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The increasing number of the sequenced genomes has created new
challenges in several scientific domains, namely statistics, optimization
and computer sciences. Various numerical transformations related to the
sequenced genomes (e.g., frequency of each nucleotide, association be-
tween consecutive genomic symbols) have been proposed in order to take
advantage of statistical methodologies available for quantitative data. It is
expected that such numerical data sets contain useful information about
mathematical properties of DNA sequences. An important issue asso-
ciated with data sets where each individual is characterized by a high-
dimensional vector of variables consists in the identification of patterns or
homogeneous groups. Since high dimensionality turns the visualization
and analysis of data into a complex problem, the space reduction and
the features subset selection techniques are aimed to facilitate the visual-
ization and capture the important and relevant relationships existing in
data.

To detect the existence of patterns in a data matrix (n objects × p

variables), it is often desirable to partition the data sets according to
some similarity criteria. This task is related to the data mining tech-
nique of partitioning data sets into groups of objects with some similar
properties (clusters) called clustering. There exists a variety of clustering
techniques designed for several data types, applied in many areas such
as pattern recognition, image segmentation and bioinformatics [1,4,5].
Clustering problems are usually formulated as mixed-integer problems, or
(0, 1)-semidefinite and semi-infinite programming problems that in turn
can be reduced to nonsmooth and nonconvex nonlinear problems [2,4].

While dimensionality reduction of objects is usually achieved by clus-
tering techniques, the dimensionality reduction of the variable space can
be provided applying statistical techniques such as Principal Component
Analysis (PCA), to detection of a lower number of uncorrelated vari-
ables (components) able to explain the maximum variability of the data.
The reduction of objects and variables can be obtained applying the two
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techniques sequentially. Recently, a new technique called Clustering and
Disjoint Principal Component Analysis (CDPCA) was suggested in [3] to
solve the clustering of objects and the partition of variables using PCA
simultaneously. This technique permits to cluster objects along a set of
centroids and to partition of variables along a reduced set of components,
in order to maximize the between cluster deviance of the components in
the reduced space. The model obtained is a quadratic mixed continuous
and integer optimization problem. In [3], this model is solved by an alter-
nating least-squares (ALS) algorithm that can be considered as an heuris-
tic that divides the model solving iteratively in four steps, modifying in
each step certain parameters of the data. The methods of Mixed-Integer
Programming are used on the basic steps of the algorithm. In [3], the
CDPCA algorithm was tested for two data sets, one with 20 objects and
6 variables and other with 103 objects and 12 variables.

The main objective of this work is to test the ability of this new tech-
nique on biological data sets to make possible visual representation of
relevant characteristics for data interpretation. For this purpose, we im-
plemented CDPCA in R language, which is an open source software widely
used in statistics, with a lot of specific packages for efficient data treatment
[6].

Let us introduce the notations that will be used.
— X = [xij ] is the data matrix with I objects and J variables (variables
are supposed to be normalized);
— P , Q are the desirable numbers of clusters of objects and variables,
respectively;
— E is the I × J error matrix;
— U = [uip] is a I ×P binary matrix and row stochastic defining a parti-
tion of objects into P clusters where uip = 1 if the i-th object belongs to
cluster p, otherwise, uip = 0;
— V = [vjq] is a J ×Q binary matrix and row stochastic defining a parti-
tion of variables into Q clusters where vjq = 1 if the j-th variable belongs
to cluster q, otherwise, vjq = 0;
— A is the J×Q matrix of the coefficients of the linear combination, such
that rank(A) = Q and each row (variable) contributes to a single column
(component);

— Y = [yiq =
∑J

j=1
ajqxij ] is the I × Q component score matrix where

yjq is the value of the i-th object for the q-th component yq (common
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information of a subset of variables);
— X̄ is the P × J matrix of individual centroids in the space of the ob-
served variables;
— Ȳ is the P ×Q matrix of individual centroids in the reduced space.

The model associated to CDPCA minimizes the norm of the error
matrix

E = X − UȲ AT

w.r.t. parameters representing U , Ȳ and A subject to certain constraints.
According to [3], A can be decomposed in the form A = BV , where B is
a J × J diagonal matrix of the form

B =

Q
∑

q=1

diag(vq)diag(cq),

where vq is the vector corresponding to column q in matrix V and cq is
the eigenvector associated to the largest eigenvalue of the matrix

diag(vq)X̄
TUTUX̄diag(vq).

