
(DOI reference number: 10.18293/SEKE2015-070)

Endowing NoSQL DBMS with SQL Features
Through Standard Call Level Interfaces

Óscar Mortágua Pereira, David Simões, Rui L. Aguiar
Instituto de Telecomunicações
DETI University of Aveiro

Aveiro, Portugal
{omp, david.simoes, ruilaa}@ua.pt

Abstract To store, update and retrieve data from database
management systems (DBMS), software architects use tools, like
call-level interfaces (CLI), which provide standard functionalities
to interact with DBMS. However, the emerging of NoSQL
paradigm, and particularly new NoSQL DBMS providers, lead to
situations where some of the standard functionalities provided by
CLI are not supported, very often due to their distance from the
relational model or due to design constraints. As such, when a
system architect needs to evolve, namely from a relational DBMS
to a NoSQL DBMS, he must overcome the difficulties conveyed
by the features not provided by NoSQL DBMS. Choosing the
wrong NoSQL DBMS risks major issues with components
requesting non-supported features. This paper focuses on how to
deploy features that are not so commonly supported by NoSQL
DBMS (like Stored Procedures, Transactions, Save Points and
interactions with local memory structures) by implementing
them in standard CLI.

Keywords NoSQL; SQL; databases; middle-ware; call level
interfaces;software architecture.

I. INTRODUCTION

Critical data are mostly kept and managed by database
management systems (DBMS). To store, update and retrieve
data from DBMS, software architects use software tools to ease
the development process of business tiers. Among these, we
emphasize call-level interfaces (CLI) [1], which provide an
API that allows an application to call methods that propagate to
the database.

CLI try to build on the commonalities between DBMS and
provide a set of methods that encompass these common
aspects. Because all DBMS are inherently different, CLI have
two main issues to deal with. Firstly, the way of accessing
distinct DBMS is different (protocol, format, query language,
etc.), which means every DBMS must have its own
implementation, which converts the standard API calls to the
proper DBMS format. Secondly, DBMS have different features
and support different techniques. CLI try to encompass the
most common and often seen capabilities, but some DBMS do
not support all of them, while others can support features that
CLI do not support. Most NoSQL DBMS, for example, do not
support transactions, unlike most relational DBMS.

This paper focuses on how to handle this variety of features
supported by different DBMS and focusing primarily on
features provided by CLI but not supported by the DBMS.

These consist on: 1) transactions, 2) the execution of database
functions (like stored procedures) and, finally, 3) interactions
with local memory structures, containing data retrieved from
the database. We provide a framework that allows a system
architect to simulate nonexistent features on the underlying
DBMS for client applications to use, transparently to them. It is
expected that this research can contribute to minimize the
efforts of system architects when DBMS do not support what
are considered key features.

The remainder of this paper is organized as follows. Section
II presents the state of the art and Section III describes some
key functionalities of a CLI (in this case, JDBC). Section IV
formalizes our framework, Section V shows our proof of
concept and Section VI evaluates our framework. Finally,
Section VII presents our conclusions.

II. STATE OF THE ART

There is some work done to bridge the gap between
NoSQL and SQL. There have been some solutions focused on
providing JDBC drivers to particular DBMS, like [2] [6],
using the DBMS -like).
The authors' approach is to create an incomplete JDBC
implementation that delegates CLI requests to the DBMS API
and converts the results of queries into ResultSet.

There is also work done on translating SQL to the NoSQL
paradigm [7] [12], which allows clients to perform ANSI-SQL
commands on NoSQL DBMS. These proposals create a SQL
query interface for NoSQL systems, which allow SQL queries
to be automatically translated and executed using the
underlying API of the data sources.

Work has also been done in an attempt to standardize the
access API for NoSQL DBMS. Atzeni et al. [13] propose a
common programming interface to NoSQL systems (and also
to relational ones) called SOS (Save Our Systems). Its goal is
to support application development by hiding the specific
details of the various systems. There is also research on cross-

cannot be used with NoSQL because their implementations are
not complete [14]. To the best of our knowledge, there has not
been work done with the goal of implement features
on drivers and DBMS that do not support them. We expect that
our framework positively contributes to overcome the gap
between NoSQL and SQL.

