, we deduce from Brezis-Lieb lemma that

0 = I(un) = I(u) +

Z

|rH (un � u) |2d⇠ �
Z

|un � u|2⇤d⇠ + o(1)

=

Z

|rH (un � u) |2d⇠ �
Z

|un � u|2⇤d⇠ + o(1).

Combining this with a 6= 0, one deduces that b 6= 0. It is deduced from the
Sobolev inequality that a2 = b2

⇤ � S
q
2 . Therefore

d � 1

2
a2 � 1

2⇤
b2

⇤ � 1

q
S

q
2 .

(2) When u 6= 0 and I(u) < 0, we denote J(✓) = L(✓u),

�(✓) =
a2

2
✓2 � b2

⇤

2⇤
✓2

⇤
and �(✓) = J(✓) + �(✓).
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8 J. CHEN AND E. M. ROCHA

From Lemma 3.1, one has a ✓(u) with 0 < ✓(u) < 1 such that ✓(u)u 2 M.
Since J 0(1) < 0 and �0(1) = 0, we have �0(1) � 0 and then a2 � b2

⇤ � 0.
Hence from

�0(✓) = a2✓ � b2
⇤
✓2

⇤�1 > ✓(1� ✓2
⇤�2)b2

⇤
,

one deduces that �0(✓) > 0 for 0 < ✓ < 1. So we have that �(✓(u)) > 0.
Therefore

d = �(1) � �(✓(u)u) = L(✓(u)u) + �(✓(u)) > L(✓(u)u).

This proves the second statement of the Lemma.
(3) Now we prove the third statement. Firstly we consider the case of

u 6= 0 and I(u) = 0. Similar to those proofs in case (1), we have that b 6= 0
and a2 = b2

⇤ � S
q
2 . Brezis-Lieb lemma implies that

d+ o(1) = L(un)

= L(u) +
1

2

Z

|rH (un � u) |2d⇠ � 1

2⇤

Z

|un � u|2⇤d⇠ + o(1)

� L(✓(u)u) +
1

q
S

q
2 ,

where we have used the fact that u 6= 0 and I(u) = 0 imply ✓(u) = 1.
Secondly we prove the case of u 6= 0 and I(u) > 0. Noticing that ✓(u) > 1,

we claim that b 6= 0. Indeed if b = 0, then from �0(1) = 0, we have
that J 0(1) = �a2 < 0, which contradicts ✓(u) > 0 and J 0(✓) > 0 for all
0 < ✓ < ✓(u). So we have that b 6= 0. Denoting ✓⇤ = (a2/b2

⇤
)1/(2

⇤�2),
we know that � attains its maximum at ✓⇤ and �0(✓) > 0 for 0 < ✓ < ✓⇤
and �0(✓) < 0 for ✓ > ✓⇤. Moreover �(✓⇤) = 1

qS
q
2 . Next we claim that

✓⇤  ✓(u). Suppose that this is not the case, i.e., 1 < ✓(u) < ✓⇤. From
0 > �0(✓) = J 0(✓) + �0(✓) for all ✓ > 1, we have that J 0(✓) < ��0(✓) < 0 for
✓ 2 (1, ✓⇤), which contradicts 1 < ✓(u) < ✓⇤ and J 0(✓(u)) = 0. So we have
proven that ✓⇤  ✓(u). Hence we obtain that

d = �(1) � �(✓⇤) = L(✓⇤u) + �(✓⇤) � L(✓(u)u) +
1

q
S

q
2 .

These complete the proof of the third statement and hence we have proven
Lemma 3.2. ⇤
Lemma 3.3. If 0 < ↵ < q � 4, then 0 < c1 <

1
qS

q
2 .

Proof. It is easy to see that c1 > 0. To prove that c1 < 1
qS

q
2 , the idea is

to find an element in M such that the value of L at this element is strictly
less than 1

qS
q
2 . As observed by Brezis-Nirenberg [1], the extremal function

!(x, y, t) of inequality (1.3) will play an important role. From Lemma 3.1,
we know that for v�, there is a

✓(v�) =

✓

Z

�

|rHv�|2 � µ|⇠|↵H |v�|2
�

d⇠

◆

1
2⇤�2

✓

Z

|v�|2
⇤
d⇠

◆

1
2�2⇤
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SIGN CHANGING SOLUTIONS 9

such that ✓(v�)v� 2 M. We claim that there is �0 > 0 such that

L(✓(v�0)v�0) <
1

q
S

q
2 .

