
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2015

Gonçalo da Silva
Pessoa

Distribuição de Conteúdos em Redes Veiculares
usando Mecanismos de Comunicação Tolerantes ao
Atraso

Content Distribution in Vehicular Networks using
Delay-Tolerant Communication Mechanisms

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2015

Gonçalo da Silva
Pessoa

Distribuição de Conteúdos em Redes Veiculares
usando Mecanismos de Comunicação Tolerantes ao
Atraso

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quesitos necessários à obtenção do grau de Mestre em Engenharia Eletrónica
e Telecomunicações, realizada sob a orientação cient́ıfica da Professora
Doutora Susana Sargento, Professora Associada com Agregação do De-
partamento de Eletrónica Telecomunicações e Informática da Universidade
de Aveiro e do Doutor Ricardo Matos, Systems Engineer na Veniam.

o júri / the jury

presidente / president Professor Doutor Rui Lúıs Andrade Aguiar
Professor Catedrático da Universidade de Aveiro

vogais / examiners committee Professora Doutora Susana Isabel Barreto de Miranda Sargento
Professora Associada com Agregação da Universidade de Aveiro (orientadora)

Professor Doutor Augusto José Venâncio Neto
Professor Adjunto da Universidade Federal do Ceará

Acknowledgments The writing of this dissertation has been one of the most significant and
fulfilling experiences I have ever had, both academically and personally.
There are several people who, directly or indirectly, have contributed to the
successful completion of this endeavor and without whose support, patience
and guidance this journey would have not been the same. To them, I owe
my appreciation.

First and foremost, to my supervisor for her invaluable guidance and com-
ments and for always asking for “that extra mile”. She was instrumental.

To my parents, for their unconditional love, support and inestimable advice.
For never letting me lose sight of my objectives.

To Filipa, for her friendship, presence, patience, guidance, and love in these
last 7 years. Without you I would not be here, nor would I be the person
that I am.

To Tiago, who was a fundamental support in all this process, his guidance
and companionship were priceless to develop this work and overcome all of
the challenges.

To my dear colleagues Marco, André, Gonçalo, Bojan, and João for their
support and friendship during these hard but pleasant years.

To my best and most important friends, the family I chose and that forces
me to have fun when I forget to.

Resumo Nas últimas décadas tem-se assistido à introdução de novas redes de tele-
comunicações. Entre estas destacam-se as redes veiculares constitúıdas por
todo o tipo de véıculos com capacidades de intercomunicação.

As redes veiculares têm especificidades singulares face a outro tipo de redes
devido à constante mobilidade dos nós e à sua elevada dispersão geográfica.
Os principais desafios introduzidos por este tipo de redes prendem-se com
a conectividade intermitente e o atraso longo e variado na entrega da in-
formação.

Por forma a fazer face aos problemas relacionados com a conectividade
intermitente, introduziu-se um novo conceito intitulado de Delay Toler-
ant Network (DTN). Esta arquitetura assenta num mecanismo de Store-
Carry-and-Forward (SCF) por forma a garantir a entrega de informação em
situações onde não existe um caminho estabelecido fim-a-fim.

As redes veiculares suportam uma multiplicidade de serviços, nos quais se
inclui o transporte de informação não-urgente. Desta forma, a utilização de
uma DTN para a difusão de informação não-urgente permite ultrapassar os
desafios identificados anteriormente.
O trabalho realizado foca-se na utilização de DTNs para a disseminação de
informação não-urgente. Por forma a operacionalizar esta premissa foram
implementadas quatro estratégias distintas: Random, Least Number of
Hops First (LNHF), Local Rarest Bundle First (LRBF) e Local Rarest Gen-
eration First (LRGF). Todas estas estratégias tem um objectivo comum:
disseminar um conteúdo na rede no menor tempo posśıvel minimizando ao
máximo o congestionamento da rede. Foram também implementadas e
estudadas técnicas para minimizar o congestionamento do meio.

A metodologia de desenho, implementação e validação das estratégias pro-
postas foi desenvolvida em três fases. A primeira focou-se na criação de um
emulador Matlab para a implementação rápida e validação das estratégias.
Dessa primeira fase resultaram quatro estratégias que foram posteriormente
implementadas no software de DTNs Helix desenvolvido através de uma
parceria entre o Instituto de Telecomunicações (IT) e a Veniam R© (re-
sponsáveis pela maior rede veicular em operação a ńıvel mundial localizada
na cidade do Porto). As estratégias foram depois avaliadas num emu-
lador constrúıdo para fazer testes de grande escala. Ambos os emuladores
introduzem a mobilidade dos véıculos com base em informação recolhida
previamente da plataforma real. Por fim a estratégia que apresentou o
melhor desempenho foi introduzida e testada numa plataforma real para
demonstração de conceito e operacionalidade.

Conclui-se que duas das estratégias implementadas (LRBF and LRGF) são
pasśıveis de utilização na rede real garantido uma taxa de entrega signi-
ficativa. A estratégia LRBF apresentou o melhor desempenho em termos
de entrega, no entanto, necessita de adicionar um overhead considerável
na rede para funcionar. No futuro devem ser realizados testes de escala-
bilidade em ambiente real por forma a confirmar os resultados obtidos em
ambiente de emulação e real em pequena escala. A implementação real
das estratégias deve ser acompanhada pela introdução de novos tipos de
serviços para distribuição de conteúdos.

Abstract The last couple of decades have been the stage for the introduction of new
telecommunication networks. It is expected that in the future all types of
vehicles, such as cars, buses and trucks have the ability to intercommunicate
and form a vehicular network.
Vehicular networks display particularities when compared to other networks
due to their continuous node mobility and their wide geographical disper-
sion, leading to a permanent network fragmentation. Therefore, the main
challenges that this type of network entails relate to the intermittent con-
nectivity and the long and variable delay in information delivery.

To address the problems related to the intermittent connectivity, a new
concept was introduced – Delay Tolerant Network (DTN). This architecture
is built on a Store-Carry-and-Forward (SCF) mechanism in order to assure
the delivery of information when there is no end-to-end path defined.

Vehicular networks support a multiplicity of services, including the trans-
portation of non-urgent information. Therefore, it is possible to conclude
that the use of a DTN for the dissemination of non-urgent information is
able to surpass the aforementioned challenges.

The work developed focused on the use of DTNs for the dissemination
of non-urgent information. This information is originated in the network
service provider and should be available on mobile network terminals during
a limited period of time. In order to do so, four different strategies were
deployed: Random, Least Number of Hops First (LNHF), Local Rarest
Bundle First (LRBF) e Local Rarest Generation First (LRGF). All of these
strategies have a common goal: to disseminate content into the network
in the shortest period of time and minimizing network congestion. This
work also contemplates the analysis and implementation of techniques that
reduce network congestion.

The design, implementation and validation of the proposed strategies was
divided into three stages. The first stage focused on creating a Matlab
emulator for the fast implementation and strategy validation. This stage
resulted in the four strategies that were afterwards implemented in the
DTNs software Helix – developed in a partnership between Instituto de
Telecomunicações (IT) and Veniam R©, which are responsible for the largest
operating vehicular network worldwide that is located in Oporto city. The
strategies were later evaluated on an emulator that was built for the large-
scale testing of DTN. Both emulators account for vehicular mobility based
on information previously collected from the real platform. Finally, the
strategy that presented the best overall performance was tested on a real
platform – in a lab environment – for concept and operability demonstration.

It is possible to conclude that two of the implemented strategies (LRBF
and LRGF) can be deployed in the real network and guarantee a significant
delivery rate. The LRBF strategy has the best performance in terms of
delivery. However, it needs to add a significant overhead to the network
in order to work. In the future, tests of scalability should be conducted
in a real environment in order to confirm the emulator results. The real
implementation of the strategies should be accompanied by the introduction
of new types of services for content distribution.

Contents

Contents i

List of Figures v

List of Tables xiii

List of Equations xv

List of Algorithms xvii

Acronyms xix

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives and Contributions . 3

1.3 Document Structure . 5

2 Fundamental Concepts 7

2.1 Chapter Description . 7

2.2 Vehicular Ad-hoc NETworks . 7

2.2.1 Introduction . 7

2.2.2 Architecture . 8

2.2.3 Dedicated Short Range Communications 10

2.2.4 IEEE Standards . 11

2.2.5 Special Characteristics . 13

2.2.6 Challenges . 14

2.2.7 Data Dissemination . 15

2.3 Delay Tolerant Networks . 16

2.3.1 Introduction . 16

2.3.2 Architecture . 18

2.3.3 Bundle Protocol . 20

2.4 Chapter Considerations . 23

3 Related Work 25

3.1 Chapter Description . 25

3.2 Vehicular Delay Tolerant Networks . 26

3.2.1 Evolving from DTNs and VANETs to VDTNs 26

i

3.2.2 Applications and Services . 27

3.2.3 Vehicular Delay Tolerant Network Projects 28

3.2.4 Summary . 31

3.3 Content Distribution . 32

3.3.1 Introduction . 32

3.3.2 Content Distribution Schemes . 32

3.3.3 Critical Factors for Dissemination . 40

3.3.4 Summary . 41

3.4 Simulation . 42

3.4.1 Mobility Models . 42

3.4.2 Network Simulators . 43

3.4.3 Summary . 45

3.5 Delay Tolerant Networks’ Implementations 46

3.5.1 Widespread Solutions . 46

3.5.2 Helix . 52

3.5.3 Summary . 58

3.6 Chapter Considerations . 58

4 Content Distribution Schemes 61

4.1 Chapter Description . 61

4.2 Problem Statement . 61

4.3 Strategies to Stateless Choose Information . 63

4.3.1 Random . 64

4.3.2 Least Number of Hops First (LNHF) 65

4.3.3 Local Rarest Bundle First (LRBF) . 68

4.3.4 Local Rarest Generation First (LRGF) 72

4.4 Strategies to Disseminate Information . 79

4.4.1 Optimize Delivery . 80

4.4.2 Minimize Congestion . 82

4.4.3 Hybrid Technique . 84

4.5 Chapter Considerations . 85

5 Integration and Development 89

5.1 Chapter Description . 89

5.2 MatlabEmulator Development and Integration 89

5.2.1 Introduction . 89

5.2.2 Architecture and Operation Overview 90

5.2.3 Collected Log Data . 91

5.2.4 Working Variables . 92

5.2.5 Phase 0 - Configuration . 94

5.2.6 Phase 1 - Collection of Log Data . 96

5.2.7 Phase 2 - Emulation . 97

5.2.8 Phase 3 - Statistical Analysis . 102

5.2.9 Auxiliary Functions and Modules . 104

5.3 HelixEmulator . 105

5.3.1 Introduction . 105

5.3.2 Modifications and Improvements . 106

ii

5.3.3 Architecture and Operation Overview 107
5.3.4 Collection of Log Data from MySQL Database 108
5.3.5 Bandwidth Limiter Module . 109

5.4 Helix Integration . 110
5.4.1 Introduction . 110
5.4.2 Global Modifications . 111
5.4.3 Routing Module Description . 117
5.4.4 Content Distribution Schemes Implementation 120

5.5 NetRider Boards Integration . 159
5.6 Chapter Considerations . 162

6 Evaluation 165
6.1 Chapter Description . 165
6.2 Equipment and Software . 166
6.3 Support Scripting . 167
6.4 Scenarios and Experiment Description . 168

6.4.1 OPorto Testbed . 168
6.4.2 Laboratory Testbed . 172

6.5 Evaluated Metrics . 174
6.5.1 Network Overview Metrics . 174
6.5.2 Content Distribution Metrics . 174
6.5.3 Performance Metrics . 175

6.6 Initial Study of the Network . 176
6.6.1 Active Time of On-Board Units (OBUs) 176
6.6.2 Number of Contacts . 177
6.6.3 Mobility of On-Board Units (OBUs) 178

6.7 MatlabEmulator Evaluation . 180
6.7.1 Strategies to Stateless Choose Information 180
6.7.2 Strategies to Disseminate Information 198