201

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/78556302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III. BACKGROUND

Like previously stated, CLI try to build on the
commonalities between DBMS and provide a set of methods
that encompass these common aspects. These methods include,
for example, reading data from the database, executing
commands on it or performing transactions.

Data manipulation
Ex
Expressions, and represent the most common ways to handle
data in a DBMS. CLI also usually allow the modification of
data on local memory structures, modifications which are
propagated to the database transparently, without a client
having the need to execute any CRUD expression.

While most full-fledged DBMS have several complete CLI
implementations (Microsoft SQL Server, MySQL, among
others), some relational DBMS do not (SQLite, for instance)
and most NoSQL DBMS do not either.

A. Java Database Connectivity

The Java Database Connectivity (JDBC) [15] is a CLI API

most popular development language for NoSQL DBMS and, as
such, JDBC is the most popular CLI for NoSQL DBMS, even
though it is oriented towards relational DBMS.

JDBC Drivers typically return Connection objects, which
are then used to perform operations on the database. The
Connection object has a given set of capabilities, which

include the creation of CRUD statements to be executed on the
database, the creation of statements that call functions inside
the DBMS (like Stored Procedures) and the usage of
transactions (with commits, roll-backs and save points).

Associated with connections, are ResultSets (RS), which
are local memory structures retrieved with "select" queries and
representing rows on the database. These use cursors to iterate
through their set of data and also allow a set of capabilities,
which include retrieval of values from the current row and, if

 These
ct Access

Listing 1 shows the creation of a statement stmt, the
retrieval of data from table table1 and how it is kept in the RS
(rs). Applications are then allowed to update their content. In
this case the attribute attributeName was updated to value and
then the modification was committed. We can see how the
update is done without the use of any CRUD expression.

stmt = conn.createStatement();
rs = stmt.executeQuery ("select * from table1");
rs.update("attributeName", value)
rs.commit();

Listing 1. A query and the update of a value using JDBC.

The features that the driver supports can be further grouped
by category: statements (with or without parameters),
execution of database functions (stored procedures or user-

defined functions), transactions (and save points), iteration
through RS, retrieval of values from RS and IAM interactions.

Some of these features are implemented by all drivers
(executing statements on the database, for example). However,
the execution of database functions, transactions, save points or
IAM interactions is not implemented by some DBMS,
depending on their architecture or features. These categories
are, then, the focus of this paper.

IV. IMPLEMENTATION FORMALIZATION

To implement these features, there are several options. The
first is to create another driver, wrapping the original one,
where the methods call the original methods or implement
those not supported; the second is to have a server-side
middleware layer that intercepts the CLI calls, allows the
supported ones and redirects the non-supported ones; the third
is to have the clients connecting to the server through a regular
socket connection and the server either forwards those
requests to a JDBC driver connected to the DBMS or it
executes functions from our framework.

While wrapping the driver in another may seem the
simplest option (clients can simply use the driver as they
usually would, as there is no need for middleware layers to
intercept the driver requests or for clients to change the way
they connect to the DBMS), it presents some security
vulnerabilities, which will be explained further ahead, and also
forces the clients to use the modified driver. The second
option is the most transparent for clients, but forces a complex
implementation on the server, to intercept the JDBC calls and
act accordingly, in an imperceptible way for the client. The
third option eliminates the need for clients to have any CLI
dependency on their code and the server merely acts as a relay
from clients to the DBMS. This makes for a simpler
implementation of the server logic, but is not transparent to
clients. The last two approaches are similar, consisting in a
middleware layer able to identify client requests, and any of
them are viable. I
which approach suits his needs the best.

 For the remainder of this paper, the middleware layer
(intercepting the CLI calls) where the extra logic is

barrier All the client
requests must go through the barrier to access the database. It
is able to intercept requests and, instead of forwarding them to
the DBMS, provide its own implementation and return the
appropriate results to the clients, transparently.

