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Abstract
This paper is devoted to study regularity of Semidefinite Programming (SDP) problems. Cur-

rent methods for SDP rely on assumptions of regularity such as constraint qualifications and well-
posedness. Absence of regularity may compromise characterization of optimality and algorithms may
present numerical difficulties. Prior that solving problems, one should evaluate the expected effi-
ciency of algorithms. Therefore, it is important to have simple procedures that verify regularity.
Here we use an algorithm to test regularity of linear SDP problems in terms of Slater’s condition.
We present numerical tests using problems from SDPLIB and compare our results with those from
others available in literature.
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1 Introduction
Semidefinite Programming (SDP) deals with problems of minimization of a linear objective function
subject to constraints in the form of linear matrix inequalities and can be considered as a generalization
of Linear Programming (LP), where real matrices are used instead of real variables. SDP is an active
area of Optimization and has various applications in control and approximation theory, sensor network
localization, principal component analysis, etc. (see [1, 18] for further details).

The methods developed to solve SDP problems, the duality theory, and most of optimality conditions
are based on certain assumptions of regularity [6, 12, 18]. In the absence of regularity, characterization
of optimality of feasible solutions may fail. With respect to algorithms, the regularity of a problem is a
condition that guarantees their stability and efficiency [6].

In the literature, different concepts are being associated to the notion of regularity. Usually, an
optimization problem is considered to be regular if certain constraint qualification (CQ) is satisfied ([9]).
The most efficient optimality conditions are formulated under the fulfilment of some CQ. The regularity
conditions play also an important role in deriving duality relations, sensitivity/stability analysis and
convergence of computational methods [11]. One of the most stronger regularity conditions is the Slater
CQ (see [4, 12]) that consists in the nonemptiness of the interior of the feasible set.

Another kind of regularity in Optimization and Numerical Methods is known as well-posedness of a
problem. There exist different definitions of well-posedness. According to [5, 13], an optimization problem
is well-posed in the sense of Hadamard if it has a unique solution that depends continuously on data.
According to [5, 16], a problem is well-posed in the sense of Tikhonov if it has a unique solution that is
stable, meaning that small perturbations of data cause small variations on solution.

In [13], it is shown that under the Slater CQ, Hadamard’s well-posedness is equivalent to that of
Tikhonov. In [13], other definitions of well-posedness are presented as well (Levitin-Polyak well-posedness
and strong well-posedness). It is noticed, in particular, that "in finite dimensions uniqueness of the
solution to a convex minimizing problem ... is enough to guarantee its Tikhonov well-posedness ... This
is no longer valid in infinite dimensions ...". Theoretical study of well-posedness of certain optimization
problems is a rather difficult issue. In practice, well-posedness is often verified in terms of convergence
of certain minimizing sequences of some optimization problems, that is not always easy to verify.

A problem that is not well-posed is called ill-posed. Ill-posed problems are quite common in ap-
plications and, according to [10], the ill-posedness may occur due to the lack of precise mathematical
formulations.

In [7, 10], a practical characterization of well-posedness of SDP problems is proposed and it is based
on a so called condition number defined by Renegar in [15]. The Renegar’s condition number is defined
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as a scale-invariant reciprocal of a problem instance to be infeasible. A SDP problem is considered to
be well-posed if its Renegar condition number is finite, and ill-posed, otherwise. In [10], the calculus of
this condition number is connected with upper bounds for the optimal values of SDP problems. The
approach proposed in [10] for characterization of regularity of a SDP problem is constructive and is based
on obtaining rigorous bounds and also error bounds for the optimal values, by properly postprocessing
the output of a SDP solver. The main feature of this approach is that computation of the rigorous bounds
takes into account all rounding errors and the possible small errors presented in the input data.

There exist some studies dedicated to interrelation between regularity and well-posedness of opti-
mization problems. In [13] different notions of well-posedness of general convex problems are studied and
compared; in [8, 10, 17] the relationship between well-posedness and regularity in the sense of Slater is
considered for SDP problems.

