
International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  11

 
 

ABTC: Multi-purpose Adaptable Business Tier Components Based on Call Level Interfaces 
 

Óscar Mortágua Pereira, Rui L. Aguiar 
Instituto de Telecomunicações, DETI - University of Aveiro, Portugal 

 
 
Abstract 
 
     Call Level Interfaces (CLI) are low level API that play a 
key role in database applications whenever a fine tune 
control between application tiers and the host databases is a 
key requirement. Unfortunately, in spite of this significant 
advantage, CLI were not designed to address organizational 
requirements and contextual runtime requirements. Among 
the examples we emphasize the need to decouple or not to 
decouple the development process of business tiers from the 
development process of application tiers and also the need 
to automatically adapt to new business and/or security needs 
at runtime. To tackle these CLI drawbacks, and 
simultaneously keep their advantages, this paper proposes 
an architecture relying on CLI from which multi-purpose 
business tiers components are built, herein referred to as 
Adaptable Business Tier Components (ABTC). This paper 
presents the reference architecture for those components and 
a proof of concept based on Java and Java Database 
Connectivity (an example of CLI). 
 
Keywords: software architecture, components, reuse, 
access control, information security, call level interfaces. 
 
1. Introduction  
 
     This paper is an extended version of the paper presented 
at ICIS 2015 (IEEE ACIS) [1]. 
     Software systems have increasingly played a key role in 
small, medium and large organizations by managing the 
data from which everyday decisions are taken. Data is 
mostly kept and managed by database management systems. 
Among the several paradigms, the relational database 
management systems (RDBMS) continue to be one of the 
most successful to manage data and, therefore, to build 
database applications. To be useful, data needs to be 
inserted, updated, retrieved and processed. In this case Call 
Level Interfaces (CLI) are effective solutions for building 
business tiers whenever a fine tune control on the 
interactions with the host databases is a key requirement [2]. 
The fine tune control comprises not only the services 
provided by CLI but also the possibility of using the full 
expressiveness of the SQL language. In spite of these 
important advantages, CLI convey some drawbacks, 
hereafter described. 

__________________________________________ 
 
Electronics, Telecommunications and Informatics Department 
3810-193 Aveiro, Portugal 
{omp, ruilaa}@ua.pt 

Problem definition: CLI are general low level API that do  
not    provide    any    high    level    assistance    to    address 
organizational requirements and runtime requirements. 
Three examples are provided: 1) in some organizations, 
business tiers and application tiers are developed by 
different actors (people playing different roles); 2) in other 
organizations, the actor is the same for the two tiers and 3) 
in some database applications, business tiers need to be 
dynamically adapted, at runtime, to address runtime needs, 
for example, to address security policies or to address new 
business needs. These CLI drawbacks are mainly derived 
from their technical and architectural aspects. Figure 1 
presents a typical and simple case based on a CLI, in this 
case Java Database Connectivity (JDBC) [3]. Hereafter, all 
examples use Java, JDBC and the Microsoft Northwind 
database (http://www.microsoft.com/download/en/details.aspx?id 

=23654). Figure 1 depicts a program to retrieve data from a 
table named Products and also to update the attribute 
unitPrice of a list of products. The list of products to be 
updated is included in List<Integer> productId and the new 
values for unitPrice are included in List<BigDecimal> 
unitPrice (see arguments of method updUnitPrice). The 
product list is iterated (line 31), the Select expression is 
prepared and executed (line 32-35), if a product is found 
(line 36) some attributes are read (line 37-39) and unitPrice 
is updated (line 40-42). From this example, we can see: 
 
     a) Organizational requirements: Source-code of business 
and application tiers is tangled and, therefore, the roles of 
programmers cannot be decoupled. Programmers play the 
business tier developer role: when they need to write Create, 
Read, Update, Delete (CRUD) expressions (line 32); when 
they need to create the environment to execute them (line 
33-35) and when they are requested to master the database 
schema (line 37,38,41). They play the application tier 
developer role when they use the application data and the 
retrieved data (line 32, 37-41). 
 
     b) Runtime requirements: If any modification occurs in 
the established access control policies leading to 
maintenance activities at the level of the business logics, 
there is no other possibility than making them manually and 
in advance. For example if an attribute of the returned 
relation is no more authorized to be selected, it will entail a 
modification on the Select expression and also on the source 
code. 
 
     In reality, CLI were not devised to address any of the 
presented drawbacks. CLI were mainly devised to tackle the 
impedance mismatch [4] issue. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/78556303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  12

 
 

 

Figure 1. Typical usage of CLI (JDBC) 

 
Solution: To tackle these CLI drawbacks, a research has 
been carried out in the context of Component-Based 
Software Engineering [5], [6]. Component-based 
development aims at composing software units from other 
pre-built software units. At the end, a final software system 
is not built as a unique block but as a composite of software 
units known as components [7]. A key aspect for the success 
of any component is its capability of being adapted to be 
reused [8], which is improved if another key aspect is also 
considered: the reuse of computation [9]. Thus, this research 
leverages component-based development to create an 
reference architecture for building adaptable business tier 
components (ABTC) aimed at addressing different 
organizational and contextual runtime requirements. 
Organizational requirements are addressed by providing 
different possibilities and combinations to develop and use 
business tier components. Runtime requirements are 
addressed through automated tools capable of building and 
compiling, at runtime, source code from metadata. The 
services provided by ABTC are closely aligned with CLI to 
keep their advantages. 
 
     This paper is organized as follows: section 2 presents the 
related work; section 3 introduces the needed background; 
section 4 presents the reference architecture for ABTC; 
section 5 presents a proof of concept and, finally, section 6 
presents the final conclusion. 
 
2. Related Work 
 
     Beyond CLI, such as ODBC [10], JDBC and ADO.NET 
[11], several tools have been devised to improve the 
development process of business tiers. From them, Object-
to-Relational mapping (O/RM) tools [12], [13], such as 
LINQ [14], Hibernate [15], [16], Java Persistent API (JPA) 
[17] and Ruby on Rails [18], have had a significant 
acceptance in the academic and commercial forums.  Other 
tools, such as  embedded SQL [19] and SQLJ [20], have 
achieved some acceptance in the past. Others were 
suggested but without any general known acceptance, such 
as Safe Query Objects [21] and SQL DOM [22]. Next 
follows a brief discussion about these tools. 