A. Execution of Database Functions

A Stored Procedure (SP) is a subroutine available to
applications that access a relational DBMS. Typical use for SP
include data validation (integrated into the DBMS) or access
control mechanisms. Furthermore, they can consolidate and
centralize logic that was originally implemented in
applications. Extensive or complex processing that requires
execution of several SQL statements is moved into stored
procedures, and all applications call the procedures. SP are
similar to User-Defined Functions (UDF), with a few minor

202

differences (how many arguments are returned, ability to use
try-catch blocks, among others).

If a DBMS does not allow the definition of SP or UDF,
these can be implemented on the barrier as a server-side
function that calls a group of SQL statements and operations,
which are executed together and, therefore, simulate a SP. By
doing so, it is possible to simulate most of the behaviors of SP
or UDF.

To detect when the functions that simulate SP should be
called, there are multiple ways. A simple one would be to give
the client the ability to call a SP by the use of a keyword (e.g.,
exec storedProcedure1), where the SP name would be the
function name. On the barrier, when the exec keyword was
detected, a function with the same name as the one requested
would be called with the arguments supplied and the results
would be returned to the client.

B. Transactions

A transaction symbolizes a unit of work performed within a
database, and treated in a coherent and reliable way
independent of other transactions. Transactions in a database
environment have two main purposes: to provide reliable units
of work that allow correct recovery from failures and keep a
database consistent even in cases of system failure; to provide
isolation between programs accessing a database concurrently.

A database transaction, by definition, must be atomic,
consistent, isolated and durable (ACID). In other words,
transactions provide an "all-or-nothing" proposition, stating
that each work-unit performed in a database must either
complete in its entirety or have no effect whatsoever.
Furthermore, the system must isolate each transaction from
other transactions, results must conform to existing constraints
in the database, and transactions that complete successfully
must get written to durable storage.

The implementation of transactions is a complex
engineering problem, heavily dependent on the DBMS
architecture. We present a solution that works with most
DBMS, but which also depends on the database schema. Our
proposal is defined by, after a transaction has been started,
executing the statements in the usual manner, but registering
them in a list. If a rollback is ensued, using the list, the changes
are undone and return the database to its original state. The
implementation of transactions inherently involves the
implementation of the ACID properties to a group of
statements. Consistency and durability cannot be implemented
on the barrier, because these are guaranteed by default by the
database itself.

To implement atomicity, along with a list of all the
executed actions, there is a need for a list of all the statements
that reverse those actions, hereafter referred to as the list of
reversers. All inserts are reversed with a delete, all deletes with
an insert, updates with updates and selects do not have to be
reverted. To reverse the performed actions, the reverser list of
actions must be executed backwards.

One needs to pay attention to the database schema and, if
an insert triggers other inserts (for logging purposes, for
example), all of their reversers must be added to the reverser

list. The same happens for cascading updates and deletes.
These kinds of mechanisms are mostly common in relational
databases, where transactions are natively supported, so we
expect few practical cases where these become relevant.

As an example, imagine a simple transaction consisting of a
bank transfer: money is withdrawn from Account A and
deposited in Account B. The money in A cannot fall under 0
and the transaction first deposits the money in B and then
withdraws from A. Currently, A ha B and the

is made, B A
registered in the barrier and the reverser (

from A but it fails, because the value would go below 0. Here,
the transaction is rolled back and the actions in the reverser list
would be executed, subtracting the money added to B and
ending the transaction.

The fact that CRUD expressions are kept on the barrier also
has an advantage when implementing transactions. If they were
on the client-side, inside the JDBC driver, it would be the client
to keep a list of the reversers needed in case of a rollback. If
indeed there was a need for a rollback, the client might not
have had the permissions to execute those actions and,
therefore, could not rollback. To solve this, special permissions
would need to be set for this case and that could lead to
vulnerabilities that an attacker could take advantage of.

