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Abstract. The Asymmetric Power Arch representation for the volatil-
ity was introduced by Ding et al. [4] in order to account for asymmetric
responses in the volatility in the analysis of continuous-valued financial
time series like, for instance, the log-return series of foreign exchange
rates, stock indices or share prices. As reported by Brännäs and Quore-
shi [1], asymmetric responses in volatility are also observed in time series
of counts such as the number of intra-day transactions in stocks. In this
work, an asymmetric power autoregressive conditional Poisson model
is introduced for the analysis of time series of counts exhibiting asym-
metric overdispersion. Basic probabilistic and statistical properties are
summarized and parameter estimation is discussed. A simulation study
is presented to illustrate the proposed model. Finally, an empirical appli-
cation to a set of data concerning the daily number of stock transactions
is also presented to attest for its practical applicability in data analysis.

Keywords: Asymmetric Volatility, Ergodicity, Heteroscedasticity, Overdis-
persion, Non Linear Time Series, Stationarity

1 Introduction

The analysis of continuous-valued financial time series like log-return series of
foreign exchange rates, stock indices or share prices, has revealed some common
features: sample means not significantly different from zero, sample variances
of the order 10−4 or smaller and sample distributions roughly symmetric in its
center, sharply peaked around zero but with a tendency to negative asymmetry.
In particular, it has usually been found that the conditional volatility of stocks
responds asymmetrically to positive versus negative shocks: volatility tends to
rise higher in response to negative shocks as opposed to positive shocks, which
is known as the leverage effect. To account for asymmetric responses in the
volatility, [4] introduced the Asymmetric Power ARCH, APARCH(p, q), in which

Yt = σtZt, σ
δ
t = ω +

p∑
i=1

αi(|Xt−i| − γiXt−i)
δ +

q∑
j=1

βjσ
δ
t−j , t ∈ Z, (1)

where (Zt) is an i.i.d. sequence with zero mean, ω > 0, αi > 0, βj > 0, δ >
0, −1 < γi < 1. The APARCH representation in (1) has some noteworthy
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advantages, namely the power of the returns for which the predictable structure
in the volatility is the strongest, is determined by the data and the model allows
the detection of asymmetric responses of the volatility for positive or negative
shocks. If γi > 0 the leverage effect arises.

Asymmetric responses on the volatility are also commonly observed in the
analysis of time series representing the number of intra-day transactions in
stocks, in which the numbers are typically quite small as reported in [1]. As an
illustration of this kind of data we present in Fig. 1 two time series of count data
generated from stock transactions, namely tick-by-tick data for Glaxosmithk-
line and Astrazeneca downloaded from www.dukascopy.com. Data consist on
the number of transactions per minute during one trading day (19/09/2012, for
Glaxosmithkline and 21/09/2012, for Astrazeneca), corresponding to 501 obser-
vations for each series. Counts are typically small and both time series contain
a large quantity of zeros. After download, data was filtered by the authors in
order to fill in the zero counts during the trading periods considered and delete
all trading during the first and the last five minutes of each day as trading
mechanisms may be different during the opening and closing of the stock ex-
change market. The existence of this kind of data motivated our proposal for

Fig. 1. Time series plots for Glaxosmithkline (top) and Astrazeneca (bottom).

a counterpart of the APARCH representation of the volatility. To this extent,
in Section 2 an INGARCH-type model suitable to account for time series of
counts exhibiting asymmetric overdispersion is introduced. Parameter estima-
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tion is covered in Section 3. In Section 4 a simulation study is carried out to
illustrate INAPARCH(1, 1) model. A real-data application is given in Section 5.

2 Integer-Valued APARCH(p, q) Processes

In this work, focus is put on models in which the count variable is assumed to be
Poisson distributed, conditioned on the past, which is to say that the conditional
distribution of the count variable, given the past, is assumed to be Poisson with
time-varying mean λt, satisfying some autoregressive mechanism. An important
family of such observation-driven models that is able to handle overdispersion
is the class of Autoregressive Conditional Poisson (ACP), first introduced in
[10], but also referred to as the INGARCH model due to its analogy to the
conventional GARCH model (see Ferland et al. [6]).