6.8 HelixEmulator Evaluation . 207
6.8.1 Strategies to Stateless Choose Information 207

6.9 Laboratory Evaluation . 230
6.9.1 Considerations . 230
6.9.2 Results . 231

6.10 Chapter Considerations . 239

7 Conclusions and Future Work 241
7.1 Conclusions . 241
7.2 Future Work . 243

Bibliography 245

A How-Tos 257

iii

iv

List of Figures

1.1 Content distribution to-be scenario (illustrative) 3

2.1 Vehicular Ad-Hoc NETwork architecture . 10

2.2 Channel allocation for DSRC (in United States) 11

2.3 WAVE Protocol Suite . 12

2.4 Comparison of the association processes . 13

2.5 Single-hop and Multi-hop data dissemination 16

2.6 DTN applications taxonomy . 18

2.7 Bundle forwarder interaction architecture . 19

2.8 Store-Carry-and-Forward mechanism . 20

2.9 Bundle Protocol overlay . 21

2.10 Bundle Protocol communication diagram . 21

2.11 DTN nodes . 23

3.1 Inter-vehicle communication types . 28

3.2 KioskNet overview . 29

3.3 IP-over-VDTN layered architecture (comparison with other protocol stacks) . 30

3.4 Evolution of a file in a node using SPAWN strategy 33

3.5 Diagram of node’s state in REDEC strategy 34

3.6 Network Coding . 36

3.7 Encoding and distribution of contents in VANETCODE 38

3.8 DTN2 system architecture . 47

3.9 IBR-DTN system architecture . 48

3.10 Helix architecture . 53

3.11 Neighboring classes . 54

3.12 Storage organization . 55

3.13 Routing classes . 55

3.14 Helix operating flowchart . 57

4.1 Content distribution to-be scenario (illustrative) 63

4.2 Forwarding decision of random strategy - example 65

4.3 Internal stractures of LNHF strategy - conceptual 66

4.4 Procedures for sending and receiving of data packets in the LNHF strategy -
conceptual . 67

4.5 Forwarding decision of LNHF strategy - example 67

4.6 LRBF strategy As-Is and To-Be scenarios . 69

4.7 LRBF strategy advertisement packet structure - example 69

v

4.8 Procedures for sending and receiving of advertisement packets in the LRBF
strategy - conceptual . 70

4.9 Procedures for sending and receiving of data packets in the LRBF strategy -
conceptual . 71

4.10 Start and end of dissemination in the LRBF strategy 72

4.11 Forwarding decision of LRBF strategy . 73

4.12 Relationship between application frames, blocks, and coded packets 74

4.13 LRGF strategy As-Is and To-Be scenarios . 75

4.14 LRGF strategy advertisement packet structure - example 76

4.15 Procedures for sending and receiving of advertisement packets in the LRGF
strategy - conceptual . 77

4.16 Procedures for sending and receiving of data packets in the LRGF strategy -
conceptual . 78

4.17 Start and end of dissemination in LRGF strategy 79

4.18 Forwarding decision of LRGF strategy - 1st situation 79

4.19 Forwarding decision of LRGF strategy - 2nd situation 80

4.20 1st probability function used in forwarding decisions 81

4.21 2nd probability function used in forwarding decisions 83

4.22 Technique to minimize congestion based on type of node 84

4.23 3rd probability function used in forwarding decisions 84

5.1 MatlabEmulator architecture and operation flowchart 91

5.2 MatlabEmulator log file structure . 92

5.3 MatlabEmulator data collection (phase 1) process flowchart 98

5.4 MatlabEmulator transmission process flowchart 99

5.5 MatlabEmulator ranking announcements flowchart 101

5.6 MatlabEmulator reception process flowchart 103

5.7 HelixEmulator message header class . 108

5.8 HelixEmulator database tables . 108

5.9 HelixEmulator control message class . 109

5.10 HelixEmulator BandwidthLim module collaboration diagram 110

5.11 HelixEmulator BandwidthLim forwarding decision and reception flowcharts . 110

5.12 Helix architecture - modified and added modules 111

5.13 Helix packet header - modified and added fields 112

5.14 Helix reception process flowchart . 114

5.15 Helix Logging module collaboration diagram 115

5.16 Logging module operation flowchart . 116

5.17 Helix Routing module collaboration diagram 118

5.18 Helix Routing module inheritance diagram . 119

5.19 Helix integration Random strategy data packet forwarding decision flowchart 121

5.20 Helix integration Random strategy data packet reception in an OBU and OBU
flowcharts . 122

5.21 Helix integration Random strategy generation of content distribution packets
flowchart . 122

5.22 Helix integration HandlerLNHF implemented structures 123

5.23 Helix integration HandlerLNHF implementation scheme 124

5.24 Helix integration HandlerLNHF sub-module collaboration diagram 126

vi

5.25 Helix integration LNHF strategy data packet forwarding decision flowchart . 127

5.26 Helix integration LNHF strategy data packet reception in an OBU and OBU
flowcharts . 129

5.27 Helix integration LNHF strategy generation of content distribution packets
flowchart . 130

5.28 Helix integration HandlerLRBF implemented structures 131

5.29 Helix integration HandlerLRBF implementation scheme 133

5.30 Helix integration HandlerLRBF sub-module collaboration diagram 134

5.31 Helix integration HandlerLRBF start and end of dissemination 135

5.32 Helix integration LRBF strategy refresh thread flowchart 137

5.33 Helix integration LRBF strategy data packet forwarding decision flowchart . 138

5.34 Helix integration LRBF strategy data packet reception in an OBU and a RSU
flowcharts . 140

5.35 HandlerLRBF advertisement packet structure 141

5.36 Helix integration LRBF strategy advertisement packet forwarding decision
flowchart . 142

5.37 Helix integration LRBF strategy advertisement packet reception flowchart . . 143

5.38 Helix integration LRBF strategy generation of content distribution packets
flowchart . 144

5.39 Helix integration HandlerLRGF implemented structures 146

5.40 Helix integration HandlerLRGF implementation scheme 147

5.41 Helix integration HandlerLRGF sub-module collaboration diagram 150

5.42 Helix integration HandlerLRGF start and end of dissemination 151

5.43 Helix integration LRGF strategy refresh thread flowchart 152

5.44 Helix integration LRGF strategy data packet forwarding decision flowchart . 154

5.45 Helix integration LRGF strategy data packet reception in an OBU flowchart . 156

5.46 Helix integration LRGF strategy data packet reception in a RSU flowchart . 157

5.47 Helix integration HandlerLRGF advertisement packet structure 157

5.48 Helix integration LRGF strategy advertisement packet forwarding decision
flowchart . 158

5.49 Helix integration LRGF strategy advertisement packet reception flowchart . . 160

5.50 Helix integration LRGF strategy generation of content distribution packets
flowchart . 161

6.1 NetRider board (RSU/OBU) . 167

6.2 Testbed description (October 2014) . 169

6.3 Testbed description (February 2015) . 170

6.4 City center scenario . 170

6.5 Parking lot scenario . 171

6.6 Laboratory testbed description . 173

6.7 Laboratory testbed description - experiment timeline 173

6.8 Network overview - Total active time of OBUs 177

6.9 Network overview - Number of all type of contacts per hour 178

6.10 Network overview - Number of valid contacts per hour 178

6.11 Network overview - Normalized number of valid contacts per hour 179

6.12 Network overview - Mobility of OBUs . 179

vii

6.13 MatlabEmulator evaluation comparison in rush hour period - Percentage of
nodes with complete file per hour - Delivery rate 181

6.14 MatlabEmulator evaluation comparison during rush hour period - Percentage
of file distributed in network throughout the experiment 181

6.15 MatlabEmulator evaluation comparison in rush hour period - Time to receive
the complete file per node - E2E delay . 182

6.16 MatlabEmulator evaluation comparison in rush hour period - Progress rate . 182
6.17 MatlabEmulator evaluation comparison in rush hour period - Number of lis-

tened packets by the network (only OBUs) throughout the experiment 183
6.18 MatlabEmulator evaluation comparison in non rush hour period - Percentage

of nodes with complete file per hour - Delivery rate 184
6.19 MatlabEmulator evaluation comparison in non rush hour period - Percentage

of file distributed in network throughout the experiment 184
6.20 MatlabEmulator evaluation comparison in non rush hour period - Time to

receive the complete file per node - E2E delay 185
6.21 MatlabEmulator evaluation comparison in rush non hour period - Progress rate 185
6.22 MatlabEmulator evaluation comparison in non rush hour period - Number of

listened packets by the network (only OBUs) throughout the experiment . . . 186
6.23 MatlabEmulator evaluation comparison in parking period - Percentage of nodes

with complete file per hour - Delivery rate . 187
6.24 MatlabEmulator evaluation comparison in parking period - Percentage of file

distributed in network throughout the experiment 187
6.25 MatlabEmulator evaluation comparison in parking period - Time to receive the

complete file per node - E2E delay . 188
6.26 MatlabEmulator evaluation comparison in parking period - Progress rate . . 188
6.27 MatlabEmulator evaluation comparison in parking period - Number of listened

packets by the network (only OBUs) throughout the experiment 189
6.28 MatlabEmulator evaluation impact of the file size during the rush hour period

- Percentage of nodes with complete file per hour - Delivery rate 190
6.29 MatlabEmulator evaluation impact of the file size during the non-rush hour

period - Percentage of nodes with complete file per hour - Delivery rate . . . 190
6.30 MatlabEmulator evaluation impact of the file size during the parking period -

Percentage of nodes with complete file per hour - Delivery rate 191
6.31 MatlabEmulator evaluation impact of the file size during the rush hour period

- Time to receive the complete file per node - E2E delay 191
6.32 MatlabEmulator evaluation impact of the file size during the non-rush hour

period - Time to receive the complete file per node - E2E delay 192
6.33 MatlabEmulator evaluation impact of the file size during the parking period -

Time to receive the complete file per node - E2E delay 192
6.34 MatlabEmulator evaluation impact of the block and generation size during the

rush hour period - Percentage of nodes with complete file per hour - Delivery
rate . 194

6.35 MatlabEmulator evaluation impact of the block and generation size during
the non rush hour period - Percentage of nodes with complete file per hour -
Delivery rate . 195

6.36 MatlabEmulator evaluation impact of the block and generation size during the
parking period - Percentage of nodes with complete file per hour - Delivery rate195

viii

6.37 MatlabEmulator evaluation impact of the block and generation size during the
rush hour period - Time to receive the complete file per node - E2E delay . . 196

6.38 MatlabEmulator evaluation impact of the block and generation size during the
non rush hour period - Time to receive the complete file per node - E2E delay 196

6.39 MatlabEmulator evaluation impact of the block and generation size during the
parking period - Time to receive the complete file per node - E2E delay . . . 197

6.40 MatlabEmulator evaluation of optimize delivery technique in rush hour period
- Percentage of nodes with complete file per hour - Delivery rate 199

6.41 MatlabEmulator evaluation of optimize delivery technique in parking period -
Percentage of nodes with complete file per hour - Delivery rate 199

6.42 MatlabEmulator evaluation of optimize delivery technique in rush hour period
- Number of listened packets by the network (only OBUs) throughout the
experiment . 200

6.43 MatlabEmulator evaluation of optimize delivery technique in parking period
- Number of listened packets by the network (only OBUs) throughout the
experiment . 200

6.44 MatlabEmulator evaluation of minimize congestion technique in rush hour pe-
riod - Percentage of nodes with complete file per hour - Delivery rate 201

6.45 MatlabEmulator evaluation of minimize congestion technique in parking period
- Percentage of nodes with complete file per hour - Delivery rate 202

6.46 MatlabEmulator evaluation of minimize congestion technique in rush hour pe-
riod - Number of listened packets by the network (only OBUs) throughout the
experiment . 202

6.47 MatlabEmulator evaluation of minimize congestion technique in parking period
- Number of listened packets by the network (only OBUs) throughout the
experiment . 203

6.48 MatlabEmulator evaluation of a hybrid approach technique in rush hour period
- Percentage of nodes with complete file per hour - Delivery rate 205

6.49 MatlabEmulator evaluation of a hybrid approach technique in parking period
- Percentage of nodes with complete file per hour - Delivery rate 205

6.50 MatlabEmulator evaluation of a hybrid approach technique in rush hour period
- Number of listened packets by the network (only OBUs) throughout the
experiment . 206

6.51 MatlabEmulator evaluation of a hybrid approach technique in parking period
- Number of listened packets by the network (only OBUs) throughout the
experiment . 206

6.52 HelixEmulator evaluation comparison in rush hour period - Percentage of nodes
with complete file per hour - Delivery rate . 208

6.53 HelixEmulator evaluation comparison in rush hour period - Percentage of file
distributed in network throughout the experiment 208

6.54 HelixEmulator evaluation comparison in rush hour period - Time to receive
the complete file per node - E2E delay . 209

6.55 HelixEmulator evaluation comparison in rush hour period - Progress rate . . 209
6.56 HelixEmulator evaluation comparison in rush hour period - Number of listened

packets by the network (only OBUs) throughout the experiment 210
6.57 HelixEmulator evaluation comparison in rush hour period - Number of trans-

mitted advertisement packets in network throughout the experiment 211

ix

6.58 HelixEmulator evaluation comparison in rush hour period - Size of transmitted
advertisement packets in network throughout the experiment 211

6.59 HelixEmulator evaluation comparison in non rush hour period - Percentage of
nodes with complete file per hour - Delivery rate 213

6.60 HelixEmulator evaluation comparison in non rush hour period - Percentage of
file distributed in network throughout the experiment 213

6.61 HelixEmulator evaluation comparison in non rush hour period - Time to receive
the complete file per node - E2E delay . 214

6.62 HelixEmulator evaluation comparison in non rush hour period - Progress rate 214
6.63 HelixEmulator evaluation comparison in non rush hour period - Number of

listened packets by the network (only OBUs) throughout the experiment . . . 215
6.64 HelixEmulator evaluation comparison in non rush hour period - Number of

transmitted advertisement packets in network throughout the experiment . . 216
6.65 HelixEmulator evaluation comparison in non rush hour period - Size of trans-

mitted advertisement packets in network throughout the experiment 216
6.66 HelixEmulator evaluation impact of the advertisement packets periodicity dur-

ing the rush hour period - Percentage of nodes with complete file per hour -
Delivery rate . 218

6.67 HelixEmulator evaluation impact of the advertisement packets periodicity dur-
ing the rush hour period - Time to receive the complete file per node - E2E
delay . 218

6.68 HelixEmulator evaluation impact of the advertisement packets periodicity dur-
ing the rush hour period - Progress rate . 219

