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Abstract. We consider a natural representation of solutions for Tikhonov
functional equations. This will be done by applying the theory of reproduc-
ing kernels to the approximate solutions of general bounded linear operator
equations (when defined from reproducing kernel Hilbert spaces into general
Hilbert spaces), by using the Hilbert-Schmidt property and tensor product
of Hilbert spaces. As a concrete case, we shall consider generalized fractional
functions formed by the quotient of Bergman functions by Szegö functions
considered from the multiplication operators on the Szegö spaces.
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1. Introduction

In this paper, we shall consider a natural representation of solutions for Tikhonov
functional equations by applying the theory of reproducing kernels. This will give
us approximate solutions for general bounded linear operator equations, when
considered from reproducing kernel Hilbert spaces into general Hilbert spaces.
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In view of that, besides presenting a general introduction on the area in this
section, we include in the next section some known background on the subject
(which is mainly based on the original ideas from [18] and the updated work [19]).
In Section 3 we will analyse, in detail, the solution of a Tikhonov functional equa-
tion by using complete orthonormal systems. In Section 4, as a typical and concrete
application of the proposed theory, we will discuss and deduce generalized frac-
tional functions, built by Bergman and Szegö functions through the consideration
of the multiplication operators on the Szegö spaces. This will be achieved on the
basis a an application of the main result of Section 3, about Tikhonov regulariza-
tion on concrete reproducing kernel Hilbert spaces. Finally, in Section 5 we will
analyse a completeness condition in the Szegö space and auxiliary characteriza-
tions of certain properties which are needed to consider when applying the general
method proposed in this paper.

As it is well-known, a large class of problems can be formulated (or translated)
into a single equation

Lf = d, (1.1)

where L : H → H is a linear operator acting between Hilbert spaces H and H, d
is some given data and f is the unknown element. In case L is invertible by the
inverse L−1 : H → H , the solution of (1.1) is given by f = L−1

d. However, the
equation may be “inconsistent” or L−1 may not exist. In such case, sometimes we
can take profit of generalized inverses to still “directly” obtain solutions of (1.1).
Namely, by constructing the so-called best approximate solution (or least square
solution of minimum norm) given by

f = L†
d, (1.2)

where L† is the Moore-Penrose generalized inverse of L. We recall that for a
bounded linear operator L : H → H, an operator L† is called the Moore-Penrose
generalized inverse of L if LL†L = L, L†LL† = L†, (LL†)∗ = LL† and (L†L)∗ =
L†L, where T ∗ denotes the adjoint operator of T . It is clear that if L−1 exists, then
L† = L−1. However, it is very often that L†

d does not depend continuously on
the right-hand side d, and in such case we have to regularize (1.1) – as explained
below.

When we are refereing to the possibility of (1.1) to be inconsistent, we are
considering that it may be arising from an ill-posed problem. We recall that a prob-
lem is called well-posed (in Hadamard sense) if: (i) it is solvable, (ii) its solution
is unique, (iii) its solution depends continuously on the system parameters (i.e.,
arbitrary small perturbation of the data cannot cause arbitrary large perturbation
of the solution). Otherwise, the problem is called ill-posed.

To analyse (1.1) when it is ill-posed, we can look for a minimizer of the least
squares functional

FL(f) := ‖Lf − d‖2H, (1.3)

where ‖ · ‖H denotes the norm of H. However, if L has a nontrivial kernel, then
the minimization problem will not have a unique solution. We may choose the
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minimum-norm solution in this case. If L is invertible but L−1 is not continuous,
then any perturbation included in d can generate an arbitrarily large difference in
f . In this case, in view to obtain a stable solution, we must regularize the problem.

One of the most famous methods of regularization is the so-called Tikhonov
regularization (see [16, 20, 21]). It consists in replacing the least squares minimiza-
tion problem, associated with the previous functional FL in (1.3), by a new min-
imization problem for a new suitably chosen Tikhonov functional. Here, for such
choice, the key idea is to balance FL(f) against additional information, e.g. on the
norm of the solution f , by minimizing

Fλ
L(f) := ‖Lf − d‖2H + λ‖f‖2H , (1.4)

where λ is a positive regularization parameter (which has to be chosen in an
appropriate way).