 
     O/RM tools were designed to create static representation 
models of relational database schemas in the object-oriented 
paradigm. Static models are built in a first stage, eventually 
by a database administrator, and then programmers start the 
development process. The basic units of the static 
representation models are classes (entities), each one 
representing a database table. Through these entities, 
programmers read data from tables, update data, insert new 
data and, finally, delete existing data. To support explicit 
CRUD expressions, O/RM tools provide language 
extensions and proprietary SQL languages. Despite these 
advantages, O/RM present four main drawbacks: 1) they 
induce an additional overhead when compared to CLI; 2) 
they were not devised to address the power and the 
expressiveness of the SQL language and 3) they provide a 
set of extended functionalities (support for native and 
proprietary SQL languages, and language extensions), 
which promote the tangling of source-code of business tiers 
with source-code of application tiers and 4) they are not 
geared to address organizational or runtime needs. In spite 
of these disadvantages, O/RM are powerful tools when the 
key aspect are typed-objects perspectives of database tables’ 
schemas. 
 
     Safe Query Objects combine object-relational mapping 
with object-oriented languages to specify queries using 
strongly-typed objects and methods, relieving programmers 
from writing traditional CRUD expressions. They rely on 
Java Data Objects [23] to provide strongly-typed objects 
and also to provide data persistence. Safe Query Objects are 
a promising technique to express queries but they also 
convey the presented CLI drawbacks. The only exception is 
the need for writing CRUD expressions. Moreover, 
although joins can be used for filters, the result is always of 
a single typed object - there is no possibility to project more 
than one table. This constraint definitely prevents the use of 
Safe Query Objects in complex database applications. 
 
     SQL DOM generates a Dynamic Link Library containing 
classes that are strongly-typed to a database schema. These 
classes are used to build dynamic CRUD expressions 
without manipulating any strings. Similarly to Safe Query 



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  13

 
 

Objects, SQL DOM does not tackle the presented CLI 
drawbacks and its performance exhibits very poor results. 
 
     Aspect-oriented programming community considers 
persistence as a crosscutting concern [24]. Several works 
have been presented but none addresses the points here 
under consideration. The following works are emphasized: 
[25] is focused on separating scattered and tangled code in 
advanced transaction management; [24] addresses 
persistence relying on AspectJ; [26] presents AO4Sql as an 
aspect-oriented extension for SQL aimed at addressing 
logging, profiling and runtime schema evolution. It would 
be interesting to see an aspect-oriented approach for the 
points herein under discussion. 
 
     The authors of this paper addressed two issues regarding 
the use of CLI. In [27]–[29] the work is focused on defining 
different architectures for devising reusable business tier 
components. In [30], [31] the work is focused on defining 
architectures to enforce access control policies on business 
tier components. The research herein presented leverages 
previous researches to address a new research challenge: 
how to devise multi-functional business tier components 
aimed at coping with different organizational and contextual 
runtime requirements. 

3. Background 
 
     In this document, the term CLI is used with a wider 
scope than the one defined by ISO/IEC [32]. Herein, CLI 
concept is used to refer to any API/standard with identical 
features and characteristics to the standard emanated from 
ISO/IEC. In this context, other related API have also been 
devised, such as JDBC. Other tools/frameworks have also 
been devised to ease the development process of business 
tiers, which use CLI as the underlying middleware to 
interact with RDBMS. Some of those examples are: 
ADO.NET, JPA and Hibernate. Next follows a brief 
description about the main features of CLI that are relevant 
for this research. 
 
Local Memory Structures: Local memory structures (LMS) 
are instantiated at runtime to manage the data retrieved by 
Select expressions. Figure 2 presents a general LMS 
containing 5 rows (1 to 5) and 6 attributes (A, B, C, D, E, 
F). This LMS could have been instantiated to manage the 
data returned by the following CRUD expression: Select A, 
B, C, D, E, F from Table…. In this case, the CRUD 
expression has returned 5 rows and the current selected row 
is row number 3. Two representatives of LMS are ResultSet 
[33] for JDBC and RecordSet [34] for ODBC. The access to 
LMS attributes is accomplished by selecting a row and then, 
through an index or through a label (usually the attribute 
name), by selecting one attribute at a time. For example, to 
execute an action action (read, insert or update) on attribute 
C of row 3 it is necessary to: a) Select row 3; b) Execute 
action (index of attribute C) or action (label of attribute C).  

Selected row

1

2

3

4

5

A B C D E F

Figure 2. LMS with 5 rows (tuples) and 6 attributes (A till 
F). 

 
CLI  provide  protocols  to  allow  applications  to  scroll  on 
LMS, to   read  their  contents  and  to  alter  (insert,  update, 
delete – only for updatable LMS) their internal content, see 
Figure 1. Other services are also available but they are not 
relevant at this point. 
 
Functionalities: Only functionalities of CLI directly related 
to the execution of CRUD expressions will be addressed in 
this section. Services such as those for managing 
connections to host databases are not addressed in this 
paper. Main services of CLI are organized in four main 
categories: execution, scrollability, updatability and 
transactions. 
 

Execution: Execution comprises services related to the 
execution of native CRUD expressions. CLI deal 
differently with Select expressions from the other three 
types of CRUD expressions. Select expressions 
instantiate LMS, while the other types do not. These 
latter types (Insert, Update and Delete) generate a value 
indicating the number of affected rows in the database. 
Scrollabilty: Scrollability comprises services related to 
the scrolling process on LMS. There are several 
different implementations but two are emphasized. 
They are mutual-exclusive and are herein known as:1) 
forward-only – in this case it is only possible to move 
forward one row at a time; 2) scrollable – in this case it 
is possible to move in any direction and jump several 
rows at a time.  
Updatability: Updatability comprises services organized 
in protocols to interact with data contained in LMS. 
There are several implementations but two are herein 
emphasized. They are mutual-exclusive and are known 
as: 1) read-only – the content of the LMS is read-only 
and no modifications are allowed; 2) updatable – 
changes can be performed on LMS (insert new rows, 
update rows and delete rows), which are replicated in 
the host database after being committed. 
Transactions: transactions comprise a set of services to 
manage database transactions. 