6.69 HelixEmulator evaluation impact of the advertisement packets periodicity dur-
ing the rush hour period - Number of listened packets by the network (only
OBUs) throughout the experiment . 219

6.70 HelixEmulator evaluation impact of the advertisement packets periodicity dur-
ing the rush hour period - Number of transmitted advertisement packets in
network throughout the experiment . 220

6.71 HelixEmulator evaluation impact of the advertisement packets periodicity dur-
ing the rush hour period - Size of transmitted advertisement packets in network
throughout the experiment . 220

6.72 HelixEmulator evaluation impact of the valid information time during the rush
hour period - Percentage of nodes with complete file per hour - Delivery rate 222

6.73 HelixEmulator evaluation impact of the valid information time during the rush
hour period - Time to receive the complete file per node - E2E delay 223

6.74 HelixEmulator evaluation impact of the valid information time during the rush
hour period - Progress rate . 223

6.75 HelixEmulator evaluation impact of the valid information time during the rush
hour period - Number of listened packets by the network (only OBUs) through-
out the experiment . 224

6.76 HelixEmulator evaluation impact of the valid information time during the
rush hour period - Number of transmitted advertisement packets in network
throughout the experiment . 224

6.77 HelixEmulator evaluation impact of the valid information time during the rush
hour period - Size of transmitted advertisement packets in network throughout
the experiment . 225

x

6.78 HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Percentage of nodes with complete file per hour - Delivery rate 226

6.79 HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Time to receive the complete file per node - E2E delay 227

6.80 HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Progress rate . 227

6.81 HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Number of listened packets by the network (only OBUs) through-
out the experiment . 228

6.82 HelixEmulator evaluation impact of the refreshment periodicity during the
rush hour period - Number of transmitted advertisement packets in network
throughout the experiment . 228

6.83 HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Size of transmitted advertisement packets in network throughout
the experiment . 229

6.84 Laboratory evaluation - Percentage of nodes with complete file per Ts - Delivery
rate . 232

6.85 Laboratory evaluation - Percentage of file distributed per node throughout the
experiment . 232

6.86 Laboratory evaluation - Mean time to receive the complete file per node - E2E
delay . 233

6.87 Laboratory evaluation - Total number of listened packets per node throughout
the experiment . 233

6.88 Laboratory evaluation - Total number of transmitted packets per node through-
out the experiment . 234

6.89 Laboratory evaluation - Total number of transmitted advertisement packets
per node throughout the experiment . 234

6.90 Laboratory evaluation - Mean size of all transmitted advertisement packets in
the network throughout the experiment . 235

6.91 Laboratory evaluation - Total size of transmitted advertisement packets per
node throughout the experiment . 235

6.92 Laboratory evaluation - CPU usage per node throughout the experiment . . . 236
6.93 Laboratory evaluation - Load per node throughout the experiment 237
6.94 Laboratory evaluation - Memory usage per node throughout the experiment . 238

xi

xii

List of Tables

2.1 Comparison of DSRC, Wi-Fi and Cellular technologies 11

3.1 Vehicular Delay Tolerant Network (VDTN) project’s characteristics 31

3.2 DTNs widespread solutions comparison . 51

6.1 Machine used to develop and run the MatlabEmulator 166

6.2 Software used to develop and run the MatlabEmulator 166

6.3 Machine used to develop and modify the HelixEmulator 166

6.4 Virtual Machines used to run the HelixEmulator 166

6.5 NetRider board specifications . 167

6.6 Total number and type of nodes collected for each dataset 169

6.7 Number and type of nodes evaluated for each period and dataset 171

6.8 Laboratory testbed description . 172

6.9 MatlabEmulator evaluation comparison in rush hour period - E2E delay statistics182

6.10 MatlabEmulator evaluation comparison in non rush hour period - E2E delay
statistics . 185

6.11 MatlabEmulator evaluation comparison in parking period - E2E delay statistics 188

6.12 MatlabEmulator evaluation impact of the file size during the rush hour period
- E2E delay statistics . 191

6.13 MatlabEmulator evaluation impact of the file size during the non rush hour
period - E2E delay statistics . 192

6.14 MatlabEmulator evaluation impact of the file size during the parking period -
E2E delay statistics . 193

6.15 MatlabEmulator evaluation impact of the block and generation size during the
rush hour period - E2E delay statistics . 195

6.16 MatlabEmulator evaluation impact of the block and generation size during the
non rush hour period - E2E delay statistics 196

6.17 MatlabEmulator evaluation impact of the block and generation size during the
parking period - E2E delay statistics . 197

6.18 HelixEmulator evaluation comparison in rush hour period - E2E delay statistics 210

6.19 HelixEmulator evaluation comparison in rush hour period - Computational
performance statistics . 212

6.20 MatlabEmulator evaluation comparison in non rush hour period - E2E delay
statistics . 213

6.21 HelixEmulator evaluation comparison in non-rush hour period - Computational
performance statistics . 216

xiii

6.22 MatlabEmulator evaluation impact of the advertisement packets periodicity
during the rush hour period - E2E delay statistics 219

6.23 HelixEmulator evaluation impact of the advertisement packets periodicity dur-
ing the rush hour period - Computational performance statistics 221

6.24 MatlabEmulator evaluation impact of the valid information time during the
rush hour period - E2E delay statistics . 223

6.25 HelixEmulator evaluation impact of the valid information time during the rush
hour period - Computational performance statistics 224

6.26 MatlabEmulator evaluation impact of the refreshment periodicity during the
rush hour period - E2E delay statistics . 227

6.27 HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Computational performance statistics 228

6.28 IEEE 802.11p channel characteristics used in laboratory tests 230
6.29 Helix configuration in OBUs and RSU . 230
6.30 LRBF configuration for laboratory evaluation 231
6.31 Laboratory evaluation - weight of the advertisement packets in the dissemina-

tion process . 235

xiv

List of Equations

6.1 Evaluate CPU usage . 175

xv

xvi

List of Algorithms

5.1 Evaluate probability according to a given probability function profile 104
5.2 Evaluate the distance between two points through the GPS coordinates . . . 105

xvii

xviii

Acronyms

ACK Acknowledgment

ADU Application Data Unit

AODV Ad hoc On-demand Distance Vector

AP Access Point

API Application Programming Interface

AU Application Unit

BAD Bundle Aggregation and De-aggregation

BER Bit Error Rate

BPA Bundle Protocol Agent

BSC Bundle Signaling Control

BSP Bundle Security Protocol

BSS Basic Service Set

C2C Car-to-Car

C2C-CC Car-to-Car Communication Consortium

CAN Controller Area Network

CanuMobiSim CANU Mobility Simulation Environment

CBHE Compressed Bundle Header Encoding

CCH Control Channel

CGR Contract Graph Routing

CLA Convergence Layer Adapter

CPU Central Processing Unit

CSV Comma-Separated Values

CVS-VN Cooperative Video Streaming over Vehicular Networks

xix

DARPA Defense Advanced Research Projects Agency

DIVERT Development of Inter-VEhicular Reliable Telematics

DOME Diverse Outdoor Mobile Environment

DSRC Dedicated Short Range Communications

DTLSR Delay Tolerant Routing for Developing Regions

DTN Delay Tolerant Network

DTNRG Delay Tolerant Network Research Group

E2E End-to-End

EC European Commission

EID Endpoint Identifier

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

FCC Federal Communications Commission

GSM Global System for Mobile Communications

GPS Global Positioning System

GUI Graphical User Interface

IBR Institut für Betriebssysteme und Rechnerverbund

iCS iTETRIS Control System

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ION Interplanetary Overlay Network

IP Internet Protocol

IPC Inter-Process Communication

IPND IP Neighbor Discovery

ISTEA Intermodal Surface Transportation Efficiency Act

IVC Inter-Vehicle Communication

IVHS Intelligent Vehicle/Highway System

IT Instituto de Telecomunicações

ITS Intelligent Transportation Systems

xx

ITSA Intelligent Transportation Society of America

JPL Jet Propulsion Laboratory

JSON JavaScript Object Notation

LNHF Least Number of Hops First

LRBF Local Rarest Bundle First

LRGF Local Rarest Generation First

LTE Long Term Evolution

LTP Licklider Transmission Protocol

MAC Medium Access Control

MANET Mobile Ad-Hoc NETwork

MATLAB MATrix LABoratory

MDDV Mobility-Centric Data Dissemination

MGW Mobile GateWay

MLME MAC Layer Management Entity

MULE Mobile Uniquitous LAN Extensions

NAP Network Architectures and Protocols

NCTUns National Chiao Tung University Network Simulator

NITSA National Intelligent Transportation Systems Architecture

NTP Network Time Protocol

OBS Optical Burst Switching

OBU On-Board Unit

ONE Opportunistic Network Environment

OS Operating System

OSI Open Systems Interconnection

P2P Peer-to-Peer

PAN Personal Area Network

PARAMICS PARAllel MICroscopic Simulation of road traffic

PHP Hypertext Preprocessor

PHY Physical

xxi

PLME Physical Layer Management Entity

PRoPHET Probabilistic Routing Protocol using History of Encounters and
Transitivity

PS Provider Service

PTPd Precision Time Protocol daemon

QoS Quality of Service

RAM Random Access Memory

REDEC REceiver-based solution with video transmission DECoupled

RFC Request for Comments

RLNC Random Linear Network Coding

RSSI Received Signal Strength Indicator

RSU Road Side Unit

RTEM Real-Time Executive for Multiprocessor System

SAE Simultaneous Authentication of Equals

SaW Spray-and-Wait

SCF Store-Carry-and-Forward

SCH Service Channel

SDR Simple Data Record

SPAWN Swarming Protocol For Vehicular Ad-Hoc Wireless Networks

SQL Structured Query Language

STA Collection Station

STCP Sociedade de Transportes Coletivos do Porto

SUMO Simulation Urban MObility

TCA Tetherless Computing Architecture

TCL Tool Command Language

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TLS Transport Layer Security

TraCI Traffic Control Interface

xxii

TraNS Traffic and Network Simulation Environment

TUB Technische Universität Braunschweig

UDP User Datagram Protocol

UDS Unix Domain Socket

UMTS Universal Mobile Telecommunications System

URI Uniform Resource Identifier

US United States

USDOT United States Department of Transportation

UTC Coordinated Universal Time

UWME Universal WAVE Management Entity

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VANET Vehicular Ad-hoc NETwork

VanetMobiSim VANET Mobility Simulation Environment

VDTN Vehicular Delay Tolerant Network

VEINS VEhicles In Network Simulation

VINT Virtual InterNetwork Testbed

VM Virtual Machine

WAVE Wireless Access in Vehicular Environments

Wi-Fi Wireless Fidelity

WME WAVE Management Entity

WSMP Wave Short Messaging Protocol

WSN Wireless Sensor Network

XML eXtensible Markup Language

ZMQ Zero-M Queue

ZoR Zone-of-Relevance

xxiii

xxiv

Chapter 1

Introduction

This document was developed under the scope of the Dissertation of the Master in Elec-
tronics and Telecommunications Engineering in the Departamento de Eletrónica, Telecomu-
nicações e Informática of Universidade de Aveiro with the theme of “delay-tolerant commu-
nication mechanisms for vehicular networks”.

In this chapter the context and motivation of this Dissertation is presented as well as its
main objectives and contributions. It also gives a brief description of the document organi-
zation.

1.1 Context and Motivation

The last couple of decades have been the stage for the introduction of new telecommuni-
cation networks. It is expected that, in the future, all types of vehicles, such as cars, buses
and trucks have the ability to intercommunicate and form a vehicular network. A coopera-
tion between the Universities of Aveiro and Porto, Instituto de Telecomunicações (IT), and a
spin-off of both of them, Veniam R© [1], lead to the implementation of the largest – on a global
level – vehicular communication platform. This platform comprises more than 600 vehicles
(taxis, trucks and buses) and fixed stations and is located in Oporto city.

Vehicular networks display special characteristics when compared to other networks due
to their continuous node mobility and their wide geographical dispersion. Therefore, the main
challenges that this type of networks entails relate to the intermittent connectivity and the
long and variable delay in information delivery due to permanent network fragmentation and
node mobility.

In a completely distinct context than that of vehicular networks, a new architecture was
suggested with the goal of allowing the reliable transmission of information in the scope of
high network fragmentation (intermittent connectivity) and high latency between contacts.
Thus, a new concept was presented – Delay Tolerant Network (DTN) [2]. This architecture
introduces the Store-Carry-and-Forward (SCF) mechanism in order to assure information
delivery when there is no end-to-end path defined.

The aforementioned challenges limit the spectrum of possible vehicular network services
and applications. Services that involve low transmission latencies and a stable path between
the sender and the receiver face many challenges and need to resort to different technologies
(e.g. cellular networks) that typically imply a higher service price. Bearing these limitations in
mind, vehicular networks can support a variety of services, such as Internet access, emergency

1

services, or delivery of sensory information. Taking into consideration this array of services,
these can be divided into two categories, considering the kind of information that is being
delivered: urgent and non-urgent information. Therefore, it is possible to conclude that the
use of a DTN for non-urgent information dissemination is able to surpass the aforementioned
challenges.

This is the framework in which this dissertation is developed. This work is focused on
using DTNs for the dissemination of non-urgent information, such as advertisement videos,
tourism-related information (not interactive), movies and tv-shows (not in real-time), among
others, that should be made available in the mobile terminals of the network (taxis and buses)
during a limited period in time and that originate in the network service provider.