Indeed, note that from the definition of v�,

L(✓(v�)v�) =

✓

1

2
� 1

2⇤

◆

Z

|✓(v�)v�|2
⇤
d⇠

=

✓

1

2
� 1

2⇤

◆

(✓(v�))
2⇤
Z

|v�|2
⇤
d⇠

=
1

q

✓

Z

�

|rHv�|2 � µ|⇠|↵H |v�|2
�

d⇠

◆

2⇤
2⇤�2

✓

Z

|v�|2
⇤
d⇠

◆

2
2�2⇤

d⇠

=
1

q

✓

Z

�

|rHv�|2 � µ|⇠|↵H |v�|2
�

d⇠

◆

q
2
✓

Z

|v�|2
⇤
d⇠

◆

2�q
2

=
1

q

⇣

S
q
2 +O((��1)q)�O((��1)2+↵)

⌘

q
2
⇣

S
q
2 +O((��1)q�2)

⌘

2�q
2

=
1

q
S

q
2 +O((��1)q�2)�O((��1)2+↵)

as � large enough. Therefore we know that there is a �0 > 0 su�ciently
large such that

L(✓(v�0)v�0) <
1

q
S

q
2 .

This completes the proof of the lemma. ⇤

Theorem 3.4. If 0 < µ < µ1 and 0 < ↵ < q � 4, then there is a positive
function  1 2 S1,2

0 (⌦) such that c1 = L( 1) and  1 is a positive solution of
(1.4).

Proof. Let (un)n2N ⇢ M be such that L(un) ! c1 as n ! 1. From Lemma
3.3, one knows that 0 < c1 <

1
qS

q
2 . Next, from (un)n2N ⇢ M we have that

Z

�

|rHun|2 � µ|⇠|↵H |un|2
�

d⇠ =

Z

|un|2
⇤
d⇠.

Note also that for n large enough,

(3.2)

c1 + o(1) = L(un)

=
1

2

Z

�

|rHun|2 � µ|⇠|↵H |un|2
�

d⇠ � 1

2⇤

Z

|un|2
⇤
d⇠

=
1

q

Z

�

|rHun|2 � µ|⇠|↵H |un|2
�

d⇠

� 1

q

✓

1� µ

µ1

◆

Z

|rHun|2d⇠.
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On the other hand, using Sobolev inequality, one has that
✓

1� µ

µ1

◆

Z

|rHun|2d⇠ 
Z

�

|rHun|2 � µ|⇠|↵H |un|2
�

d⇠

=

Z

|un|2
⇤
d⇠ 

✓

S�1
Z

|rHun|2d⇠
◆

2⇤
2

.

Therefore

(3.3)

✓

Z

|rHun|2d⇠
◆

2⇤
2 �1

� S
2⇤
2

✓

1� µ

µ1

◆

.

Then (3.2) and (3.3) imply that there are positive constants C1, C2 such
that

(3.4) C1 
Z

|rHun|2d⇠  C2.

Going if necessary to a subsequence, we may assume that (un)n2N con-
verges weakly to v in S1,2

0 (⌦). Assume that (un)n2N does not converge

strongly to v in S1,2
0 (⌦), we obtain from Lemma 3.2 that one of the follow-

ing three cases occurs:

(i): if v = 0, then c1 � 1
qS

q
2 ;

(ii): if v 6= 0 and I(v) < 0, then c1 > L(✓(v)v);
(iii): if v 6= 0 and I(v) � 0, then c1 � L(✓(v)v) + 1

qS
q
2 .

Since in the case of v 6= 0, ✓(v)v 2 M implies that L(✓(v)v) � c1. We
obtain from the fact of c1 <

1
qS

q
2 that any one of the above-mentioned three

cases will not occur. This means that (un)n2N converges strongly to v in
S1,2
0 (⌦). It is deduced from (3.4) that v 6= 0 and v 2 M. Hence L(v) = c1.

Using Lagrange multiplier rule, one has a ✓̃ 2 R such that

L0(v) = ✓̃I 0(v).