 

 
Access Modes of CLI: From descriptions previously 
presented, we see that CLI provide two different modes to 
access data, which are herein referred to as the Direct 
Access Mode and the Indirect Access Mode. The Direct 
Access Mode is used when programmers use the native SQL 



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  14

 
 

language to write CRUD expressions encoded inside strings, 
while the Indirect Access Mode is only available through 
the interaction with data contained on LMS. CLI provide 
other access modes, such as the execution of CRUD 
expressions in batch, which will be considered in a future 
work. 

4. ABTC Presentation 
 
     This section presents the reference architecture. We start 
by presenting some fundamental concepts and then we 
present the reference architecture. 
 
4.1 Fundamental Concepts 
 
CRUD expressions are the basic entities from which 
business tiers are built. They represent the formalization 
process used by information systems to interact with data 
residing in relational databases. Beyond the need to write 
CRUD expressions, the need for mastering their schema is a 
key issue to manage their execution cycle. Two examples 
are given: first, CRUD expressions can use runtime values 
for parameters and, second, Select expressions return 
relations. As such, a survey was conducted to define a 
standard schema, herein known as CRUD Schema, to 
formalize the management process for the execution of 
CRUD expressions. Four features were identified to 
characterize any CRUD expression: the type of CRUD 
expressions (Select or Update, Insert and Delete), their list 
of conditions (runtime values for clause conditions), their 
column list (runtime values for column list of Insert and 
Update) and, finally, the LMS schema (only for Select 
expressions). LMS schemas comprise the schema of the 
returned relation and the protocols to interact with the data 
they keep. The relevancy of CRUD Schema concept is not 
restricted to be a formalization method. Another relevant 
aspect derives from the fact that the relationship between 
CRUD Schemas and CRUD expressions is 1 to many. An 
indeterminate number of CRUD expressions can share the 
same CRUD Schema. Listing 1 shows an example of two 
CRUD expressions: both are Select expressions, both share 
the same select list (schema of the returned relation) and 
both have no values defined at runtime. CRUD expressions 
sharing the same CRUD Schema are herein known as 
sibling CRUD expressions. The concept of CRUD schema 
confines the scope of CRUD expressions to sibling CRUD 
expressions only. This restriction is acceptable and adequate 
when a tight biding between CRUD expressions and CRUD 
Schemas is a requirement. In situations in which this tight 
biding is not a requirement, the CRUD Schema concept is 
too restrictive preventing the grouping of CRUD 
expressions that are not sibling. To overcome this situation, 
the concept of Business Schema is introduced. A Business 
Schema formalizes the service to manage a group of CRUD 
expressions. It is up to the programmer to define the scope 
of each Business Schema in terms of CRUD schemas to be 
supported. If required, this concept can be used to minimize 

the number of Business Schemas to be made available to 
manage all CRUD expressions. Jayapandian and Jagadish 
[35] have concluded that a large number of CRUD 
expressions “can potentially be composed from a given set 
of related schema elements”. Business Schemas are not 
Schema elements [36]  but their number can be optimized if 
their approach is used. Thereby, to support this latter 
perspective and the one with a tight biding between CRUD 
expressions and CRUD schemas, two approaches are 
proposed to devise and use Business Schemas, which are 
herein known as the closed approach and the open approach. 
 
Closed approach: in the closed approach, Business Schemas 
are used to manage only sibling CRUD expressions. The 
relationship between Business Schema and CRUD Schema 
is one to one, this way conveying a complete schema 
awareness of each CRUD expression. As a disadvantage, 
each Business Schema is not flexible to accommodate 
CRUD expressions with different CRUD Schemas. 
 
Open approach: in the open approach, Business Schemas are 
driven by the service to be provided and not by a CRUD 
Schema to be supported. As such, the open approach is 
intended to create a wide range service with the capacity of 
managing several CRUD Schemas. The relationship 
between Business Schema and CRUD Schema is one to 
many. This approach has the advantage of increasing the 
possibility of supporting new or evolving CRUD Schemas 
without needing new Business Schemas. The only 
requirement is that the new CRUD Schema must be 
contained in the defined Business Schema scope. As a 
disadvantage, programmers are required to master CRUD 
Schemas, but not database schemas, to be able to select the 
needed service portion. 
 
     Each Business Schema, either following the open or the 
closed approach, is implemented by a service herein known 
as Business Service. Each Business Service represents a 
typed object responsible for managing CRUD expressions 
formalized by CRUD Schemas. Anyway, Business Schemas 
are not part of ABTC. Business Schemas are designed to 
address specific business needs for each database 
application. In our proof of concept we will present a 
Business Schema aimed at promoting business tier 
components driven by access control policies. 
 

 
Listing 1. Sibling CRUD expressions. 

 
4.2 General Architecture 
 
     We  need  to  remember  that  ABTC is aimed at building 



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  15

 
 

business tiers and simultaneously dealing successfully with 
organizational and runtime requirements. Regarding 
organizational requirements, we can understand them as 
being the policies based on which roles are defined for the 
development process of business tiers. The development 
process of business tiers comprises two main exclusive 
roles: database administration role and developer role. 
These roles can be played by the same group of persons or, 
alternatively, they can be played by different persons. Both 
possibilities are valid and widely used. Thus, ABTC needs 
to provide the possibility of decoupling or not decoupling 
the two roles. Regarding runtime requirements, information 
systems are becoming more and more dynamic, pushing 
adaptation processes to be carried out at runtime. As an 
example, critical information systems with dynamic access 
control policies, which lead to modifications on business 
logics, cannot wait for manual maintenance activities. 
Maintenance processes need to be carried out immediately 
at runtime. We have presented two examples only, but much 
more could be given. In order to address both types of 
requirements we devise an architecture based on a 
component with two facets. One facet is here referred to as 
the dynamic component, ABTC_Dynamic, and the other 
component is here referred to as the static component, 
ABTC_Static. They share the same fundamental 
architecture. The key difference is that ABTC_Dynamic 
supports an additional functionality that is not supported by 
ABTC_Static. Basically, ABTC_Dynamic supports a 
functionality capable of generating and compiling source 
code at runtime from metadata provided by other 