Alongside this dissertation a specific DTNs solution (Helix) was designed by IT and
Veniam R© in order to be implemented in the aforementioned vehicular network. However,
Helix was mainly focused on the functional structure of the architecture supporting a delay-
tolerant network and how it should be adapted to the particularities of a vehicular context.
The routing module of this software, responsible for the decision to send and receive infor-
mation, was only able to collect data from passing vehicles directly to the network fixed
infrastructure. Thus, this software only supported the direct upload of information from mo-
bile nodes to the fixed one, not using the vehicular network to transport or spread data in
broadcast through vehicles. This module is an important part for the introduction of any
kind of new services regarding the spreading or sharing of information between the network
nodes, and its constrains limit the introduction of new types of services, such as non-real-time
content distribution. As such, the optimization and evolution of the routing module is im-
perative to create the necessary conditions for the introduction of these services. Moreover,
other modifications and implementations must be performed in order to introduce those kinds
of services.

Figure 1.1 illustrates a comprehensive view of the envisioned scenario for this Dissertation.
This scenario illustrates a process of content dissemination from a remote content server, lo-
cated in the core network, to mobile nodes (vehicles equiped with an On-Board Unit (OBU))
using the vehicular network to transport the data. The content under dissemination is stored
in a set of remote servers which are directly connect to the fixed vehicular network infrastruc-
ture, Road Side Units (RSUs), allowing the permanent availability of such content in these
fixed nodes. Once available in these fixed nodes, the content can be spread directly to the
mobile nodes that pass by them. Those mobile nodes can send the content to their peers in
order to reach a maximum delivery rate.

A content distribution strategy has the main goal of spreading the content under dis-
semination to a number of network nodes as high as possible and minimizing the network
resources consumption during this period. Thus, this kind of service needs to be correctly
designed and implemented in order to achieve such goals. As illustrated in Figure 1.1, all the
sender nodes (fixed and mobile) are performing a routing decision of which packet should be
sent (in broadcast) in order to maximize the delivery rate and minimize the network conges-
tion. As a statement, in Figure 1.1, the transmissions are not performed all at the same time.
The sender nodes must be able to decide which is the information to be sent, when it should
be sent, to what kind of nodes, what is the goal of such content, along any other important
parameter or characteristic associated with the content and network. Thus, any proposed
solution for a content distribution scenario must address all the previous goals and key factor
decisions, in order to be correctly deployed.

It is within this context and with the main goal of studying optimized content distribution

2

Figure 1.1: Content distribution to-be scenario (illustrative)

strategies for the dissemination of non-urgent information through vehicular networks that
this Dissertation appears.

1.2 Objectives and Contributions

The main goal of this dissertation is the study and implementation of strategies to dis-
seminate non-urgent content (e.g. adds, videos, and tourism-related information) through a
vehicular network in the smallest time period along with minimizing network congestion and
resource usage during this process. With this goal in mind the present Dissertation has the
following objectives:

• Survey of related work : before starting the implementation and evaluation of new strate-
gies it is necessary to understand the state of the art in this research field.

• Study the existent platforms of development and evaluation: several platforms are avail-
able to perform the evaluation of routing protocols, although not all of them are suitable
for a content distribution experiment using data from a real network as a mobility model
and to develop content distribution schemes specifically designed for a dedicated DTN
software (Helix).

• Study of the real vehicular network : since data from a real vehicular network is used,
several analyses can be performed regarding a better understanding of vehicle mobility
and network behavior.

• Design and implement strategies to stateless choose information: the main goal of this
dissertation is the designing and implementation of content distribution strategies which

3

are closely related with a correct selection of the packets to be broadcasted and the most
propitious time to send the information.

• Design and implement strategies to disseminate information: since the transmission of
contents is in broadcast, several challenges arise such as network congestion that must
be controlled and mitigated, whereby it is necessary to design and evaluate strategies
to control the dissemination of information.

• Evaluate the behavior of implemented strategies: once the strategies are designed and
implemented, it is crucial to analyze their behavior and performance.

The answer to the previous objectives and challenges results in several contributions that
can be summarized as follows:

• Development of a content distribution emulator : the existent emulation platforms were
not suitable or appropriate for the design and evaluation of content distribution strate-
gies in a vehicular network based on real log data, whereby during this work two other
emulators were designed and implemented. The first one, called MatlabEmulator, was
developed specifically to study and demarcate suitable strategies to stateless choose and
disseminate information and the other one is specific for developing protocols for the
Helix software and evaluate their scalability and performance, the HelixEmulator.

• Improvement of the HelixEmulator : given that this emulator was in an early state of
stabilization, several bugs were detected and fixed and new features were introduced
such as as the logging module and the capability to transmit in broadcast.

• Development of the Helix content dissemination service support : this DTN implemen-
tation specifically designed for a vehicular environment did not have any feature or
module regarding a widespread content distribution service. Thus, during this work
several content distribution strategies were designed and implemented to be used in He-
lix software in order to provide the additional content distribution service. Regarding
this goal, several new modules and features (e.g. coding approach, exchange of content
advertisement messages, etc.) were added to support this new service.

• Statistical analysis and understanding of the real vehicular network : as several logging
data was collected from a real vehicular network and the network behavior was studied
during this work, several statical analyses were performed and this valuable knowledge
can be used in the future.

• Design and development of several content distribution strategies in multiple platforms:
regarding the study of multiple strategies, several approaches were designed and imple-
mented on multiple platforms resulting in four major strategies that where implemented
for Helix software, being a relevant addition to it.

• Evaluation of several content distribution strategies in multiple platforms: regarding
the evaluation of the proposed content distribution strategies, these were evaluated on
three different platforms (two network emulators - large scale, and one real testbed -
small-scale) to become this set of strategies more efficient and robust.

• Real testbed and performance evaluation: gives a clear demonstration of concept and
feasibility of the most suitable content distribution strategy.

4

As a result of this work a scientific paper entitled “Content distribution in vehicular net-
works using delay-tolerant networks” was presented in the 10th Conference on Telecommu-
nications (Conftele) 2015, a paper entitled “Emulator for Content Distribution in Vehicular
Networks” will be submitted to an IEEE conference, and a journal paper containing the
strategies and results of the content distribution process will be submitted to an international
journal.

1.3 Document Structure

The present dissertation is structured in seven fundamental chapters as follows:

• Chapter 1 - Introduction - this chapter provides the scope and motivation of the disser-
tation, main objectives and contributions, and the document structure.

• Chapter 2 - Fundamental Concepts - this chapter provides to the reader an overview
analysis and description of the fundamental concepts related with this dissertation:
vehicular networks and delay-tolerant networks.

• Chapter 3 - Related Work - this chapter provides a wide survey on content distribution
schemes over mobile ad-hoc networks where the mobility of the nodes is a significant
challenge along with the network resources constraints such as Central Processing Unit
(CPU) and memory usage, network congestion, among others.

• Chapter 4 - Content Distribution Schemes - this chapter presents the proposed four
content distribution strategies to stateless choose information and a set of techniques
to control the dissemination of information.

• Chapter 5 - Integration and Development - this chapters describes the design, imple-
mentation and integration procedures of the proposed strategies and techniques in the
different platforms used for evaluation.

• Chapter 6 - Evaluation - this chapter describes the evaluated scenarios, the equipment
and platforms used in the evaluation and the main results. It also presents and discusses
the results obtained in the MatlabEmulator, HelixEmulator, and in the real laboratory
testbed.

• Chapter 7 - Conclusions and Future Work - this chapter contains the conclusions related
to the developed work and also points for possible improvements and future guidelines
to continue researching the topic of content distribution in vehicular networks.

5

6

Chapter 2

Fundamental Concepts

2.1 Chapter Description

This work covers two fundamental areas of research: Vehicular Ad-hoc NETworks (VANETs)
and DTNs. This chapter aims to familiarize the reader with these topics giving an overview
of the fundamental definitions and concepts associated with them.

This chapter is organized as follows:

• section 2.2 - VANETs: presents the definition and basic concepts of VANETs as well
as their architecture, technologies and standards, challenges and applications.

• section 2.3 - DTNs: introduces the concept of DTN focusing on its characteristics,
architecture, protocols and main applications.

• section 2.4 - Chapter Considerations: depicts the conclusions and the summary of the
full chapter.

2.2 Vehicular Ad-hoc NETworks

2.2.1 Introduction

2.2.1.1 History

Since the creation in 1991 of the Intelligent Vehicle/Highway System (IVHS) [3], vehic-
ular connectivity and communication started to be envisioned to decrease traffic congestion,
enhance road safety and reduce the environment pollution. The IVHS was created in the
Intermodal Surface Transportation Efficiency Act (ISTEA) and remained under the responsi-
bility of United States Department of Transportation (USDOT). In 1996 the USDOT, associ-
ated with the Intelligent Transportation Society of America (ITSA), structured a framework
for the planning, definition and integration of National Intelligent Transportation Systems Ar-
chitecture (NITSA), which evolved into the current Intelligent Transportation Systems (ITS).

Seeing the relevance of wireless communication for the variety of applications and services
proposed and forecast by NITSA, a narrow spectrum band near 900 MHz was allocated.
However, the selected spectrum was not appropriated for the majority of applications, whereby
in 1999 the Federal Communications Commission (FCC) allocated 75 MHz in the 5.9 GHz

7

(5.850-5.925 GHz) band to be used exclusively for Dedicated Short Range Communications
(DSRC) [4] in North America.

In 2002 ITSA proposed the adoption of a single standard for Physical (PHY) and Medium
Access Control (MAC) layers. For this purpose, in 2005 the Institute of Electrical and Elec-
tronics Engineers (IEEE) created a development group called IEEE 802.11p [5] task force,
which developed standards until 2009. The work of standardization for the remaining layers
was developed by another task force that developed the IEEE 1609.x family of standards [6].
Following this standardization activity, in 2008, a decision by the European Commission (EC)
established that part of the same spectrum (allocated in North America) should also be al-
located in Europe to guarantee the interoperability between those regions. The 5.855-5.905
GHz band was allocated.

In 2010 the IEEE 802.11p standard was finished, giving rise to a set of projects related
to VANETs, such as DRIVE-IN [7], Future-Cities [8], SAFESPOT [9], FleetNet [10] and
CVIS [11].

2.2.1.2 Definition

In the last years the advances in wireless technologies and the automotive industry lead
to the appearance of vehicular networks, also know as VANETs. These networks are spon-
taneously formed by vehicles (in movement or not) equipped with wireless interfaces which
allow the communication between them and the access to other networks.

The nodes of a VANET have to be equipped with an OBU to enable the communication
with other vehicles and the infrastructure through an RSU. OBUs enable the dissemination
of information by the mobile nodes. On the other hand, RSUs are static nodes deployed
along the road or/and strategic locations (e.g. intersections, high buildings). Two types of
communication can be established: (i) Vehicle-to-Vehicle (V2V) communication when it is
between nearby vehicles and (ii) Vehicle-to-Infrastructure (V2I) when an OBU needs to reach
the infrastructure.

A vehicular network can be formed by a heterogeneity of vehicles such as private cars,
public services (police cars and ambulances) or public transportation (buses and taxis). The
RSUs could be property of the government or private service providers.

2.2.2 Architecture

Vehicular networks can be deployed mainly in three scenarios: urban, rural and highway
environments. A VANET could be deployed with at least two vehicles in range of each
other which are able to establish a communication between them. Furthermore, a vehicular
network could have fixed-infrastructure associated to it used by vehicles to access Internet-
based services.

2.2.2.1 Network Components

The architecture of a VANET relies on three main components: OBU, Application Unit
(AU) and RSU. According to Al-Sultan et al. [12] they could be described as follows.

The OBU is the core element of a VANET. These devices are equipped with a Wireless
Access in Vehicular Environments (WAVE) communication interface (IEEE 802.11p) and
must be installed in each vehicle. Besides that, they could have a wired interface (typically

8

Controller Area Network (CAN)) to connect to the AU allowing the collection of data. More-
over, they are equipped with a CPU, memory and storage resources, a user interface, and
even other wireless communication interfaces such as IEEE 802.11a/b/g or cellular technol-
ogy. OBUs are mainly responsible for wireless access radio, data security, routing, network
congestion control, IP security and reliable message transfer.

The AU is equipped within the vehicle and it is used to execute applications using the
communication capabilities of an OBU. These applications can include safety and non-safety
services. The distinction between an OBU and an AU is mainly logic given that the two
components could reside within the same element. The two components can be connected
through a wireless or wired interface. Therefore, examples of an AU range from a safety
dedicated device to personal computers or smartphones in order to access the Internet always
through an OBU.

The RSU is usually deployed along the road side or in strategic locations like parking lots
or traffic lights. As OBUs, the RSUs are equipped with one or more communication interfaces
to communicate with other vehicles (using wireless technology such as IEEE 802.11p or IEEE
802.11a/b/g) and with network infrastructure (using wired technology such as Ethernet or
fiber optics).
The main functions performed by RSUs are (i) re-distributing and sending information from
or to other RSUs/OBUs; (ii) providing Internet access to OBUs and (iii) running safety
applications acting as an information source.