In this paper, we apply a simple algorithmic procedure suggested in [14] to verify the Slater CQ for
problems from SDPLIB, a linear SDP database [3]. We will compare the obtained results with tests of
well-posedness described in [7, 10].

The paper is structured as follows. The basic notions are presented in Section 2. The study of different
notions of regularity of linear SDP problems and the description of the algorithm to test the Slater CQ
for these problems are carried out in Section 3. The numerical results are presented in Section 4. The
final section is devoted to the conclusions of our work and future research.

2 Linear Semidefinite Programming Problem and its Semi-Infinite
presentation

In what follows, we denote by S(s) ⊂ Rs×s, s ∈ N the subspace of s × s real symmetric matrices. The
set S(s) can be considered as a vector space with the trace inner product defined by

tr(AB) =

n∑
i=1

n∑
j=1

aijbji

for A,B ∈ S(s). A matrix A ∈ S(s) is positive semidefinite if xTAx ≥ 0,∀x ∈ Rs. Given A ∈ S(s), to
denote that A is positive (negative) semidefinite, we write: A � 0 (A � 0). Let P(s) ⊂ S(s) be the cone
of positive semidefinite symmetric s× s matrices.

Consider the following linear SDP problem:

min cTx, s. t. A(x) � 0, (1)

where x ∈ Rn, A(x) :=
n∑

i=1

Aixi + A0, Ai ∈ S(s), i = 0, 1, ..., n. Problem (1) is a convex problem and its

(convex) feasible set is X = {x ∈ Rn : A(x) � 0}. We will refer to this problem as primal SDP problem.
The Lagrangian dual problem to problem (1) is given by

max tr (A0Z) , s. t. − tr (AiZ) = ci,∀i = 1, . . . , n, Z � 0, (2)

where Z ∈ P(s). The feasible set of problem (2) is Z = {Z ∈ P(s) : −tr (AiZ) = ci, i = 1, ..., n}.
Notice here that some authors consider that the primal SDP problem has the form (2), and the dual

problem has the form (1). This is not an issue, since it is possible to transform the problem in the form
(1) to the form (2) and vice-versa (see [18]).

The duality results in SDP are more subtle than in Linear Programming (LP). The following property
of LP problems still holds for SDP, inducing a lower bound on the value of the primal problem:

Theorem 1 [Weak Duality] Given a pair of primal and dual feasible solutions x ∈ X , Z ∈ Z of SDP
problems (1) and (2), the inequality cTx ≥ tr(A0Z) always holds.

Definition 1 Denote by p∗ the optimal value of the objective function of the primal SDP problem (1)
and by d∗ the optimal value of the objective function of the dual problem (2). The difference p∗ − d∗ is
called duality gap.

Unlike LP, a nonzero duality gap can occur in SDP and to guarantee strong duality some additional
assumptions have to be made [1, 17].
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Semi-Infinite Programming (SIP) studies optimization problems in the form

min cTx, s. t. f(x, t) ≤ 0, t ∈ T,

where the index set T is some subset of Rs containing an infinite number of elements.
Consider the linear SDP problem (1). It is easy to see that this problem is equivalent to the following

convex semi-infinite problem ([14]):

min cTx, s. t. lTA(x)l ≤ 0,∀l ∈ L := {l ∈ Rs : ‖l‖ = 1} . (3)

The feasible set of problem (3) is
{
x ∈ Rn : lTA(x)l ≤ 0,∀l ∈ L

}
and it coincides with the feasible set

of problem (1).
In [14], a new approach to optimality conditions for convex SIP and linear SDP was suggested. This

approach is based on the notions of immobile indices for SIP problems and subspace of immobile indices
for SDP.

Definition 2 Given a convex SIP problem (3), an index l∗ ∈ L is called immobile if l∗TA(x)l∗ = 0,∀x ∈
X .