We can formulate the problem as follows.

max
U,X̄,B,V

‖UX̄BV ‖2 = max
v,c,x̄,u

P
∑

p=1

Q
∑

q=1





J
∑

j=1

vjqcqx̄pj





2
I

∑

i=1

uip

s. t.

P
∑

p=1

uip = 1, uip ∈ {0, 1} , i = 1, ..., I; p = 1, ..., P,

Q
∑

q=1

vjq = 1, vjq ∈ {0, 1} , j = 1, ..., J ; q = 1, ..., Q, (P )

J
∑

j=1

c2jq = 1, q = 1, ..., Q,

J
∑

j=1

cjqcjr = 0, q = 1, ..., Q− 1; r = q + 1, ..., Q.

The alternating least-squares algorithm suggested in [3] alternates four
basic steps: update V (allocation of variables), update B (the PCA step),
update U (allocation of objects) and update X̄ (centroid matrix), and it
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is summarized in the following box. Here, the estimates of the matrices
are denoted by .̂

ALS Algorithm for CDPCA

input: numeric data matrix X and tolerance ε

Generate (e.g. randomly) Û and V̂ , considering the constraints of
problem (P);

Compute ˆ̄X =
(

ÛT Û
)

−1

ÛTX. Set k=1;

while Fk+1(B̂, Û , ˆ̄X, V̂ )− Fk(B̂, Û , ˆ̄X, V̂ ) < ε:

Update B: Given ˆ̄X, Û, V̂ , calculate B̂ =
Q
∑

q=1

diag(vq)diag(cq).

Update V : Given B̂, ˆ̄X, Û , for j = 1, ..., J , set:

v̂jq =

{

1, if F (ĉq, Û , ˆ̄X, [vjq]) = max
r=1,...,Q

{

F (ĉr, Û , ˆ̄X, [vjr = 1])
}

0, otherwise.

where F (ĉq, Û , ˆ̄X, V̂ ) = ‖Û ˆ̄XB̂V̂ ‖2.

Update U : Given B̂, ˆ̄X, V̂ , for i = 1, ...I, set:

ûip =

{

1, if ‖V̂ T B̂xi − V̂ T B̂ ˆ̄xp‖
2 = min

s=1,...,P

{

‖V̂ T B̂xi − V̂ T B̂ ˆ̄xs‖
2

}

0, otherwise.

Update X̄: Given B̂, Û , V̂ , calculate ˆ̄X =
(

ÛT Û
)

−1

ÛTX.

Compute Fk(B̂, Û , ˆ̄X, V̂ ) = ‖Û ˆ̄XB̂V̂ ‖2.

do k = k + 1;

The algorithm stops when the difference between consecutive compu-
tations of the values of the objective function of problem (P) is smaller
than a specified threshold ε > 0. According to [3], since F (B,U, X̄, V ) is
bounded above, the algorithm converges to a stationary point, which is
a local maximum of problem (P). To guarantee that the algorithm finds
the global minimum, the authors of the heuristic in [3] suggest to apply
the algorithm repetitively for different initial values of matrices U and V ,
that are randomly chosen.

In order to test the ability of the CDPCA to reveal and visualize
biologically meaningful patterns in a 2-dimensional reduced space, we have
implemented the algorithm using R and carried out an experimental study
involving several real data sets extracted from molecular biology domain.
Besides the matrices U , V , A, the implementation of CDPCA suggested in
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this work returns a pseudo-confusion matrix and draws two scatterplots
where the data are displayed in the 2-dimensional reduced space, one
where the objects are labelled according to the real classification and other
with the classification found by CDPCA. The pseudo-confusion matrix
indicates the number of objects introduced in each cluster (the real and
that found by CDPCA).

On the basis of the realized numerical tests we conclude that the im-
plementation of the CDPCA algorithm in R is efficient for the tested data
sets. The main advantage of this technique is that each component is
characterized by a disjoint set of variables. This offers a promising ap-
proach for the clustered visual representation of data. On the other hand,
it permits to overcome the difficulties on the interpretability of the data in
the reduced space. The proposed heuristic can be improved, since we can
update the parameters of problem (P) simultaneously using optimization
methods that efficiently use the structure and properties of this problem.
This is a subject of further research.
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