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Abstract

Recently there has been a surge of interest in PDEs involving fractional derivatives in different fields of

engineering. In this extended abstract we present some of the results developed in [3]. We compute the

fundamental solution for the three-parameter fractional Laplace operator ∆(α,β,γ) with (α, β, γ) ∈ ]0, 1]3 by

transforming the eigenfunction equation into an integral equation and applying the method of separation

of variables. The obtained solutions are expressed in terms of Mittag-Leffer functions. For more details we

refer the interested reader to [3] where it is also presented an operational approach based on the two Laplace

transform.
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1 Introduction

The problems with the fractional Laplacian attracted in the last years a lot of attention, due especially to

their large range of applications. The fractional Laplacian appears in probabilistic framework as well as in

mathematical finance as infinitesimal generators of the stable Lévy processes [1]. One can find problems involving

the fractional Laplacian in mechanics and in elastostatics, for example, a Signorini obstacle problem originating

from linear elasticity [2].

The aim of this paper is to present an explicit expression for the family of eigenfunctions and fundamental

solutions of the three-parameter fractional Laplace. For the sake of simplicity we restrict ourselves to the three

dimensional case, however the results can be generalized for an arbitrary dimension. The two dimensional

case was already studied in [10]. Connections between fractional calculus and Clifford analysis were considered

recently in [5, 9].
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2 Preliminaries

2.1 Fractional calculus and special functions

Let
(
Dα

a+f
)
(x) denote the fractional Riemann-Liouville derivative of order α > 0 (see [6])

(Dα
a+f) (x) =

(
d

dx

)n
1

Γ(n− α)

∫ x

a

f(t)

(x− t)α−n+1
dt, n = [α] + 1, a, x > 0. (1)

where [α] means the integer part of α. When 0 < α < 1 then (1) takes the form

(Dα
a+f) (x) =

d

dx

1

Γ(1− α)

∫ x

a

f(t)

(x− t)α
dt. (2)

The Riemann-Liouville fractional integral of order α > 0 is given by (see [6])

(Iαa+f) (x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt, a, x > 0. (3)

We recall also the following definition (see [8]):

Definition 2.1 A function f ∈ L1(a, b) has a summable fractional derivatives
(
Dα

a+f
)
(x) if

(
In−α
a+

)
(x) ∈

ACn([a, b]), where n = 0, 1, . . . , n−1 and ACn([a, b]) denote the class of functions f(x), which are continuously

differentiable on the segment [a, b] up to order n− 1 and f (n−1)(x) is absolutely continuous on [a, b].

If a function f admits a summable fractional derivative, then the composition of (1) and (3) can be written in

the form (see [8, Thm. 2.4])

(Iαa+ Dα
a+f) (x) = f(x)−

n−1∑
k=0

(x− a)α−k−1

Γ(α− k)

(
In−α
a+

)(n−k−1)
(a), n = [α] + 1. (4)

Nevertheless we note that Dα
a+ Iαa+f = f, for any summable function. This is a particular case of a more general

property (cf. [7, (2.114)])

Dα
a+

(
Iγa+f

)
= Dα−γ

a+ f, 0 ≤ γ ≤ α. (5)

One important function used in this paper is the two-parameter Mittag-Leffler function Eµ,ν(z) [4], which is

defined in terms of the power series by

Eµ,ν(z) =
∞∑

n=0

zn

Γ(µn+ ν)
, µ > 0, ν ∈ R, z ∈ C. (6)

In particular, the function Eµ,ν(z) is entire of order ρ = 1
µ and type σ = 1. Two important fractional integral and

differential formulae involving the two-parametric Mittag-Leffler function are the following (see [4, p.61,p.87])

Iαa+

(
(x− a)ν−1Eµ,ν(k(x− a)µ)

)
= (x− a)ν+α−1Eµ,ν+α(k(x− a)µ) (7)

Dα
a+

(
(x− a)ν−1Eµ,ν(k(x− a)µ)

)
= (x− a)ν−α−1Eµ,ν−α(k(x− a)µ) (8)

for all α > 0, µ > 0, ν ∈ R, k ∈ C, a > 0, x > a.

The approach developed in Section 3 leads to the solution of linear Abel integral equations of the second kind.