It is proved in [14] that, given a pair of equivalent problems (1) and (3), the set of immobile indices
L∗ =

{
l ∈ L : lTA(x)l = 0,∀x ∈ X

}
of problem (3) can be presented in the form L∗ = L ∩M, whereM

is a subspace of Rs defined by

M :=
{
l ∈ Rs : lTA(x)l = 0,∀x ∈ X

}
= {l ∈ Rs : A(x)l = 0,∀x ∈ X} , (4)

and is called subspace of immobile indices of the SDP problem (1).

3 Regularity of SDP Problems

3.1 Constraint Qualifications
Constraint qualifications are essential for deriving primal-dual characterization of solutions of optimiza-
tion problems, and play an important role in duality theory, sensitivity and stability analysis, and in the
convergence properties of computational algorithms ([11]).

The Slater CQ is one of the most widely known CQ in finite and infinite optimization that guarantees
the vanishing of the dualiaty gap, therefore many authors assume in their studies that this condition
holds (see [4, 8, 12, 17]).

Definition 3 The constraints of problem (1) satisfy the Slater CQ if the feasible set X has a nonempty
interior, i.e., ∃ x̄ ∈ Rn : A(x̄) ≺ 0.

Here, A ≺ 0 (A � 0) denotes that matrix A ∈ S(s) is negative (positive) definite. The Slater CQ is
sometimes called strict feasibility [17] or Slater regularity condition [12].

The analogous definition can be introduced for the dual SDP problem.

Definition 4 The constraints of the dual SDP problem (2) satisfy the Slater CQ if there exists a matrix
Z ∈ P(s), such that −tr (AiZ) = ci,∀i = 1, . . . , n and Z � 0.

In this paper, we will consider a SDP problem (1) to be regular if its constraints satisfy the Slater
CQ and nonregular otherwise.

If it is assumed that problem (1) is regular, then the optimal values of problems (1) and (2) coincide
and the following property is satisfied ([4, 17]):

Theorem 2 [Strong Duality] Under the Slater CQ for the linear SDP problem (1), if the primal optimal
value is finite, then the duality gap vanishes and the (dual) optimal value of (2) is attained.

The first order necessary and sufficient optimality conditions for regular linear SDP can be formulated
in the form of the following theorem from ([2]):

Theorem 3 If problem (1) satisfies the Slater CQ, then x∗ ∈ X is an optimal solution if and only if
there exists a matrix Z∗ ∈ P(s) such that

tr (Z∗Ai) + ci = 0, i = 1, ..., n, tr (Z∗A(x∗)) = 0. (5)
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In the absence of the Slater CQ, a duality gap in SDP can exist and conditions (5) (also called
complementary conditions) may fail ([4, 14, 17]). Hence, the complete characterization of optimality
of feasible solutions (either primal or dual) may fail (see the examples provided in [1, 14, 17]). Since
many algorithms are based on solving systems of type (5), the failure of the strong duality can result
in numerical difficulties, and thus, it is important to know in advance if the problem is regular. Notice
also that unlike LP, the primal and dual SDP problems do not necessarily satisfy or not the Slater CQ
simultaneously ([17]).

For the SIP problem in form (3), the Slater CQ is defined as follows.

Definition 5 The SIP problem (3) satisfies the Slater CQ if there exists a feasible point x̄ ∈ Rn such
that the inequalities lTA(x̄)l < 0 hold, for all indices l ∈ L.

It is easy to verify that the equivalent SDP and SIP problems (1) and (3) satisfy or not the Slater
CQ simultaneously [14]. The following propositions are proved in [14].

Proposition 1 The convex SIP problem (3) satisfies the Slater CQ if and only if the set L∗ is empty.

Proposition 2 The SDP problem (1) satisfies the Slater CQ if and only if the set of immobile indices
in the corresponding SIP problem (3) is empty.