From hL0(v), vi = I(v) = 0 and

hI 0(v), vi = 2

Z

⌦

�

|rHv|2 � µ|⇠|↵H |v|2
�

d⇠�2⇤
Z

|v|2⇤d⇠ = (2�2⇤)

Z

|v|2⇤d⇠ < 0,

one obtains that ✓̃ = 0 and v is a nontrivial solution of (1.4). Note that if
(un)n2N ⇢ M and L(un) ! c1, then (|un|)n2N ⇢ M and L(|un|) ! c1, we
may assume that v � 0. Hence the proof is complete by choosing  1 ⌘ v. ⇤

4. Existence of sign changing solution

In this section, we prove that (1.4) has also at least one sign changing so-
lution. Note that HN is identified with R2N+1, we know that if u 2 S1,2

0 (⌦),

then u+, u� 2 S1,2
0 (⌦), where u+ = max{u(⇠), 0} and u� = max{�u(⇠), 0}.

Denote

M⇤ = {u = u+ � u� 2 S1,2
0 (⌦) : u+ 2 M and u� 2 M}
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and set

(4.1) c2 = inf
u2M⇤

L(u).

Next, we will prove that c2 is achieved and a minimizer is a sign changing
solution of (1.4). To attain this goal, we need several additional lemmas.

Lemma 4.1. If 0 < µ < µ1 and 0 < ↵ < q
2 � 3, then c2 < c1 +

1
qS

q
2 .

Proof. The strategy is to find a suitable element inM⇤ such that the value of
L at this element is strictly less than c1+

1
qS

q
2 . Let  1 be the positive solution

obtained in the previous section, we claim that there are a0 > 0 and b0 2 R
such that a0 1+b0v� 2 M⇤. Indeed, denote ⇣(s) =  1+sv� with s 2 R, and
we define s1 2 [�1,1) and s2 2 (�1,1] by s1 = inf{s 2 R : (⇣(s))+ 6=
0} and s2 = inf{s 2 R : (⇣(s))� 6= 0}. Since ✓((⇣(s))+)� ✓((⇣(s))�) ! 1
as s ! s1+0 and ✓((⇣(s))+)� ✓((⇣(s))�) ! �1 as s ! s2+0, there exists
s0 2 (s1, s2) such that ✓((⇣(s0))+) = ✓((⇣(s0))�), which implies that there
are a0 > 0 and b0 2 R such that a0 1 + b0v� 2 M⇤.

Next, we claim that there is �⇤ > 0 such that

(4.2) sup
a>0, b2R

L(a 1 + bv�⇤) < c1 +
1

q
S

q
2 .

Note that

L(a 1 + bv�) =
1

2

Z

|rH(a 1 + bv�)|2d⇠ �
µ

2

Z

|⇠|↵H |a 1 + bv�|2d⇠

� 1

2⇤

Z

|a 1 + bv�|2
⇤
d⇠.

We can infer that there is R0 > 0 such that L(a 1 + bv�)  0 for all a � 0
and b 2 R with a2 + b2 � R0 and for all � > 1. Hence it is su�cient to
estimate supa>0, b2R L(a 1 + bv�) in the case that a2 + b2  R0. Since  1 is
a solution of (1.4), we have that as � large enough,

(4.3)

L(a 1 + bv�)

= L(a 1) + L(bv�) + ab

Z

(rH 1rHv� � µ|⇠|↵H 1v�) d⇠

+
1

2⇤

Z

⇣

|a 1|2
⇤
+ |bv�|2

⇤ � |a 1 + bv�|2
⇤
⌘

d⇠

 L(a 1) + L(bv�) + ab

Z

| 1|
4

q�2 1v�d⇠

+C

Z

⇣

| 1|2
⇤�1v� + |v�|2

⇤�1 1

⌘

d⇠

 L( 1) +
1

q
S

q
2 �O((��1)2+↵)

+C

Z

| 1|2
⇤�1v�d⇠ + C

Z

 1v
2⇤�1
� d⇠,

where we have used the fact that
Z

(rH 1rHv� � µ|⇠|↵H 1v�) d⇠ =

Z

| 1|
4

q�2 1v�d⇠.
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Next, choosing �1 2 (1, q
q�2), we know from Lemma 2.5 that

Z

| 1|2
⇤�1v�d⇠ 

✓

Z

v�1� d⇠

◆

1
�1
✓

Z

| 1|
(2⇤�1)�1

�1�1

◆

�1�1
�1

holds. Since
Z

⌦
v�1� d⇠ =

Z

|⇠|H<2R
(!�(��(⇠)))

�1 d⇠ = �
q�2
2 �1�q

Z

|⌘|H<2�R
!�1(⌘)d⌘

= �
q�2
2 �1�q

 

Z

|⌘|H<1
!�1(⌘)d⌘ +

Z

1<|⌘|H<2�R
!�1(⌘)d⌘

!