Theorem 2.2 [4, Thm. 4.2] Let f ∈ L1[a, b], α > 0 and λ ∈ C. Then the integral equation

u(x) = f(x) +
λ

Γ(α)

∫ x

a

(x− t)α−1u(t) dt, x ∈ [a, b]

has a unique solution

u(x) = f(x) + λ

∫ x

a

(x− t)α−1Eα,α(λ(x− t)α)f(t) dt. (9)
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3 Eigenfunctions and fundamental solution of the fractional Laplace

operator

Consider the eigenfunction equation for the fractional Laplace operator ∆(α,β,γ)

∆(α,β,γ)u(x, y, z) = λu(x, y, z)

⇔
(
D1+α

x+
0

u
)
(x, y, z) +

(
D1+β

y+
0

u
)
(x, y, z) +

(
D1+γ

z+
0

u
)
(x, y, z) = λ u(x, y, z). (10)

where λ ∈ C, (α, β, γ) ∈]0, 1]3, (x, y, z) ∈ Ω = [x0, X0] × [y0, Y0] × [z0, Z0], x0, y0, z0 ≥ 0, X0, Y0, Z0 < ∞, and

u(x, y, z) admits summable fractional derivatives D1+α

x+
0

, D1+β

y+
0

, D1+γ

z+
0

. Applying the fractional integral operators

I1+α

x+
0

, I1+β

y+
0

and I1+γ

y+
0

from both sides of (10), taking into account (4) and using Fubini’s Theorem, we get(
I1+β

y+
0

I1+γ

z+
0

u
)
(x, y, z) +

(
I1+α

x+
0

I1+γ

z+
0

u
)
(x, y, z)

+
(
I1+α

x+
0

I1+β

y+
0

u
)
(x, y, z)− λ

(
I1+α

x+
0

I1+β

y+
0

I1+γ

z+
0

u
)
(x, y, z)

=
(x− x0)

α−1

Γ(α)

(
I1+β

y+
0

I1+γ

z+
0

f0

)
(y, z) +

(x− x0)
α

Γ(1 + α)

(
I1+β

y+
0

I1+γ

z+
0

f1

)
(y, z)

+
(y − y0)

β−1

Γ(β)

(
I1−α

x+
0

I1+γ

z+
0

h0

)
(x, z) +

(y − y0)
β

Γ(1 + β)

(
I1+α

x+
0

I1+γ

z+
0

h1

)
(x, z)

+
(z − z0)

γ−1

Γ(γ)

(
I1−α

x+
0

I1+β

y+
0

g0

)
(x, y) +

(z − z0)
γ

Γ(1 + γ)

(
I1+α

x+
0

I1+β

y+
0

g1

)
(x, y), (11)

where we denote the Cauchy’s fractional integral conditions by

f0(y, z) =
(
I1−α

x+
0

u
)
(x0, y, z), f1(y, z) =

(
Dα

x+
0
u
)
(x0, y, z), (12)

h0(x, z) =
(
I1−β

y+
0

u
)
(x, y0, z), h1(x, z) =

(
Dβ

y+
0

u
)
(x, y0, z), (13)

g0(x, y) =
(
I1−γ

z+
0

u
)
(x, y, z0), g1(x, y) =

(
Dγ

z+
0

u
)
(x, y, z0). (14)

We now assume that u(x, y, z) = u1(x)u2(y)u3(z). Substituting in (11) and taking into account the initial

conditions (12), (13), and (14) we obtain

u1(x)
(
I1+β

y+
0

u2(y) I
1+γ

z+
0

u3(z)
)
+ u2(y)

(
I1+α

x+
0

u1(x) I
1+γ

z+
0

u3(z)
)

+ u3(z)
(
I1+α

x+
0

u1(x) I
1+β

y+
0

u2(y)
)
(x, y, z)− λ

(
I1+α

x+
0

u1

)
(x)

(
I1+β

y+
0

u2

)
(y)

(
I1+γ

z+
0

u3

)
(z)

= a1
(x− x0)

α−1

Γ(α)

(
I1+β

y+
0

u2(y) I
1+γ

z+
0

u3(z)
)
+ a2

(x− x0)
α

Γ(1 + α)