From Proposition 1, it follows that problem (1) is regular if and only if the subspace of immobile
indicesM defined in (4) is null, i.e.,M = {0}. Notice that the dimension s∗ of the subspaceM can be
considered as the irregularity degree of problem (1) and

• if s∗ = 0, then the problem is regular (satisfies the Slater CQ);

• if s∗ = 1, then the problem is nonregular, with minimal irregularity degree;

• if s∗ = s, then the problem is nonregular, with maximal irregularity degree.

In [14], it is shown that the subspace of immobile indices plays an important role in characterization
of optimality of SDP problems and a new CQ-free optimality criterion is formulated, based on the explicit
determination of the subspace M of immobile indices. A constructive algorithm (the DIIS algorithm)
that finds a basis of the subspaceM is described and justified in [14].

In this paper, we will use the DIIS algorithm just to check if a given SDP problem in the form (1) is
regular.

3.1.1 Algorithm DIIS

Consider a linear SDP problem (1) and suppose that its feasible set is nonempty. The DIIS Algorithm
proposed in [14] constructs a basis M = (mi, i = 1, ..., s∗) of the subspace of immobile indices M. At
the k-th iteration, Ik denotes some auxiliary set of indices and Mk denotes an auxiliary set of vectors.
Suppose that s > 1, with s ∈ N.

The brief description of the algorithm is as follows:
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DIIS Algorithm

input: s× s matrices Aj , j = 0, 1, ..., n. Set k := 1, I1 := ∅, M1 := ∅
repeat
Given k, Ik , Mk:
compute pk := s−

∣∣Ik∣∣
solve the quadratic system:

pk∑
i=1

lTi Aj li +
∑

i∈Ik γ
T
i Ajmi = 0, j = 0, 1, . . . , n,

pk∑
i=1

‖li‖2 = 1,

lTi mj = 0 , j ∈ Ik, i = 1, . . . , pk,

(6)

where li ∈ Rs, i = 1, ..., pk and γi ∈ Rs, i ∈ Ik

if system (6) does not have a solution, then stop and return the current Mk.
else given the solution

{
li ∈ Rs, i = 1, . . . , pk, γi ∈ Rs, i ∈ Ik

}
of (6):

construct the maximal subset of linearly independent vectors
{m1, . . . ,msk} ⊂ {l1, . . . , lpk}

update: 4Ik :=
{∣∣Ik∣∣+1, . . . ,

∣∣Ik∣∣+sk}
Mk+1 :=Mk ∪

{
mj , j ∈ 4Ik

}
Ik+1 := Ik ∪4Ik.

do k := k + 1

The outputs of the algorithm are:

• if the Slater CQ is satisfied: the algorithm stops at the first iteration, k = 1, M = {0} and
dim(M) = 0;

• if the Slater CQ is violated: the algorithm returns a basis M = Mk, such that rank(M) =
dim(M) = s∗ > 0.

In [14], it is proved that the DIIS algorithm constructs a basis of the vector subspace M in a finite
number of iterations.

It is easy to see that the algorithm’s implementation is simple and the main numerical procedure on
each iteration is solving the quadratic system (6).

3.2 Well-posedness in SDP

In [7] and [10], two constructive approaches to the classification of well-posed SDP problems are proposed,
both based on the concept of well-posedness in the sense defined by Renegar in [15]. The Renegar
condition number C of a problem’s instance is defined as a scale-invariant reciprocal of the distance to
infeasibility (the smallest data perturbation that results in either primal or dual infeasibility). If the
distance to infeasibility is close to zero, then C = ∞ and the problem is said to be ill-posed; otherwise,
it is well-posed.

The approach described in [7] is based on the estimation of lower and upper bounds of the Renegar’s
condition number C of a SDP problem. The distance to primal infeasibility is obtained by solving
several auxiliary SDP problems of compatible size to the original SDP problem and the distance to dual
infeasibility is found by solving one single SDP auxiliary problem. According to Proposition 3 in [7],
the estimation of the norm of data can be done with the help of its upper and lower bounds using
straightforward matrix norms and maximum eigenvalue computations. Notice that it is necessary to
choose adequate norms for computing the distances to primal and dual infeasibility. The SDP problem
is ill-posed if C approaches to infinity.