An INteger-valued GARCH process of orders (p, q), INGARCH(p, q) in short,
is defined to be an integer-valued process (Yt) such that, conditioned on the past
experience, Yt is Poisson distributed with mean λt, and λt is obtained recursively
from the past values of the observable process (Yt) and (λt) itself, that is

Yt|Ft−1 ∼ Po(λt), λt = γ0 +

p∑
i=1

γiYt−i +

q∑
j=1

δjλt−j , t ∈ Z,

where Ft−1 := σ(Ys, s ≤ t− 1), γ0 > 0, γi ≥ 0, and δj > 0. In [6] it was shown
that the process (Yt) is strictly stationary with finite first and second order
moments provided that

∑p
i=1 γi +

∑q
j=1 δj < 1. The particular case p = q = 1

was analyzed by Fokianos and Tjøstheim [7] and Fokianos et al. [8] under the
designation of Poisson Autoregression. The authors considered linear and non-
linear models for λt. For the linear model case, the representation considered is
as follows

Yt|FY,λt−1 ∼ Po(λt), λt = d+ aλt−1 + bYt−1, t ∈ N, (2)

where it is assumed that the parameters d, a, b are positive, and λ0 and Y0 are
fixed. This representation corresponds exactly to the INGARCH(1, 1) model in
[6], nevertheless, the approach followed by [8] is slightly different in the sense that
the linear model is rephrased as Yt = Nt(λt), t ∈ N with λt defined as in (2), and
λ0 and Y0 fixed. For each time point t, the authors introduced a Poisson process
of unit intensity, Nt(·), so that Nt(λt) represents the number of such events in
the time interval [0λt]. Following this rephrasing a perturbation is introduced in
order to demonstrate φ-irreducibility and as a consequence geometric ergodicity
follows. The nonlinear case is considered a generalization of the previous situation
in which the conditional mean, E[Yt|FY,λt−1] = λt, is a nonlinear function of both
the past values of λt and the past values of the observations. Sufficient conditions
to prove geometric ergodicity were also derived in [8].

It is worth to mention that the models above can not cope with the presence
of asymmetric overdispersion. This paper aims to give a contribution towards
this direction with the introduction of the INteger-valued APARCH process.
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Definition 1 (INAPARCH(p, q) model). An INteger-valued APARCH(p, q)
is defined to be an integer-valued process (Yt), such that, conditioned on the
past, the distribution of Yt is Poisson with mean value λt satisfying the recursive
equation

λδt = ω +

p∑
i=1

αi(|Yt−i − λt−i| − γi(Yt−i − λt−i))δ +

q∑
j=1

βjλ
δ
t−j , t ∈ Z

with ω > 0, αi ≥ 0, βj ≥ 0, |γi| < 1 and δ ≥ 0.

Following the work of Doukhan et al. [5] (see also [2], [12], [9]) we will establish
the existence and uniqueness of a stationary solution, and ergodicity for the
p = q = 1 case. The INAPARCH(1, 1) process is defined as an integer-valued
process (Yt) such that

Yt|Ft−1 ∼ Po(λt), λδt = ω + α(Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ + βλδt−1, (3)

with t ∈ Z, α ≡ α1, β ≡ β1 and γ ≡ γ1. The γ parameter should reflect the
leverage effect relative to the conditional mean of the process (Yt).

Proposition 1. Under the conditions in Definition 1, the bivariate process (Yt, λt)
has a stationarity solution.

Proof. For a general Markov chain and according to Theorem 12.0.1(i) in [11],
if (Xt) is a weak Feller chain and if for any ε > 0 there exists a compact set
C ⊂ X such that P (x,Cc) < ε,∀x ∈ X, then (Xt) is bounded in probability
and thus there exists at least one stationary distribution for the chain. We will
show that the chain is bounded in probability and therefore admits at least one
stationary distribution. First note that the chain is weak Feller (cf., [2]). Define
C := [−c, c] then

P (λ,Cc) = P (λδt ∈ Cc|λt−1 = λ)

= P
(
|ω + α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ + βλδt−1| > c|λt−1 = λ

)
which, by Markov’s inequality

6
E
[
|ω + α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ + βλδt−1||λt−1 = λ

]
c

=
E [|ω|] + E

[
|α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ||λt−1 = λ

]
+ E

[
|βλδ|

]
c

and since α, β, δ, λ > 0

P (λ,Cc) 6
ω

c
+
α

c
E
[
|(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ||λt−1 = λ

]
+
βλδ

c
.

