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Abstract. We generalize the factorization method for inverse medium scattering using a par-
ticular factorization of the difference of two far field operators. While the factorization method has
been used so far mainly to identify the shape of a scatterer’s support, we show that factorizations
based on Dirichlet-to-Neumann operators can be used to compute bounds for numerical values of
the medium on the boundary of its support. To this end, we generalize ideas from inside-outside
duality to obtain a monotonicity principle that allows for alternative uniqueness proofs for particular
inverse scattering problems (e.g., when obstacles are present inside the medium). This monotonicity
principle indeed is our most important technical tool: It further directly shows that the boundary
values of the medium’s contrast function are uniquely determined by the corresponding far field op-
erator. Our particular factorization of far field operators additionally implies that the factorization
method rigorously characterizes the support of an inhomogeneous medium if the contrast function
takes merely positive or negative values on the boundary of its support independently of the con-
trast’s values inside its support. Finally, the monotonicity principle yields a simple algorithm to
compute upper and lower bounds for these boundary values, assuming the support of the contrast is
known. Numerical experiments show feasibility of a resulting numerical algorithm.
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1. Introduction. The factorization method is well known to identify the shape
of scattering objects from measurements of near or far field data for various models of
time-harmonic wave propagation [KG08]. It is notably able to detect regions where
known inhomogeneous media are perturbed by changes either in the wave speed or in
the density, or by obstacles [NPT07, CH15]. In particular, in the latter case, classical
uniqueness proofs in inverse scattering theory based on Calderon’s property of com-
pleteness of products of solutions typically fail. The method’s flexibility with respect
to the model, however, faces a crucial positivity assumption on the middle operator
in the data operator’s factorization that gives the method its name. Additionally, it
seems complicated to extend the method toward reconstructing information on nu-
merical values of material parameters. (See [KS11] for such an attempt in impedance
tomography.)

In this paper, we use a factorization of the far field operator for a smooth, scalar,
and real-valued contrast (i.e., an isotropic nonabsorbing inhomogeneous medium)
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from [LV13] in function spaces on the boundary of the scatterer to obtain a sign-
definite factorization if the contrast function is, roughly speaking, strictly positive
or strictly negative on the boundary of the scatterer. This factorization first im-
plies that the factorization method is rigorously applicable to inhomogeneous media
if the smooth, real-valued contrast takes strictly positive or strictly negative bound-
ary values, independently of the values the contrast takes inside its support. Second,
we deduce a uniqueness theorem for the values of contrast on the boundary of its
support given far field data of the scattering object, and third, we obtain a simple
monotonicity-type algorithm computing upper and lower bounds for these boundary
values, which is briefly sketched and demonstrated via numerical examples. Further
consequences include, for instance, uniqueness results for scattering problems involv-
ing obstacles inside inhomogeneous media.

Our approach can be roughly described as follows: We compare a measured far
field operator F; corresponding to an unknown, real-valued contrast ¢; with an aux-
iliary far field operator F5 corresponding to a second artificial, real-valued contrast
q2- Writing Sy for the scattering operator for g9, it is easy to show that operator
83 (F1 — F») is normal. We further show that the real part of its quadratic form is
sign-definite if q; — g2 E 0 in R%. Via techniques from pseudodifferential operator
theory we refine this result by demonstrating that this form is, roughly speaking,
sign-definite if and only if g1 — g2 2 0 on the boundary of the common support D of
q1,2. This is one of the few monotonicity results in scattering theory: If ¢; > ¢o (or
q1 < q2) on 0D, then the real part of the quadratic form of S5 (Fy — F») is negative
(positive) up to a finite-dimensional perturbation. It is based on a factorization of
Fi 5 via Dirichlet-to-Neumann (DtN) operators from [LV13].

The rest of this paper is structured as follows: We briefly review theory on the
direct scattering problem in section 2 and show in section 3 that the real parts of
the eigenvalues of Sj(Fy — F3) relate to the sign of ¢; — g2 in RY. Section 4 then
characterizes the sign of all but finitely many real parts of these eigenvalues by the
sign of g1 — g2 on the boundary of their joint support. Finally, section 5 treats sev-
eral applications of this result, providing algorithms for particular inverse scattering
problems.

2. The forward scattering problem. Consider a wave number k > 0, a real-
valued contrast function ¢ : R* — R, and an entire solution u’ of the Helmholtz
equation Au’ 4 k%4’ = 0 in R?. The forward scattering problem then seeks a total
field u solving

(1) Au+ k(1 +qu=0 inR%

subject to Sommerfeld’s radiation condition for the scattered field u® = u — u’,

ou®
2 lim " 1/2 ( ——(rd) — iku®(rd) | =0 il =1

(2) Jim 7 5 (r&) — iku®(rd) : | 2] )

uniformly in all # € S¥°! = {z € RY |z| = 1}. The scattering problem (1)-(2)
possesses a unique weak solution u € HZ (R?) if, e.g., ¢ € L>°(R?, C) satisfies Im (¢) >
0; see [CK13]. Under these assumptions, the evaluation of the far field u> = ug® :
S — C of the scattered field u® at the point & € S is defined by

~ exp(ikr 00/ A 1 Lv d= 37
u®(rg) = ’ydLu )+ 0 <—2) as r — 00, Yd = {ggp(iwﬂl) d=2
r r —Ver 0 =72
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and possesses for each R > 0 with supp(q) € Bg the representation

oAy _ u de~kue B 3us(y)e—iky-gz P!
o @[ [ e - St sw. sest

where v here and elsewhere denotes the outer unit normal to D. For incident plane
waves u'(x, ) = exp(ik x-0) of direction € S we denote from now on the dependence
of u=u(-,0), u®* =u*(-,0), and u>® = u>(+,6) on the incident direction 6 explicitly.
The far field pattern (&, 0) — u®(Z, 0) then defines the far field operator

@) F=F,: IXS) = IXS), g Fg(d) = /u‘x’(i’, 0)9(0) dS(6)
S
We recall that the far field operator is normal if the contrast ¢ has compact support
and is real-valued; see [CK13]. For simplicity we denote this set of functions by
Le (R4 R) = {q € L>®(RY), q is real-valued, and supp(q) is compact}

cmp

and assume that all contrasts considered in what follows belong to this set. We further
define the scattering operator

S=38,: L*S) = L*(S), S=1+2ikla?*F,.