(
I1+β

y+
0

u2(y) I
1+γ

z+
0

u3(z)
)

+ b1
(y − y0)

β−1

Γ(β)

(
I1+α

x+
0

u1(x) I
1+γ

z+
0

u3(z)
)
+ b2

(y − y0)
β

Γ(1 + β)

(
I1+α

x+
0

u1(x) I
1+γ

z+
0

u3(z)
)

+ c1
(z − z0)

γ−1

Γ(γ)

(
I1+α

x+
0

u1(x) I
1+β

y+
0

u2(y)
)
+ c2

(z − z0)
γ

Γ(1 + γ)

(
I1+α

x+
0

u1(x) I
1+β

y+
0

u2(y)
)
, (15)

where ai, bi, ci ∈ C, i = 1, 2, are constants defined by the initial conditions (12), (13), and (14). Supposing that(
I1+α

x+
0

u1

)
(x)

(
I1+β

y+
0

u2

)
(y)

(
I1+γ

z+
0

u3

)
(z) ̸= 0, for (x, y, z) ∈ Ω, we can divide (15) by this factor. Separating the

variables we get the following three Abel’s integral equations of second kind:

u1(x)− µ
(
I1+α

x+
0

u1

)
(x) = a1

(x− x0)
α−1

Γ(α)
+ a2

(x− x0)
α

Γ(1 + α)
, (16)

u2(y) + ν
(
I1+β

y+
0

u2

)
(y) = b1

(y − y0)
β−1

Γ(β)
+ b2

(y − y0)
β

Γ(1 + β)
, (17)

u3(z) + (µ− λ− ν)
(
I1+γ

z+
0

u3

)
(z) = c1

(z − z0)
γ−1

Γ(γ)
+ c2

(z − z0)
γ

Γ(1 + γ)
, (18)

where λ, µ, ν ∈ C are constants. We observe that the equality(
I1+α

x+
0

u1

)
(x)

(
I1+β

y+
0

u2

)
(y)

(
I1+γ

z+
0

u3

)
(z) = 0,

agrees with (15), (16), (17), and (18) for at least one point (ξ, η, θ). Solving the latter equations using (9) in

Theorem 1.2 and after straightforward computations we obtain a family of eigenfunctions.
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Theorem 3.1 A family of eigenfunctions of the fractional Laplace operator ∆(α,β,γ) is given by uλ,µ,ν(x, y, z) =

u1(x) u2(y) u3(z) with

u1(x) = a1 (x− x0)
α−1 E1+α,α

(
µ(x− x0)

1+α
)

+ a2 (x− x0)
α E1+α,1+α

(
µ(x− x0)

1+α
)

(19)

u2(y) = b1 (y − y0)
β−1 E1+β,β

(
−ν(y − y0)

1+β
)

+ b2 (y − y0)
β E1+β,1+β

(
−ν(y − y0)

1+β
)

(20)

u3(z) = c1 (z − z0)
γ−1 E1+γ,γ

(
(µ− λ− ν)(z − z0)

1+γ
)

+ c2 (z − z0)
γ E1+γ,1+γ

(
(µ− λ− ν)(z − z0)

1+γ
)
, (21)

where λ, µ, ν ∈ C are constants.

Corollary 3.2 For λ = 0, u0,µ,ν(x, y, z) = u1(x) u2(y) u3(z) is a family of fundamental solutions for the

fractional Laplace operator ∆(α,β,γ).

Remark 3.3 In the special case of α = β = γ = 1 the functions u1, u2 and u3 take the form:

u1(x) = a1 cosh (
√
µ (x− x0)) +

a2√
µ

sinh (
√
µ (x− x0)) ,

u2(y) = b1 cos
(√

ν (y − y0)
)
+

b2√
ν

sin
(√

ν (y − y0)
)
,

u3(z) = c1 cosh
(√

µ− λ− ν (z − z0)
)
+

c2√
µ− λ− ν

sinh
(√

µ− λ− ν (z − z0)
)
.

which are the components of the fundamental solution of the Laplace operator in R3 obtained by the method of

separation of variables.

It is also possible to apply an operational approach based on the two dimensional Laplace transform to

obtain a complete family of eigenfunctions and fundamental solutions for the fractional Laplace operator. This

was done in detail in [3].
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