The minimization of Fλ
L(f), in H , leads to the so-called regularized solution

fλ (which depends on the parameter λ). From (1.1) and (1.4), we realize the be-
haviour of such solutions: at small λ’s, a solution of the last minimization problem
is near to a solution of the initial (ill-posed) problem; at large values of λ, the new
minimization problem is well-posed, but its solution is far from the solutions of
the initial ill-posed problem. Thus, the main objective of regularization is to incor-
porate additional information about the desired solution in order to stabilize the
initial problem and find a useful and stable solution. In general it is not straight-
forward to prove the existence or the uniqueness of a minimizer for a Tikhonov
functional. Anyway, there are restricted conditions under which extra information
can be ensured (e.g., in the case of strictly convex Tikhonov functionals, the cor-
responding minimization problem admits a unique solution). Anyway, in concrete
cases, a major problem is still the identification of such a minimizer.

2. Known background

In the present work, we are devoted to analyse the type of problems presented
in the last section, but when considering H to be a reproducing kernel Hilbert
space HK (with an associated reproducing kernel K, as a two variable complex
valued function, defined on E × E, for some set E). In such a richer structure,
some additional techniques can be considered and implemented. In what remains
from this section, we will revise what is already known and relevant for this issue,
in our reproducing kernel Hilbert space setting context (cf. [18, 19]).

Thus, from now on we will be considering L to be any bounded linear operator
from a reproducing kernel Hilbert space HK into a Hilbert space H. Having in
mind the above framework, for any element d of H, at a first instance, we are now
interested in looking for

inf
f∈HK

‖Lf − d‖H. (2.1)
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It is clear that now we would like to consider consequent operator equations,
generalized solutions and corresponding generalized inverses within the framework
of f ∈ HK and d ∈ H, having in mind the equation (1.1).

The problem of determining (2.1) turns out to be characterized, within the
reproducing kernels theory framework, in the sense of the next (very important)
proposition. In view of this, let us built the usual auxiliary reproducing kernel,
with the help of the adjoint L∗:

k(p, q) = (L∗LK(·, q), L∗LK(·, p))HK
on E × E. (2.2)

Notice that the reproducing property of K allows us to identify the range of L∗L
with the new reproducing kernel Hilbert space Hk, generated by k and given in
(2.2); for further details, we refer the reader to [18, Chapter 4].

Proposition 2.1. For any element d of H, there exists a function f̃ in HK satisfying

inf
f∈HK

‖Lf − d‖H = ‖Lf̃ − d‖H (2.3)

if and only if

L∗
d ∈ Hk. (2.4)

Furthermore, when there exists a function f̃ satisfying (2.3), there exists a uniquely
determined function that minimizes the norms in HK among the functions satis-
fying the equality, and its function fd is represented as follows:

fd(p) = (L∗
d, L∗LK(·, p))Hk

on E. (2.5)

Here, the adjoint operator L∗ of L, as we see from

(L∗
d)(p) = (L∗

d,K(·, p))HK
= (d, LK(·, p))H,

is represented by the known elements d, L,K(p, q), and H. From this proposition,
we realize that the initial problem is considered in a very natural way by the
theory of reproducing kernels. In particular, note that the adjoint operator is
represented in a useful way (which will be very important in our reasoning later
on). The extremal function fd is the image of Moore-Penrose generalized inverse,
L†

d, associated with the equation Lf = d.

Note also the following simple facts that may be referred in our delicate
problems.

Proposition 2.2. In Proposition 2.1, if L is injective, then fd(p) is the image of
the Moore-Penrose generalized inverse for d if and only if it satisfies the equation

L∗Lfd = L∗
d (2.6)

and it is determined uniquely. Furthermore, if L∗ is injective, then the Moore-
Penrose generalized inverse coincides with the usual inverse; that is,

Lfd = d. (2.7)
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Meanwhile, if L∗ is injective, then {Lf : f ∈ HK} is dense in H and so, for
any d ∈ H,

inf
f∈HK

‖Lf − d‖H = 0. (2.8)

In the opposite case, we observe the following simple fact for the existence of
the proper Moore-Penrose generalized inverse.

Corollary 2.3. If L∗ is not injective and d ∈ H has the Moore-Penrose generalized
inverse (that is L∗

d ∈ Hk in Proposition 2.1 and if d is not an image of L), then

min
f∈HK

‖Lf − d‖H = ‖d2‖H > 0, (2.9)

for the d2 part of d belonging to the kernel of the operator L∗.

Note that the criteria (2.4) is involved, specially when the data contain error
or noises in some practical cases. Anyway, in this paper, we will be able to realize
the complicated structure of fd. Thus, we shall need to consider error estimates,
when d contains error or noises. For this fundamental issue, we have already at
our disposal the following auxiliary conclusions.

