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Abstract— In this contribution, we propose a first general
definition of rank-metric convolutional codes for multi-shot
network coding. To this aim, we introduce a suitable concept
of distance and we establish a generalized Singleton bound for
this class of codes.

I. INTRODUCTION

Most of the theory of Random Linear Network Coding
developed so far is concerned with the so-called non-coherent
one-shot network coding [1], meaning that the random (i.e.,
unknown) structure of the net is used just once to propagate
information.

However, coding can also be performed over multiple
uses of the network, whose internal structure may change
at each shot, giving rise to the so-called multi-shot coding.
In particular, creating dependencies among the transmitted
codewords of different shots can improve the error-correction
capabilities [2].

To attain this goal, we propose to use rank-metric convo-
lutional codes, as this type of codes permits adding complex
dependencies to data streams in a quite simple way (see [3]
for the particular case of unit memory convolutional codes).
In this case, an extension of the standard rank-metric over
multiple shots, which is analogous to the extended subspace
distance defined in [2], will provide the proper measure for
the number of rank erasures that a code can tolerate. It is
worth mentioning that this approach has been recently used
to cope very efficiently with network streaming applications
such as video streaming (see [4] and the references therein).

In this extended abstract, we aim to further explore this
direction. Specifically, after recalling some basic facts about
convolutional and rank metric codes, we introduce a new
general definition of rank-metric convolutional codes, we
propose a suitable concept of distance, and we determine
the Singleton bound for this class of codes.

II. CONVOLUTIONAL CODES

Let Fq be a finite field of order q and Fq[D] be the ring
of polynomials with coefficients in Fq.

A convolutional code C of rate k/n is an Fq[D]-submodule
of Fq[D]n of rank k given by an encoder matrix G(D) ∈
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Fq[D]k×n through

C = Im =
{

u(D)G(D) : u(D) ∈ Fk
q[D]

}
.

We shall consider only basic and minimal encoders, where
basic means that G(D) has a polynomial right inverse, and
minimal means that the value of the sum of the row degrees
of G(D) attains its minimum δ , called the degree of C .1

A rate k/n convolutional code C of degree δ is called an
(n,k,δ ) convolutional code [5].

Notice that also a dual description of a convolutional code
C can be given through a parity-check matrix which is an
(n−k)×n full rank polynomial matrix H(D) = H0 +H1D+
· · ·+HmDm such that

C =kerH(D)=
{

v(D)∈Fq[D]n : H(D)v(D)=0∈Fq[D]n−k
}
.

A measure of the error detecting or correcting capabilities
of a convolutional code C is given by the free distance
dfree(C ), defined as

dfree(C ) = min{wt(v(D)) | v(D) ∈ C and v(D) 6= 0} ,

where wt(v(D)) is the Hamming weight of a polynomial
vector

v(D) = ∑
i∈N

viDi ∈ Fq[D]n,

defined as

wt(v(D)) = ∑
i∈N

wt(vi),

being wt(vi) the number of the nonzero components of vi.
In [6], Rosenthal and Smarandache showed that the free

distance of an (n,k,δ ) convolutional code is upper bounded
by

dfree(C )≤ (n− k)
(⌊

δ

k

⌋
+1
)
+δ +1. (1)

This bound was called the generalized Singleton bound since
it generalizes in a natural way the Singleton bound for
block codes (when δ = 0): code distance ≤ n− k + 1. An
(n,k,δ ) convolutional code whose free distance is equal
to the generalized Singleton bound is called a maximum
distance separable (MDS) code [6].

1Therefore, the degree δ of a convolutional code C is the sum of the
row degrees of one, and hence any, minimal basic encoder.
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III. RANK METRIC CODES
Let A,B ∈ Fn×m

q . It is known [7] that

drank(A,B) = rank(A−B) (2)

is a distance between A and B, called rank distance. There-
fore, any subset of Fn×m

q equipped with this distance is a
rank metric code.

In particular, an (n×m,k) linear rank metric code C ⊂
Fn×m

q of rate k/nm is the image of a monomorphism ϕ :
Fk

q → Fn×m
q . We write ϕ = φ ◦ψ as a composition of a

monomorphism ψ and an isomorphism φ .

ϕ : Fk
q

ψ−−−−−−→ Fnm
q

φ−−−−−→ Fn×m
q

u 7→ v = (v0, . . . ,vnm−1) = uG 7→V = φ(v)

where G∈Fk×nm
q and we let, for instance, [Vi j] = vi+n j, where

0≤ i < n and 0≤ j < m. As usual, the rank distance of the
code, drank(C ), is the minimum distance between nonzero
codewords.

In the following, we shall assume that n ≤ m (but analo-
gous results can be given for the other case). Then, it is not
too difficult to find the expression for the Singleton bound,
which is shown next.

Theorem 3.1: The rank distance of an (n×m,k) linear
rank metric code is upper bounded by

drank(C )≤ n−
⌊

k−1
m

⌋
= n−

⌈
k
m

⌉
+1. (3)

Proof: It follows directly from the fact (see for instance
[7]) that

logq |C | ≤max{n,m}(min{n,m}−drank(C )+1).