In view of the fact that |γ| < 1 and |Yt−1 − λt−1| − γ(Yt−1 − λt−1) > 0, the
expression above simplifies to

P (λ,Cc) 6
ω + βλδ

c
+
α

c
E
[
(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ|λt−1 = λ

]
.
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Since by definition

E
[
(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ|λt−1 = λ

]
=

=

+∞∑
yt−1=0

(|yt−1 − λ| − γ(yt−1 − λ))δ
e−λλyt−1

(yt−1)!
,

then

P (λ,Cc) 6
ω + βλδ

c
+
α

c
e−λ

+∞∑
yt−1=0

λyt−1

(yt−1)!
(|yt−1 − λ| − γ(yt−1 − λ))δ.

By d’Alembert’s criterion, the series
∑+∞
yt−1=0

λyt−1

(yt−1)!
(|yt−1 − λ| − γ(yt−1 − λ))δ,

is absolutely convergent. Being convergent, the series has a finite sum and so it
can be written that

P (λ,Cc) 6
ω + βλδ

c
+
α

c
e−λ

+∞∑
yt−1=0

λyt−1

(yt−1)!
(|yt−1 − λ| − γ(yt−1 − λ))δ < ε.

Thus, for any ε > 0 just choose c large enough so that

1

c

ω + βλδ + αe−λ
+∞∑

yt−1=0

λyt−1

(yt−1)!
(|yt−1 − λ| − γ(yt−1 − λ))δ

 < ε,

leading to conclude that the series has at least one stationary solution.
In proving uniqueness we proceed as follows: first note that the INAPARCH(1, 1)

model belongs to the class of observation-driven Poisson count processes consid-
ered in Neumann [12], Yt|FY,λt−1 ∼ Po(λt); λt = f(λt−1, Yt−1), t ∈ N with

f(λt−1, Yt−1) = (ω + α(|Yt−1 − λt−1| − γ(Yt−1 − λt−1))δ + βλδt−1)
1
δ .

Thus, the result follows if the function f above satisfies the following contractive
condition

|f(λ, y)− f(λ′, y′)| ≤ k1|λ− λ′|+ k2|y − y′| ∀λ, λ′ ≥ 0, ∀ y, y′ ∈ N0, (4)

where k1 and k2 are nonnegative constants such that k := k1 + k2 < 1. For the
INAPARCH(1, 1) model the contractive condition simplifies to

|f(λt−1, Yt−1)−f(λ′t−1, Y
′
t−1)| ≤ ‖ ∂f

∂λt−1
‖∞|λt−1−λ′t−1|+‖

∂f

∂Yt−1
‖∞|Yt−1−Y ′t−1|,

where for the Euclidean space Rd and h : Rd → R, ‖h‖∞ is defined by ‖h‖∞ =
supx∈Rd |h(x)|. For the sake of brevity we will skip the theoretical details and
conclude that, in the INAPARCH(1, 1) case, if

α2δ+1δ + β2δ−1 < 1, (5)

for δ > 2, then the contractive condition holds. This concludes the proof.
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Neumann [12] proved that the contractive condition in (4) is, indeed, sufficient
to ensure uniqueness of the stationary distribution and ergodicity of (Yt, λt).
The results are quoted below.

Proposition 2. Suppose that the bivariate process (Yt, λt) satisfies (3) and (5)
for δ ≥ 2. Then the stationary distribution is unique and E[λ1] <∞.

Proposition 3. Suppose that the bivariate process (Yt, λt) is in its stationarity
regime and satisfies (3) and (5) for δ ≥ 2. Then the bivariate process (Yt, λt) is
ergodic and E[λ21] <∞.

Furthermore, following Theorem 2.1. in [5], it can be shown that if the process
(Yt, λt) satisfies (3) and (5) for δ ≥ 2, then there exists a solution of (3) which is
a τ -weakly dependent strictly stationary process with finite moments up to any
positive order and is ergodic.

3 Parameter Estimation

In this section, we consider the estimation of the parameters of the INAPARCH(1, 1)
model. The conditional maximum likelihood (CML) method can be applied in
a very straightforward manner. Note that by the fact that the conditional dis-
tribution is Poisson the conditional likelihood function, given the starting value
λ0 and the observations y1, . . . , yn, takes the form

L(θ) :=

n∏
t=1

e−λt(θ)λytt (θ)

yt!
(6)

with θ := (ω, α1, . . . , αp, β1, . . . , βq, γ1, . . . , γp, δ) ≡ (θ1, θ2, . . . , θ2p+q+2), the un-
known parameter vector. The log-likelihood function is given by

ln(L(θ)) =

n∑
t=1

[yt ln(λt)− λt − ln(yt!)] =

n∑
t=1

`t(θ). (7)

The score function is the vector defined by

Sn(θ) :=
∂ ln(L(θ))

∂θ
=

n∑
t=1

∂`t(θ)

∂θ
. (8)

For the calculation of the first order derivatives of the general INAPARCH(p, q)
model the auxiliary calculations presented below are needed.