Proposition 2.4. Let L : HK → H be a bounded linear operator defined from any
reproducing kernel Hilbert space HK into any Hilbert space H, let λ > 0, and define
the inner product

〈f1, f2〉HKλ
= λ 〈f1, f2〉HK

+ 〈Lf1, Lf2〉H
for f1, f2 ∈ HK . Then (HK , 〈·, ·〉HKλ

) is a reproducing kernel Hilbert space whose
reproducing kernel is given by

Kλ(p, q) = [(λ+ L∗L)−1Kq](p).

Here, Kλ(p, q) is the uniquely determined solution K̃λ(p, q) of the functional equa-
tion

K̃λ(p, q) +
1

λ
(LK̃q, LKp)H =

1

λ
K(p, q), (2.10)

(that is corresponding to the Fredholm integral equation of the second kind for
many concrete cases). Moreover, we are using

K̃q = K̃λ(·, q) ∈ HK for q ∈ E, Kp = K(·, p) for p ∈ E.

Proposition 2.5. The Tikhonov functional

HK ∋ f 7→
{

λ ‖f‖2HK
+ ‖Lf − d‖2H

}

∈ R

attains the minimum and the minimum is attained only by the function fd,λ ∈ HK

such that

(fd,λ)(p) = 〈d, LKλ(·, p)〉H. (2.11)

Furthermore, (fd,λ)(p) satisfies

|(fd,λ)(p)| ≤
√

K(p, p)

2λ
‖d‖H. (2.12)



6 L. P. Castro, S. Saitoh and A. Yamada

For up-to-date versions of the Tikhonov regularization by using the theory of
reproducing kernels, and some concrete classes of operators, see [1, 2, 3, 5, 6, 7, 8].
Cf. also [9, 16, 20, 21] for the classical references.

Notice that computations on the kernels Kλ(p, q), in Proposition 2.4, which
are determined by the equation (2.10), were done already by H. Fujiwara and
T. Matuura in specific explicit analytical and numerical cases. In particular, H. Fu-
jiwara (cf. [10, 11, 12]) succeeded to handle the corresponding outstanding case
of the real and numerical inversion of the Laplace transform. In fact, H. Fujiwara
gave the solutions in 600 digits precision for 6000 simultaneous linear equations
which were representing a discretization of (2.10). Therefore, the computation of
the kernel Kλ(p, q) may be considered as a possible task by using computers.

In this paper, we will give a definite representation of the Tikhonov extremal
function in Proposition 2.5 by using complete orthogonal systems in the Hilbert
spaces HK and H.

3. The solution of the Tikhonov functional equation

As previously mentioned, we shall now give a natural representation of the Tikho-
nov extremal function fd,λ, considered in Proposition 2.5, by using complete or-
thogonal systems in the Hilbert spaces HK and H.

Let {Φµ}∞µ=0 and {Ψν}∞ν=0 be any fixed complete orthonormal systems of the
Hilbert spaces H and HK , respectively. Therefore, from the form (2.10) and the
representation (2.11), in Proposition 2.5, of the Tikhonov extremal function fd,λ,
we assume the representation

LK̃λ(·, q) =
∞
∑

µ=0

∞
∑

ν=0

dµ,νΦµ ⊗Ψν(q), (3.1)

in the sense of the tensor product H⊗HK . Here, we are using the usual notation
V := (V,+, · ) for the well-known complex conjugate vector space of a vector space
V := (V,+, ·), with “+” and “·” being the addition and multiplication maps on
V , and where the complex conjugate multiplication · : C × V → V is defined in
the obvious way by c · v := c · v (with c ∈ C, v ∈ V ).

In the expansion of the reproducing kernel K(p, q),

K(p, q) =

∞
∑

n=0

Ψn(p)Ψn(q), (3.2)

since LK(·, q) belongs to H, we can set

LΨn(·) =
∞
∑

m=0

Dn,mΦm (3.3)
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with the uniquely determined constants {Dn,m} satisfying, for any fixed n,

∞
∑

m=0

|Dn,m|2 <∞.

Then, we obtain

(LK̃q, LKp)H =

∞
∑

µ=0

∞
∑

ν=0

∞
∑

n=0

dµ,νDn,µΨn(p)Ψν(q). (3.4)

Indeed, by repeating the application of the Schwarz inequality, we derive the esti-
mate:

|(LK̃q, LKp)H| ≤
(

∞
∑

µ=0

∞
∑

ν=0

|dµ,ν |2
)1/2( ∞

∑

n=0

∞
∑

µ=0

|Dn,µ|2
)1/2

·K(p, p)1/2K(q, q)1/2. (3.5)

Note that the natural condition
∞
∑

n=0

∞
∑

µ=0

|Dn,µ|2 <∞ (3.6)

is equivalent to the circumstance of the operator L be a Hilbert-Schmidt operator
from HK into H.