LEMMA 1. If ¢12 € L, (RY, R) with associated far field and scattering operators

cmp
Fi 5 and 812, then S;(F\ — F») is a normal operator on L*(S).
Proof. For any far field operator with real-valued contrast, the corresponding
scattering operator is unitary. Thus,
1 1

= SxS —1).
DTN 261 -10)

As 838 is normal (since Sy 2 is unitary), the operator S5 (Fy — F3) is normal, too. O

3. Factorization via Herglotz operators. We prove in this section a fac-
torization of & (Fy — F») using Herglotz operators which shows that the real parts
of the eigenvalues of that operator are sign-definite if, roughly speaking, q1 — g2 is
either greater than or less than zero on supp(q: — ¢2). For scattering from a pene-
trable medium modeled by the differential equation div(AVu) + k(1 + ¢)u = 0 and
additionally containing an inclusion, a related factorization can be found in [CH15,
Theorems 3.1 and 4.7]. We formulate this lemma using two contrasts g; o as parame-
ters in the Helmholtz equation (1) and denote the corresponding total, scattered, and
far fields for incident plane waves of direction § € S*! by w1 2(-,6), uf »(-,6), and
uj’f’Q(-, 0), as well as the corresponding far field and scattering operators by Fj o and
81,2, respectively.

LEMMA 2. Ifq12 € L (RY), then Si (Fy — Fy) = H}Tig2Ho, where the operator

cmp

Hy : L2(S?1) — L2%(supp(q1 — q2)) is defined by
(5) 9= Ug|supp(ql—qz) ) Vg = éuQ('v 9)9(9) dS(@) ’

and Ty is defined on L?(supp(q1 — q2)) by Tigaf = k*(q1 — (I2)(f + v|supp(q1—q2));
where v € HE (RY) is the weak, radiating solution to

(6) Av+E A+ q)v =~k (g1 — @) f in RY,
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Both Hy and Thg2 are continuous, and Hy is compact and injective; if g1.2 € Lcmp(Rd, R)
are real-valued, then ImTyg2 > 0, and q1 # q2 in L?(supp(q1 — q2)) implies that Tig2
s injective.

Proof. (1) Set D = bupp(ql—qz) and denote by v§2) = v, the function from (5) for

some g € L%(S), by v” = Joua(: 0) dS(0) , and by v5"?"* the two scattered fields

for incident fields vé 2 and contrast ¢1,2- Note that Uél’z) hence solves the differential

equation AvS"? + k2(1 4 q12)v§"? = 0 in RY. The difference 7 = v{”* — (P €
HL (R9) is the unique radiating solution to

(7) AT+E(1+q)t = —k* (g1 — @)v(?  inR%

This motivates us to define G : L?(D) — L2(S) by Gf = v, where v € H}_(R?) is

the radiating solution to (7) with v§2) on the right replaced by f (extended by zero

to all of R?). Consequently, the definition of Hy in (5) shows that F} — Fy = G Ho.
(2) To obtain the indicated factorization of S5(Fy — F») we rely on the weak,

radiating solution w € H} (R9) to

loc
(8) Aw + k(14 g)w = — f in RY,

as well as on the exterior DtN operator A for radiating solutions to the Helmholtz
equation Aw+k*w = 0 in the exterior of the ball Bg; see [CK13]. A partial integration
in Br and the far field representation (3) show that

(f, Hgg)Lz(D) / [Vw VU_q—k (1+q2)wﬁg} dx —/ A(w|aBR)’U_gdS

OBr
ow Jv
Av + k214 q)T da:—/ [—v_ g} ds
/BR g ( 2) g] o5 OV 9"y

/ (e *¥ + u3(y,0)) g(A) dS(0)

w(y )8u8( )/(efiky»e—f—ug(y,ﬁ)) q( )dS(Q)} ds(y)

Ao / w™(6)3(8) dS(6) — 2ik|al? / w™(8) Fog(8) dS(0)

/aBR %

where the last term follows by the radiation condition (2) for the radiating function
w. Thus, Hj f = w™® — 2ik|v4|? F{w™ = S;w™ and SoHj f = w™.

(3) Rephrasing the Helmholtz equation (7) for v € H{_(R?) as A + k2(1 +
q2)0 = —k*(q1 — q2)(vg (2 4 v) shows that the radiating solution w to (8) with right-
hand side f replaced by —k?(q1 — qg)(vé) + v) equals v. Due to part (2) of the
proof, we conclude that Sy Hj (k?(q1 — g2)(vg 2 4 0)) = 0. By (6), there holds that

T2 (05(72)|D) =k (q1 — qg)(vg(f) + ) in L?(D) where D = supp(q1 — ¢z2), such that
82H§T1&2 (U§2)|D) =% = G(U§2)|D) in LQ(S)

As vg )|D Hsg, we conclude that So H3T1g0Hog = GHag = (F1 — Fa)g.

(4) Continuity of Hy and Tjgo is clear, as well as the compactness of Hy due to
the smoothness of us. Injectivity of Hs follows from a unique continuation argument
as in the classical case when ¢; vanishes. For Tigo, injectivity requires that q; # g2,
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since Thgof = k?(q1 — q2)(f +v) = 0 is equivalent to f = —v on supp(q1 — ¢q2). The
differential equation (6) then shows that v is the radiating solution to Av + k?(1 +
2¢1 — q2)v = 0 in R?, such that v must vanish entirely as 2¢; — g2 is real-valued.

To show that Im T2 > 0, we choose f € L?(D) = L%(supp(q1 — ¢2)) and extend
this function by zero to all of R%. Recall that Thgof = k%(q1 — q2)(f + v|p), where
v € HE _(RY) is the radiating solution to (6). Thus, abbreviating the scalar product

loc

of L?(D) by (-, ),
Im (Tigaf, f) = KIm (g1 — @2)(f + ), (f + ) = KIm (2 = @2)(f + v),v)
=k’ Im ((¢1 — q2)v, (f +v))

since qi 2 are both real-valued. We reformulate the equation for v as Av+k2(1+gq)v =
—k%(q1 — q2)(f +v) in R? and conclude by partial integration that

()
K2 (01 — g2)o. (f +)) = K / (@1 — )0 (F 4+ ) de
D

o%
=Im v[Aﬂ—!—kQ(l—qu)ﬂ dz =Im —UUdS.
Br oBy OV
The radiation condition (2) implies that [, (0v/0v)vdS 282 (k| ya ?) Js lv>=2dS,
SU.Ch that Im (Tl&gf, f)L2(D) — k|,yd|2H,Uoo||%2(Sd_1) Z 0 O

Due to normality and compactness of S5 (F; —Fy), this operator possesses eigenval-
ues \j = A;j(¢q1,¢2) and a complete orthonormal system of eigenvectors v; = 1;(q1, ¢2)
in L?(S), such that

S;(FL—Fo)g =Y N9, ¥))r2 @ty for all g € L*(S).
jEN

LEMMA 3. (a) If q1,2 € L, ,(R%,R) are two real-valued contrasts such that ¢ >
g2 in R and q1 — g2 > co > 0 in supp(qs — q2), then Re \j(q1,q2) > 0 for all but a
finite number of j € N. If q1 < g2 in R? and g2 — q1 < co > 0 in supp(q1 — q2), then
Re Xj(g1,92) <0 for all but a finite number of j € N.