∂`t
∂θi

=
∂λt
∂θi

(
yt
λt
− 1

)
, i = 1, . . . , 2 + 2p+ q,

where ∂λt
∂θi

= λt
δλδt

∂(λδt )
∂θi

, i = 1, . . . , 2 + 2p + q. Thus, for i = 1, . . . , p and for

j = 1, . . . , q, the first derivatives are given by the following expressions

∂λt
∂ω

=
λt
δλδt

δ p∑
i=1

αig
δ−1
t−i (It−i + γi)

∂λt−i
∂ω

+

q∑
j=1

βj
∂λδt−j
∂ω

+ 1


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∂λt
∂αi

=
λt
δλδt

δ p∑
k=1

αkg
δ−1
t−k (It−k + γk)

∂λt−k
∂αi

+

q∑
j=1

βj
∂λδt−j
∂αi

+ gδt−i


∂λt
∂γi

=
λt
δλδt

δ p∑
k=1

αkg
δ−1
t−k (It−k + γk)

∂λt−k
∂γi

+

q∑
j=1

βj
∂λδt−j
∂γi

− δαigδ−1t−i (yt−i − λt−i)

 ,

∂λt
∂βj

=
λt
δλδt

(
δ

p∑
i=1

αig
δ−1
t−i (It−i + γi)

∂λt−i
∂βj

+

q∑
k=1

βk
∂λδt−k
∂βj

+ λδt−j

)
,

∂λt
∂δ

=
λt
δλδt


p∑
i=1

αig
δ
t−i

(
δ

gt−i
(It−i + γi)

∂λt−i
∂δ

+ ln(gt−i)

)
+

q∑
j=1

βj
∂λδt−j
∂δ

− λδt
δ

ln(λδt )

 ,

where gt−i = |yt−i − λt−i| − γi(yt−i − λt−i) and It =

{
−1 yt > λt

1 yt < λt
. Thus, for

the INAPARCH(1, 1) model the score function can then be explicitly written as

Sn(θ) =


∑n
t=1

(
yt
λt
− 1
)
∂λt
∂θ1

...∑n
t=1

(
yt
λt
− 1
)
∂λt
∂θ5


with

∂λt
∂θ1

≡ ∂λt
∂ω

=
λt
δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂ω
+ 1

)
∂λt
∂θ2

≡ ∂λt
∂α

=
λt
δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂α
+ gδt−1

)
∂λt
∂θ3

≡ ∂λt
∂γ

=
λt
δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂γ
− αδgδ−1

t−1 (yt−1 − λt−1)

)
∂λt
∂θ4

≡ ∂λt
∂β

=
λt
δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂β
+ λδt−1

)
∂λt
∂θ5

≡ ∂λt
∂δ

=
λt
δλδt

(
δ(α(It−1 + γ)gδ−1

t−1 + βλδ−1
t−1 )

∂λt−1

∂δ
+ αgδt−1 ln(gt−1) + βλδt−1 ln(λt−1)

)
− λt

δ
ln(λt).

The solution of the equation Sn(θ) = 0 is the conditional maximum likelihood

estimator, θ̂, if it exists. To study the asymptotic properties of the maximum
likelihood estimator we proceed as follows: first it can be shown that the score
function, evaluated at the true value of the parameter, say θ = θ0, is asymptot-
ically normal. The score function has martingale difference terms defined by

∂`t
∂θi

=

(
yt
λt
− 1

)
∂λt
∂θi

.

It follows that, at θ = θ0

E

[
∂`t
∂θ0
|Ft−1

]
= 0,
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since E
[
yt
λt
− 1|Ft−1

]
= 0, and E

[(
yt
λt
− 1
)2
|Ft−1

]
= V

[
yt
λt
− 1|Ft−1

]
= 1

λt
.

It can also easily be shown that, for δ > 2

E
[
λ2−2δt |Ft−1

]
< +∞, E

[
λ1−δt |Ft−1

]
< +∞

E
[
λ2−δt ln(λt)|Ft−1

]
< E[ln(λt)|Ft−1] < E[λt|Ft−1] < +∞

E
[
λ2t ln2(λt)|Ft−1

]
< +∞, E [λt ln(λt)|Ft−1] < +∞.