By applying L, from (3.4) we obtain

L(LK̃q, LKp)H =

∞
∑

µ=0

∞
∑

ν=0

∞
∑

n=0

dµ,νDn,µ

∞
∑

m=0

Dn,mΦm ⊗Ψν(q). (3.7)

Here, note that, by repeating the Schwarz inequality, it follows

∞
∑

m=0

(

|
∞
∑

µ=0

∞
∑

ν=0

∞
∑

n=0

dµ,νDn,µDn,mΨν(q)|
)2

≤
(

∞
∑

µ=0

∞
∑

ν=0

|dµ,ν |2
)(

∞
∑

n=0

∞
∑

µ=0

|Dn,µ|2
)2

K(q, q). (3.8)

Now, by comparing the coefficients of Φµ, we obtain, for any µ:

λ

∞
∑

ν=0

dµ,νΨν(q) +

∞
∑

m=0

∞
∑

ν=0

∞
∑

n=0

dm,νDn,mDn,µΨν(q) =

∞
∑

n=0

Dn,µΨn(q). (3.9)

On the other hand, by comparing the coefficients of Ψν(q), we obtain, for any µ, ν:

λdµ,ν +

∞
∑

m=0

∞
∑

n=0

dm,νDn,mDn,µ = Dν,µ. (3.10)
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Therefore, by setting
∞
∑

n=0

Dn,mDn,µ = Am,µ,

we have just obtained the infinite equations

λdµ,ν +

∞
∑

m=0

dm,νAm,µ = Dν,µ. (3.11)

We are assuming the existence and uniqueness of the coefficients {dµ,ν},
satisfying

∞
∑

µ=0

∞
∑

ν=0

|dµ,ν |2 <∞. (3.12)

Here, note that in any finite case of {dµ,ν}Nµ,ν=0, we can determine the coefficients

{dµ,ν}Nµ,ν=0 by using those equations. This is because, for any N > 0, the co-
efficient matrix [λIN +Am,µ] is positive definite Hermitian (for the unit matrix
[IN ]). However, here, we have to assume that all {dµ,ν}∞µ,ν=N+1 are zero; that is,

we approximate the solutions by {dµ,ν}Nµ,ν=0.

Thus, we obtain the representation of the Tikhonov extremal function in the
following way.

Theorem 3.1. Assume that the operator L is a Hilbert-Schmidt operator and the
equations (3.11) have the solutions {dµ,ν} satisfying (3.12). Then, for any

d =
∞
∑

µ=0

bµΦµ ∈ H,

the Tikhonov extremal function (fd,λ)(p) (in the sense of Proposition 2.5) is given
by

(fd,λ)(p) =

∞
∑

µ=0

∞
∑

ν=0

bµdν,µΨν(p) (3.13)

and the following fundamental estimates hold:

|(fd,λ)(p)| ≤
(

∞
∑

µ=0

|bµ|2
)1/2( ∞

∑

µ=0

|
∞
∑

ν=0

dν,µΨν(p)|2
)1/2

≤
(

∞
∑

µ=0

|bµ|2
)1/2( ∞

∑

µ=0

∞
∑

ν=0

|dν,µ|2
)1/2

K(p, p)1/2

and

||fd,λ||2HK
=

∞
∑

ν=0

|
∞
∑

µ=0

bµdν,µ|2. (3.14)
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In the previous result, it is important to stress that dν,µ are depending on λ.
Moreover, if HK is finite dimensional then the infinite equations (3.11) are always
explicitly solved and so, for such case, it is enough to check the convergence (3.12).
Obviously, if both spaces HK and H are finite dimensional, then we obtain the
complete representation for the Tikhonov extremal function (fd,λ)(p).

Notice also that many concrete Hilbert-Schmidt operators may be considered
from self-adjoint compact operators related to ordinary and partial differential
equations. Moreover, in these cases, the transform constants Dm,n are diagonal
and consequently the equations (3.11) may be solved easily (see [15] for possible
corresponding concrete examples). On this last line, we also recall that in many
cases, arising from the applications, we need to consider concrete integral operators
on the usual L2 Lebesgue spaces, and not on reproducing kernel Hilbert spaces.
Nevertheless, this is not an obstacle since we can take into account that the L2

Lebesgue spaces may be related to the norm of reproducing kernel Hilbert spaces.