In [10], the characterization of well-posedness of SDP problems is based on the calculus of rigorous
lower and upper bounds of their optimal values. It is shown that for the ill-posed problems (in the sense
of the infinite condition number), the rigorous upper bound p̄∗ of the primal objective function is infinite.
In [10], an algorithm for computing this upper bound is described. On its iterations, some auxiliary
perturbed "midpoint" SDP problems are solved using a SDP solver and special interval matrices are
constructed on the basis of their solutions. The constructed interval matrices must contain a primal fea-
sible solution of the perturbed "midpoint" problem and satisfy the conditions (4.1) and (4.2) of Theorem
4.1 from [10]. If such interval matrix can be computed, then the optimal value of the primal objective
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function of the SDP problem is bounded from above by p̄∗, which is the primal objective function value
considering the obtained interval matrix. Besides requiring a SDP solver for computing the approximate
solutions of the perturbed problems, the approach proposed in [10] also needs verified solvers for interval
linear systems and eigenvalue problems.

Therefore, we can conclude that technically, testing of regularity of SDP problems with the help of
the DIIS algorithm from [14] is much easier than testing their well-posedness using the methods from [7]
and [10].

3.3 Relations between regularity and well-posedness in SDP

Nevertheless the definitions of regularity and well-posedness of SDP problems introduced above are dif-
ferent, there exist a deep connection between them. According to [17], the lack of regularity implies
ill-posedness of the problem.

The following lemma can be easily proved.

Lemma 1 If the linear SDP problem in the form (1) is not regular, then it is ill-posed.

Indeed, since the Slater CQ is not satisfied, all the feasible solutions of the problem lie on the boundary
of the feasible set. Therefore, any small perturbations may lead to the loss of feasibility, meaning that
the problem is ill-posed.

The reciprocal is not true. The following example shows that there exist regular problems that are
ill-posed.

Example 1 Consider the primal SDP problem

min x1 − x2 − x3

s.t.

 1 −1 0
−1 x2 0
0 0 x3

 � 0.
(7)

This problem can be easily written in form (1):

min x1 − x2 − x3

s.t.

 0 0 0
0 0 0
0 0 0

x1 +

 0 0 0
0 −1 0
0 0 0

x2 +

 0 0 0
0 0 0
0 0 −1

x3 +

 −1 1 0
1 0 0
0 0 0

 � 0.

The dual problem to (7) has the form

max y1 + y2

s.t.

 −y2 1+y1

2 −y3
1+y1

2 −1 −y4
−y3 −y4 −1

 � 0.
(8)

The constraints of the primal problem satisfy the Slater’s CQ, since there exists a strictly feasible

solution: e.g., X =

 −1 1 0
1 2 0
0 0 1

 and X ≺ 0.

However, problem (7) is not well-posed, since its dual problem is infeasible, the distance to dual
infeasibility is zero and the Renegar condition number is infinite.

4 Regularity Tests for SDP Problems

4.1 Test Problems for SDP

For the numerical tests we have used problems from the literature and from the SDPLIB suite, a collection
of 92 Linear SDP test problems, provided by Brian Borchers ([3]). This SDP data base contains problems
ranging in size from 6 variables and 13 constraints up to 7000 variables and 7000 constraints. The problems
are drawn from a variety of applications, such as truss topology design, control systems engineering and
relaxations of combinatorial optimization problems.
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4.2 Regularity Tests

To test the regularity of linear SDP problems we used the DIIS Algorithm that was implemented in
Matlab 7.10.0.499 (R2010a) on a computer with an Intel Core i7-2630QM, 2.0GHz, with Windows 7 64
bits and 6 Gb RAM.