Formally, our definition states that a transaction is
composed of actions (which trigger cascading actions), which
affect data in the database. Atomicity in a transaction can be
implemented if and only if: for any action in any transaction,
all the cascading actions can be found; for any action (or
cascading action) in any transaction, there is a reverser; the
execution of a reverser undoes all and only the changes made
by the original action.

Implementing isolation can be done through the use of a
single lock (a semaphore or a monitor), which serializes
multiple transactions. This concept can be further extended
with multiple locks (for example, one for each table), which
would allow concurrent transactions if these transactions
interacted with (in this example) different tables. Multiple
locks can, however, lead to deadlock issues; to avoid them,
either one of the transactions has to be reverted (deadlock
avoidance/detection) or the locks must all be done at the start
of the transaction and must occur in an ordered manner
(deadlock prevention).

Because the DBMS does not support transactions natively,
reverting one is a heavy process, and it can lead to starvation,
depending on which transaction is selected to be rolled-back.
The second option, however, decreases the system concurrency
and also implies knowing a priori all the tables where changes
will be made, which might not be possible.

As an example of the first solution, consider Transaction A,
which wants to change Table t1 and Table t2; and Transaction
B, which wants to interact with Table t2 and Table t1, in the
opposite order. When the transactions start, both try and lock

A, tries to lock the
second table and blocks (because the other transaction, B, has

203

that table locked). When B tries to lock its second table, a
deadlock situation is detected (because A has that table locked)
and one of the transactions is rolled back. At that point, the
remaining transaction can proceed (because there are no locks
on any of the tables now, except its own) and when it is
finished, the rolled-back transaction can proceed as well.

 As an example of the second solution, consider the same
situation. When the transaction starts, both transactions try and
lock both tables. To avoid deadlocks, the locks must be done in
an ordered manner. In this case, they could be done
alphabetically, and not in the order the transactions use them.
Both transactions would try to lock t1 and then t2.

 The level at which the locks are implemented is also an
important choice. With higher levels, implementation is easier,
performance is better but concurrency is worse. As an example,
imagine a database-level lock. This single lock allows only a
single transaction at a time. The cases where such
implementation would work in a practical manner are very few.
SQLite is one of them, given it is a local file meant to be used
by a single process at a time.

 Locks at table level, for example, would have better
concurrency; clients can perform transactions on different
tables at the same time. However, with many clients or very
few tables, this level might still be too restrictive. Some
NoSQL DBMS may not, however, have the concept o

 Relational DBMS use row-level locks on transactions,
which are ideal in the sense that many clients can perform
transactions on the same table, just not on the same piece of
data they are handling. However, some DBMS may not support
row distinction and, inherently, may not support row-level
locks. Some NoSQL DBMS also feature millions of rows,
which could lead to severe performance issues.

C. Savepoints in Transactions

Assuming transactions have been implemented, the ability
to create a save point in a transaction and to roll back to that
save point is a simple matter of defining points in the reverser
list and only reverting the actions and freeing locks up until
that point.

D. IAM Interactions

IAM interactions on a RS consist on the update of values
in a row and on the insertion or deletion of rows. By default, a

 concurrency type is read only and does not allow any of
these. If it does, its type is updatable. To create a RS that
allows IAM interactions, a client must specify it when creating
the statement object to execute CRUD expressions on the
database.

The barrier can intercept the creation of this statement
object and, if the updatable type is not supported, wrap the RS
that is RS, which simulates
the necessary behaviors to allow the insertion, update and
deletion of rows. This RS is the one supplied to the client,
where he will be able to execute IAM interactions as usual.

Our first approach was the following: when clients attempt
to perform actions on the RS (say, inserting a new row), the

actions would be converted and executed like a normal query
and the RS would be reset to show the new changes. This had
a noticeable performance decay (performing a CRUD
expression for the action and another to update the RS) and led
to problems when multiple clients were querying the same
tables, due to the fact that by resetting the RS, we were re-
querying the table fetching results affected by other clients.

Because of this, we followed a different approach where
our original RS is never changed (and where we do not have
to re-query the table). Values that are updated or inserted are
converted to a CRUD expression, inserted in the table and
kept in memory. If the client tried to access those values, our
framework would present them from memory, without the
need to query data from the table. Deleted rows are kept track
off and ignored when iterating through the values.