4. On the Tikhonov regularization for the approximations of
quotients of Bergman functions by Szegö functions

This section is devoted to give a very surprising and concrete application of The-
orem 3.1, which enables us to consider approximations of quotients of Bergman
functions by Szegö functions. As the reader will easily identify later on, a key part
in the deduction of such results is taken by a simple trick of using multiplication
operators on the Szegö space. Thus, basically, we will consider an equation with
the structure of (1.1), but where in the right-hand side we incorporate already the
unknown element, multiplied by the known data (cf. (4.5)). This simple consider-
ation, will allow us to obtain approximations of the announced quotients based on
associated multiplication operations and a detailed concretization of Theorem 3.1.

4.1. Associated developments

Prior to enter directly with the concrete deduction for the approximations of quo-
tients of Bergman functions by Szegö functions, let us use this subsection to make
some general remarks, about previous works, somehow near to this issue.

Although later on we will be just focused on the unit disk case, we would like
to mention that more general regions can be considered as well. Relevant properties
are also already known e.g. when considering anN -ply connected regular domainD
with disjoint analytic Jordan curves. Namely, we have the basic and deep relation,
for the Bergman kernel K and the Szegö kernel K̂ on D,

K(z, u) ≫ 4πK̂(z, u)2

–i.e., the left-hand side minus the right-hand side is a positive definite quadratic
form function– which was given by D.A. Hejhal (cf. [14]). This profound result
has a great historical background and we may also find its roots in the works
of G.F.B. Riemann, F. Klein, S. Bergman, G. Szegö, Z. Nehari, M.M. Schiffer,
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P.R. Garabedian and D.A. Hejhal. It seems that any elementary proof is im-
possible. However, the result will, in particular, mean the following fairly simple
inequality: For two functions ϕ and ψ of H2(D), the Szegö space or the Hardy
2-space on D, we obtain the generalized isoperimetric inequality

1

π

∫ ∫

D

|ϕ(z)ψ(z)|2dxdy ≤ 1

2π

∫

∂D

|ϕ(z)|2|dz| 1
2π

∫

∂D

|ψ(z)|2|dz|,

and we can determine completely the cases which attain the equality in here.
This result was given in the thesis [17] of the second author, published already in
1979. At that time, the author realized the importance of the abstract and general
theory of reproducing kernels by N. Aronszajn. In that paper, the core part was
to determine the equality statement in the above inequality. Surprisingly enough,
some deep and general independently proof appeared 26 years later by A. Yamada
[22]. Moreover, notice that for the special case ϕ ≡ ψ ≡ 1, for the plane measure
m(D) of D and the length ℓ of the boundary, we have the isoperimetric inequality

4πm(D) ≤ ℓ2.

Now, we find an important meaning or application of the inequality. That
is, when we fix any element ψ of H2(D), the multiplication operator from H2(D)
into the Bergman space,

ϕ 7−→ ϕ(z)ψ(z), (4.1)

is bounded. Therefore, by Proposition 2.5 and Theorem 3.1, we can give the ap-
proximate representation of the generalized fractional functions

F(z)

ψ(z)
, (4.2)

for any Bergman function F(z) on the domain D, in the sense of Tikhonov regular-
ization; that is, we can consider the best approximation problem for the functions
F(z)/ψ(z) by the functions in H2(D). In particular, note that the elements (4.2)
are, in general, meromorphic functions. For a global theory about fractional func-
tions we would like to refer the reader to [4].

4.2. Tikhonov fractional functions

In our general situation in Section 3, we are now considering the Tikhonov gener-
alized fractional functions for the Bergman space and the Szegö space on regular
domains (in the sense just identified in the previous subsection). As a previous
note about one of the inherent difficulties in such application, we notice that the
multiplication operator (4.1) is not Hilbert-Schmidt.