components. When combined in different ways, 
ABTC_Static and ABTC_Dynamic provide different 
scenarios each one addressing different requirements. Figure 
3 presents the three main different scenarios known as 
Scenario 1, Scenario 2 and Scenario 3. These scenarios 
intend to address organizational and runtime requirements. 
To deepen the understanding, we give some additional 
information about both facts and the context in which they 
can be used. ABTC_Dynamic is used when there is the need 
to carry out an adaptation process at runtime. The adaption 
process consists in adapting and persisting business logics in 
accordance with a defined architectural model. Persisted 
business logics are kept in independent components herein 
known as Business Logic. We emphasize that there is no 
imposed architectural model. Architectural models are 
defined on a case by case basis to address specific database 
applications needs. ABTC_Static is used when the 
adaptation process takes place at an earlier stage and, 
therefore, there is no need to be carried out again. Basically, 
beyond a steady part, ABTC_Static uses Business Logic 
components previously built by ABTC_Dynamic. 
 
     Figure 3 presents three scenarios which explain the 
different possibilities to address organizational and runtime 
requirements. 
 
Scenario 1: This scenario is used when the business tier 
developer role (ADM) and the application tier developer 
role (Developer) are played by different actors and there is 
no need to carry out an adaptation process in a later stage.

 
 

Developer

ABTC_Dynamic

BusinessLogic_1

ADM

ADM

ABTC_Dynamic

BusinessLogic_2

App. Tier

ABTC_DynamicApp. Tier

ABTC_Static

BusinessLogic_1

App. Tier

BusinessLogic_3

ABTC_Static

BusinessLogic_2

App. Tier

ABTC_Dynamic

BusinessLogic_4

App. Tier

ABTC_Static

BusinessLogic_1

App. Tier

Runtime

Figure 3. Implemented scenarios to address organizational and runtime needs. 
 



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  16

 
 

The adaption process is carried out by database 
administrators (ADM), or someone on their behalf. 
ABTC_Dynamic is used to build a persisted Business Logic 
component (BusinesLogic_1), which will be used in the 
next stages: development process of application tiers and 
deployment process. Basically, developers of application 
tiers (Developers) use the persisted Business Logic 
components (BusinessLogic_1) and ABTC_Static for the 
development process of application tiers and also for the 
database applications to be deployed (Deploy). 
 
Scenario 2: This scenario is used when application tier 
developer role (Developer) and business tier developer role 
(ADM) are played by the same actor and there is no need to 
carry out an adaptation process in later stage. The adaptation 
process takes place during the development process of 
application tiers (Developer). It uses ABTC_Dynamic to 
build a persisted Business Logic component 
(BusinessLogic_2). Then, database applications are 
deployed with the persisted Business Logic component 
(BusinessLogic_2) and ABTC_Static.  
 
Scenario 3: This scenario is used, for example, whenever the 
adaptation process is dynamic and it takes place at runtime 
after the deployment process. The Business Logic 
component (BusinessLogic_3) can be built during the 
development process of application tiers (Developer) but it 
is not used anymore afterwards. The final adaptation process 
(BusinessLogic_4) takes place after the deployment process 
of database applications and at runtime. As an example, the 
Business Logic can be built in accordance with the profile 
of the user that is running the database application. 
 
     With these scenarios, based on different combinations of 
ABTC_Dynamic and ABTC_Static, it is possible to cover a 
wide range of requirements in terms of organizational and 
runtime needs, this way coping with the goals of this 
research. 
 
5. Proof of Concept 
 
     This section presents the work that has been carried out 
to prove that ABTC is a reliable architecture to overcome 
the presented CLI drawbacks. To achieve this goal, we 
opted for a solution geared to promote business tier 
components driven by access control policies. We can verify 
that organizational requirements are addressed by defining 
who plays which role during development process of 
business tiers. In other words, by defining who is 
responsible for implementing the security mechanisms. The 
runtime needs are addressed by defining security 
mechanisms based on the running user profiles. Basically, 
Business Logic components are built and updated at runtime 
based on user profiles. In our proof of concept, a user profile 
is defined by a set of Business Schemas and the 
correspondent CRUD expressions a user is authorized to 
use. Now we need to design a Business Schema aimed at 

representing security mechanisms at the level of business 
logic. 
 
5.1 Architectural Proposal 
 
     This section presents the architecture for our proof of 
concept, see Figure 4. ABTC comprise several artifacts: 
BusinessEngine, Business Logic, IServiceAllocation, 
IServiceComposition, IManager, Manager, IUser, Session, 
ISession and, finally, ITransaction. The architecture is 
presented in a single class diagram but it comprises the two 
fundamental facets: ABTC_Dynamic and ABTC_Static. 
The only difference between them are the artifacts 
BusinessEngine, IServiceComposition and 
IServiceAllocation (used during the adaptation process), 
which are not part of ABTC_Static. Each artifact is 
hereafter described: 
 
BusinessEngine: We start by presenting the Business 
Engine because it is one of the most important entities in 
our ABTC. It is the component responsible for creating 
automatically source code (from metadata) for Business 
Logics components and, therefore, Business Services from 
Business Schemas. Thus, it is a part of ABTC_Dynamic but 
not a part of ABTC_Static. The goal and design of Business 
Engines can change from database application to database 
application in order to address the specific requirements. In 
the next sub-section, we will present the Business Schema 
that is used in the proof of concept. 
Business Logic: (at the bottom of the diagram) Business 
Logic is an independent and persisted container to keep 
business logics (Business Services and CRUD expressions) 
built during the adaptation process. 
IServiceAllocation: it comprises services to manage the 
service allocation process which consists in deploying 
CRUD expressions to be persisted in Business Logic 
components. We have implemented 3 methods (two for the 
deployment process and one for removing CRUD 
expressions) but is up to each system architect to define its 
own implementation. 
IServiceComposition: it comprises services to manage the 
service composition process, which consists in deploying 
Business Schemas that are used by Business Engines during 
the building process of Business Services. We have 
implemented 3 methods (two for the deployment process 
and one for removing Business Services) but is up to each 
system architect to define its own implementation. 
IManager: it gathers services to provide one of the two 
supported versions: dynamic (1) or static (2) versions, 
ABTC_Dynamic and ABTC_Static, respectively. The 
dynamic version, beyond extending IServiceAllocation and 
IServiceComposition, comprises an additional method to 
define the repository for the persistent Business Logic. 
Manager: it provides two services: 1) a static method 
(getInstance) to create instances of ABTC and 2)  
implements one of the two versions of IManager interface 
leading to one of the two versions of ABTC:  