Thus, it can be concluded that V
[
∂`t
∂θ |Ft−1

]
< +∞ and that ∂`t/∂θ is a martin-

gale difference sequence with respect to Ft−1. The application of a central limit
theorem for martingales guarantees the desired asymptotic normality.

It is worth to mention here that in Section 2 it was concluded that the process
has finite moments up to any positive order and is τ -weak dependent, which
implies ergodicity. This is sufficient to state that the Hessian matrix converges
in probability to a finite limit. Finally, all third derivatives are bounded by a
sequence that converges in probability. Given these three conditions, it is then
concluded that the conditional maximum likelihood estimator, θ̂, is consistent
and asymptotically normal,

√
n(θ̂ − θ0)

d→ N (0, G−1(θ0)),

with variance-covariance matrix, G(θ), given by

G(θ) = E

[
1

λt

(
∂λt
∂θ

)(
∂λt
∂θ

)′]
.

A consistent estimator of G(θ) is given by

Gn(θ) =

n∑
t=1

V

[
∂`t(θ)

∂θ
|Ft−1

]
=

n∑
t=1

1

λt(θ)

(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)′
.

4 Simulation

In this section, a simulation study computed using Matlab is carried out to
illustrate the theoretical findings given above. This study contemplates five dif-
ferent combinations for θ, which are displayed in Table 1 below. For each set of
parameters, time series of length 500 with 300 independent replicates from the
INAPARCH(1, 1) model were simulated.

Note that for C1-C4 cases, condition (5) holds, whereas for case C5 this
condition fails. The results are summarized in Table 1 and the bias of the CML
estimates are presented in Figure 2 for the combination of parameters C2 and
C4. The point estimates for the α parameter follow the theoretical values in a
coherent way, even for very small theoretical values such as for the cases C1,
C2 and C3. Nevertheless, the standard deviations of the point estimates are



Integer-Valued APARCH Processes 9

relatively high, except for the C5 case. γ and δ parameters are fairly estimated
but there is a certain difficulty in the estimation of the ω parameter, that tends
to be underestimated, with the exception of the C5 case. Considering the β
parameter, all point estimates are considerably higher then the theoretical values,
the only exception being the C5 case, once again. There is also a very high degree
of variability, in particular for ω and δ parameters.

From this part of the simulation study a few conclusions can be drawn: firstly,
it is clear that as the theoretical values of the parameters rise, the point estimates
obtained are much closer to what was expected. Secondly, it seems that condition
(5), the sufficient condition for ergodicity, does not seem to interfere with the
quality of the point estimates for this model. In fact, best overall estimates were
obtained for case C5, clearly not obeying condition (5).

Table 1. Parameter estimates and standard deviations (std) in parentheses.

Parameter Values Point estimates and (std)

Case ω α γ β δ 2δ(2αδ + β
2

) ω̂ α̂ γ̂ β̂ δ̂

C1 2.30 0.01 0.68 0.10 2.00 0.36 1.8510 0.0641 0.6356 0.1850 1.9245
(0.4825) (0.0685) (0.3180) (0.2246) (0.7156)

C2 2.30 0.03 0.68 0.06 2.00 0.60 1.9067 0.0755 0.6174 0.1452 1.9170
(0.5142) (0.0698) (0.3351) (0.1981) (0.6860)

C3 2.30 0.01 0.68 0.10 3.00 0.88 1.9674 0.0571 0.5922 0.1572 2.9588
(0.4229) (0.0684) (0.2914) (0.1813) (0.7183)

C4 2.30 0.05 0.68 0.08 2.00 0.96 1.8931 0.0880 0.7005 0.1753 1.9535
(0.5294) (0.0722) (0.3070) (0.2102) (0.7154)

C5 2.30 0.30 0.68 0.10 2.00 5.00 2.2724 0.3082 0.7489 0.1294 2.0401
(0.7519) (0.1290) (0.2229) (0.1318) (0.6510)

4.1 Log-likelihood analysis

For C2 and C4 cases, 300 samples were simulated considering values of δ varying
from 2.0 to 3.0 (i.e., six different situations for each case). After preliminary
data analysis with the construction of boxplots and histograms that confirm
the presence of overdispersion, the log-likelihood was studied in the following
manner: for each set of 300 samples the log-likelihood was calculated, varying
the δ parameter in the range 2.0 to 3.0. It was expected that the log-likelihood
was maximum for the δ value used to simulate that particular set of 300 samples.
Results are presented in Table 2 for Case 2. Case 2 was chosen for representation
herein just because for this case the first three values for the δ parameter lie
inside the region that obeys condition (5) and the last 3 lie outside this region.
Nevertheless, same behaviour was observed for both Case 2 and Case 4 and the
δ value for which the calculated log-likelihood was maximum was exactly what
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Fig. 2. Bias of the conditional ML estimates, for the combination of parameters C2
(left) and C4 (right). Numbers one to five below the boxplots refer to the estimated
parameters, in the order appearing in Table 1.

was expected for both cases and all 6 different situations. In Table 2, it can be
observed that the mean log-likelihood is maximum for the δ value corresponding
to the δ value used for the simulation of the respective set of samples.