We have chosen 26 test problems from SDPLIB that were also tested in [7] and [10], in terms of their
well-posedness. For these problems we checked regularity using the DIIS algorithm.

The results are displayed in Table 1. The first column of the table contains the instance’s name used
in SDPLIB data base; the next two columns refer to the number of variables, n, and the dimension of
the constraints matrices, s. The next column represents the results of the regularity tests that find the
dimension of the immobile index subspace, s∗. If s∗ = 0, then the problem is regular. Column 5 contains
the lower and upper bounds of the condition number C reported in [7] and the last column presents the
upper bound for the primal objective function from [10].

Table 1: Numerical results using the DIIS Algorithm to test regularity (the SDP problem satisfies the
Slater CQ if s∗ = 0), the lower and upper bounds of the Renegar condition number from [7] and the
upper bound of the optimal value from [10] (if C or p̄∗ is finite, then the problem is well-posed).

Problem n s s∗ C p̄∗

lower bound upper bound
control1 21 15 0 8.3× 105 1.8× 106 −1.7782× 101

control2 66 30 0 3.9× 106 1.3× 107 −8.2909× 100

control3 136 45 0 2.0× 106 1.2× 107 −1.3615× 101

hinf1 13 14 0 ∞ ∞ ∞
hinf2 13 16 0 3.5× 105 5.6× 105 −7.1598× 100

hinf3 13 16 0 ∞ ∞ ∞
hinf4 13 16 0 ∞ ∞ ∞
hinf5 13 16 16 ∞ ∞ ∞
hinf6 13 16 16 ∞ ∞ ∞
hinf7 13 16 16 ∞ ∞ ∞
hinf8 13 16 0 ∞ ∞ ∞
hinf9 13 16 16 2.0× 107 3.6× 107 ∞
hinf10 21 18 0 ∞ ∞ ∞
hinf11 31 22 0 ∞ ∞ ∞
hinf12 43 24 0 ∞ ∞ ∞
hinf13 57 30 30 ∞ ∞ ∞
hinf14 73 34 0 ∞ ∞ ∞
hinf15 91 37 37 ∞ ∞ ∞
qap5 136 26 0 ∞ ∞ ∞
qap6 229 37 0 ∞ ∞ ∞
qap7 358 50 0 ∞ ∞ ∞
qap8 529 65 0 ∞ ∞ ∞
theta1 104 50 0 2.0× 102 2.1× 102 −2.3000× 101

truss1 6 13 0 2.2× 102 3.0× 102 9.0000× 100

truss3 27 31 0 7.4× 102 1.9× 103 9.1100× 100

truss4 12 19 0 3.6× 102 7.7× 102 9.0100× 100

Table 2: Regularity and well-posedness according to [7].
Regularity (Slater CQ)
Regular Nonregular

Classification well-posed 8 1
ill-posed 12 5

From Table 1 we see that 20 from 26 tested problems are regular, i.e., their constraints satisfy the
Slater CQ. Moreover, the tests provide valuable information about the irregularity degree for a nonregular
SDP problem. Notice that for the tested problems, all the nonregular problems in Table 1 have maximal
irregularity degree.
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Table 3: Regularity and well-posedness according to [10].
Regularity (Slater CQ)
Regular Nonregular

Classification well-posed 8 0
ill-posed 12 6

Tables 2 and 3 compare the results of testing SDP problems in terms of their regularity and well-
posedness.

In Table 2, the lines correspond to well-posed and ill-posed problems according to the test from [7] and
the columns correspond to regular and nonregular problems. On the intersection we have the number
of problems that satisfy both corresponding conditions. Table 3 is constructed in a similar way, but
the lines correspond to the number of the well-posed and ill-posed problems classified on the basis of
the experiments in [10]. From Table 2 we can see that 13 from the tested problems are regular and
well-posed or nonregular and ill-posed, simultaneously, and 12 of the ill-posed problems are regular. The
only exception is problem hinf9 that is nonregular and well-posed according to [7]. This contradiction to
Lemma 1 can be explained by the fact that the numerical procedures are based on approximated calculus
and may be not precise. Comparing our regularity results with those from [10] (w.r.t. ill-posedness),
regarding Table 3 we conclude that for 14 problems these results coincide, i.e., the problems are regular
and well-posed, or nonregular and ill-posed, simultaneously.

