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Abstract. The purpose of this paper is to prove an interpolation theorem which arises in a method of coupling of a finite
element and an analytical solution for boundary value problems with singularities.
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INTRODUCTION

In previous research [2, 3] the main idea of a new method of coupling an analytical and a numerical solution (FE-
solution) for boundary value problems with a singularity has been introduced. This method allows to get a continuous
coupling between analytical and finite element solutions through the whole interaction interface. For that purpose
a special element that contains an exact solution to the differential equation with the correct singularity and so-
called coupling elements was constructed. The request for these coupling elements is to insure C0 continuity for
displacements, instead of coupling only via nodes between two solutions as in usual approaches. For that reason a
special interpolation operator has been constructed that preserves the analytical solution on the coupling interface,
couples it continuously with coupling elements which have a polynomial connection to the standard elements. In [1]
following P. G. Ciarlet [4] some basic steps for the convergence analysis of the proposed method have been performed.
In this theory one of the most important roles is played by the unisolvence property of the interpolation operator that
is used for the finite element approximation. In [5] it was proved that the interpolation problem is uniquely solvable
for an arbitrary number of nodes. In [6] it was shown, that a coupling error has a significant influence on the quality of
results. To estimate this coupling error one needs to work with a modified interpolation function, therefore it has to be
proven that this function is still the solution of the original interpolation problem.

INTERPOLATION THEOREM

Let us consider the following interpolation function in polar coordinates on the disk of radius rA (for all details we
refer to [5])

fn(ϕ) =
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2
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(
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)
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2
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(
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+
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(1)

where a number of the basis functions is related to a number n of interpolation nodes ϕn as follows:

N1 = n−2m, where
{

m = 1 for even n,
m = 0 for odd n, N2 = n−2m, where

{
m = 0 for even n,
m = 1 for odd n.

Theorem 1. For given n different arbitrary interpolation nodes ϕ j ∈ [−π,π] and n arbitrary complex numbers y j
exists a unique function (1), such that

fn(ϕ j) = y j, j = 0, . . . ,n−1. (2)
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Proof. At first, we rewrite the interpolation function (1) as follows

fn(ϕ) =
N1

∑
k=−N1,−N1+2,...

Ak eiϕ k
2 +

N2

∑
k=−N2,−N2+2,...

Bk eiϕ k
2 , (3)

where the coefficients Ak and Bk are related to the original coefficients ak and āk by the following equations
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A ā|k|, for −N1 ≤ k <−N1 +4,

r
|k|
2

A a|k|+
|k|
2

r
|k|
2
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An interpolation function (3) contains 2n−1 coefficients, but we have only n interpolation nodes, therefore we have
to find n−1 additional relations which should help us to identify uniquely the coefficients Ak and Bk. By studying the
equations (4)-(5) one can observe that the coefficients A−|k| and B−|k| could be expressed in terms of the coefficients
A|k| and B|k|, respectively. Thus, we get the following equations
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Finally we combine two sums in (3) into the one sum

fn(ϕ) =
n−1

∑
k=0

Ck eiϕ k
2 , (9)

with the coefficients Ck are defined by

Ck =

{
Ak, if k is even,
Bk, if k is odd.

Thus we have obtained an equivalent interpolation problem

n−1

∑
k=0

Ck eiϕ j
k
2 = y j, j = 0, . . . ,n−1, (10)

with exactly n unknown coefficients Ck. The matrix of the equivalent interpolation problem is a Vandermonde matrix,
and its determinant is given by

det(. . .) = ∏
1≤ j<k≤n

(ei 1
2 ϕk − ei 1

2 ϕ j) �= 0.

The product in this determinant is not equal to zero due to the assumption on the interpolation nodes. Thus the
interpolation problem (10) is uniquely solvable for an arbitrary number of nodes, and for an arbitrary right hand
side, i.e. we can uniquely identify the coefficients Ck, and consequently Ak and Bk for all values of k.

The next step in this proof is to show that from the coefficients Ak and Bk we can uniquely calculate the original
coefficients ak and āk. For simplicity we will consider a transformation from ak, āk to Ak,Bk which is given by (4)-
(5), and we will show that the corresponding transformation matrix has non-zero determinant. The dimension of the
corresponding transformation matrix depends on even or odd number of interpolation nodes. Here we will consider
the case of an odd number of nodes, and the case of an even number can be proved analogously. Let us write the
equations (4)-(5) in a matrix form

⎛
⎜⎜⎜⎜⎝
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...
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⎟⎟⎟⎟⎠=
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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āN1
āN2
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⎞
⎟⎟⎟⎟⎠ .

In sequel we will denote by M the transformation matrix, and for the case of an odd number of interpolation nodes
dim(M) = (2n− 1)× (2n− 1). For forthcoming discussion it’s important to underline a block M7 of the matrix M,
which is located in the middle (i, j = n−3, . . . ,n+3)

M7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)
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Now we will calculate the determinant of M. Decomposing det(M) by the rows 2n−1, . . . ,n+4, and then by rows
1, . . . ,n−4 we obtain

det(M) =

(
n−4

∏
i=1

Mii

)
·
(

2n−1

∏
i=n+4

Mii

)
· |M7|,

where the matrix M7 is given by (11). The determinant of this matrix can be explicitly calculated, and we get

|M7|= 3
4

r6
A(κ +1)3(κ −1).

Finally we obtain the following expression for the determinant

det(M) =
3
4

r6
A(κ +1)3(κ −1)∏

i∈Λ
Mii, Λ = {1, . . . ,n−4,n+4, . . . ,2n−1} . (12)

Looking on the structure of the transformation equations (4)-(5) we see, that the entries Mi j, and particularly Mii,
depend only on parameters N1,N2,rA, and κ , which are all positive by their definition. Therefore the product in (12)
cannot be equal to zero. The remaining part is to discuss the determinant |M7|, which contains (κ + 1)3(κ − 1). The
parameter κ is a material constant, and by assumptions on the material properties we know that κ ∈ (1,3). Therefore

(κ +1)3(κ −1) �= 0.

Thus we have shown, that the determinant det(M) is not equal to zero, and therefore the transformation matrix has an
inverse for an odd number of nodes. The case of an even number of nodes is analogous.

Thus we have proved that the interpolation problem (2) is uniquely solvable for an arbitrary number of interpolation
nodes and for an arbitrary right hand side.

In [5] we have already proved that the interpolation problem (2) is uniquely solvable for an arbitrary number of
nodes. The new proof is needed for future study on convergence and stability of the proposed method. Because it’s
easier to get estimates working with a Vandermonde matrix and with the transformation matrix M. We would only
like to mention the fact that the coefficients ak and āk are connected by the complex conjugation. In the presented
proof we assume, for sake of shorter explanations, that they all are different. But for practical calculations we have
to decompose them into real and imaginary parts, and in this case all steps of the presented proof are anyway going
straight forward.
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