(b) Under the assumptions of (a), the sequence of eigenvalues X\;(qi,q2) belongs
to the open first quadrant Q4+ = {Re& > 0, Im& > 0} U{0} of the complex plane joint
with zero if g1 > q2 and j is large enough. If ¢ < g2, the eigenvalues belong to the
second quadrant Q_ = {Re& <0, Im¢& > 0} U{0} of the complex plane joint with zero
if j is large enough.

Proof. (a) Assume for a moment that we have already proven that ReTigo =
To + K equals a self-adjoint positive (or negative) definite operator T plus a compact
self-adjoint perturbation K if ¢ > g2 in R? (or ¢; < g2 in R?). As the arguments
for negative definite Ty are analogous to those for positive Ty, we merely consider
positive definite Ty from now on and abbreviate D := supp(¢1 —¢2). The factorization
S; (Fl — Fz) = H;Tl&ZHQ then implies that

Re (85 (F1 — F»)g,9) = Re (ToHag, Hzg)L2(D) + Re (K Hag, Hag)
= (T0H297 H2g)L2(D) + (KH297 H2g)L2(D)

(10) > o Hagll72(py + Re (K Hag, Hag)

L2(S) L2(D)

(D)’
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Plugging in the eigenvectors ¢; for g and dividing by ||H2t;|3, (p) hence yields that

Re /\j
HH27/)J' ||2L2(D)

If an infinite number of eigenvalues A; has negative real part, —K would be positive
on an infinite-dimensional subspace, which is impossible by compactness of K.

We still need to show that ReT1g2 = Ty + K is the sum of a self-adjoint positive
definite operator Ty plus a compact self-adjoint perturbation K. As in part (4) of the
proof of Lemma 2,

Hoths Hoth:
2y My ) . jeN
H2¢jHL2(D) ||H2’lr/)j||L2(D) L2(D)

(11) > o+ (K :

(12) Re (Tl&Zf, h)Lz(D) = kQ/ (q1 - QQ)fEdZIJ + kQRe ((q1 - QQ)’U, h)Lz(BR)
D

for f,h € L*(D) extended by zero to all of RY, v € HL _(R?) the radiating so-
lution to (6), and R so large that D C Bg. In particular, v|p € H'(Bg) de-
pends continuously on f € L?(D). Compactness of the embedding of H'(Bg) in
L?(Bgr) hence shows compactness of the sesquilinear form on the right-hand side
of (12) on L?(Br) x L?*(Br). This motivates us to define the self-adjoint posi-
tive definite operator Ty : f — k?(q1 — ¢2)f and the compact self-adjoint operator
K: f— kYKo + Kg)/2 with Kof = (q1 — g2)v for v € H (R?) solving (6).

(b) We merely show that ¢; > g2 in R? implies that Im\; > 0 and Re); > 0
for j large enough. (The case g1 < g2 is handled analogously.) Note that we already
know from Lemma 2 that Im A; > 0. If Im A; vanishes, then part (4) of the proof
of Lemma 2 shows that the far field v7° of the solution v; to (6) with right-hand
side —k*(q1 — q2)T H2tp; vanishes. In particular, the factorization and the eigenvalue
equation imply that

S (P — Fo)y; = HyTheo Haty = Njaby = wi® =0,

such that A; vanishes. Thus, no eigenvalue can belong to R\ {0}. Assume next for
contradiction that ReA; = 0 for infinitely many j € N. Without loss of generality,
we can hence assume that ReA; = 0 for all j > N € N. As Hj is injective by
Lemma 2, the closure of span{H>%;, j € N} in L?(D) has infinite dimension. Thus,
(11) implies for the infinite-dimensional set of unit vectors p; = Hatv; /|| Hats| 2(p)
that 0 < co < (=K j,;)r2(p)- The compactness argument from the end of part (a)
again yields a contradiction. ad

The last result shows the following monotonicity result: The assumption ¢; —¢o E
0 implies, roughly speaking, that the real part of all but a finite number of the
eigenvalues of S5 (F; — F5) is positive (or negative) as well. If supp(q1) = supp(q2),
we will substantially refine this result in the next section by proving an even stronger
monotonicity between the values of ¢1 — g2 on the boundary of supp(¢i1,2) and the real
parts of the eigenvalues of S5 (Fy — F») (see Theorem 9).

Moreover, if 1+ go is the refractive index of a known background medium that is
perturbed by ¢;, the results from this section show the following characterization of
supp(q1 — ¢2) via Fy or via 85 (Fy — F3), as Fy and Sy can be computed from g2 (see
also [CH15] for related results). To this end, we denote by G(-,2) € HL (R \ {z})
the Green’s function for the known background medium 1+ g3, i.e., the distributional
solution to

(13) AG(+,2) + E*(1 4 ¢2)G(+, 2) = 6, € R
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that satisfies Sommerfeld’s radiation condition (2). (In (13), 4, is the Dirac distribu-
tion at z € R%) This radiation condition is well defined since (A 4+ k2)G(-,2) = 0
outside of supp(gz2) N {z}, such that G(:,z) is a smooth solution to the Helmholtz
equation outside some ball B(0, R) with R > 0 large enough. In consequence, G(-, z)
possesses a far field G*°(+, z).

THEOREM 4. Assume that q12 € Lé’fnp(Rd,R) are two different real-valued con-
trasts such that either g1 > g2 in R% and g1 —qo > co > 0 in supp(q1 —q2) or else ¢1 <
g2 in R and g — q1 < co > 0 in supp(qy — q2). Further, set M = S;(Fy — Fy). Then
z € R? belongs to supp(q1 — q2) if and only if S3G>=(-,2) belongs to the range of the
square root of the self-adjoint, compact, and nonnegative operator My = |Re M |+Im M

on L2(S41).

Proof. We treat only the case that ¢ > ¢o in R? and ¢; — g2 > ¢o > 0 in
supp(q1 — g2); the other case follows analogously. Lemmas 2 and 3 show that Ho is
compact and injective and that Tigo is injective with nonnegative imaginary part;
moreover, Re T1g2 is a compact perturbation of a coercive operator, as shown in the
proof of Lemma 3. The factorization S5 (Fy — Fy) = H3Tig2H> then shows that the
ranges of Hj and of the square root of My = |Re M|+ Im M are equal; see Theorem
2.15 in [Lec09]. (Since Mjy is nonnegative, compact, and self-adjoint, such a square
root can be defined, e.g., using a functional calculus for compact and self-adjoint
operators.) In addition, Theorem 4.5 in [CH15] shows that S5G(-, z) belongs to the
range of HJ if and only if z € supp(¢1 — ¢2), which yields the claim. O

4. Factorization via Dirichlet-to-Neumann operators. In this section we
prove a second factorization of S5 (Fy — F») using DtN operators. This factorization
requires more smoothness than the one from the last section; under these assumptions,
however, it shows a monotonicity relation between the real part of all but a finite
number of the eigenvalues of S5 (F; — F3) and the sign of the restriction of ¢; — g2 to
the boundary of, roughly speaking, the union of the joint support of ¢; ».