The Szegö space HS with the reproducing kernel

KS(z, ū) =

∞
∑

n=0

znūn =
1

1− zū
(4.3)
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is given by the Hardy H2 space. Thus, we will be in fact focused on the classical
Hardy space of the unit disk. Then, the norm is given by

‖f(z)‖2HS
=

1

2π

∫

|z|=1

|f(z)|2|dz| =
∞
∑

n=0

|cn|2, (4.4)

with f(z) =
∑∞

n=0
cnz

n. For any fixed f0(z) =
∑∞

n=0
anz

n in HS , we shall consider
the bounded linear operator L : HS → HB, defined by

L(f) = f0f. (4.5)

The Bergman kernel is given by

KB(z, ū) =
1

(1− zū)2
(4.6)

and the norm is given by

‖f(z)‖2HB
=

1

π

∫ ∫

|z|<1

|f(z)|2dxdy =

∞
∑

n=0

|bn|2
n+ 1

, (4.7)

for f(z) =
∑∞

n=0
bnz

n. Therefore, when comparing with the general situation of
Section 3, we are here using

H = HB, HK = HS ,

Φµ(z) =
√
µ+ 1 zµ, Ψν(z) = zν ,

respectively. Then, by comparing the Taylor coefficients, we know that

Dn,m =
am−n√
m+ 1

. (4.8)

Here, and in the sequel, we shall understand the coefficients aj as follows:

am−n = 0, m < n.

By setting

(LK̃λ(·, ū))(z) = f0(z)K̃λ(z, ū) =

∞
∑

m=0

∞
∑

n=0

d∗m,nz
mūn, (4.9)

we consider the equations

λd∗n,m + d∗0,m · (ana0)

+ d∗1,m · 1
2
(ana1 + an−1a0)

+ d∗2,m · 1
3
(ana2 + an−1a1 + an−2a0)

+ · · · = an−m. (4.10)

Then, we obtain
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Theorem 4.1. For any F(z) =
∑∞

n=0
bnz

n ∈ HB, in the Bergman space, and for
any fixed f0(z) =

∑∞
n=0

anz
n (in the Szegö space HS), the Tikhonov fractional

function (fF,λ)(z) in the sense of Proposition 2.5 for HK = HS, H = HB, and
Lf = f0 · f is given by

(fF,λ)(z) =

∞
∑

n=0





∞
∑

j=0

bj
1√
j + 1

d∗j,n



 zn. (4.11)

Here, the constants {d∗j,n} satisfying (4.9) and (4.10) exist and are unique. More-
over, we obtain the fundamental estimates:

|(fF,λ)(z)| ≤ ||F||HB
||f0(·)K̃λ(·, z̄)||HB

=

(

∞
∑

n=0

|bn|2
n+ 1

)1/2




∞
∑

n=0

1

n+ 1

∣

∣

∣

∣

∣

∞
∑

m=0

d∗n,mz
m

∣

∣

∣

∣

∣

2




1/2

. (4.12)

In particular, {d∗n,m} are depending on λ and

∞
∑

n=0

1

n+ 1

∣

∣

∣

∣

∣

∞
∑

m=0

d∗n,mz
m

∣

∣

∣

∣

∣

2

<∞, for z such that |z| < 1.

Proof. At first, we shall consider the representation (4.9). Note here that this

function f0(z)K̃λ(z, ū) exists and it belongs to the Bergman space, for any fixed u
in the unit disc, and its complex conjugate belongs to the Szegö space, for any fixed
z of the unit disc. Therefore, the expansion converges uniformly on any compact
set of the unit disc and we can use the expansion formally in the following formal
computations.

For the function f0(z)KS(z, ū), we can also expand it in the Taylor series
with respect to the two variable analytic function of z and ū.

The crucial point is that for the analyticity of the functions, they are ex-
panded in Taylor series and the inner product in the functional equation (2.10)
may be computed explicitly. Here, we do not need the expansion (3.3) and, of
course, we do not need the assumption on the Hilbert-Schmidt operator property.

Then, at first, by comparing the coefficients of any zn (n ≥ 0), we obtain:

λ

(

∞
∑

m=0

d∗n,mu
m

)

+

(

∞
∑

m=0

d∗0,mu
m

)

· (ana0)

+

(

∞
∑

m=0

d∗1,mu
m

)

· 1
2
(ana1 + an−1a0)

+

(

∞
∑

m=0

d∗2,mu
m

)

· 1
3
(ana2 + an−1a1 + an−2a0)

...
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+

(

∞
∑

m=0

d∗n,mu
m

)

· 1

n+ 1
(anan + an−1an−1 + ...+ a0a0)

+

(

∞
∑

m=0

d∗n+1,mu
m

)

· 1

n+ 2
(anan+1 + an−1an + ...+ a0a1)

+

(

∞
∑

m=0

d∗n+2,mu
m

)

· 1

n+ 3
(anan+2 + an−1an+1 + ...+ a0a2)

+ · · · =

n
∑

j=0

aju
n−j .