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  17

 
 

ABTC_Dynamic and ABTC_Static. 
IUser: it provides a service to  create  sessions. A  session  is 
characterized by owning a private connection object to a 
database and the correspondent transaction management 
unit (ITransaction). Each user opens as many sessions as 
necessary (getBusinessSession).  
ISession and Session: they are responsible for managing the 
instantiation process of Business Services. They provide 
three methods. The first two (businessService) instantiate 
Business Services: the first one is only for Insert, Update 
and Delete expressions and the second one is only for Select 
expressions. They are generics java methods that, among 
other arguments, accept a Business Schema and return an 
instance of a Business Service that implements the 
requested Business Schema. To instantiate Business 
Services, they need to be loaded into memory at runtime 
and, then, instances are created using reflection. This 
process ensures that Business Services may be dynamically 
created and removed at runtime without raising any runtime 

error. The second method opens the possibility to define 
functionalities of LMS at runtime (read-only  or  updatable 
and, forward-only or scrollable). Sessions are released when 
not needed any more (releaseBusinessSession).  
ITransaction: it provides all the necessary methods to 
manage database transactions. 
ISession and Session: they are responsible for managing the 
instantiation process of Business Services. They provide 
three methods. The first two (businessService) instantiate 
Business Services: the first one is only for Insert, Update 
and Delete expressions and the second one is only for Select 
expressions. They are generics java methods that, among 
other arguments, accept a Business Schema and return an 
instance of a Business Service that implements the 
requested Business Schema. released when not needed any 
more (releaseBusinessSession).  
ITransaction: it provides all the necessary methods to 
manage database transactions. 

 

-Manager()
+getInstance(in un : string, in pw : string, in urlDB : string) : IManager

Manager

BusinessEngine

«interface»
ISession

«interface»
IServiceComposition

«interface»
IServiceAllocation

«interface»
IUser

ITransaction

+Session(in un : string, in pwd : string, in url : string)

-conn : DbConn

Session

«interface»
IManager (2)

«interface»
IManage (1)

Only if dynamic
version

IManager:
(1) only if dynamic version
(2) only if static version

Business Logic

#BusinessSchema_1(in conn : DbConn, in crud : string)

BusinessService_1

IBusinessSchema_1

#BusinessSchema_n(in conn : DbConn, in crud : string)

BusinessSErvice_n

IBusinessService_n

...

CRUD set

1

*

1

*

1

*

Figure 4. Implemented ABTC class diagram. 
 
 



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  18

 
 

5.2 Business Schema and Business Engine Proposals 
 
Now, we need to devise a Business Schema and a Business 
Engine to be used in our proof of concept. Regarding the 
Business Schema we leveraged previous researches in this 
subject [27]–[29]. Then, a Business Engine was also 
designed and developed. Figure 5 presents the general class 
diagram for our Business Schemas. It comprises the 
required entities to completely formalize the key aspects, 
such as type of CRUD expressions and interactions with 
LMS. It comprises the following entities: 
 
ILMS: it manages the access to LMS. IRead and IWrite 
interfaces have getters and setter methods, respectively, to 
deal with the data contained in LMS. IInsert, IUpdate and 
IDelete interfaces control the insert, update and delete 
protocols, respectively. IScroll implements the necessary 
scrolling policy. 
IExecute: it defines one execute method with two facets: one 
for the closed approach and the other for the open approach. 
IResult: it is only used with Insert, Update and Delete 
expressions. It provides a method to retrieve the number of 
affected rows after the CRUD expression is executed. 
IBusinessSchema: it represents the Business Schema to be 
implemented by a Business Service to manage CRUD 
expressions. It implements IExecute, ILMS (if the CRUD 
expression is a Select expression) and IResult (for Insert, 
Update and Delete expressions only). 

BusinessService: it accepts, at instantiation time, an object 
used to establish a connection to a database server and a 
CRUD expression to be managed. So, Business Services 
only at runtime become aware of the CRUD expressions to 
be managed. Each BusinessService is able to manage 
several CRUD expressions: sibling CRUD expressions for 
the closed approach, and the supported CRUD schemas by 
the Business Schema for the open approach. 
 
     One of the biggest challenge was centered on the 
approach to be followed to formalize Business Schemas. 
Several approaches were considered, among them XML and 
standard Java interfaces. In spite of being less expressive 
than XML, Java interfaces proved to be an efficient and 
effective approach. The main reasons are the following: 
programmers do not need to use a different development 
environment; interfaces are basic entities of any object-
oriented programming language and are widely used; 
interfaces are easily edited and maintained and, finally, 
Business Schemas have also been defined as interfaces, see 
IBusinessSchema in Figure 5. These were the fundamental 
reasons for having opted for Java interfaces in detriment of 
XML. Thus, BusinessEngine accepts as input, for each 
Business Service, one interface extending all the necessary 
interfaces as defined in IBusinessSchema and as shown in 
Figure 5. Our Business Engines use data formalized by this 
Business Schema. If the option fell in Business Schemas 
driven by access control policies, the ones presented in [30], 
[37] can be used. 

 

«interface»
ILMS

IDelete
IUpdate

IInsert

IRead

IScroll

Read attributes
of LMS

Insert new rows.

Delete rows.

Update rows.

Update and insert 
attributes on LMS

IWrite

 

ILMS

IResult

«interface»
IBusinessSchema

execute:
1st: closed approach
2nd: open approach

#BusinessService(in conn : DbConn, in crud : string)

BusinessService

Only if Select

Only if not Select

«interface»
IExecute

Figure 5. Business Services class diagram for the implemented use case. 
 