IV. RANK METRIC CONVOLUTIONAL CODES
Let A(D) = ∑i∈N AiDi,B(D) = ∑i∈N BiDi ∈ Fn×m

q [D]. We
define the sum-rank distance between A(D) and B(D) as

dSR(A(D),B(D)) = ∑
i∈N

rank(Ai−Bi) (4)

Lemma 4.1: The sum-rank distance dSR is actually a dis-
tance in Fn×m

q [D].
Proof: Obviously dSR

(
A(D),B(D)

)
= dSR

(
B(D),A(D)

)
and dSR

(
A(D),B(D)

)
≥ 0 with dSR

(
A(D),B(D)

)
= 0 iff

A(D) = B(D). Further, as rank(X +Y ) ≤ rank(X)+ rank(Y )
for any X ,Y ∈ Fn×m

q , then the triangular inequality readily
follows,

dSR
(
A(D),B(D)

)
= ∑

i∈N
rank(Ai−Bi)

≤ ∑
i∈N

rank(Ai−Ci)+ rank(Ci−Bi)

= dSR
(
A(D),C(D)

)
+dSR

(
C(D),B(D)

)
.

A rank metric convolutional code C ⊂ Fn×m
q of rate k/nm

is the image of an homomorphism ϕ : Fq[D]k → Fq[D]n×m

provided with the sum-rank distance.

As for rank metric codes, we write ϕ = φ ◦ ψ as a
composition of a monomorphism ψ and an isomorphism φ .

ϕ : Fq[D]k
ψ−−→ Fq[D]nm φ−−→ Fq[D]n×m

u(D) 7→ v(D) = u(D)G(D) 7→V (D) = [Vi j(D)]

where G(D) ∈ Fk×nm
q is the encoder of C , and

Vi j(D) = vi+n j(D) and v(D) = (v0(D), . . . ,vnm−1(D)).

In order to avoid catastrophic encoders we assume that the
encoder G(D) is basic. Moreover, note that minimality (i.e.
the row reduced form) of the encoder G(D) can always be
achieved by left multiplication with an unimodular matrix
U(D), since both G(D) and Ĝ(D) = U(D)G(D) have the
same image. Therefore, without loss of generality, we may
consider G(D) to be minimal with minimum degree δ (sum
of the row degrees of G(D)).

In this case, all the parameters defining the code C can
be resumed by saying that it is an (n×m,k,δ ) rank metric
convolutional code.

The sum-rank distance of a rank metric convolutional code
C is defined as

dSR(C ) = min
V (D),U(D)∈C and V (D)6=U(D)

dSR
(
V (D),U(D)

)
= min

06=V (D)∈C
rank

(
V (D)

)
We are now in a position to obtain an upper bound on the

sum-rank distance of a rank metric convolutional code.
Theorem 4.1: Let C be an (n×m,k,δ ) rank metric con-

volutional code. Then, the sum-rank distance of C is upper
bounded by

dSR(C )≤ n
(⌊

δ

k

⌋
+1
)
−


k
(⌊

δ

k

⌋
+1
)
−δ

m

+1. (5)

Proof: Let ν1,ν2, . . . ,νk be the row degrees of G(D)
and ν = min{ν1,ν2, . . . ,νk} denote the value of the smallest
row degree. Finally, let t be the number of indexes νi among
the indexes ν1,ν2, . . . ,νk having the value ν . Without loss
of generalization, let ν1 ≥ ν2 ≥ ·· · ≥ νk−t = · · · = νk = ν

and G(D) = G0 +G1D+G2D2 + · · ·+Gν1Dν1 . Take u(D) =
u = (0, . . . ,0,uk−t , . . . ,uk) ∈ Fk

q constant to obtain uG(D) =

v(D) = v0 + v1D+ v2D2 + · · ·+ vν Dν (note that the degree
of v(D) is bounded by ν and not by ν1). Denote V (D) =
φ(v(D)) = V0 +V1D+ · · ·+Vν Dν . As G(D) is basic, G0 is
full row rank and we can select uk−t , . . . ,uk such that v0 =
uG0 satisfies wt(v0)≤ nm−t+1 and therefore rank(φ(v0))=
rank(V0)≤ n−

⌊ t−1
m

⌋
= n−

⌈ t
m

⌉
+1. Thus,

rank(V (D)) = ∑
0≤i≤ν

rank(Vi)

≤ nν +(n−
⌈ t

m

⌉
+1)

= n(ν +1)−
⌈ t

m

⌉
+1.

This upper bound is maximized when ν is as large as possible
and t as small as possible. However, note that, roughly
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speaking, increasing ν by a unit is equivalent to decreasing
t by mn. Therefore, we first maximize ν and then minimize
t. For given k and δ = ∑1≤i≤k νi, it is clear that ν ≤

⌊
δ

k

⌋
.

Once ν =
⌊

δ

k

⌋
, one can check that t ≥ k

(⌊
δ

k

⌋
+1
)
−δ , the

equality holding when the maximum row degree is ν + 1.
This concludes the proof.

Observe that, similarly to (1), also formula (5) provides a
generalized Singleton bound, being equal to (3) when δ = 0.
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