2.2.2.2 Communication domains

Car-to-Car Communication Consortium (C2C-CC) describes in its manifesto [13] the Car-
to-Car (C2C) Communication System architecture which is the reference architecture adopted
to specify vehicular networks’ core components and their interaction. According to this, a
VANET architecture can be divided into three domains (as shown in Figure 2.1):

• In-vehicle domain: this domain is composed by an OBU and one (or more) AUs.
These two components can be connected through a wireless or wired (e.g. CAN) link
and, typically, there is one of each per vehicle. The connection between them allows
the execution of a set of applications provided by the AU using the communication
capabilities of the OBU.

• Ad-Hoc domain: this domain consists of a set of interconnected vehicles, each one
equipped with an OBU. These vehicles can be also connected with one or multiple
RSUs deployed along the road.

• Infrastructure domain: an RSU can access the Internet or infrastructural networks
enabling the OBU access to the core network. The direct communication from an
OBU to the infrastructure is also possible using cellular technology (e.g. Global Sys-
tem for Mobile Communications (GSM), Universal Mobile Telecommunications Sys-
tem (UMTS) or Long Term Evolution (LTE)).

Figure 2.1 also shows the variety of communication possibilities and configurations which
are available:

• Pure Ad-Hoc (V2V): there is only inter-vehicle communication (V2V). A node
reaches further nodes using other vehicles (multi-hop) with no infrastructure support.

9

• Fixed Infrastructure (V2I): the new road side equipments (RSUs) could be used
to access other networks and farther nodes. Furthermore, the already deployed cellular
network and Wireless Fidelity (Wi-Fi) hot spots could also be used.

• Mobile Infrastructure (V2V/V2I): the patterned traffic of public transportation
(as buses and taxis) could turn those vehicles into Mobile GateWays (MGWs) to be
used as relay nodes or gateways to other networks.

Mobile InfrastructureAd-Hoc

IEEE 802.11p
Access Network

INTERNET

Cellular
Access Network

Fixed Infrastructure

RSU

IEEE 802.11g/n
Access Points

RSU AP

OBU

GSM/UMTS/LTE

IEEE 802.11a/b/g

IEEE 802.11p

RSU Road Side Unit

OBU On Board Unit

AP Access Point

AU

AU Application Unit

OBU

AU

OBU

AU

OBU

AU

OBU

AU

OBU

AU

Figure 2.1: VANET architecture, based on [14]

2.2.3 Dedicated Short Range Communications

One of the main questions raised when talking about VANETs is “Why not use the
already deployed cellular network and infrastructure instead of DSRCs?”. Although the
cellular communications are a widespread technology, they are not suitable for the specific
environment of VANETs.

The two main advantages of DSRCs against cellular networks are the coverage and cost.
The majority of mobile operators do not cover all of the territory, specially the rural and
isolated areas where VANETs could easily be used for emergency and safety services. Despite
the decline in prices, data plans remain expensive. DSRC communication is free and should
be integrated by manufacturers in vehicles allowing inter-vehicle communication anywhere
regardless of any mobile operator.

One of the key services for which VANETs were designed was safety services that impose
major constraints of latency. However, cellular networks have a higher latency compared
to DSRCs as shown in Table 2.1. Although Table 2.1 presents a latency time for Wi-Fi
technology close to DSRC, this is not appropriate for inter-vehicle communications due to
the complex and slow association process (as will be discussed later in subsubsection 2.2.4.1).

However, the inherent disadvantages of using Wi-Fi and cellular technologies in VANETs
do not render their usage impossible. A vehicle could use a Wi-Fi access point when it is
moving at a reduced speed or the cellular infrastructure when no other technology is available.

10

Table 2.1: Comparison of DSRC, Wi-Fi and Cellular technologies [14]
DSRC Wi-Fi Cellular

Range 100∼1000m 30∼100m 1∼30km

Latency 200µs 3ms 200ms∼3s

Cost Free or Cheap Free or Cheap Expensive

In 1999, the FCC allocated seven 10 MHz channels of spectrum at 5.850-5.925 GHz, for
DSRCs. Among these seven channels, one is for control, called Control Channel (CCH),
and the other six for service communications, called Service Channel (SCH), as described in
Figure 2.2.

Ch
172
SCH

Ch
174
SCH

Ch
176
SCH

Ch
178

CCH

Ch
180
SCH

Ch
182
SCH

Ch
184
SCH

5
.8

50

5
.8

55

5
.8

65

5
.8

75

5
.8

85

5
.8

95

5
.9

05

5
.9

15

5
.9

25

Spectrum (GHz)

Reserved

Ch 175

alternative
(20MHz)

Ch 181

alternative
(20MHz)

Figure 2.2: Channel allocation for DSRC in United States, based on [15]

2.2.4 IEEE Standards

To regulate the VANETs operation, IEEE developed a new stack of protocols, the WAVE
protocol stack, as shown in Figure 2.3. The WAVE protocol stack is mainly composed by these
sets of standards: IEEE 802.11p [5] and IEEE 1609.x family [6]. In the following subsection
the aim and specific characteristics of IEEE 802.11p and IEEE 1609.x are explained.

2.2.4.1 IEEE 802.11p

An IEEE task force finished the IEEE 802.11p standard in 2010. This standard is an
extension of the well-known IEEE 802.11 standard and was created by modifying the IEEE
802.11a standard. According to Jiang and Delgrossi [16], it was developed to be more resilient
to the challenges imposed by vehicular networks, especially those related with Quality of
Service (QoS), wave propagation and communication outside of a Basic Service Set (BSS)
coverage area.

Also according to Jiang and Delgrossi [16], a set of modifications to the IEEE 802.11a
standard were performed in the PHY layer. The frequency band was changed from 5.0 GHz
to 5.9 GHz and channels of 10 MHz instead of the traditional 20 MHz are used, providing
better resilience to multipath and interference. The transmission mask was improved, being
more stringent than the required by IEEE 802.11a.

At the MAC layer level the main enhancement introduced by IEEE 802.11p was the sim-
plification of BSS operations making this standard a valid solution for a vehicular environment

11

Data Plane
Management

Plane

OSI Model

Application

Presentation

Session

Transport

Network

WAVE Model

Upper

Layers

Networking

Services

IEEE 1609.1

Applications

IEEE 1609.3

IEEE 802.2

Data Link

LLC SubLayer

MAC Sublayer

Physical

IEEE 1609.4

IEEE 1802.11

Physical
IEEE 802.11p

Security

Services

IEEE 1609.2

WME

MLME

PLME

Medium

Figure 2.3: WAVE Protocol Suite, based on [14]

working in a truly ad-hoc manner. The introduction of the possibility to communicate out-
side the context of a BSS is one of the major amendments introduced by this new standard.
The previous IEEE 802.11 MAC operations for association/authentication were to time con-
suming to be suitable for IEEE 802.11p. Figure 2.4 compares the association process using
Simultaneous Authentication of Equals (SAE) in traditional Wi-Fi networks with the similar
process for initiation of communication in IEEE 802.11p. This standard allows the transfer
of limited information between nodes within a specific channel. Among others, a node can
receive a service announcement for a certain service and, if it is interested in it, change its
configurations according to the received parameters. Other functionalities related with the
authentication procedure were passed to the upper MAC layers, defined by IEEE 1609.x.

The IEEE 802.11p standard also specifies the management functions associated with the
PHY and MAC layers (the Physical Layer Management Entity (PLME) and the MAC Layer
Management Entity (MLME) blocks in Figure 2.3).

2.2.4.2 IEEE 1609.x

The IEEE 1609.x family is composed by a set of minor standards which specify the control
and management services provided by MAC layer. Each one of them deals with a specific
area and is described by Gukholl and Cherkaoui [17] as follows.

• IEEE 1609.1 [18]: describes the key elements of the WAVE system architecture and
provides a resource manager for WAVE which specifies the interaction between the
network equipments present in a vehicle and remote computing resources to balance the
processing levels performed by an OBU.

• IEEE 1609.2 [19]: defines the security mechanisms for services and applications, and

12

STA

Information Exchange (SCH)

AP STA

IEEE 802.11 Probe Request

IEEE 802.11 Probe Response (Security Parameters)

IEEE 802.11 SAE Authentication (Commit Message)

IEEE 802.11 SAE Authentication (Commit Message)

IEEE 802.11 SAE Authentication (Confirm Message)

IEEE 802.11 SAE Authentication (Confirm Message)

RSUVehicle

Information Exchange (SCH)

WAVE Service Announcement (CCH)Service
Registration

(a) Traditional Wi-Fi (b) IEEE 802.11p

Figure 2.4: Comparison of the association processes, based on [14]

specifies the secure messages formats and the circumstances for the exchange of secure
messages.

• IEEE 1609.3 [20]: specifies the network and transport layers’ services. It describes
the Wave Short Messaging Protocol (WSMP), which is an alternative to the Internet
Protocol (IP) providing routing and addressing schemes for the service and control
channels. The standard also defines a set of management functions implemented in the
WAVE Management Entity (WME), which are used to provide networking services.

• IEEE 1609.4 [21]: defines the enhancements to IEEE 802.11 MAC to support a multi-
channel operation to allow the usage of service and control channels simultaneously. This
standard specifies an access scheme similar to Time Division Multiple Access (TDMA),
which allows the switching between the SCH and CCH very quickly. Using this approach
it is possible to periodically hear control and data information in CCH and SCH, re-
spectively, independently of the load in SCH. Because of this fast switching, a guard
interval of 4 ms was introduced to exchange between channels whereby an accurate syn-
chronization among nodes (could be achieved using Global Positioning System (GPS)
technology) is essential.

2.2.5 Special Characteristics

VANETs are a specific type of Mobile Ad-Hoc NETworks (MANETs), as they have
their own behavior and unique characteristics. The main difference between them is that
in VANETs the mobile nodes are vehicles which, according to Nekovee [22], lead to the fol-
lowing special characteristics:

• Unlimited battery power: in a VANET the nodes are vehicles which do not have
power supply limitations like in other MANETs such as Wireless Sensor Networks
(WSNs). Because of that it is assumed that nodes can provide a continuous and unlim-
ited (theoretical) power to computing and communication devices.

• Higher computational capability: due to the unlimited power supply the network
nodes can bear a high computational effort related to computing, communication and
sensing.

13

• Predictable/patterned mobility: due to the traffic rules (speed limit and traffic
lights), underlying roads, drivers’ behavior and traffic conditions (rush hours), most of
the time vehicles follow a certain mobility pattern. Systems like GPS already provide
those kinds of information which can be used to evaluate the current and future position
of the vehicle. These data are very useful for a variety of applications, services and
network decisions such as routing protocols.

2.2.6 Challenges

The special characteristics inherent to a vehicular environment bring a set of challenges
that have to be considered and handled. Those challenges can be divided in two groups: (i)
specific to vehicular networks and (ii) associated with technical and technological issues.

2.2.6.1 Specific to vehicular environments

• Potentially large scale: in developed countries between 50% and 85% of the citizens
have a vehicle, the potential growth of these networks is much higher compared to other
typical ad-hoc networks.

• Highly dynamic topology: since the network nodes are vehicles that move at a
variable speed, the topology formed by VANETs is changing very often. Furthermore,
while the vehicles’ speed is predictable in motorways and highways, in urban and rural
scenarios it is not. In an urban scenario, the large amount of different paths to reach
the same destiny and the high number of intersections turns the prediction of a route
almost impossible, reducing the effectiveness of network protocols. In addition, the high
speed of the vehicles reduce the connection time between nodes, imposing a connection
establishment as fast as possible and a higher range of wireless links.

• Network fragmentation (intermittent connectivity): as vehicles are constantly
moving the network topology changes very often leading to frequently broken links
between the network nodes. Moreover, this problem is exacerbated by heterogeneous
node density caused by the variety of scenarios where these networks are deployed.
When even the contact with the RSUs failed, the use of the cellular network to mitigate
this lack of connectivity (to the core network) is always an alternative; however, it
represents an increase in expenditure for the user.

2.2.6.2 Technical

According to Moustafa and Zhang [23], scalability and interoperability are the two main
issues to take into account in developing protocols and mechanisms for VANETs. In the fol-
lowing items the main technical challenges to achieve the best scalability and interoperability
among the network are identified and discussed.

• Reliable Communications and MAC Protocols: vehicles can communicate through
other vehicles experiencing multi-hop communication which represent a major challenge
on reliability of communication. MAC protocols have to ensure a low communication
latency, fast association and have to cope with the high dynamic of the network. Be-
sides that, they must guarantee a fair treatment of safety and non-safety applications.

14

Furthermore these protocols should take into consideration the heterogeneity of wireless
technologies (Wi-Fi and GSM/UMTS) used in a vehicular network.

• Routing and Dissemination: regarding the high mobility of the network, the routing
schemes for information dissemination must be sufficiently fast and efficient. Besides
that, due to the variety of applications and services running in the network, routing
algorithms should be adaptable to give different priorities of transmission to different
services (safety and non-safety). Furthermore, routing protocols should adapt according
to the network’s topology, link quality and node density.

• Security and privacy: the privacy of the user and the authentication of messages
exchanged between vehicles must be protected and ensured from malicious users.

• IP Configuration and Mobility Management: the access from vehicles to the
Internet through the infrastructure raises these two technical challenges. Due to the
characteristics of a vehicular network, the IP configuration should be automatic and
non-centralized. Since vehicular devices are equipped with multiple communication
interfaces, automatic and optimized connection (and mobility) management is a relevant
issue.