Next, for any fixed n, by comparing the coefficients of any um (m ≥ 0), we
obtain the desired equations (4.10).

�

In the particular case of f0(z) = amz
m (m ≥ 0), we see that all theses

equations for {d∗n,m} may be solved explicitly as

d∗n+m,m =
am

λ+ |am|2

n+m+1

and therefore we obtain the following result.

Theorem 4.2. For any F(z) =
∑∞

n=0
bnz

n ∈ HB , and for any fixed f0(z) =
amz

m ∈ HS (with m ≥ 0 and am 6= 0), the Tikhonov fractional function (fF,λ)(z)
in the sense of Theorem 3.1 for HK = HS, H = HB, and Lf = f0 · f is given by

(fF,λ)(z) =

∞
∑

n=0

āmbn+m

λ(n+m+ 1) + |am|2 z
n. (4.13)

It seems that even when f0 ≡ 1, the result is interesting. Furthermore, for
m > 1 the fractional function

F(z)

f0(z)

is, in general, a meromorphic function.

We notice that when we use the solutions {d∗n,m} for any fixed m, by letting
run n, and we consider a finite size matrix with n ≤ N , the corresponding matrix
is not Hermitian and to prove the non-singularity of the matrix seems to be not
obvious. For example, when

f0(z) = a0 + a1z, (4.14)
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we have the following matrix, for N = 3,














λ+ |a0|2 1

2
a0a1 0 0

a0a1 λ+ 1

2
(|a0|2 + |a1|2) 1

3
a0a1 0

0 1

2
a1a0 λ+ 1

3
(|a0|2 + |a1|2) 1

4
a0a1

0 0 1

3
a1a0 λ+ 1

4
(|a0|2 + |a1|2)















.

(4.15)
Even when f0(z) = a0+a1z, it seems impossible to solve the equations completely
for {dn,m} or {d∗n,m}.

Meanwhile, by comparing the two matrices corresponding to the coefficients
of {d∗n,m} and {dn,m}, we obtain the following result, as a generalization of the
matrix (4.15).

Theorem 4.3. The coefficient matrices of {d∗n,m} of any size N > 1 are regular
(i.e., have a non-zero determinant).

Proof. Indeed, in Section 3, the coefficients Am,n are calculated as follows:

A0,n = (ana0)
1√
n+ 1

A1,n = (ana1 + an−1a0)
1

2
· 1√

n+ 1

A2,n = (ana2 + an−1a1 + an−2a0)
1

3
· 1√

n+ 1

...

An,n = (anan + an−1an−1 + . . .+ a0a0)
1

n+ 1
· 1√

n+ 1

An+1,n = (anan+1 + an−1an + . . .+ a0a1)
1

n+ 2
· 1√

n+ 1

An+2,n = (anan+2 + an−1an+1 + . . .+ a0a2)
1

n+ 3
· 1√

n+ 1

...

by the transform

dm,n = d∗m,n

1√
m+ 1

, (4.16)

which corresponds to the representation (4.9). Therefore, from the results of {dm,n},
we have the desired result. �

4.3. Some remarks on the technical difficulties of the method

From the concrete cases in Theorem 4.2, we see the delicate point in the gen-
eral theorem of Section 3, that is, in the Bergman and Szegö case, the kernel
f0(·)K̃λ(·, z̄) does not belong to the tensor product H ⊗HK , because we can see
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that in general (4.16) does not belong to ℓ2. Therefore, as in Theorem 3.1, we
cannot, in general, derive the following estimate in Theorem 4.1:

(

∞
∑

n=0

|bn|2
n+ 1

)1/2




∞
∑

n=0

1

n+ 1

∣

∣

∣

∣

∣

∞
∑

m=0

d∗n,mz
m

∣

∣

∣

∣

∣

2




1/2

≤
(

∞
∑

n=0

|bn|2
n+ 1

)1/2( ∞
∑

n=0

1

n+ 1

∞
∑

m=0

|d∗n,m|2
)1/2

(

1

1− |z|2
)1/2

.

Thus, the basic natural assumption (3.1) is containing a delicate problem, in some
concrete cases, concerning the tensor productH⊗HK , and this realizes the intrinsic
difficulty within general criteria admitting the expansion (3.1).