 
5.3 Implementation 
 
     In this sub-section we explicitly present how to use the 
ABTC_Dynamic and also the ABTC_Static. Then they can 
be combined in order to implement any of the three 
scenarios, see Figure 3. The use case comprises: 3 users, the 
set of CRUD expressions and the set of Business Schemas, 
presented in Table 1 (bottom line presents additional details 
to understand the table content). The selected set had in 
mind the main variants to be supported by ABTC. Thus, 
there are four Business Schemas for the closed approach 
(IPrd_s, ICat_s, ISup_s and ICat_i) and one Business 

Schema for the open approach (IOpen_s). LMS are all of 
type forward-only and read-only (FR) except one for the 
CRUD expression ID=4, which is forward-only and 
updatable (FU). CRUD expressions are all of type Select 
except the one with ID=8. This way, the different 
possibilities were defined and used to evaluate the 
architecture of ABTC. This set is then arranged in 3 smaller 
sub-sets in order to define 3 different user profiles, which 
can be dynamically allocated and dislocated to each user. 
     Now, we present the procedures associated with the 
adaptation process. We start by presenting the data through 
structures we have used to formalize the content of Table 1  



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  19

 
 

Table 1. CRUD expressions and Business Services for the implemented demos. 

ID CRUD expressions 
Business Schemas 

LMS Closed Open 
IPrd_s ICat_s ISup_s ICat_i IOpen_s 

1 Select * from Products Y N N Y Y FR 
2 Select * from Products where ProductID=10 Y N N Y Y FR 
3 Select * from Products where SupplierID=2 Y N N Y Y FR 
4 Select * from Categories N Y N Y Y FU 
5 Select * from Categories where CategoryID=1 N Y N Y Y FR 
6 Select * from Suppliers N N Y Y Y FR 

7 
Select p.*, c.categoryName, c.Description 
           from Products p, Categories c 
           Where p.CategoryID=c.CategoryID 

N N N Y Y FR 

8 Insert into Categories values (?,?,?,?) N N N Y N  
ID: CRUD expression identification (1-allFromProducts, 2-fromProducts_productId, 
                                                             3-fromSuppliers_supplierId, 4-allFromCategories, 
                                                             5-fromCategories_categoryId, 6-allFromCategories, 
                                                             6-allFromSuppliers, 7-fromProductsCategories, 
                                                             8-InsertInCategories 
CRUD expressions: supported CRUD expressions. 
Business Schemas: supported Business Schemas. 
LMS: - F: forward-only, S:scrollable, R:read-only, U:updatable. 

 
Figure 6. IRead interface of ICat_s. 

 

 

 
Figure 7. IExecute interface of ICat_s. 

 
 
 

 
Figure 8. ICat_s definition. 

 
Figure 9. Class with the authorized Business Schemas.

 
 

 
Figure 10. Class with CRUD expressions and their identifications. 

 
 

Figure 11. Configuration process of ABTC. 
 
 
  



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  20

 
 

and then we show the adaptation process   
IServiceComposition and IServiceAllocation interfaces. 

Data  Structures   for  the   Service   Composition:  Figure 6, 
Figure 7, Figure 8 and Figure 9 partially present the data 
structures required to accomplish the service composition 
process for the 3 demos. Service composition process takes 
place in all the three demos/scenarios, see Figure 3, but in 
different stages. Figure 6, Figure 7 and Figure 8 present the 
three interfaces that need to be customized to define the 
Business Schema for ICat_s: IRead, IExecute and ICat_s, 
respectively. The same procedure need to be followed for 
each one of the remaining Business Schemas. From these 
three interfaces and in accordance with the presented 
Business Schemas, BusinessEngine automatically builds 
and compiles the source for the correspondent Business 
Service. This automated process includes the IWrite 
interface which is automatically inferred from IRead 
interface. All other interfaces are shared by all Business  
Schemas relieving programmers from the need of writing 
them repeatedly. The service composition process of 
Business Services is aimed at managing Insert, Update and 
Delete expressions, only the execute method of IExecute 
interface needs to be customized. Figure 9 presents another 
relevant class that contains all the 6 Business Schemas. This 
class is used during the service composition process for 
users with permissions to use the 6 Business Schemas. 
During the service composition process Business Services 
are automatically build and persistently kept by their 
Business Logic. 
 
Data Structures for the Service Allocation: The service 
allocation process is focused on deploying the authorized 
CRUD expressions, in accordance with any policy. The 
service allocation process uses one class only, see Figure 10, 
containing the authorized CRUD expressions for the 
running user profile and also their identifications. 
 
How it Works: Finally, Figure 11 presents the main 
interaction between the application tier and the business tier 
(ABTC) during the service composition and the service 
allocation processes. Please remember that these processes 
only happen if the component being used is the 

ABTC_Dynamic one and that it is not dependent on the 
running scenario. ABTC is instantiated (line 967), the name 
for the repository file for the Business Logic is defined (line 
969), Business Services are deployed (line 971) and, finally, 
CRUD expressions are also deployed (line 973). An 
important aspect is that, if the scenario is the scenario 3, 
then the content of Business Logic can be modified at any 
time even after the system has been deployed. There is the 
possibility to remove existent Business Services and CRUD 
expressions and also the possibility of adding new Business 
Services and CRUD expressions. 
 
5.4 ABTC_Static Perspective 
 
     Next, we present one perspective which takes place after 
the adaptation process and, simultaneously, there is no need 
to any additional adaptation process. Basically, it shows the 
interaction between application tiers and components based 
on ABTC that have been already adapted. Figure 12 
presents the example shown in Figure 1, but now using 
ABTC and an updatable IPrd_s. The first note to be 
emphasized is the similarity between the use of ABTC and 
JDBC. The main difference between them is that business 
tiers and application tiers are completely decouple. 
     Now we emphasize additional aspects of the presented 
architecture: 1) source-code for business logics is 
automatically built and driven by any policy and 2) 
Business Services and pools of CRUD expressions 
maximize the reuse of computation. The counterparts to 
obtain all these advantages are: 1) the need to write each 
CRUD expression only once (which is an unavoidable 
activity); 2) the need to write an IExecute interface (for 
Insert, Update and Delete CRUD expressions), or the need 
to write IRead and IExecute interfaces (for each Select 
expression) for each Business Schema. We have sh own 
only a part of our experiment in order not to overcrowd the 
paper with figures. Anyway, tests were carried out with the 
three demos (covering the three scenarios). From the 
collected results, it is clear that ABTC completely addresses 
the goals of this research and particularly for the three 
scenarios.  
 