= �
q�2
2 �1�q

✓

C +

Z 2�R

1

⇢q�1d⇢

⇢(q�2)�1

◆

= O((��1)
q�2
2 �1) as � su�ciently large,

we obtain that

(4.4)

Z

| 1|2
⇤�1v�d⇠ = o((��1)2+↵).

Similarly from 0 < ↵ < q
2 � 3, we can choose a �2 > 1 such that as �

su�ciently large,

(4.5)

Z

 1v
2⇤�1
� d⇠ = O((��1)

q
�2

� q+2
2 ) = o((��1)2+↵).

It is now deduced from (4.3), (4.4) and (4.5) that there is a �⇤ > 0 such that
(4.2) holds. The proof is complete. ⇤
Lemma 4.2. There exists a  2 2 M⇤ such that L( 2) = c2.

Proof. Let (un)n2N ⇢ M⇤ be such that L(un) ! c2. Then (un)n2N ⇢ M⇤
implies that we have that

Z

�

|rHu+n |2 � µ|⇠|↵H |u+n |2
�

d⇠ =

Z

|u+n |2
⇤
d⇠

and
Z

�

|rHu�n |2 � µ|⇠|↵H |u�n |2
�

d⇠ =

Z

|u�n |2
⇤
d⇠.

Using a proof similar to those in the proof of (3.2), (3.3) and (3.4), we can
obtain that

0 < inf
n

ku+n k  sup
n

ku+n k < 1, 0 < inf
n

ku�n k  sup
n

ku�n k < 1.

Therefore we may assume that as n ! 1, L(u+n ) ! d1 and L(u�n ) ! d2,
c2 = d1 + d2 and that (u+n )n2N and (u�n )n2N converge weakly to u+ and u�,
respectively. If u+ = 0 or u� = 0, by Lemma 3.2, one has c2 � c1 +

1
qS

q
2 ,

which contradicts Lemma 4.1. Thus we have that both u+ 6= 0 and u� 6= 0.
Using Lemma 3.1 again, we have one of the following:

(I1): (u+n )n2N converges strongly to u+ in S1,2
0 (⌦);

(I2): if I(u+) < 0, then d1 > L(✓(u+)u+);
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(I3): if I(u+) � 0, then d1 � L(✓(u+)u+) + 1
qS

q
2 ;

and we also have one of the following:

(II1): (u�n )n2N converges strongly to u� in S1,2
0 (⌦);

(II2): if I(u�) < 0, then d2 > L(✓(u�)u�);
(II3): if I(u�) � 0, then d2 � L(✓(u�)u�) + 1

qS
q
2 .

Next, we will prove that only the case (I1) and the case (II1) hold. Indeed,
if (I1) and (II2) hold, then from u+ � ✓(u�)u� 2 M⇤, we have that

c2  L(u+ � ✓(u�)u�) < d1 + d2 = c2,

which is a contradiction. If (I1) and (II3) hold, then

c1 +
1

q
S

q
2 < L(u+ � ✓(u�)u�) +

1

q
S

q
2 < d1 + d2 = c2,

which contradicts Lemma 4.1. Similarly, one can prove that the cases (II1)
and (I2) do not hold, and the cases (II1) and (I3) do not hold either. If (I2)
and (II2) hold, then from ✓(u+)u+ � ✓(u�)u� 2 M⇤, we have that

c2  L(✓(u+)u+ � ✓(u�)u�) < d1 + d2 = c2,

which is again a contradiction. If (I2) and (II3) hold, then we have that
✓(u+)u+ � ✓(u�)u� 2 M⇤ and hence