Despite the fact that we require more smoothness later on, assume for the moment
that the contrasts ¢i,2 € L(C’?np(Rd) are bounded and measurable with supports D; 5 :=
suppqi,2 C R? for Lipschitz domains D1 5. Further, we set G to be the unbounded
connected component of the complement of D; U Dy, define Djgo = R \ G (this is
the smallest set without holes containing D; and Ds), and assume that Dgo is a
Lipschitz domain as well; see Figure 1.

Fic. 1. Sketch of domains D1 (left, horizontal lines) and D2 (right, vertical lines); Digo is
the union of D1 and Do with the crossed region in the middle.

We assume that k2 is not an interior Dirichlet eigenvalue of the negative Laplacian
in Dy or Dig2 and rely on various interior and exterior DtN operators for the
Helmholtz equation.
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For the homogeneous Helmholtz equation, and D; equal to either D; 5 or Dy,

(14) N HY2(0D;) — H-Y*(9Dy), P ?
J v

)
oD,

maps Dirichlet boundary values to the Neumann boundary values of the unique radi-
ating solution to the exterior boundary value problem Av+k?v = 0 in R\ D; subject
to vlap, = 1. Note that v is, as in the previous sections, the outer unit normal to
Dj. Further, for D; equal to Dy 2 or Dig» and g, equal to g1,2 or ¢1 + go,

ov

(15) W HY*(0D;) » HY*(0D;), U 5

Dj,qe

)

maps Dirichlet boundary values to the Neumann boundary values of the unique ra-
diating solution to the corresponding interior boundary value problem Av + k2(1 +
Ip,q¢)v = 0 in Dj; subject to v|gp, = ¥. (See [McL00, Ch. 4] for such existence
results.) By N}:‘)‘h0 we denote the corresponding operators for the Helmholtz equation
Av+Ek?v=0in D; without contrast function, i.e., for constant coefficients. All these
interior boundary value problems are assumed to be uniquely solvable.

Note that the difference N3 =~ — N : H'/2(0D;) — H~'/?(dD;) then maps
Dirichlet trace values ¢ to the jump ¢ across dD; of the normal derivative of the
unique radiating solution u € H{ _(R?\ dD;) to the transmission problem

(16) Au+Ek*(1+1p,q;))u=0 inR*\ 9Dy,

0
[Wop, =0 in HY2(0D;), 2 = e HY2(0D)).
’ ov |, D,
(See [McL00, Ch. 4] for existence theory for this problem; [v]sp,; denotes the jump of
v from the outer trace to the inner trace on D;.) Indeed,

in ou ou|
(7) N b-Ng =

_Qu
op, OV

C [
ov

} =¢ in H/*0D;).

As the transmission problem (16) is uniquely solvable, the mapping ¢ +— ¢ is bounded
from H~'/2(0D;) into H'/?(9D;) and defines the inverse to ¢ = N ) — N,
Thus, Ng‘ﬁqj - Nf)‘;t is boundedly invertible from H'/2(0D;) into H~'/2(0Dj).

We now prove a relation between DtN operators and far field operators Fj o
where the link between far fields on the sphere and quantities on the boundary of the
scatterer is played by the operator L; : Lo(S?!) — HY2(9D;) defined by

(18) (Lig)(y) = / eFytg(i)dS(2), g € La(S* 1Y), y € OD;.

§d—1

This is hence the restriction of a Herglotz wave function vy from (5) to 0D; where
Dj € {D12, Dig2}. Tts L*-adjoint is L7 : H=12(0D;) — L*(S*"'), mapping v to
B fop, e V0(y) dS(y).

THEOREM 5. For j = 1,2, the far field operator F; satisfies

(]‘9) F] = L; (NiDnj,O - %jt)(NiDnj,qj - Blj‘t)il(NiDnj,O - glj,qj) L]
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Proof. We restrict ourselves to 7 = 1, omit this index in this proof for all
operators, fields, and domains, and denote by ® the radiating fundamental solu-
tion of the Helmholtz equation with wave number k2. By Green’s representation
theorem, the scattered wave u® for an incident Herglotz wave function u’(z) =
Jsa—1 exp(ik z - 0)g(#) dS(0) can be written as

s _ aq)(x_y)us _ T — ou’ x d\ 7m
ww) = [ (Tt - e -nGom) iS6). 2 RND,

Green’s second identity applied to ®(z, ) and the solution of the Helmholtz equation
in D with the Dirichlet data u®|sp at the boundary implies that

00(x —y) | _ . _
/BD "oy “WBW = /aD O(x —y)Npou'(y)dS(y), = eR\D.

Thus,
u(z) = /8 @ —y) (VBgu' — Ng“u)w)dS(). =€ R\ D

As the far field of ®(- — y) equals & — exp(—ik Z - y), the far field u™ of u® satisfies
(20) u™® = L*(Np gu® — N°"u®) in L*(S71).

It remains to express u® on 0D via the Herglotz wave operator Lg from (18) that
defines the restriction of the incident field u® to dD. Note that the total field u® + u®
satisfies N3 (u’ +u*) = Ou’ /v + 0u® /Ov in H~/2(0D). Further, du’/dv = N} ju’,
whereas Ou® /Ov = N%"u®, such that we conclude that

(Ngl,q - BUt)usz = (NB]O - Ng‘,q) ui|8D = (NB,O - Nglq) Lg
holds in H~'/2(9D). The bounded invertibility of NP, — N together with (20)

now completes the proof. a

The last proof can be modified in the following way: If h denotes the restriction
of an incident Herglotz wave function u’ to 0D1g2 (see Figure 1), and if uj denotes
the solution to the scattering problem for contrast ¢;, then Ng‘l&% qjh = Ou; /Ov as

well as NI~ (h = 0u'/Ov holds in H~'/2(9D1gs). The last proof hence also shows
the following result.

COROLLARY 6. For j = 1,2, the far field operator F} satisfies

(21) Fj = Ligs (NB, g0 = NP1 ) (VB paig, = NB1ea) T (VB a0 = NBgag,) Lige.

Dig2 Dig2,q; Dig2

The following property of the outer operators Lig2 and Ljg, is well known
(see [LV15, KGO08]) and holds of course also for Dj 2 instead of Dyga.

LEMMA 7. If —k? is not an eigenvalue of the negative Dirichlet-Laplacian in
Dig2, then both operators Ligs : L*(S%71) — H1/2(8D1&2) and L3¢ ¢ H’l/z(aDl&g)
— L2(S%1) are injective, and their ranges are dense.