Figure 1. Our data structure for IAM interactions with row 2 highlighted.

Figure 1 shows an example of our data structure. When the
client requested the RS, rows A to D were queried. The client
inserted E and F and deleted A, C and E. Rows E and F are
kept in memory, in an array. Rows A, C and E are flagged as
deleted. When the client requests the row with index 2, which
corresponds to the value D, our implementation iterates
through the RS, ignoring deleted rows, until we reach the
intended row. With this implementation, there is no
unnecessary performance decay (there is no need to re-query
the data) and there are no concurrency issues (each client can
modify their own RS and their inserted/deleted values do not

mimics a relational
driver

V. PROOF OF CONCEPT

This section describes how the mentioned features were
implemented.

A. Execution of Database Functions

To define a SP in a common DBMS, an administrator needs
to define four aspects: the name, the input, the output and the
actual function of the SP. As such, it is expected that the same
aspects must be defined to implement SP on the barrier.

By defining an abstract class Barrier_CallableStatement
(implementing the CallableStatement class), which takes as
input a JDBC connection, a name String and an array of
arguments (that can be either input or output), the SP
framework is defined. To specify the SP, a developer
instantiates this abstract class and implements the execute()
method, which will contain all the SP logic and is the only
method that needs to change depending on the SP and the
underlying database. As such, all four original aspects are
defined and the execution of a SP can be intercepted by the

Perspective
on the RS

1 B
2 D
3 F

Real Data Structure
1 A Deleted

Original
RS

2 B
3 C Deleted
4 D

5 E
Inserted +
Deleted

In-Memory
Rows

6 F Inserted

204

framework, which will then execute the custom
implementation, instead of trying to run it on the database,
which would throw an error.

 As an example, Listing 2 shows a stored procedure
getEmpName, defined in MySQL, which returns the name of
an employee based on his ID, by querying a table Employees,
with the fields id and name.

SELECT
CREATE PROCEDURE 'Emp'.'getEmpName'

(IN EMP_ID INT, OUT EMP_NAME VARCHAR(255))
BEGIN
 SELECT name INTO EMP_NAME
 FROM Employees WHERE ID = EMP_ID;
END

Listing 2. Stored Procedure in MySQL.

 The usage of this SP in a Java client with a JDBC
connection is shown in Listing 3. A CallableStatement is
created from the connection object with the SP invocation SQL
string. The input and output parameters are defined, the
procedure is executed and output parameter is read. We can see
that there are two separate definitions of the same procedure,
one in the database and one in the client. Because the SP and
the barrier are in the same place, this redundant definition
should not be needed. When implementing a SP, a developer
extends it to the Barrier_CallableStatement class and defines
the number of arguments and the SP name. The execute
method contains all the logic (reading input, processing and
setting the output).

CallableStatement stmt = connection.prepareCall
 ("call EMP.getEmpName (?,?)");
stmt.setInt(1, employeeID);
stmt.registerOutParameter(2, VARCHAR);
stmt.execute();
employeeName = stmt.getString(2);

Listing 3. Invocation of the SP in a Java Client.

The usage of this class is quite similar to the original
invocation of the SP and is shown in Listing 4. There is no
need to register which parameters are output and, in this case,
there was no need to refer to the SP name. The barrier,
however, keeps a list of the implemented SP and, when it
detects a command like exec getEmpName, matches the desired
SP, executes it and returns the corresponding results.

CallableStatement stmt = new SP_getEmpName(conn);
stmt.setInt(1, employeeID);
stmt.execute();
employeeName = stmt.getString(2);

Listing 4. Invocation of the SP implementation in a Java Client.

B. Execution of Transactions

 Transactions are implemented with an abstract class, just
like SPs. Each implementation depended on the underlying
DBMS and the methods that must be overridden are the
methods that return the reversers. When the execution of a
statement is requested, the reverser is determined and the
corresponding lock is activated. Then, the statement is
executed and the reverser is added to the list of actions in the
current transaction. The commit statement releases the locks
being used and clears the list of reversers.