2.2.7 Data Dissemination

All applications foresee for VANETs rely on data dissemination among the vehicles with
potential interaction of RSUs in the process. There are some important concepts concerning
data dissemination that should be clarified.

Data dissemination can be classified according to the number of hops by which the infor-
mation travels until it reaches its final destination:

• Single-hop: this type of dissemination is implemented with broadcast at MAC layer.
As Figure 2.5-(a) shows, a node A can only send information to its neighbors (in the
transmission range) which means that node B will not receive the content of the message
spread by node A.

• Multi-hop: The broadcast of information is closely related to VANETs services and
applications, particularly to the dissemination of safety messages which need to be
spread through a large set of vehicles using a multi-hop transmission. In these services,
data should be transmitted through multiple vehicles until it reaches its final destination.
In Figure 2.5-(b) node A sends information to node B, but to reach B, it uses the
intermediary node C as a relay node because there is no connectivity between nodes A
and B.

Single-hop and Multi-hop are both needed to disseminate information through a vehicular
network and could be combined in an hybrid strategy.

According to the final destination of the information, messages can be classified as follows:

• Unicast: there is one sender to one receiver of data. The majority of applications re-
lated with entertainment (e.g. Internet access, gaming and video-streaming) use unicast
messages to disseminate data.

15

B A B C A

(a) Single-hop (b) Multi-hop

Figure 2.5: Single-hop (a) and Multi-hop (b) data dissemination, based on [23]

• Multicast: there is one sender to one or multiple receivers of data. Some safety
applications disseminate information using multicast messages when they want to reach
a specific direction or region (multicast group).

• Broadcast: there is one or multiple senders and data should be delivered to all vehicles.
However, according to Kremer [24] the majority of applications only broadcast messages
in a delimited region called Zone-of-Relevance (ZoR).

2.3 Delay Tolerant Networks

2.3.1 Introduction

2.3.1.1 Concept

Ma et al. [25] defines a DTN as “the area of networking which addresses challenges in
disconnected, disrupted networks without an end-to-end connection”. These networks were
created to ensure communication over extreme environments like space or interplanetary
communications. Those environments are characterized by their high latency (which can
achieved hours or even days).

The majority of protocols used in the Internet are based on Transmission Control Protocol
(TCP)/IP. However, the TCP often does not work in delay and disruption environments due
to the fundamental assumptions built into the Internet. According to Cerf et al. [2], the
Internet was built assuming the following conditions:

• Existence of an end-to-end path between source and destination entities during the
communication;

• Small probability of end-to-end packet drop;

• All elements in the network (routers and endpoints) support the TCP/IP protocol;

• Applications do not have any concerns about communication performance.

• The communications reliability (error correction and congestion management) is pro-
vided by TCP.

However, in a delay tolerant network, the previous assumptions are flexible whereby the
the design principles and requirements are different from the previous.

16

2.3.1.2 Challenges and Requirements

As mentioned before, there are scenarios in which TCP/IP protocols do not perform
well. These environments share some challenging characteristics with current Internet-based
networks as the following [26]:

• Intermittent Connectivity: in many challenged environments, end-to-end connectiv-
ity between source and destination is not always achieved. This issue is called network
partitioning, and in these cases the TCP/IP protocols do not perform well. So, these
new protocols must support communication without a clearly defined end-to-end path.

• Long or Variable Delay: the propagation and transmission delay of a link are directly
affected by the underlying transmission medium. In some challenging scenarios a long
or variable communication latency contributes to an end-to-end path delay that could
cripple Internet protocols and applications that required quick transmissions and data
acknowledgments.

• Asymmetric Data Rates: data rates may be considerable asymmetric between net-
work elements (e.g. high rate for download information but a small uplink for control
data). In those cases, conversational protocols used on the Internet will not work cor-
rectly.

• High Error Rates: the procedures to promote error corrections increase the network
traffic due to the retransmission of packets and processing because of the introduction
of control data. For the same link-error rate, the number of needed retransmissions is
smaller when the communication is hop-by-hop than end-to-end (used on the Internet).

Because of the previous challenges, the protocols to be used in delay tolerant networks
face new requirements, and thus need to be built from scratch or adapted from Internet-based
protocols.

2.3.1.3 Applications

The DTNs were initially developed to be used for interplanetary communications, although
they have a large application field on Earth. Some of these are listed as follows [27]:

• Terrestrial mobile networks: in these networks, the nodes’ mobility and changes in
signal strength might cause the unexpected disruption of the network, or, in other cases,
this partition can be periodical or predictable. So, the traditional Internet protocols
(such as TCP or IP) do not work well because of the absence of an end-to-end connection.
Applications using data mules are typical in this class, and an example is the use of
bus to store, carry and forward information among remote villages providing a form of
messaging switching service (like mail service). Another possible application is the use
of a DTN in VANETs.

• Sensor/actuator networks: the network elements are typically sensors (or actuators)
with low power, memory and processing capabilities. Moreover, the number of nodes
in WSNs is usually high, with possibly thousands or millions of nodes in the network.
Due to the power limitations, the communications are often scheduled. Furthermore,
they typically employ “proxy” nodes to translate Internet protocols to the usually used

17

sensor protocols. These properties make this type of networks suitable to employ a
DTN approach.

• Military ad-hoc networks: these networks operate under extreme conditions where
they are often disrupted due to environmental factors, node mobility, and intentional
breaks of connection. Moreover, some military applications have to compete for band-
width with higher priority services. In those cases, traffic applications have to wait for
available bandwidth until services with a higher priority stop using the medium. These
conditions enhance the use of DTNs.

• Exotic medium networks: very long distance optic or radio links, satellite commu-
nications, acoustic links in air or water and free-space optical communications. The
major common characteristics of these are the high latency, predictable communication
disruption, and extreme weather conditions. Due to the set out characteristics, DTNs
are a suitable solution to these applications.

Figure 2.6 summarizes the possible applications for a DTN:

Applications of DTNs

Space
Application

IPNs

Terrestrial
Application

Terrestrial
mobile

networks

Sensor/
actuators
networks

Military
ad-hoc

networks

Exotic
medium
networks

Figure 2.6: DTN applications taxonomy, based on [27]

2.3.2 Architecture

The DTN architecture aims to adapt to network disruption and also to the heterogeneity
of underlying protocols used to provide network functionalities such as transport and routing.
According to Fall [27], DTN uses layering, naming, encapsulation, and persistence storage
to interconnect heterogeneous parts of a network. The following topics discuss the strategies
adopted by a delay tolerant network to deal with these issues.

2.3.2.1 Overlay Architecture

To ensure a reliable communication between nodes when frequent network disruptions
occur, a new layer called bundle layer was implemented above the transport layers of each
network node and below the application layers. According to Ma et al. [25], the bundle layer
forms an overlay that employs persistent storage to deal with network disruptions. This layer
also includes a mechanism for reliable communication moving the responsibility of hop-by-hop
delivery and implementing an end-to-end acknowledgment procedure. The bundle layer also
introduces diagnostic, management, security and interoperability features.

18

A DTN could use a variety of delivery protocols (TCP/IP, raw Ethernet or serial lines).
Each one of these has specific characteristics and uses different semantics in their messages
whereby a DTN introduces a new element called Convergence Layer Adapter (CLA). This
element provides the necessary functions to carry DTN data units (called bundles) on each
underlying protocol achieving interoperability.

As Figure 2.7 shows, the DTN architecture relies on a central element called bundle for-
warder which is responsible for forwarding bundles between applications, CLAs, and storage
based on routing decisions. Two types of data units are exchanged between modules: (i)
bundles used by storage, CLAs, and applications, and (ii) directives used by routing, man-
agement, and applications.

LOCAL
APPLICATIONS

MANAGEMENT
PROCESS

STORAGE

ROUTING
DECISIONS

CONVERGENCE LAYER ADAPTER (CLA)

...

BUNDLE
FORWARDER

Protocol P1 Protocol PnProtocol P2
NATIVE

INTERNET
PROTOCOLS

Bundles

Directives

Figure 2.7: Bundle forwarder interaction architecture, based on [27]

2.3.2.2 Store-Carry-and-Forward (SCF) Mechanism

To overcome the issues associated with network disruption (and intermittent connectivity),
long or variable delay, asymmetric data rates, and high error rates, DTNs use a mechanism
called SCF (illustrated in Figure 2.8). Contrarily to IP networks which are based on “store-
forward” mechanism, a DTN needs to store and carry the information while there are no
available or reliable links.

To store (and carry) the information, DTN nodes have to be equipped with a storage
device (such as a hard disk). Those devices are called persistent storage because they could
store the information indefinitely, as opposed to very short-term storage equipments, such as
flash memories or routers’ buffers. According to [26], the DTN nodes need persistent storage
for the following reasons:

• The link which establishes the connection to the next hop could not be available for a
long period of time;

• A pair of nodes may have discrepant transmission rates and communication procedures
reliableness;

19

• After sending a message, if it is rejected by the destination node or if an error occurs,
the information must be retransmitted.

SCF is the key mechanism used by DTNs to overcome the intermittent connectivity prob-
lem.

Node

A

Store

Node

B

Store

Node

C

Store

Node

D

Store

Forward Forward Forward

Figure 2.8: Store-Carry-and-Forward mechanism, based on [26]

2.3.3 Bundle Protocol

As mentioned before, to implement a reliable communication among DTN nodes a new
layer called bundle layer was introduced. This layer relies on a new protocol standardized by
Burleigh and Scott [28], the Bundle Protocol. The bundle layer is implemented between the
transport and application layers, and allows the communication across the same (or different)
set of lower protocols in challenging environments with frequent communication disruption
and high delay. All DTNs use the same Bundle Protocol although the lower protocols can
vary among the nodes depending on their communication environment.

According to Scott and Burleigh [28], the key capabilities of the Bundle Protocol can be
summarized as follows:

• Custody-based retransmission;

• Capability to deal with intermittent connectivity;

• Ability to take advantage of predicted, scheduled, and opportunistic connectivity;

• Late binding of overlay network endpoint.

The previous bundle forward interaction architecture (see Figure 2.7) is implemented by
an entity called Bundle Protocol Agent (BPA). This entity is responsible for storing and
forwarding bundles between nodes.

The structure of the Bundle Protocol overlay and the comparison between Internet pro-
tocol stack and DTN protocol stack is shown in Figure 2.9.

As shown in Figure 2.10, the Bundle Protocol uses the standard protocols of Internet
(typically TCP/IP but others can be used) for transporting and routing information under
the bundle layer. In a DTN, all nodes have implemented both bundle layer and lower-layer
protocols. The forwarding nodes are able to forward bundles between the same or different
lower-layer protocols being similar to a Internet router or gateway, respectively.

2.3.3.1 Terminology

There are some terms associated with the Bundle Protocol as found in [28] that should
be known:

20

Application

Transport (TCP)

Network (IP)

Data Link

Physical

Internet Protocols

Application

Bundle

Transport

Network

Data Link

Physical

DTN Protocols

Lower-layers
protocols,
opt inally
specified to
each DTN node

Common across
a DTN

Lower-layers
protocols,

common across
all Internet

nodes

Lower-
Layer

Protocols

Lower-
Layer

Protocols

Lower-
Layer

Protocols

Lower-
Layer

Protocols

Bundle Protocol

Application Application

Figure 2.9: Bundle Protocol overlay, based on [26]

Application

Transport

Network

Link

Physical

Source

Node

Bundle
potencial

delay

Forwarding

Node

potencial
delay

IP

Forwarding

Node

Destination

Node
TCP/IP

Lower-Layer Protocols

non-TCP/IP

Lower-Layer Protocols

potencial
delay

potencial
delay

non-TCP

non-IP

TCP

IP

TCP

IP

TCP

IP

TCP non-TCP

non-IP

CT CT CT CT

Persistent storage CT Custody transfer capability (point of retransmission)

Figure 2.10: Bundle Protocol communication diagram, based on [26]

• Bundle: is the protocol data unit of the DTN Bundle Protocol.

• Bundle Node: is an entity which can send or receive bundles. A bundle node is
composed by a set of conceptual components: a Bundle Protocol agent, one or more
convergence layer adapters, and an application agent.

• BPA: is the node component which implements the Bundle Protocol providing its
services and procedures.

• CLA: this layer is used to achieve the convergence between a BPA and lower-layer
protocols. It allows the send and reception of bundles by the BPA and also provides
the utilization of a native Internet protocol.

• Application Agent: is the node component that utilizes the Bundle Protocol ser-
vices to provide communication and is composed by an administrative element and an
application specific element.

21

• Bundle Endpoint: is a set of zero or more bundle nodes which are identified by an
Endpoint Identifier (EID).

2.3.3.2 Bundle Service

Six classes of services are provided by the bundle layer:

• Custody transfer: delegation of the forwarding responsibility by one node to another,
so that the first node recover its retransmission resources.

• Return receipt: provides an end-to-end assurance delivery sending a confirmation
from the destination node to the source node that the bundle has been received.

• Custody-transfer notification: notification sent by the new custodian to the node
that previously had the custody of a certain bundle.

• Bundle-forwarding notification: notification to the source node when a bundle is
forwarded by another node.

• Priority of delivery: Bulk, Normal or Expedited.

• Authentication: digital signature used to check a node’s identity and a message’s
integrity.