Moreover, for the representation in Section 2, for f = f0 ∈ HS ,

(L∗
F)(z) =

∞
∑

i=0

∞
∑

n=i

1

n+ 1
bnān−iz

i, (4.17)

we have, for g(z) =
∑∞

i=0
Aiξ

i ∈ HS ,

(L∗Lg)(z) = (g, L∗LKz)HS

=

(

∞
∑

i=0

Aiξ
i,

∞
∑

i=0

∞
∑

m=i

m
∑

k=0

(

am−kām−i(z̄)
k

m+ 1

)

ξi

)

HS

=

∞
∑

i=0

Ai

{

∞
∑

m=i

m
∑

k=0

(

am−kām−i(z̄)k

m+ 1

)

}

=
∞
∑

i=0

Ai

{

∞
∑

m=i

m
∑

k=0

(

ām−kam−iz
k

m+ 1

)

}

=

∞
∑

i=0

∞
∑

m=i

m
∑

n=0

Anām−iam−n

m+ 1
zi. (4.18)

We thus obtain the completeness condition
∞
∑

n=i

1

n+ 1
bnān−i =

∞
∑

m=i

m
∑

n=0

Anām−iam−n

m+ 1
(4.19)

for the existence of the generalized fractional function (and we must must clarify
that to look for the solutions {An} of (4.19) is not an easy task).

5. Szegö space completeness condition and the injectivity issue

In this final section we will be considering the problems of obtaining conditions
to ensure the above important issues of having the completeness condition within
the Szegö space and the injectivity of the operator L∗.
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Let P denote the set of polynomials in z. We need to use the following well-
known corollary to Beurling’s theorem on invariant subspaces (see, for example,
[13, p. 84, Corollary 7.3]):

Proposition 5.1. Let f(z) ∈ HS . Then f(z) is an outer function if and only if
Pf = {p(z)f(z) : p ∈ P} is dense.

Having in mind the above presented theory, it is now relevant to put the
question when is the range of the multiplication operator dense in HS ; i.e., is it
the operator L∗ injective? Our answer is assembled in the following result.

Theorem 5.2. Let ψ ∈ HS . The adjoint L∗ of the multiplication operator L : HS →
HB, LF = ψF , is injective if and only if ψ is an outer function.

Proof. From (4.17), L∗F = 0 for F (z) =
∑∞

n=0
bnz

n ∈ HB if and only if

∞
∑

n=i

1

n+ 1
bnan−i = 0, i = 0, 1, . . . . (5.1)

Putting

F̂ (z) =

∞
∑

n=0

1

n+ 1
bnz

n,

we see that F̂ ∈ HS and it is obvious that F = 0 if and only if F̂ = 0. Then, the
condition (5.1) is rewritten as (F̂ , ziψ)HS

= 0, i = 0, 1, . . .. Since this is equivalent

to the condition that F̂ ⊥ Pψ, we conclude that L∗ is injective if and only if Pψ
is dense in HS . Thus, from Proposition 5.1, we see that L∗ is injective if and only
if ψ is an outer function. �

In the particular case of f0(z) = amz
m (m ≥ 0), we can obtain, from Theo-

rem 4.2, the following result, because the Moore-Penrose generalized inverses are
obtained by taking the limit

lim
λ→0

(fF,λ)(z) := (fF,0)(z),

and the limit functions have to belong to the Szegö space. Thus, to conclude, we
obtain:

Corollary 5.3. For any F(z) =
∑∞

n=0
bnz

n ∈ HB and for any fixed f0(z) = amz
m ∈

HS (m ≥ 0, am 6= 0), the generalized fractional function (fF,0)(z) in the sense of
the Moore-Penrose (cf. Section 1) for HK = HS, H = HB, and Lf = f0 · f exists
if and only if

fF,0 ∈ HS ;

that is,
∞
∑

n=0

|bn+m|2 <∞,
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and then it is given by

(fF,0)(z) =
1

am

∞
∑

n=0

bn+mz
n =

1

amzm

(

F(z)−
m−1
∑

n=0

bnz
n

)

. (5.2)

In particular, notice that in the viewpoint of Corollary 2.3 and Theorem 5.2,
we have,

F(z)− f0(z)(fF,0)(z) =

m−1
∑

n=0

bnz
n 6≡ 0, m > 0,

that is, as expected, the generalized fractional functions in the sense of the Moore-
Penrose are, in general, not coinciding with the usual fractional function, i.e.

(fF,0)(z) 6=
F(z)

f0(z)
.

As a concluding remark, we would like to stress that the last result corrob-
orates what was explained in Section 1 about consequent approximate and exact
solutions. Moreover, it exhibits, in explicit form, what is the difference between
those solutions for the present case. Finally, as a major result in this section,
we have obtained the identification of fF,0, as well as a characterization of the
conditions for its existence.
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