 

Figure 12. Example shown in Figure 1 but using the ABTC. 



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  21

 
 

 
 
6. Conclusion 
 
     CLI are used to build business tiers whenever a fine tune 
control in the interaction with host databases is required. In 
spite of this advantage, they present some important 
drawbacks, among which the inability to cope with 
organizational and runtime requirements. To overcome 
these drawbacks, this paper presents a multi-purpose 
architecture based on CLI, herein referred to as ABTC. Two 
facets of ABTC were defined: the ABTC_Dynamic is aimed 
at building business logics automatically at runtime and the 
ABTC_Static is aimed at using business logics previously 
created by ABTC_Dynamic. This approach promotes the 
definition of different scenarios to address different 
requirements. We have implemented a use case with three 
demos to address some organizational (who plays which 
role) and contextual runtime needs (reusable business tiers 
automatically built at runtime). Other scenarios could also 
be implemented as, for example, to address security 
requirements. Basically, to address security requirements, 
the deployment process of CRUD Schemas and CRUD 
expressions should be driven by access control policies.  
      
     The proof of concept here presented is based on Java, 
JDBC and SQL Server 2008. An ABTC has also been built 
with C#, ADO.NET and SQL Server 2008. The component 
was manually built. The achieved success proved that the 
presented architecture is flexible enough to be used with 
different technologies. From our previous experience with 
O/RM tools, namely Java Persistence API, it is our belief 
that this architecture can also be used. However, it is so easy 
to be used with CLI that it would only bring disadvantages 
if used with O/RM, namely because of their induced 
overhead. 
 

As future work, we plan to complement ABTC with an 
additional tool to ease the process of creating business logic. 
At this stage, every CRUD expression and Business Schema 
is manually written. The tool will automate the building 
process of some default CRUD expressions and Business 
Schemas, as O/RM tools do. The automated process uses 
database schemas to create default select, insert, update and 
delete expressions and the correspondent Business Schemas 
for each database table. More complex CRUD expressions 
and more complex CRUD Schemas will also be supported 
by a tool based on the one presented in [38], [39]. 
Additionally, ABTC will be extended to support the 
remaining access modes of CLI. 
 
     It is expected that the outcome of this research may lead 
to open new approaches to improve the development 
process of business tiers based on CLI to address different 
organizational and runtime requirements. 

 

References 
[1] Ó. M. Pereira and R. L. Aguiar, “Multi-purpose 

Adaptable Business Tier Components Based on Call 
Level Interfaces,” in ICIS 2015 - 14th IEEE/ACIS 
International Conference on Computer and 
Information Science, 2015, p. accepted. 

[2] W. Cook and A. Ibrahim, “Integrating programming 
languages and databases: what is the problem?,” 2005. 
[Online]. Available: 
http://www.odbms.org/experts.aspx#article10. 

[3] M. Parsian, JDBC Recipes: A Problem-Solution 
Approach. NY, USA: Apress, 2005. 

[4] M. David, “Representing database programs as 
objects,” in Advances in Database Programming 
Languages, F. Bancilhon and P. Buneman, Eds. N.Y.: 
ACM, 1990, pp. 377–386. 

[5] G. T. Heineman and W. T. Councill, “Component-
based software engineering: putting the pieces 
together.” Addison-Wesley Longman Publishing Co., 
Inc., Boston,MA,USA, 2001. 

[6] C. Szyperky, D. Gruntz, and S. Murer, Component 
Software - Beyond Object-Oriented Programming. 
Addison-Wesley/ACM Press, 2002. 

[7] L. Kung-Kiu and W. Zheng, “Software Component 
Models,” IEEE Trans. Soft. Eng., vol. 33, no. 10, pp. 
709–724, 2007. 

[8] A. Bracciali, A. Brogi, and C. Canal, “A formal 
approach to component adaptation,” J. Syst. Softw., vol. 
74, no. 1, pp. 45–54, 2005. 

[9] P. V. Elizondo and K.-K. Lau, “A Catalogue of 
Component Connectors to Support Development with 
Reuse,” J. Syst. Softw., vol. 83, no. 7, pp. 1165–1178, 
2010. 

[10] Microsoft, “Microsoft Open Database Connectivity,” 
1992. [Online]. Available: 
http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx. 

[11] G. Mead and A. Boehm, ADO.NET 4 Database 
Programming with C# 2010. USA: Mike Murach & 
Associates, Inc., 2011. 

[12] W. Keller, “Mapping Objects to Tables - A Pattern 
Language,” European Conference on Pattern 
Languages of Programming Conference (EuroPLoP). 
Irsse, Germany, pp. 1–26, 1997. 

[13] R. Lammel and E. Meijer, “Mappings Make data 
Processing Go ’Round: An Inter-paradigmatic 
Mapping Tutorial,” in Generative and Transformation 
Techniques in Soft. Eng., 2006, vol. 4143, pp. 169–218. 

[14] M. Erik, B. Brian, and B. Gavin, “LINQ: Reconciling 
Object, Relations and XML in the .NET framework,” 
in ACM SIGMOD Intl Conf on Management of Data, 
2006, p. 706. 

[15] C. Bauer and G. King, Java Persistence with 
Hibernate. Manning, 2007. 



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  22

 
 

[16] B. Christian and K. Gavin, Hibernate in Action. 
Manning Publications Co., 2004. 

[17] D. Yang, Java Persistence with JPA. Outskirts Press, 
2010. 

[18] D. Vohra, “CRUD on Rails - Ruby on Rails for PHP 
and Java Developers,” Springer Berlin Heidelberg, 
2007, pp. 71–106. 

[19] J. W. Moore, “The ANSI binding of SQL to ADA,” 
Ada Lett., vol. XI, no. 5, pp. 47–61, 1991. 