 In case it is not possible to find the reverser (for example, if
the row about to be inserted is not unique and there is no way
to delete this specific row, then there is no reverser to be
found), an exception is thrown and the statement is not

rror, the
reverser is not added to the list. A rollback executes all the
reversers in the list backwards and clears the list.

 If deadlock is detected, one of the transactions is rolled-
back. The choice of which transaction is selected can be
random, by most recent transaction (first come, first served
logic), by which transaction detected the deadlock or by which
transaction is easiest to rollback (while better on performance,
can lead to starvation). The ease of rollback can be determined
by the size of the actions list or, if actions have different
impacts, by the calculation of the impact of all the actions
currently in the list.

 Listing 5 shows an example transaction in a Java client.
The database has a table tb, on which are inserted two tuples, A
with ID=1 and B with ID=2. The A value is committed and
therefore, is stored in the database. The B value is rolled-back
and is not stored in the database. Assuming the table was
empty at the start of the transaction, by the end of the
transaction, a query should show only a single value, A.

conn.setAutoCommit(false);
try (Statement stmt = conn.createStatement()) {

stmt.execute("insert into tb values (1, 'A')");
conn.commit();

 stmt.execute("insert into tb values (2, 'B')");
conn.rollback(); }

conn.setAutoCommit(true);

Listing 5. A simple transaction in a Java client.

 As before, a transaction using our framework is expected to
function in a similar manner. Listing 6 shows the same
transaction, using our framework for SQLite. The creation of
the Barrier_Transaction object matches the setting of Auto
Commit Mode to false in Listing 5 and it handles the creation
of the statement object. Then, A is inserted and committed, B is
inserted and rolled-back and the transaction is closed, which
matches the setting of Auto Commit Mode to true.

Barrier_Transaction trans =
 new Barrier_TransactionSQLite (conn);
trans.execute("insert into tb values (1, 'A')");
trans.commit();
trans.execute("insert into tb values (2, 'B')");
trans.rollback();
trans.close();

Listing 6. A transaction using our Framework.

 In a SQL compliant DBMS, when each insert action is
requested, the corresponding delete action is created. For the A
value, for example, the reverser is delete from tb where id=1

. On DBMS with different query languages (like
Hive), the parsing and creation of reversers would be different.
Hence the fact that each DBMS and each schema have its own
implementation of the Barrier_Transaction class; schemas
with trigger actions need different implementations from
schemas without them.

 There is also a need for a client-wide lock system to be
deployed to enforce isolation, as well as a system to prevent

205

deadlocks when handling concurrent transactions. Corbett et al.
[16] have shown that there are many different solutions for
deadlock detection, both distributed and centralized. In our
case, the barrier layer acts as a centralized lock system to
guarantee isolation among transactions and, as such, it makes
sense to use a centralized deadlock prevention mechanism. We
have used table-wide locks with MySQL and Hive and row-
level locks with Redis and MongoDB.

 When a client performs an action during a transaction, the
appropriate reverser is found. Immediately after it is
determined, the lock is requested to the Concurrency Handler
(CH), which requires two things: the URI of the lock (in this
case, table names or row keys) and the URI of the requesting
process. The CH uses semaphores as locks and creates them as
transactions request them. In other words, the first time a client
requests the lock for table t1, that semaphore is created. Any
following requests for that table use that semaphore. This
removes the need for our framework to know the database
schema and be flexible for any lock-level.

 The CH does not lock the semaphore immediately. Before
doing so, it checks whether a deadlock situation would be
created. It does so by using a graph structure that represents
subjects (each transaction) and objects (each table/row) and
checking for cycles. If a cycle were to be created by this lock
request, that a deadlock situation would emerge [17].

Figure 2 shows an example using the previously mentioned
example of transactions A and B trying to lock tables T1 and
T2. We can see that we have a deadlock situation. B
to T1 leads to its owner, A, which has requested T2, which
belongs to B. In our implementation, this situation would never
be reached. Assuming A requested T2 before B requested T1,
when B made its request, the cycle would be revealed and the
transaction would be restarted. When it rolled-back, its locks
would be released, which would allow A to proceed. When A
finished, B would be able to lock both tables and execute as
well.