The last lemma shows that F; can be written as F; = Lig,o M; Lig2 with

(22) M; = (N o= Np")(Np, = Np*) (NS — Np.,)
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for j = 1,2 by (21). Thus, S5 (Fy — F») is representable in the form

S5 (F) — F») = (I — 2ik|yq|* Fy) (Fy — F2)

(23) = (I = 2ik|yal® Lo M5 Liga) (Ligo[M1 — Ma)Liga)
= Ligo( My — My — 2ik|yal> Mj L1goLigo[ M1 — Ma] ) Ligeo,
=:Mig2

with a bounded operator Mjg» mapping H'/?(0D1g5) into H='/?(0D1g3). The lat-
ter middle operator can be analyzed by pseudodifferential calculus. To this end, we
suppose from now on that the two contrasts q; o are infinitely often differentiable
functions inside their joint support D := supp qi,2 C R?, and that all partial deriva-
tives possess continuous extensions to D. The domain D is moreover assumed to be
smooth and bounded with connected complement. (These assumptions avoid tech-
nicalities and imply in particular that Digo = D. It would be sufficient to assume
that ¢1 2 are both C3(D) and that D is a domain of class C%; see [LV13].) Writing
L = L, », the factorization in (23) hence simplifies to

(24) Si(Fi — F») = L*MigoL = L*(My — My — 2ik|ya|>M; L2 L*[My — M,)) L.

Let (y1,...,y4—1)" be local coordinates on dD with dual variables (¢f,...,&5 ),
and let Zf;l 9i.;(y) dy; dy; be the first fundamental form on dD. Then |£*| =

(sz;il 9 (Y)EET) "2 is the length of the covector in the cotangent bundle T*(9D).

LEMMA 8. Suppose that k? is such that the DtN operators Ngqj, 7 =12, and
Np o are well defined.

(a) Both operators Ng‘)qj and NBO are elliptic pseudodifferential operators of
order one and self-adjoint from H'/?(0D) into H='/2(0D). The principal symbols of
both operators equal |£*|.

(b) The operator N3™ is an elliptic pseudodifferential operator of order one with
principal symbol —|&*|. For every 1 # 0 in HY/?(dD),

(25) I (N 0oy = bl [ 0728 >0,

where v™° is the far field amplitude of the solution v of the exterior Dirichlet scattering
problem in R\ D with Dirichlet boundary data 1 € HY?(OD).

(c) If q; does not vanish on the boundary D, then the operator N, — Ng’7qj
from (17) is an elliptic pseudodifferential operator of order minus one with principal
symbol (z,&*) — k2q;(x)/(2|€*]) for (z,£*) € D x T*(dD).

(d) If g; is identically zero on the boundary 0D and its normal derivative does
not vanish anywhere on the boundary, then the operator Ng‘p — Ngqj from (17)
is an elliptic pseudodifferential operator of order minus two with principal symbol
(z,&%) — —k?(0q;(x)/0v)/(4|€*]) for (x,&*) € OD x T*(OD). More generally, if we
suppose that there exists m € Ng such that

9'q;(x)
ovt

=0,7=0,...,m—1, M#O for x € 9D,

(26) ovm

then there is a constant consty, > 0 such that NBO - Ng‘)qj has principal symbol
(z,&%) — (—1)™k? const,y, (0™ q;(x)/Ov™)/|EX | for (z,£*) € OD x T*(0D).
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Proof. The first statement and the expression for the symbols of Nqu, Ng‘)o,
and N9'™ are well known; see more details in [LV13]. The formula on the left-hand
side of (25) is a consequence of Green’s first identity and the definition of the far
field (compare with (9)); positivity of the left-hand side is a consequence of Rellich’s
lemma. Two last statements can be found in [LV13, Lemma 1.1]. Lemma 1.1 in
[LV13] is justified by calculating the first three terms of the full symbols of NEO and
Np.,, (the differences of the first two terms of the symbols vanish). The proof of item
(d) consists in computing the full symbol of the pseudodifferential operators NEO and
NB q;- This procedure is described in detail in sections 3 and 4 of [LV13] and has been
justified in [VG67]; see also [Eskll, Ch. VII] and [LU89]. Note that the coefficient
consty, of the principal symbol is calculated rigorously in [LV13] for m = 0 and m =1
only. For general m > 0, calculating const,, reduces to calculating two determinants
of a band matrix of size m x m and band width two; we omit this calculation since it
requires a significant amount of notation that is not going to be used again. d

The factorization of M; = (Nj3o — NR*)(NpB . — Np*) "' (N3, — Np,,) from
Lemma 6 into pseudodifferential operators with principal symbols introduced in the
last lemma allows us to compute the principal symbol of Mige = M; — My —
2ik|vyaq|*? M3 LL*[My — M,] from (23). Note that L Lj, is compact from H*(dD)
into H'(0D) for arbitrary s,t € R, such that MjLL*[M; — M>] is bounded from
H'2(dD) into H'(OD) for all t € R. In particular, this operator is irrelevant for
computing the principal symbol of Mjgs. As the principal symbols of Ng‘)qj and
Ng‘)o equal (z,£*) — [£*|, as that of N2 equals (z,£*) — —|¢*|, and as that of
NP o — NP, equals (z,&) = k?q;(z)/(2|¢*]), the principal symbol of Mgz equals
(27)

oy 28w (@) — () o (@) — ga(x) ) .
(z,¢ )»—>2|€*| k 2] k 2] for (x,&*) € 9D x T*(0D).

THEOREM 9. (a) If g1 — g2 < 0 on 0D, then S;(F1 — F») has at most a finite
number of eigenvalues A; with positive real part.

(b) If gt — g2 > 0 on 0D, then S5(Fy — Fy) has at most a finite number of
eigenvalues \; with negative real part.

(¢) If g1 — q2 takes both positive and negative values on 0D, then S (Fy — F») has
infinitely many eigenvalues with both positive and negative parts.

(d) In the case when q1 = qo at the boundary but (26) holds for some m > 0, then
corresponding result (a), (b), or (c) holds depending on the sign of the mth normal
derivative.

Remark 10. Theorem 9 holds irrespective of whether k2 is such that the interior
boundary value problems defining the DtN operators Ng‘) s and Ng,o from (15) are
uniquely solvable. Indeed, by the continuous dependence of F} > on k, such interior
eigenvalues might flip the sign of the real part of at most finitely many eigenval-
ues, which does not influence finiteness or infiniteness of the corresponding sets of

eigenvalues.

Proof. (1) Let q1(z) — q2(x) < 0 on dD. Let T = span{cp;r}, where @j are the
orthonormal eigenfunctions of S5 (Fy — F3) associated to eigenvalues A; with positive
real part ReA; > 0. To prove the first statement of the theorem, we need to show
that the space 7T is finite-dimensional. To this end, we abbreviate the scalar product
of L2(S%=1) by (-,-).

(2) By construction, we have Re (S5 (F; —Fg)gpj, @j) = Re\; > 0. Orthogonality
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of the eigenfunctions @j hence implies that
(28) Re (S3(Fy — Fy)p, ) >0 forall p e TT.

We next use the representation S;(Fy — Fy) = L*MigoL, where Mg is a pseudo-
differential operator with the principal symbol k2(q1(x) — g2(2))/(2|€*]) due to (27).
For all ¢ € L?(S%1), we have

(S5(Fy — Fa)p, ) = (Mygath, ) 2(py  for ¢ = Lo € H'/?(9D).