c1 +
1

q
S

q
2 < L(✓(u+)u+ � ✓(u�)u�) +

1

q
S

q
2 < d1 + d2 = c2,

which again contradicts Lemma 4.1. Similarly, one can prove that the cases
(II2) and (I3) do not hold. Finally, if the cases (I3) and (II3) hold, then

c1 +
2

q
S

q
2 < L(✓(u+)u+ � ✓(u�)u�) +

2

q
S

q
2 < d1 + d2 = c2,

which also contradicts Lemma 4.1. Therefore we have proven that only the
cases (I1) and (II1) hold. Hence u+, u� 2 M. Choosing  2 ⌘ u+ � u�, we
have that  2 2 M⇤ and L( 2) = c2. ⇤

In the following, we are going to prove the  2 is a sign changing solution of
(1.4). Note that M⇤ is usually not a manifold, the usual Lagrange multiplier
rule may not be applied.

Theorem 4.3. If 0 < µ < µ1 and 0 < ↵ < q
2 � 3, then (1.4) has at least

one sign changing solution.

Proof. By Lemma 4.2, we have that  2 2 M⇤ is sign changing and L( 2) =
c2. Arguing by a contradiction, we assume that  2 is not a critical point of
L, i.e., L0( 2) 6= 0. Note that for any v 2 M, I 0(v) 6= 0 because

hI 0(v), vi = 2

Z

⌦

�

|rHv|2 � µ|⇠|↵H |v|2
�

d⇠ � 2⇤
Z

|v|2⇤d⇠

= (2� 2⇤)

Z

|v|2⇤d⇠ < 0.
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Define

�(u) = L0(u)� hL0(u),
I 0(u)

kI 0(u)ki
I 0(u)

kI 0(u)k , u 2 M.

Then we infer that �( 2) 6= 0. Let � 2 (0,min{k +
2 k, k 

�
2 k}/3) such that

k�(v) � �( 2)k  1
2k�( 2)k for each v 2 M with kv �  2k  2�. Let

� : M ! [0, 1] be a Lipschitz mapping such that

�(v) =

⇢

1, for v 2 M with kv �  2k  �,
0, for v 2 M with kv �  2k � 2�.

Let ⌘ : [0, s0]⇥M ! M be such that the solution of the di↵erential equation
⌘(0, v) = v,

d⌘(s, v)

ds
= ��(⌘(s, v))�(⌘(s, v))

for (s, v) 2 [0, s0]⇥M, where s0 is some positive number. We set

r(⌧) = ✓((1� ⌧) +
2 � ⌧ �

2 )((1� ⌧) +
2 � ⌧ �

2 )

and &(⌧) = ⌘(s0, r(⌧)) for 0  ⌧  1. Here we recall that  +
2 = max{ 2, 0}

and  �
2 = max{� 2, 0}. If ⌧ 2 (0, 12) [ (12 , 1), we have that

L(&(⌧))  L(r(⌧)) = L(r(⌧)+) + L(r(⌧)�) < L( +
2 ) + L( �

2 ) = L( 2)

and L(&(12)) = L(r(12)) = L( 2), i.e., L(&(⌧)) < L( 2) for all ⌧ 2 (0, 1).
Since ✓(&(⌧)+)�✓(&(⌧)�) ! �1 as ⌧ ! 0+ and ✓(&(⌧)+)�✓(&(⌧)�) ! +1
as ⌧ ! 1 � 0, there exists ⌧1 2 (0, 1) satisfying ✓(&(⌧1)+) = ✓(&(⌧1)�). So
we have &(⌧1) 2 M⇤ and hence L(&(⌧1)) < L( 2), which is a contradiction.
Thus we have proven that L0( 2) = 0. Hence  2 is a sign changing solution
of (1.4). ⇤

Proof of Theorem 1.1: The first statement of Theorem 1.1 follows direct-
ly from Theorem 3.4. The second statement of Theorem 1.1 follows from
Theorem 4.3 and Theorem 3.4. The proof is complete.

Remark. We have proven that for 0 < µ < µ1 and 0 < ↵ < q
2 � 3, (1.4)

possesses at least one positive solution and at least one sign changing solu-
tion. Since (1.4) is odd with respect to u, we have obtained that (1.4) has at
least one pair of fixed sign solutions and at least one pair of sign changing
solutions.
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