Notice that the numerical results of well-posedness obtained in [7] and in [10] do not coincide: problem
hinf9 is well-posed according to [7] and ill-posed according to [10]. This can be connected with the fact
that nevertheless the condition number C is finite, it is rather big and the problem is close to be ill-posed,
and it may also be due to the tests were performed in nonexact arithmetic and/or with different numerical
procedures.

Finally, notice that in [10], it is reported that problem hinf8 is well-posed, although the results
presented in [10] (and also in [7]) have shown that this problem is ill-posed. Our numerical tests show
that this problem is regular.

Therefore, the numerical experiences have showed that the DIIS algorithm can be efficiently used to
study the regularity of SDP problems. The comparison of these tests with those from [7] and [10] confirm
the conclusions about relation between regularity and well-posedness in SDP.

4.3 Conclusions and Future Work

The DIIS Algorithm permits to verify easily if a given SDP problem in the form (1) satisfies the Slater
CQ. The numerical tests show that the DIIS algorithm is an efficient procedure to check the regularity of
small to medium-scale SDP problems. For problems of bigger dimension the program ran out of memory.
The DIIS algorithm can be used to check if a given SDP problem in form (1) is regular or not in a single
iteration. The main advantage of using this numerical procedure is that one does not need to solve any
SDP problem: the DIIS algorithm only deals with a quadratic system (6). To solve this system, we used
in our tests the Levenberg-Marquardt method that is implemented in the routine fsolve from Matlab.

In our procedure, we have not checked the feasibility of the SDP problems: we worked under the
assumption that their feasible sets were not empty.

To permit a more universal and precise use of the DIIS algorithm, some improvements should be
made in the future. Thus, the algorithm can be modified to handle large-scale SDP problems. The
procedure of solving the quadratic system (6) should be as much exact as possible, so it is reasonable to
develop here specific algorithms that precisely verify the situations when the system is inconsistent. It
is also important to implement the procedure that verifies feasibility of the SDP problems. Finally, it is
reasonable to implement the DIIS algorithm in other programming language than Matlab (e.g., C++),
since the implementation in Matlab can cause some loss of efficiency.

Notice that the tests of well-posedness of SDP problems using the procedures described in [7] and
[10] present much more difficulties compared with the numerical test presented in this paper. Thus,
using the method described in [7], one has to estimate the Renegar condition number that depends on
the computation of three quantities that can be more or less numerically hard, depending on the choice
of norms. To compute estimations of distance to primal and dual infeasibility, one has to solve several
auxiliary SDP problems whose structure and size are compatible with the original SDP primal and dual
problems. This may be computationally hard and not precise, since in nonregular cases, the auxiliary
problems are ill-posed and the solutions found by the numerical methods may be not correct. The
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procedure in [10] contains parameters and to find them an auxiliary perturbed SDP problem must be
solved, that turns into a difficult problem in the case of nonregular problems. To compute the rigorous
upper bound, it is required to find certain interval matrices satisfying conditions of Theorem 4.1. Specially
adapted solvers for interval linear systems and eigenvalue problems as well as a SDP solver for computing
approximate solutions for the perturbed "midpoint" problem are needed.

On the basis of the results of the numerical experiences we can make the following conclusions: it is
important to introduce a unified treatment of regularity for SDP problems and to have numerical tools
to verify regularity of problems and establish clear relationship between different notions of regularity.

In the future, we intend to provide more precise and extensive regularity tests with SDP and SIP
problems, and compare them with the available results of well-posedness tests.
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