Since Mg is an elliptic operator of order one with a negative principal symbol, there
is ¢g > 0 such that

(29) Re (Mig29,9) < —coll¥ 31200y + ClYll720p):
and therefore
(30) 0 <Re(S3(F1—Fa)p, 9) < —coll Lol fisaapy + ClILelT2opy for all p € T,

Thus, for all ¢ in the closure of L(T") = {4 = L for some ¢ € T} in the norm of
H'/?(9D) there holds the inequality

C
(31) 19151200y < a”%bﬂiz(ama ¢ e L(TH).

On any infinite-dimensional subset of H'/2(9D), the H'/2(9D)-norm cannot be es-
timated from above by the L?(0D)-norm due to the open mapping theorem. Conse-
quently, (31) implies that the linear space L(T'*) is finite-dimensional. Now, Lemma
7 implies that the space T is finite-dimensional, too, such that the first statement
of the theorem is proved.

(3) To prove the second statement, one needs to replace T+ by T~ = span{np;},
where ¢, are the eigenfunctions corresponding to eigenvalues A\; with negative real
part, and use the positivity of the principal symbol of Mjgs. Let us hence prove the
last statement by combining the above technique with a localization argument.

(4) Assume hence that g; — g2 takes both positive and negative values on 9D and
that the space T~ = span{@j_}, defined as above, is finite-dimensional. Similarly to
(28), we have that Re (S5 (F1 — F2)p, @) > 0 for all ¢ in the orthogonal complement
(T~)* of T~, and therefore

(32) (S3(Fy — F2)p,¢) = Re (MigaLo, Lp)2(9py > 0 for all p € (T7)*.

The smoothness of ¢; 5 implies that there is an € > 0 so small that the set I'™ = {z €
00, q1(z) — g2(x) < €} is not empty. Let x be an infinitely smooth function included
in C*°(D) such that 0 < y < 1 and such that x = 1 in a d-dimensional neighborhood
U of '™ in D with UN{x € 99, ¢1(z) — g2(x) > 0} = . It is always possible to
choose x such that both DtN operators Ng‘)xqj, j = 1,2, are well defined between
H*'/2(0D).

For vy € H'/?(0D), now consider solutions v,w € H'(D) of the boundary value
problem

Av+k*(14+¢g)v=0in D, Aw+k*(1+xg)w=0inD, v=w =1 ondD,
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such that Ng’q ¢ = dv/dv and N} xa; ¥ = Ow/0v hold in H~Y2(dD). The difference

= Ng‘) qu/J Ng‘ @ ¥ hence equals the Neumann boundary values of z=v—we
HY(D),

Az + k(14 gj)v =k*(x — 1)gjw in D, z=0on dD.

As x — 1 vanishes in the neighborhood U of I'", standard boundary estimates for the
solutions of elliptic equations show that ||z]| ¢y < C(€)[|9] g1/2(opy for all arbitrary

¢ € N, as long as 1 is supported in I'". Thus, we introduce Hl/2 = {1/1 €
H'Y2(I'7), supp(y)) € T } and conclude that ¢ — (Ng‘q —Nin @ X)z/J is bounded from

H'Y2(I'~) into H*(I'™) for arbitrary t. (We implicitly extend functions in H/2(I'")
by zero to elements of H'/2(T').) If we merely consider ¢ € H'/2(I'"), then estimate
(29) consequently holds not only for Mg but also for M7 ,, defined by replacing ¢
and ¢ in M 2 by x¢1 and xgo, respectively. As in part (2) of the proof, we conclude
by (32) that

C r —
Wz 2000y < I NE 00 for ¢ € L((T—)4) N HY*(I7),

where the closure of L((T~)%) is taken in the norm of H'/2(T"). The latter inequality
implies by the same arguments as in the end of part (2) that L((T—)L)NHY2(I'7) is
finite-dimensional, such that (7~)* must be finite-dimensional. This contradicts our
initial assumption that T~ itself is a finite-dimensional subspace. The proof that T
cannot be finite-dimensional follows analogously. O

5. Applications. As a corollary of the factorization of Fy in Theorem 5, we es-
tablish a factorization method for sign-changing contrasts. As always, in this section,
we require that the DtN operators N3, and Ng’j) o from (15) be well defined for the
considered contrast function q.

THEOREM 11. Assume that q is a real-valued contrast Junction supported in the
smooth domain D C R% such that qlp is a smooth function on D. Assume fur-
ther that q|,p is either strictly positive or strictly negative, and denote the far field
operator associated to q by F = F,. Additionally, suppose that k* is not a transmis-
sion eigenvalue of D, i.e., that there is no nontrivial pair (v,w) € H*(D)? such that
v—w € HZ(D) solving

(33) Av+E*(1+quv=0 and Aw+k*w=0 inD.

Then z € R? belongs to D if and only if ¢.(&) := exp(—ikd - z) € L2(S* ') belongs
to Rg((F*F)Y/4).

Proof. Theorem 5 shows that F' = L*M; L, where M, : H'/?(0D) — H~'/2(0D)
can be represented as the sum of a coercive operator plus a compact perturbation,
since its principal symbol is either positive or negative due to Lemma 8(a)—(c). Recall
that M1 = (NB =Ny (NB ,,—Np*) "1 (NP o= NP ). Our assumption that k2 is not
a transmission eigenvalue implies that Ng’j)o - Ng‘j) ¢, 18 injective, since otherwise the
difference of the corresponding interior Dirichlet boundary values belongs to H3 (D)
and solves the two Helmholtz equations in (33). It is easy to see that Ng,o — N is
injective, too, and we have already shown in the last section that (Ng 0 Nopt)~1 s
an isomorphism. Thus, M; is injective as a composition of three injective operators.
Lemma 2 applied to g2 = 0 moreover shows that Im M; is nonnegative. Further,
Lemma 7 shows that L : L?(S%') — H'/2(OD) is injective with dense range. As
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S = I + 2ik|yq|? F is unitary, all hypotheses of Theorem 1.23 in [KG08] are satisfied
such that this result implies that the ranges of L* and (F*F)Y* are equal. As k>
is not an interior Dirichlet eigenvalue (since Np o is assumed to be well defined),
Theorems 1.12 and 1.24 in [KGO08] show that the function ¢, belongs to the range of
L* if and only if z € D, which shows the claim. 0

The last theorem typically is exploited to define an indicator function for the
support of the contrast function ¢ by noting that Picard’s criterion [KGO08] implies
for the complete eigensystem (A;, ¢;);jen of F' that

(34) Z Z 12 %|/\LT 6+ 1)| >0 if and only if z € D;
JEZ

see [KGO8]. Let us briefly illustrate the latter criterion numerically for the sign-
changing contrast function ¢; shown in Figure 2(a) for far field data gained at wave
number k£ = 5 via 64 incident plane waves with uniformly distributed directions on
the unit circle. As Figure 2(b) shows, the indicator function (34) clearly indicates
the shape of the contrast ¢;. (We used Tikhonov regularization with constant regu-
larization parameter 10~8 for a numerical noise level above 1076.) For comparison,
we show in Figure 2(c) the behavior of the same indicator function for a contrast ¢o
with same support as q; but constant contrast equal to 0.7. This comparison shows
in particular that the indicator function for g¢s is almost flat in the interior, which,
arguably, provides a better reconstruction. In both cases, however, the inverses of the
plotted indicator functions are very small outside the support of the scatterers, which
notably is the only property guaranteed by Theorem 11 or (34).