Figure 2. A graph representation of a deadlock situation.

 While this example only features two subjects and two
objects, the concept can be easily extended for multiple
subjects and objects. By solving the deadlock issues, the use of
these locks enforces isolation among each transaction. Given

table/row, then values being read, modified, deleted or created
are safe from concurrent modifications.

C. Save Points

 A client can set a save point in a transaction and roll-back
only up to that save point, which allows for fine-grained
control when handling transaction exceptions. Listing 7 shows
a transaction that inserts 3 values but only rolls-back one of
them (value B). Our save point implementation is based in the
Barrier_Transaction class and, logically, depends on each
underlying DBMS. To use save points, a client executes all the

methods, just like previously shown, on the
Barrier_Transaction object.

setAutoCommit(false);
try (Statement stmt = conn.createStatement()) {

stmt.execute("insert into tb values (1, 'A')");
conn.setSavepoint("savepoint_one");

 stmt.execute("insert into tb values (2, 'B')");
conn.rollback("savepoint_one");

 stmt.execute("insert into tb values (3, 'C')");
conn.commit();

}
conn.setAutoCommit(true);

Listing 7. A transaction with savepoints in a Java client.

D. IAM Interactions

 Interactions on a RS imply that the RS has been requested
with the updatable type, which enables them. By default, the
type is read only. Listing 8 shows how a Java client can create
a RS, update the third row, insert a new one and delete the
second one.

Statement stmt = connection.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
ResultSet rs = stmt.executeQuery(
 "SELECT * FROM person");

Listing 8. A Java client creating a RS to perform IAM interactions.

 Because it is our aim to provide as much transparency as
possible, the biggest difference is the object request, which
uses our wrapper class, as shown in Listing 9. We do not need
to specify the type (updatable or read only) because we assume
the DBMS only supports read only.

ResultSet rs = new Barrier_ResultSetSQLite(
 connection, "SELECT * FROM person",
 ResultSet.TYPE_SCROLL_SENSITIVE);

Listing 9. A Java client creating a RS with our SQLite implementation.

 Our implementation depends on the underlying DBMS,
because it depends on the query syntax, as previously stated.

VI. EVALUATION

To demonstrate the soundness of our approach, we have
selected four DBMS with different paradigms: SQLite, a
relational DBMS; Hive v1.0, a NoSQL DBMS; MongoDB
v3.0.2, a document-oriented DBMS; and Redis, one of the
most popular key-value DBMS. We expect that our concepts
are general enough to be adapted to most NoSQL DBMS. As a
basis for comparison, we also used a full-fledged relational
DBMS, MySQL, which served as a comparison basis between
our barrier implementation and an actual database engine
implementation.

The lock-levels were set as tables for all tests, although
Redis and MongoDB could use row IDs. Because Redis does
not provide a functional and up-to-date JDBC driver, we
developed our own driver, which uses the Redis Java API and

 The choice of which DBMS to use was done taking into
account two main aspects: diversity (it is our goal to show that
our concept works with any kind of DBMS, and so it is

206

important to have both relational and non-relational DBMS, as
well as different NoSQL paradigms) and popularity (it is
important to choose widely used DBMS).

 We tested our framework in a 64-bit Linux Mint 17.1 with
an Intel i5-4210U @ 1.70GHz, 8GB of RAM and a Solid State
Drive. All the databases were deployed locally, including Hive,
which was set-up together with Hadoop as a single-node
cluster in this machine. The tests performed include the
insertion, update and deletion of values both outside and inside
a transaction from our framework.