2.3.3.3 Application Data Units, Bundles, Blocks

The messages sent by a DTN application have an arbitrary length and are called Application
Data Units (ADUs). The relative order in which a DTN application sends its ADUs might
not be preserved until the destination is reached. The bundle layer divides an ADU into
protocol data units called bundles, which are forwarded by the bundle forwarding entity.

A bundle has a specific format and could contain one or more blocks and each one may
contain either application data or metadata to handle network procedures (routing, transport,
...). A bundle could be divided into multiple bundle fragments which are also considered
bundles by the network and could be re-fragmented. The re-assembling process could be
performed by any node of the network at any time.

According to Scott and Burleigh [28], each bundle is composed of at least two blocks which
are described as follows.

The Primary Bundle Block is the first block in a bundle (and is the equivalent of the
IP header on the Internet) and it is used for routing bundles to their destinations.

The Payload Bundle Block which contains the payload and information related with
it, received from the application layer.

Extension Blocks are all the blocks besides the primary and payload blocks.

All the bundle blocks (with the exception of the primary block) follow a common format
with these fields: block type code, block processing control flags, block data length and
block-type-specific data fields). The meaning of each one of them can be accessed in [28].

22

2.3.3.4 Nodes, Endpoints and Registrations

Cerf et al. [2] defines a DTN node as an “engine for sending and receiving bundles”
which implements the Bundle Protocol [28]. Warthman [26] divided the DTN nodes into two
categories based on its function (at that time) in the network (see Figure 2.11).

The nodes with a source or destination function are the type of nodes which are the
source or destination of information and do not forward any bundles. Like any other node in
a DTN they need to have persistent storage to store information when they do not have links
available to send bundles. Those nodes may optionally support custody transfers.

On the other hand, the nodes with a forwarding function act as routers, forwarding
bundles between nodes in distinguished situations:

• Routing-Equivalent Forwarding : the nodes forward bundles to other nodes which have
the same lower protocol stack as the forwarding node (in Figure 2.11 protocols of type
“A”). The nodes must have persistent storage and can support custody transfer.

• Gateway-Equivalent Forwarding : the nodes forward bundles to other nodes which have
a different lower protocol stack as the forwarding node (in Figure 2.11 protocols of
types “A” and “B”). The nodes must have persistent storage and can support custody
transfer (which in this case is advisable).

DTN nodes are identified by EIDs and each node must have a unique EID. Applica-
tions identify the destination by setting the correspondent field in an ADUs with the EID of
destination node. Each EID is expressed as a Uniform Resource Identifier (URI).

When an application wants to receive data from a certain node (identified by a unique
EID) it is performing a registration procedure.

Application

Bundle

Transport A

Network A

Link A

Physical A

Source or Destination
Function

CT

Application

Bundle

Transport A

Network A

Link A

Physical A

Forwarding Function
(routing-equivelent)

Transport A

Network A

Link A

Physical A

CT

Forwarding Function
(gateway-equivelent)

Required

Optional

Persistent storage

CT Custody transfer capability (point of retransmission)

Application

Bundle

Transport A

Network A

Link A

Physical A

Transport B

Network B

Link B

Physical B

CT

Figure 2.11: DTN nodes, based on [26]

2.4 Chapter Considerations

This introductory chapter described several topics concerning the work already done until
now and focused on the main network concepts of this Dissertation: (i) VANETs and DTNs.
The most relevant considerations are described as follows.

23

Vehicular Ad-Hoc NETworks
In this section the concept of VANETs was presented. According to the given description,

the positive impact that this type of networks can have in today’s society is very relevant
leading to a new set of possible applications and services. Regarding this positive impact,
many countries are already making efforts on the research and implementation of this kind
of networks.

This innovative network architecture is based on mobile nodes (vehicles) which interact
with the fixed infrastructure in order to provide a set of applications and services to their
users. A vehicular network is characterized by high mobility and typically covers a wide
geographical area. Thus, these networks represent an environment with a high potential to
provide and support content dissemination services through a significant area of interest,
using moving vehicles to carry the data under dissemination to further nodes.

Delay Tolerant Networks
In this section the concept of a DTN was presented as well as its main features and appli-

cations. It is clear that the DTN paradigm is gaining relevance and becoming an area of high
interest, due to its potential to allow the transfer of information in harsh environments, and
its ability to interconnect several network elements which, without mechanisms implemented
in DTNs, would not be able to communicate.

The main goal of this work is the development of content distribution strategies to spread
data through a vehicular network. Thus, due to the harsh conditions of this type of environ-
ment, a DTN will be used in order to assure a reliable dissemination of non-realtime data.
This approach leads to an innovation in the manner in which data is spread from a remote
content server and sent to the mobile nodes, using vehicles as data mules to transport data.

24

Chapter 3

Related Work

3.1 Chapter Description

The work developed in this Dissertation covers a considerable set of subjects and research
topics such as VDTNs, content distribution schemes, network emulators, or DTN implemen-
tations. The main goal of this work is the design and implementation of content distribution
strategies in a vehicular environment using delay-tolerant communication to carry and for-
ward data through the vehicles. Once the proposed strategies are designed, it is crucial to
evaluate their performance and behavior in a large-scale scenario, whereby it is important to
understand which are the available network simulators or emulators to perform this evalua-
tion.

Thus, this work covers several topics from different areas of research. This chapter aims
to give a sustained description of these topics along with some related work already developed
by the academia and industrial partners.

This chapter is organized as follows:

• section 3.2 - VDTNs: presents a set of applications and services that can be offered by
a VDTN along with several projects which have already implemented a VDTN.

• section 3.3 - Content Distribution Schemes: in this subsection a survey of the most
relevant protocols and schemes for content distribution in a vehicular environment is
done.

• section 3.4 - Simulation: describes a large set of mobility models and network simula-
tors used to emulate and evaluate several routing and network protocols of a vehicular
network.

• section 3.5 - Delay Tolerant Networks Implementations: describes several widespread
DTN implementations along with a solution specifically designed for a vehicular envi-
ronment by IT and Veniam R©.

• section 3.6 - Chapter Considerations: depicts the conclusions and the summary of the
full chapter.

25

3.2 Vehicular Delay Tolerant Networks

3.2.1 Evolving from DTNs and VANETs to VDTNs

As discussed before (see sections 2.2.5 and 2.2.6), vehicular environments have special
characteristics which introduce several challenges that must be taken into account in the de-
ployment of such networks. The development of protocols for such environments was discussed
by Li and Wang [29] where they identified the following major challenges and characteristics
of vehicular networks regarding this goal:

• Vehicular applications: some safety applications have high delay constraints, for exam-
ple, the announcement of an approaching emergency vehicle. For those applications, a
DTN architecture could not be suitable, precluding the use of a VDTN. On the other
hand, the concepts of a DTN can easily be used in applications regarding the dissem-
ination of non-urgent data, for example, transmitting data from sensors to a database
located in the cloud.

• High mobility and frequent disconnections: due to the mobility of the vehicles and their
high speed, the network topology is highly dynamic. In addition to that, in low traffic
density, sparse networks, or in the presence of physical obstacles (e.g. buildings), the
links could frequently be disconnected. Furthermore, the vehicle density can vary from
high, in a traffic jam, to low, in a rural area. These characteristics make the use of a
DTN architecture very attractive since it was developed to overcome those challenges.

• Geographical awareness: in the near future, all the vehicles will be equipped with a
location device (e.g. GPS) allowing the determination of its geographical location and
the prediction of further trajectories. A typical case is the public transportation which
has predictable routes. This data can be used by routing algorithms to better perform
its decisions. Furthermore, the VANET’s concept of Geocast can be used to disseminate
information only inside of the ZoR.

• Storage and computational capabilities: as the network nodes are vehicles, it can be
assumed that they have a unlimited power supply as well as high computational and
storage resources.

Thus, the use of a DTN architecture in such networks can be highly beneficial to overcome
the previous challenges, whereby the concept of VDTN emerged.

According to Pereira et al. [30], the main difference between VANETs and VDTNs is that
the former assume an existence of an end-to-end path from source to destination while the
latter does not. Accordingly, the concepts of a VDTN are more appropriate for vehicular
environments where there is a constant lack of connectivity. Particularly, the use of the SCF
mechanism could enable the communication among nodes within these networks.

In a VDTN, the nodes are the vehicles and they are able to store and carry data while there
is no available node to forward it. Wherefore, in contrast with other non-VDTNs approaches
for VANETs, the vehicles have implemented the Bundle Protocol having the ability of store,
carry, and forward information.

With the creation of the VDTN concept some researchers suggested the adoption of two
new types of nodes with the goal of increasing the delivery ratio, and decrease the delay on the
delivery: stationary relay nodes [31] and data Mobile Uniquitous LAN Extensionss (MULEs)

26

[32]. The first type considers fixed nodes mainly deployed in road intersections or isolated
regions. These devices are capable of storing information received from mobile nodes and
forwarding it to other nodes, or even provide Internet access to the VDTN. In scenarios of low
density of vehicles, these new nodes can increase the number of communication opportunities
where there is no other alternative (isolated regions) or where there are repeatedly passing
vehicles (road intersections). The data MULEs are mobile nodes which transport information
along the network. They receive information from a certain region and deliver it in a different
location. Using these nodes it is possible to enlarge the network coverage and increase the
number of communication opportunities.

3.2.2 Applications and Services

The application field of VDTNs is quite large and includes some of the following examples
[30]:

• Improving road safety by providing warning and advisory messages to the driver about
a possible eminent collision, road conditions or emergency breaks.

• Optimize traffic flow informing drivers about the traffic jams and thus preventing road
congestions.

• Sensor networks for collecting data from sensors and use this information to do statis-
tical analysis, or measure weather and road conditions, parked vehicles in a parking lot,
etc.

• Commercial applications such as tourist information, marketing data, parking space
availability, advertisements, travel, etc.

• Connectivity to remote areas such as file transfer, Internet access, e-mail, and telemedicine.

Willke et al. [33] conducted a survey of inter-vehicle communication protocols and their
applications. They divided the application in four groups as shown in Figure 3.1:

• Type 1: this group includes all the applications related to general information services.
In this class of applications, delayed or lost information does not compromise user safety
whereby DTN concepts and features can improve their quality by increasing the delivery
ratio and decreasing latency in challenging vehicular environments;

• Type 2: this group is related with services for safety purposes. These services are not
delay-tolerant because delayed information can compromises safety. So, these services
do not obtain any advantage from the use of a DTN;

• Type 3-4: these services require real-time communication and therefore have delay
constraints and are also sensitive to the loss of data. As in type 2 services, an imple-
mentation of a DTN does not improve this kind of services due to their necessity of
permanent connectivity with low delay in communication.

Several examples of these applications are illustrated in Figure 3.1.

27

Vehicle apps

Motion control
Individual regulation

· Mobile internet
· Advertising
· Queries
· Data services

· Warning messages
· Road awareness
· Condition alerts

· Front/back colision avoidance
· Runway incursion avoidance
· Adaptative cruise control

· Optimized path planning
· Rights-based traffic control

· Platooning
· Formation flying

· Aircraft flocking/swarming
· Robot wandering

Individual plaining & regulation

Leader regulation

Virtual leader regulation

Group planning

General

Safety

Type 1

Type 2

Type 3

Type 4

Information service

Figure 3.1: Inter-vehicle communication types, based on [33]

3.2.3 Vehicular Delay Tolerant Network Projects

Although the use of a DTN architecture brings the already discussed advantages and
improvements, most of the VANET’s projects do not use it. Pereira et al. [30] conducted
a survey on VDTN projects, and in the following subsections their characteristics will be
described.

3.2.3.1 KioskNet

The main goal of KioskNet [34] is to deploy a network for Internet access in rural and
developing regions. Its network is composed by a set of Kiosks, located in remote villages, and
relies on the SCF mechanism to provide Internet-based services to users in those locations.

The authors forecast the use of those Kiosks for a variety of services such as civilian
certificates, medical and agriculture services, email, web browsing, and land records. The
assumptions for a Kiosk are that it should be easily available, have a reliable Internet con-
nection, and be a low-cost solution. However, due to the intrinsic limitations of these regions
(e.g. poor electrical grid and pervasive dust) Kiosk computers often fail. Thus, KioskNet
aims to make a Kiosk more robust and still keep the costs low.

The connection to the Internet is assured using a DTN architecture where a bus, which
travels around the multiple villages, collects the data from the Kiosks and carries it to an
Internet-gateway located in the nearest town. In more detail, a user generates bundles which
are stored in a persistent storage until the arrival of the bus. When it arrives, the bundles
are transfered to the bus DTN application and they are stored in its storage. Then, when the
bus arrives in town, it delivers the bundles trough an Internet-gateway. An overview of the
process is illustrated in Figure 3.2.

28

INTERNET

Town
(Internet gateway)

Village / Kiosk

Village / Kiosk

Village / Kiosk

Mobile Access Point

Figure 3.2: KioskNet overview, based on [30,34]

3.2.3.2 DieselNet

The Diverse Outdoor Mobile Environment (DOME) [35] is a large-scale testbed imple-
mented to overcome the problems related with the simulation of mobile networks behavior.
Sometimes the simulation processes fail when giving an accurate modeling of the network in
terms of mobility, channel and radio characteristics, and power consumption. The DOME
system can be divided in three components: the DieselNet vehicular network, a set of nomadic
throwboxes, and an outdoor mesh network.