Contrast q, Indicator function for q, Indicator function for q,
1 1

1.5 0.8 . 0.9 15 0.9
0.8 0.8

B 0.6 1
0.7 0.7
05 0.4 - 0.6 0.5 0.6
° 0.2 0.5 0 0.5
0.5 o 0. 0.4 0.5 0.4
0.3 0.3

- E 1
-0.2 0.2 0.2

-1.5 . -1.5
0.4 0.1 0.1

<15 -1 05 0 05 1 15 <15 -1 05 0 05 1 15 <15 -1 05 0 05 1 15
a C

Fic. 2. (a) Contrast q1. (b) Indicator function for supp(qi) from the left of (34), scaled to
mazimal value one. (c) Indicator function for supp(q2), scaled to mazimal value one. (Recall that
supp(qg) = Supp(‘]l) and that q?lsupp(qg) = 0'7')

As a further application, Theorem 9 directly shows that the boundary values of
a smooth contrast ¢ are uniquely defined by the far field operator Fj,.

COROLLARY 12. If D C R? is a known smooth domain and if ¢ : D — R is a
smooth contrast function, then F = F, uniquely determines the boundary values qlop .

Proof. If F; = F5 for two far field operators corresponding to two smooth contrast
functions ¢i 2, then S5 (Fy — F») = 0, such that Theorem 9 implies that (g1 — g2)|ap
cannot take positive or negative values. a

The following result considers a contrast g with support D that is analytic and
possibly contains obstacles with prescribed nonabsorbing boundary conditions.
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THEOREM 13. Suppose that the contrast function q is analytic in its support D
that contains finitely many connected obstacles Q C D of class C%' with connected
complement D\ Q. Suppose, moreover, that the jump of q across OD is sign-definite
and that the radiating scattered fields u® = u®(-,0) € HL_(R?) for incident plane
waves with direction 6 € S solve Au® + k*(1 + q)u® = —k2qu’(-,0) in R?, subject
to transmission conditions [u®],, = 0, [0u®/0V],, = 0 and either Dirichlet or Robin
boundary conditions on OS2,

ou® ou'(-,0)

+out = —
au o

u® = —u'(-,0) on 0Q or +ou'(-,0)| on 00

for some real-valued function o € L>(0Q,R). Additionally, suppose that k? is not
an interior Dirichlet or a Robin eigenvalue of Q0 for the negative Laplacian. Then g
and the shape of all obstacles  included in D are determined uniquely by the far field
operator defined by the latter scattering problem.

Proof. Tt is well known that both the mixed scattering problem and the inho-
mogeneous medium scattering problem are uniquely solvable in Hlloc(Rd)7 and the
corresponding proofs by variational methods extend to the scattering problem; see,
e.g., [CK13, KL13]. As D € C* is a smooth domain and ¢|p is the restriction of an
analytic function, the assumption on the jump of ¢ across 9D implies by Theorem 9
uniqueness of germs of ¢ in each boundary point on dD. As, moreover, each germ of
g can be continued analytically into the whole of D, the problem of identifying the
shape of the obstacle is reduced to the problem of identifying the shape of obstacles
in the known medium (produced by the mentioned germ of ¢), which has been solved
for Dirichlet and Robin boundary conditions in [NPT07]. 0

Neglecting smoothness assumptions, the monotonicity between (¢1 — ¢2)|ap and
the real parts of the eigenvalues of (¢1 — ¢2)|sp motivates the following algorithm to
compute boundary values of a smooth contrast function ¢ when the smooth support
D c R? of ¢ is a priori known: Computing far field operators for constant refractive
index, determine in a first step constant upper and lower bounds for ¢|sp. Second,
refine these bounds by decreasing/increasing the constant bounds locally on dD. Let
us for simplicity first investigate an algorithm determining constant bounds, before
refining those in a second step.

LisTING 1
Algorithm to find upper/lower bounds for the boundary values qlap of real-valued contrast q

with supp(q) = D from far field data Fyq with starting values cx < ¢* € R and update parameter
t> 0.

A:S:*JID(Fq_FC*JlD);
if eigenvalues of A tend to zero from the right // = c. <glop
while eigenvalues of A tend to zero from the right
cs =cs+t; // increase cu
A:SZ*ID(Fq_Fc*]lD);
Cx = Cx — t;
else
while eigenvalues of A donot tend to zero from the right
bys =bs—t; // decrease b
A:SILJID(FQ_FIJ*]ID);

A=80,(Fg— Forap);
if eigenvalues of A tend to zero from the left // = c¢* >qlop
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while eigenvalues of A tend to zero from the left
c*=c"—t; // decrease c*
A:S:*JLD(Fq_FC*JlD)§

¢ =c" +t;

else

while eigenvalues of A donot tend to zero from the left
c*=c"+t; // increase c*
A=80q,(Fg—Fer1p);

return c., c*;

COROLLARY 14. Under the assumptions of Corollary 12, the values c., c* re-
turned by the algorithm in Listing 1 satisfy c. < qlop < c*.

To show feasibility of the latter algorithm, we consider three contrasts gc v, in R?

supported in D = [-0.7,0.7)%. First, g. = 0.4 1 p is piecewise constant; second,
qv(z) = % 1p(x) |min [min(z; — 0.7, —z1) — 0.7, min(xs — 0.7, —z2 — 0.7)]|
for € R?; and third,
@ (x) = % 1p(z) min [min(z; — 0.7, —z1 — 0.7), min(zy — 0.7, —2zo — 0.7)] + 1

for x € R?; see Figure 3. For wave number k = 2m, i.e., for wave length equal
to one, the corresponding far field operators are F,,. We compare a numerical
approximation of this far field operator for 32 equidistributed directions on the unit
circle with numerically simulated far field operators for contrast c¢1p, where ¢ =
—0.4,-0.3,...,1.5,i.e., h = 0.1. The simulated far field operators rely on far field data
for 32 uniformly distributed incident directions computed by the spectral collocation
method described in [BKL16] (we used 2'® uniformly spaced discretization points in
the domain [—2,2]?). The relative error of these synthetic far field operators is less
than 10~4. Computing one far field operator takes about 10 seconds on a Linux
workstation with 4 cores and 16 GB RAM); if the support of the contrast is known in
advance, one can precompute these auxiliary far field data. Note that we do not add
artificial noise to the simulated far field patterns, such that our numerical experiments
do not allow for any statement on stability of the investigated technique.