[20] A. Eisenberg and J. Melton, “Part 1: SQL Routines 
using the Java (TM) Programming Language,” 
American National Standard for Information for 
Technology Database Languages - SQLJ. International 
Committee for Information Technolgy, 1999. 

[21] R. C. William and R. Siddhartha, “Safe query objects: 
statically typed objects as remotely executable 
queries,” in 27th Int. Conf. on Software Engineering, 
2005, pp. 97–106. 

[22] A. M. Russell and H. K. Ingolf, “SQL DOM: compile 
time checking of dynamic SQL statements,” in 27th 
Int. Conf. on Software Engineering, 2005, pp. 88–96. 

[23] Oracle, “Java Data Objects (JDO),” 2011. [Online]. 
Available: 
http://www.oracle.com/technetwork/java/index-jsp-
135919.html. 

[24] R. Laddad, AspectJ in Action: Practical Aspect-
Oriented Programming. Greenwich,CT,USA: Manning 
Publications, 2003. 

[25] J. Fabry and T. D’Hondt, “KALA: Kernel Aspect 
Language for Advanced Transactions,” in Proceedings 
of the 2006 ACM Symposium on Applied Computing, 
2006, pp. 1615–1620. 

[26] T. Dinkelaker, “AO4SQL: Towards an Aspect-
Oriented Extension for SQL,” in 8th Workshop on 
Reflection, AOP and Meta-Data for Software Evolution 
(RAM-SE’11), 2011, pp. 1–5. 

[27] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, 
“Reusable Business Tier Architecture Driven by a 
Wide Typed Service,” in ICIS 2013 - 12th IEEE/ACIS 
International Conference on Computer and 
Information Science, 2013, pp. 135–141. 

[28] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, “ABC 
Architecture - A New Approach to Build Reusable and 
Adaptable Business Tier Components Based on Static 
Business Interfaces,” Eval. Nov. Approaches to Softw. 
Eng., vol. 275, pp. 114–129, 2013. 

[29] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, 
“Reusable Business Tier Components Based on CLI 
and Driven by a Single Wide Typed Service,” IJSI - 
Int. J. Softw. Innov., vol. 2, no. 1, pp. 37–60, 2014. 

[30] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, 
“ACADA - Access Control-driven Architecture with 
Dynamic Adaptation,” in SEKE’12 - 24th Intl. Conf. on 
Software Engineering and Knowledge Engineering, 
2012, pp. 387–393. 

[31] Ó. M. Pereira, R. Aguiar, and M. Santos, “BTA: 
Architecture for Reusable Business Tier Components 

with Access Control,” in ICCSA - 12th Int. Conf. on 
Computer Systems and Applications, 2012, vol. 7335, 
pp. 682–697. 

[32] ISO, “ISO/IEC 9075-3:2003,” 2003. [Online]. 
Available: 
http://www.iso.org/iso/catalogue_detail.htm?csnumber
=34134. 

[33] O. M. Pereira, R. L. Aguiar, and M. Y. Santos, 
“Assessment of a Enhanced ResultSet Component for 
Accessing Relational Databases,” in ICSTE-Int. Conf. 
on Software Technology and Engineering, 2010, pp. 
V1:194–201. 

[34] Microsoft, “RecordSet (ODBC),” Real-Time Syst, 
2013. [Online]. Available: 
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx. 

[35] M. Jayapandian and H. V Jagadish, “Automated 
creation of a forms-based database query interface,” 
Int. Conf. Very Large Database, vol. 1, no. 1, pp. 695–
709, 2008. 

[36] C. Yu and H. V Jagadish, “Schema summarization,” 
32nd Intl Conf on Very large data bases. VLDB 
Endowment, Seoul, Korea, pp. 319–330, 2006. 

[37] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, 
“Runtime Values Driven by Access Control Policies 
Statically Enforced at the Level of the Relational 
Business Tiers,” in SEKE’13 - Intl. Conf. on Software 
Engineering and Knowledge Engineering, 2013, pp. 1–
7. 

[38] O. M. Pereira, R. L. Aguiar, and M. Y. Santos, 
“CRUD-DOM: A Model for Bridging the Gap 
Between the Object-Oriented and the Relational 
Paradigms,” in ICSEA 2010 - Int. Conf. on Software 
Engineering and Applications, 2010, pp. 114–122. 

[39] O. M. Pereira, R. L. Aguiar, and M. Y. Santos, 
“CRUD-DOM: A Model for Bridging the Gap 
Between the Object-Oriented and the Relational 
Paradigms - an Enhanced Performance Assessment 
Based on a case Study,” Int. J. Adv. Softw., vol. 4, no. 
1&2, pp. 158–180, 2011.  

 
 

Óscar Mortágua Pereira 
graduated in 1983 in 
Electronics and 

Telecommunications 
Engineering at the University 
of Aveiro (UA). He devoted 
several years to research and 
development activities in 
several private companies. In 
2013 he completed the 

doctoral program MAP-i and obtained a PhD degree in 
computer science. Since then he is an Auxiliary 
Professor in the Department of Electronics, 
Telecommunications and Informatics at the UA. He is 
currently a researcher at the Telecommunications 
Institute in Aveiro. His main research activities are 



International Journal of Computer & Information Science, Vol. 16, No. 3, July - September 2015  23

 
 

focused on Software Engineering, Access Control, 
Databases, Big Data and IoT. He has published more 
than 30 papers in international conferences, 
international journals and book chapters. He is also 
participating in several Technical Committee Programs 
of international conferences and international journals.  

 
 
Rui L. Aguiar is a Full Professor 
at the University of Aveiro where 
he received his PhD degree in 2001 
in electrical engineering. He has 
been an adjunct professor at the 
INI, Carnegie Mellon University 
and is currently a Visiting Research 
Fellow at Universidade de 
Uberlandia. His current research 
interests are centered on the 

implementation of advanced communication systems in the 
areas of 5G and Future Internet. He has served as Technical 
and General Chair of several conferences and is Associate 
Editor of several journals, having more than 400 published 
papers. He is a member of ACM and a senior member of 
IEEE. 
 
 
 