 SQLite MongoDB Hive

Op. Rows Off On Off On Off On

Insert
100 749 754 120 189 2642k 2780k

500 3699 4031 420 1051 X X

1000 7907 8494 718 2309 X X

Update

100 755 758 111 138 3038k 3120k

500 4025 4096 731 1158 X X

1000 8248 8423 2010 3325 X X

Delete

100 737 746 65 103 2919k 3080k

500 3648 3784 403 761 X X

1000 7502 7775 1123 2018 X X

Select

100 7 8 81 79 160k 161k

500 105 107 425 422 X X

1000 295 292 1135 1097 X X

Table 1. A comparison of times taken (in ms) to perform operations in
different DBMS

 Tests (shown in Table 1) show an expected performance
decay on all databases. In SQLite, the decay amounts to
approximately 8% of the original time taken for the insert
operation, 2% for the update operation and 3% for the delete
operation. In MongoDB, the decay is much stronger, with over
200% decay for inserts, 60% for updates and 80% for deletes.
For Hive, tests could only involve up to 100 rows, due to time
restraints. However, Hive shows good results of about 5%
decay in inserts, 3% in updates and 5% in deletes. Tests for
MySQL and Redis were not considered to have relevant
information and were not included.

 Because queries are an integral part of the transaction
process, the decay is directly related to the ratio between the
time taken for queries and operations for each DBMS. This
explains why MongoDB has a much stronger decay than
SQLite or Hive.

 Tests were also conducted in regards to database-stored
functions, rollbacks and IAM interactions. The tests show that
the performance decay is directly related to the performance of
a CRUD expression on the database: if a statement takes 10
seconds, an IAM interaction will also take 10 seconds, plus a
residual processing time (about 5 to 10 microseconds). The
same relation exists for rollbacks and stored procedures which
involve operations in the database.

VII. CONCLUSION

We have proposed a framework that implements some
features on a JDBC driver that are not usually implemented
using NoSQL drivers. Our proposal includes a model to use
our framework in a way that allows concurrent clients to
perform atomic and isolated transactions, as well as IAM
interactions and database functions, like stored procedures. We
have proven our concept with SQLite, Hive, Redis and

MongoDB, and we expect our model to be general enough that
it can be extended to other DBMS, relational or NoSQL.

Our performance results show that the use of our
framework can be suitable for a real-life scenario. However,
work is underway to perform a more in-depth performance
evaluation of the different DBMS, with different test

architecture and design and provide a more insightful analysis.
Work is also underway to add fault tolerance to our proposal;
our framework does not currently provide atomicity in case of
hardware failures.

In conclusion, our framework positively contributes to
overcome the gap between NoSQL and SQL. It helps system
architects to simulate key relational DBMS features on NoSQL
databases that do not natively support them and eases the
transition from a DBMS to another, by abstracting underlying
features of the DBMS.

REFERENCES

[1] ISO/IEC, Information technology -- Database languages -- SQL -- Part
3: Call-Level Interface (SQL/CLI). 2008.

[2]
https://github.com/neo4j-contrib/neo4j-jdbc. [Accessed: 11-Mar-2015].

[3]
https://github.com/erh/mongo-jdbc. [Accessed: 11-Mar-2015].

[4] . [Online]. Available:
https://github.com/fellix/couchdb-j.

[5]
http://www.hbql.com/examples/jdbc.html.

[6]
https://cwiki.apache.org/confluence/display/Hive/HiveJDBCInterface.

[7] W.-C. Chung, H.-P. Lin, S.-C. Chen, M.-F. Jiang, and Y.-C. Chung,

508, 2014.

[8] ective scalable

Interoperable Systems, 2013, pp. 155 168.

[9]

Patents, 18-Dec-2013.

[10]

pp. 99 110.

[11]
NoSQL Systems Includi
Science and Computational Intelligence (CSCI), 2014 International
Conference on, vol. 1. pp. 285 290, 2014.

[12] J. Tatemura, O. Po, W.-
elastic SQL engine over key- Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data,
2012, pp. 629 632.

[13] P -relational

Systems Engineering, 2012, pp. 160 174.

[14]

[15]
http://www.oracle.com/technetwork/java/overview-141217.html.
[Accessed: 09-Mar-2015].

[16]
Sof

pp. 37 48, 1989.

207