Table 2. Maximum likelihood estimation results for Case 2.

Samples simulated with Log-likelihood for varying δ

θ=(2.30, 0.03, 0.68, 0.06, δ) 2.0 2.2 2.4 2.6 2.8 3.0
δ = 2.00 -785.4787 -786.1563 -787.6991 -789.6634 -791.8038 -793.9828
δ = 2.20 -775.2089 -774.5939 -775.0658 -776.1291 -777.5016 -779.0191
δ = 2.40 -766.7914 -765.1027 -764.6847 -764.9993 -765.7337 -766.7013
δ = 2.60 -760.1167 -757.5743 -756.4490 -756.1685 -756.3958 -756.9265
δ = 2.80 -755.0275 -751.7783 -750.0676 -749.2947 -749.1024 -749.2715
δ = 3.00 -751.1783 -747.3026 -745.0736 -743.8653 -743.3025 -743.1530

5 Real-Data Example: Transaction Modeling

In this section, the results above are applied in the analysis of the motivating
examples presented in Figure 1, Section 1. As already described, data consist on
the number of transactions per minute during one trading day for Glaxosmithk-
line and Astrazeneca. CML estimation method was applied and the results are
shown in Table 3. Note that the estimated value of γ is negative for both time
series meaning that there is evidence that positive shocks have stronger impact
on overdispersion than negative shocks. Another important feature exhibited by
both time series is that the estimated value of δ fail the condition δ ≥ 2. It is
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Table 3. Maximum likelihood estimation results for Glaxosmithkline and Astrazeneca
time series. Standard errors in parentheses.

Time series ω̂ α̂ γ̂ β̂ δ̂

Glaxosmithkline 0.3781 0.1392 -0.3269 0.8791 0.9826
(0.0685) (0.0074) (0.0843) (0.0073) (0.0005)

Astrazeneca 2.4862 0.2824 -0.2787 0.7501 1.0598
(0.1087) (0.0062) (0.0363) (0.0044) (0.0008)

worth mentioning that this is not a surprising result since in the estimation of
the Standard & Poor 500 stock market daily closing price index in [4], the δ
estimate obtained did not also satisfy such sufficient condition for the process to
be covariance stationary.

A short simulation study was also carried out in this section. The CML
point estimates of both real-data series in Table 3 were used to simulate 300
independent replicates of length 500 from the INAPARCH(1, 1) model, namely,
GSK and AZN cases, referring, respectively, to the samples based on the point
estimates for the Glaxosmithkline and Astrazeneca time series. CML estimates
were then obtained for these samples and the results are presented in Table 4,
with corresponding bias in Figure 3. Regarding Figure 3, it can be seen that

Table 4. Maximum likelihood estimation results for GSK and AZN cases. Standard
deviations in parentheses.

Samples ω̂ α̂ γ̂ β̂ δ̂

GSK Case 0.7396 0.1820 -0.2417 0.8710 1.2202
(0.5779) (0.0940) (0.2596) (0.0257) (0.3882)

AZN Case 2.4955 0.3094 -0.1473 0.6996 0.9987
(0.6659) (0.1019) (0.2586) (0.1074) (0.1612)

variability and the tendency to underestimate the ω parameter is maintained
(taking in consideration the median value) but in relation to the δ parameter
variability has decreased significantly. From inspection of Table 4, it can be
said that, in general, CML point estimates are not very far from what was
expected in both cases, although better overall estimates were obtained for the
AZN case. Considering that condition (5) was not fulfilled for either AZN or
GSK cases (2δ(2αδ + β

2 ) equals 2.0297 for the AZN case and 1.4091 for the
GSK case), as was already mentioned in Section 4, it seems that violating the
sufficient condition for ergodicity has no effect on the behaviour of the estimation
procedure. The impact of violating necessary instead of sufficient conditions for
ergodicity remains as a topic of future work.
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