Exact contrast 9. Exact contrast q, Exact contrast q,
1 14 1 1

12 08

05 05 075 05 065
038

06 06

02 06 055

-05 -05 -05
0.5
0.2 o5

Loa

1 05 0 05 1 B 05 0 05 1 - 05 0 05 1
(a) (b) ()
Fi1G. 3. (a) The contrast qc. (b) The contrast qv. (c¢) The contrast qx.

A somewhat tricky problem for implementing the algorithm from Listing 1 is

to numerically check from a finite-dimensional approximation of 8¥y  (Fev — Fe1p,)
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whether its eigenvalues tend to zero from the left (right) such that merely finitely
many have a real part greater (less) than zero. To this end, we compute first all
eigenvalues in the annulus R = {z € C : 1078 < |2| < 1072} and next the numbers
My (c) of eigenvalues in R with real part greater (+) and less (—) than 0. If M, (c)
(M_(c)) vanishes, we conclude that the eigenvalues of S}  (Fe v — F.1,) cannot tend
to zero from the right (left). As the most expensive part of the algorithm hence is the
computation of eigenvalues and eigenvectors of several matrices of size 32 x 32, the
runtime of the presented implementation is negligible once the far field operators for
the test contrasts are precomputed.

Figure 4(a) shows plots of My (c) for ¢ = —0.4,...,1.5 and F' = F; in (a) and
F = F, in (b). For ¢., My (c) vanishes up to ¢ = 0.4, whereas M_(c) vanishes for
¢ > 0.4, such that the interior trace of the exact contrast on the boundary of the square
D must equal 0.4, which equals the true value. For the spatially varying contrast gy,
the numbers M, (c) also vanish up to ¢ = 0.4 and M_(c) vanishes for ¢ > 0.9, such
that ¢y|op must take values in between 0.4 and 0.9. While this conclusion is true
and the upper value equals the maximum of the trace ¢y|sp, the lower value is about
0.15 below the minimum of that trace (and even about 0.25 below the minimum of
gv of about 0.425). Finally, Figure 4(c) shows that the boundary values ¢;|sp must
lie in between 0.4 and 0.5, which are the best possible bounds for the chosen values
of ¢ = —0.4,...,1.5 and the exact boundary values ¢;|sp = 0.45. Note that ¢, takes
values in between 0.45 and 0.75, such that our theoretical results are confirmed: Only
the boundary values of ¢ influence whether the eigenvalues of Sy D(FC,V — Fo1p)
tend to zero from the left or the right. To conclude, the presented implementation
indicates correct bounds for the boundary values of the contrast if the support of the
exact contrast is known.

# left/right eigenvalues for q . # left/right eigenvalues for q Y # left/right eigenvalues for q .
12 TS * ‘ 10 . 3 (222222 =
e ¢
10000000 o & $840004 B 100000000 04 4006064
44 4
8 ¢ 8
6 *
6 + 6
4 ®
4 4
2
2 2
L 4
00600000000 ° 0064400004 L4 0000000000000 0000000 0
0 05 1 15 0 05 1 15 0 05 1 15

(a) (b) (c)

FIG. 4. Numbers of eigenvalues M+ (c) of S5(F — Ferp) in {1078 < |z| < 1072} for ¢ =
—0.4,...,1.5 and D = [—0.70,0.70]% with real part larger (dots, My ) and smaller (diamonds M_)
than zero. (a) F = Fy.. (b) F=Fy,. (¢) F=F,,.

For more accurate space-dependent upper and lower bounds for the boundary
values of a contrast function ¢, a natural idea is to replace the constant test con-
trasts clp by real-valued linear functions p multiplied by the indicator function
of D. Initializing upper and lower approximations ¢(¥) by constant values times
1p such that ¢(=) < ¢ < ¢! in D allows us to compute such bounds by check-
ing as in Listing 1 whether the eigenvalues of Sy, (F; — Fp1,,) tend to zero from
the left or from the right. (Numerically, we check as above whether the number
of eigenvalues of a discretization of the latter operator of dimension 32 x 32 in
Ry = {2z € C: 1078z] < 1072, Re(2) = 0} vanishes.) If zero is the limit from
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the left (or from the right), we conclude that p > ¢ (or that p < ¢) and update ¢(*)
by min(p, ¢)) (and ¢(=) by max(p,q())).
As linear functions possess three degrees of freedom, the computational work of
(pre)computing far field operators to assemble discretizations of the normal operators
o1 (Fq — Fp1,,) increases drastically compared to the algorithm from Listing 1. For
the examples below, we parametrized linear functions via 12 equidistributed points
Z1,...,T12 on the boundary of D with associated directions &; = x;/|z;|, eleven dif-
ferent slopes sy = —2,—1.8, —1.6, ..., 2, and eleven different off-sets o,, = 0,0.1,...,1,
and we approximated 1452 far field operators for contrasts p 1 p with linear functions

(35) p(x) =8¢ &5 - (& — x5) + O, j=1,...,12, {Lm=1,...,11.

Note that again that these far field data can be precomputed if the shape of the
scattering object is known a priori. More generally, we could also consider polynomials
of higher degree, but the amount of work to precompute far field operators increases
exponentially with each degree.

Figure 5 shows the resulting approximations qgj\[,)r 1p for the three exact contrasts
Ge,v.r shown in Figure 3. (We initialized ¢*) as £10%1p.) While the maximal norm

+ . . .
Ilge —qé )||Loo(aD) is about 0.04, ||¢; —qr(i)HLoo(aD) is about 0.07; ||gx —qr(+)|\Loo(aD) is

about 0.1, and ||¢, — qr(_) | L= (ap) is about 0.07. This shows that the boundary values
of g v, are well approximated by their piecewise linear bounds. The extrema of the
above-mentioned differences’ maxima are always attained in one of the four corners,
which, arguably, is natural as theory requires smooth domains. Clearly, both bounds
do not approximate the exact contrasts inside the domain D unless that exact contrast
is constant in D. Since we deal with linear test contrasts, the upper and lower bounds
¢ are however concave and convex, respectively, as the pointwise minimum and
maximum over linear functions (see, e.g., Figure 5(e) and (g)). Thus, approximating
boundary values that fail to be either concave or convex certainly requires quadratic
comparison functions to obtain a comparable accuracy.
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Fic. 5. The upper and lower bounds qgf‘\:,)yr]lp computed for exact contrasts qcvyr1p (see
Figure 3) and linear comparison contrasts determined in (35). In each column, from top to bottom,

qgj\—,),r 1p, (ge,v,r — qé:‘:,%r) 1p, qéf\,)’r 1p, and (ge,v,r — qé’_vzr) 1p. First/second/third columns: Results

for qc/qv /ax -
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