The DieselNet vehicular network provides the mobility to DOME. It is composed by more
then 40 public buses which travel across urban and rural environments within an area of 150
square miles. Each bus is equipped with an embedded computer which has multiple interfaces
such as a GPS receiver, IEEE 802.11a/b/g wireless interface, and it can operate as an Access
Point (AP) trough its IEEE 802.11g interface. Moreover, it also has a wireless 3G USB and
900MHz USB RF modems. The IEEE 802.11 AP allows bus drivers and other buses the
establishment of a session, giving them access to the Internet through 3G or radio interfaces.
The network of buses is established using the IEEE 802.11 interfaces.

A mesh network was developed to enhance a better connectivity and establish a connection
to infrastructure network (fiber optic). This network is composed by 26 Wi-Fi APs which are
mounted in strategic locations such as buildings and traffic poles, and supporting seamless
hand-offs and are managed by a central controller. The APs mounted in buildings provide
direct access to the wired network. On the other hand, the ones that are located in traffic
poles guarantee that there are never more than three hops to the wired network.

Due to the size of the testbed and variety of environments where it is deployed, DOME is
a rich tool to study issues such as routing, power management, application design and system
design for a DTN. Those are the main contributions brought by this testbed.

3.2.3.3 VDTN

Soares et al. [36] proposed a layered architecture for VDTNs within the context of the
VDTN project. Contrarily to the standard implementation of the Bundle Protocol in a
DTN [28], where the bundle layer is implemented above the transport layer of Open Systems
Interconnection (OSI) model, in the VDTN project it is placed below the network layer. The

29

authors proposed an IP-over-VDTN layered architecture (see Figure 3.3) to enable the routing
of large sized message instead of small sized IP packets which results in a lower complexity,
energy savings and lower cost, since there are less packets to route and process.

Application

Transport

Network

Data Link

Physical

OSI

Application

Bundle

Transport

Network

Data Link

Presentation

Transport

Network

Data Link

Physical

Session

Application

TCP/IP DTN

Application

Bundle

Transport

Network

Data Link

VDTN

Media

Access

Control

Media

Access

Control

Physical Physical

BSC BAD

Control

Plane

Data

Plane

Physical

Figure 3.3: IP-over-VDTN layered architecture (comparison with other protocol stacks),
based on [30,37]

As shown in Figure 3.3, the proposed architecture establishes two distinguished planes
for control and data. The logic separation is achieved using a process similar to the Optical
Burst Switching (OBS) [38]. The Bundle Aggregation and De-aggregation (BAD) layer is
responsible for the implementation of the SCF mechanism of Bundle Protocol. When a node
wants to send information, the BAD layer aggregates the incoming IP packets into bundles
to be transfered to the data plane. In the destination node, the BAD is responsible for
the inverse process, de-aggregating the received bundles. In the control plane, the Bundle
Signaling Control (BSC) provides a signaling protocol to be used at the connection setup
phase. This protocols enables the exchange of intrinsic informations of nodes (e.g. node type,
speed, storage capacity, etc.) among each other. Nodes use this data to set an agreement
for data transfer that will occur in the data plane, perform routing decisions, set security
requirements, and specify traffic prioritization, among others.

The VDTN project establishes the existence of three different nodes: terminal nodes,
mobile nodes and relay nodes. Terminal nodes can be located in remote locations and act as
APs to the VDTN, proving non-real time application to end-users. Mobiles nodes (vehicles)
transport data between terminal nodes. Relay nodes are fixed devices located in strategic
places to allow the passing mobile nodes to collect and retrieve information.

The main contribution of the VDTN project was the separation of control and data planes
showing that this approach optimizes the usage of resources (e.g. storage and bandwidth)
and save energy. In addition to that, in this project the use of stationary relay nodes, location
of nodes, geographic routing schedule dropping policies, and caching mechanisms were study
in order to achieve a greater communication efficiency.

30

3.2.3.4 Comparison among multiple projects

Pereira et al. [30] summarizes the main characteristics of the previous (and others) VDTNs
projects in Table 3.1.

Table 3.1: VDTN project’s characteristics [30]
Project Applications Protocol Stack Routing Protocol

KioskNet [34] Internet access for
rural sites

DTN standard
stack

Epidemic [39]

DieselNet [35] Internet access for
buses

DTN standard
stack

MaxProp [40],
RAPID [41], or
others

VDTN [36] Internet access for
vehicles

Bundle layer below
network layer.
Separate data and
control planes

Epidemic [39],
Spray-and-wait [42],
or others

CarTel [43] Detection of road
pavement defects

Mule adaption layer
below network layer

Static,
Epidemic [39]

EMMA [44] Pollution
measurements,
Traffic information

DTN standard
stack

Epidemic [39]

Drive-thru
Internet [45]

E-mail, Web
browsing

Session layer above
the transport layer

Through
infrastructure

CONDOR
[46]

E-mail, Web
browsing, IRC,
Voice Mail

DTN standard
stack

Static

Future-
Cities [8]

Sensory data
collection

DTN standard
stack

Static

3.2.4 Summary

VANETs face some problems due to the high mobility of their nodes, presence of buildings
and physical obstacles, which leads to an intermittent connectivity and network disruption.
The DTN concept aims to provide an end-to-end connectivity between network nodes in harsh
environments such as the vehicular one. Thus, a vehicular network which applies the SCF
mechanism of DTNs to store, carry and forward data, is called a VDTN. The introduction
of this concept expands the portfolio of applications and services of a vehicular network,
introducing new services such as content distribution of non-urgent information (e.g. videos,
adds, touristic information, etc.).

In this section several VDTN projects are presented and described. As discussed, the
number of VANET projects that already use the concept of DTN is not large, whereby
there is a need for new approaches and implementations. Thus, taking advantage of the
vehicular testbed in Oporto, composed by more than 600 vehicles, and using the Helix software
specifically created by IT and Veniam R© to provide delay-tolerant communication capability
for those vehicles, a new initiative can be addressed. The main goal is to design, implement,
and deploy a set of new services and capabilities for the transfer of non-urgent data.

31

This work aims to introduce a new type of service to this network allowing it to distribute
a non-urgent content (e.g. video, adds, etc.) located in a remote server through the network,
using vehicles to carry and forward this information.

3.3 Content Distribution

3.3.1 Introduction

The main drivers for the continuous development of VANETs were the safety applications
and services. However, in the past years, with the consolidation of several VANETs projects
(such as the DRIVE-IN and Future-Cities), new interests have emerged regarding the intro-
duction of new applications and services. The non-urgent content (e.g. videos, ads, touristic
information) dissemination can be included in this new set of services.

The concept of content distribution is an older trend and a well-established service in the
wired networks. In these types of networks several client-server schemes have been proposed
and successfully implemented. It would be normal to think on applying the same schemes in
a vehicular environment. Regarding this question, let’s take a look at the following example.
An Internet server has a specific video available for download through an AP deployed on
the road-side. Thus, when a vehicle (with communication capabilities and running the same
client-server protocol) stops in front of this AP, it can easily download the content. However,
if the vehicle passes through the AP without stopping, the majority of these client-server
protocols will not work due to the insufficient contact time. Regarding this, it is possible
to conclude that a feasible solution for a vehicular environment is a Peer-to-Peer (P2P) file
sharing mechanism, where multiple vehicles can download parts of the content through the
VANET fixed-infrastructure and exchange those pieces to other nodes in order to complete
the download [47].

As stated in Chapter 2, VANETs are a specific case of MANETs with the particular
characteristics discussed in section 2.2. A pure MANET in a vehicular environment occurs
when the vehicles are isolated from the fixed-infrastructure, being grouped into clusters.
Thus, the majority of the studies performed on this kind of network can also be applied to
the vehicular environments, whereby some of the related work present in this sub-section
refers to MANETs.

This section aims to give an overview of several content distribution schemes for a vehicular
network which can be deployed in a P2P system, using network coding to enhance their
performance, or even other strategies to achieve specific requirements as QoS. There is also a
set of key factors identified that must be addressed in a content distribution scheme design.

3.3.2 Content Distribution Schemes

3.3.2.1 Peer-to-Peer Schemes

Before describing several content dissemination schemes which are used in a P2P scheme,
it is important to define what is a P2P-MANET. According to Gerla and Lindemann [48],
a MANET is formed by several mobile nodes which self-organize themselves without using
any pre-existing infrastructure. Moreover, in a MANET, the deployed applications are not
client-server, but instead display a P2P profile. Due to the previous reasons, the networking
performed in a MANET is often called P2P networking [48].

32

The most commonly used protocol of P2P file swarming is BitTorrent [49], which splits
a file into smaller pieces. A peer discovers which pieces its neighbors have and which pieces
they are missing, and promptly exchanges them in order to complete the download. However,
BitTorrent does not work directly on wireless networks since it was designed to be used in
the Internet where link stability is not a major issue. According to Klemm et al. [50], the
maintenance of a static overlay connection constitutes the major drawback in the deployment
of a typical P2P file sharing architecture such as the BitTorrent. Thus, instead of using static
overlays, the content chunks should be exchanged between the physical neighbors. Following
this approach, several P2P schemes have been proposed, and some of them are described as
follows.

Swarming Protocol For Vehicular Ad-Hoc Wireless Networks (SPAWN)

One of those schemes is proposed by Das et al. and is called SPAWN [51,52]. This simple
cooperative strategy for content delivery uses a proximity criteria (instead of the conventional
rarity metric) for piece selection. In [51], it was shown that SPAWN performs better than the
“rarest first” criteria of Internet schemes. Figure 3.4 illustrates an example of the evolution
of a content in a vehicle using the SPAWN strategy. Thus, (1) a vehicle is in the range of the
fixed infrastructure, and (2,3) starts downloading the content, which ends when the vehicle
is out of range (4). After this, (5) it starts gossiping with its vicinity about its own storage
content and (6) exchanging chunks of the file with its neighbors, getting a larger portion of
the content.

Access Network

RSU

(5)
(6)

(4)
(3)

(1)

(2)

Content

Direction of movement

Figure 3.4: Evolution of a file in a node using SPAWN strategy, based on [51]

CarTorrent

Lee and Yap [53] proposed the CarTorrent strategy which can be considered as an exten-
sion of the SPAWN. CarTorrent is a file swarming protocol based on BitTorrent deployed for
a vehicular environment. CarTorrent is a Java application which uses Ad hoc On-demand
Distance Vector (AODV) [54] to perform the route discovery and maintenance along with
sending and receiving gossip messages and regular files. This protocol propagates gossip
packets up to k hops from the source. These packets are used to allow peers to collect in-

33

formation about piece availability and network topology. This information is used to select
the piece that a node will request next under a rarest-closest-first policy. In this policy, each
vehicle first evaluates the rarest file piece it needs and then looks for the closest node that
has it.

REceiver-based solution with video transmission DECoupled (REDEC)
Rezende et al. [55] proposed the REDEC, a receiver-based solution that conducts video

transmissions decoupled from the relay nodes’ selection mechanism. This scheme was designed
for the specific case of video streaming. However, its approach to select the relay nodes is
relevant to analyze. This strategy aims to combine the reactiveness of a receiver-based solution
and an improvement on the relay-node selection mechanism.

In REDEC, a node broadcasts a packet to its vicinity and, when the receiver nodes collect
this packet they decide if they are responsible or not for further broadcasting. In order to
minimize the size of the packets, REDEC decouples the selection of relay nodes from the
transmission of data packets. As illustrated in Figure 3.5, the network can follow one of four
states: scheduled, schedule relay, non-relay, and relay. Only the relay nodes are authorized
to broadcast the packet, and the non-relay nodes are not authorized but they are interested
in the content under dissemination. On the other hand, a schedule node or a schedule relay
node are the ones which recently received a control packet and are waiting to become a relay
node.

Only the relay nodes are able to broadcast a control packet, whereby, when a node listens
a certain amount of control packets it represents the proximity of a relay-node, and there is
no need for another one. This refined selection of relay nodes tends to minimize the network
congestion and the number of transmissions.

schedule

schedule

relay

relaynon-relay

time expires and more

than α duplicates were

received

time expires before

receiving more than

α duplicates

time expires and more

than α duplicates were

received

time expires before

receiving more than

α duplicates

receive a

beacon

receive a

beacon

Figure 3.5: Diagram of node’s state in REDEC strategy, based on [55]

Mobility-Centric Data Dissemination (MDDV)
Wu et al. [56] proposed an algorithm for data dissemination in a vehicular network that

combines pure opportunistic forwarding the trajectory-based and geographical forwarding.
This strategy is called MDDV. Even though it was developed for pure V2V communication,
the authors claim that additional V2I communication can be used for improving performance
and functionality. In MDDV the packets are forwarded through a predefined trajectory, and
the intermediate vehicles must buffer and forward the packets opportunistically, whereby the

34

MDDV imposes the nodes who can transmit and when this operation must be performed (or
not).

The MDDV aims to improve the efficiency of the delivery through the introduction of
traffic flow theory, spreading of messages about the dissemination status, and applying data
propagation analysis. The authors also proposed a refined use of the traffic flow theory in
order to improve current performance.

Roadcast
Zhang et al. [57] proposed a P2P content sharing scheme (called Roadcast) for VANETs.

This scheme aims to fulfill two main goals: (i) matching vehicles’ query, and (ii) increasing
data accessibility in the future. In order to achieve these goals, the Roadcast protocol consid-
ers the popularity factor of the data and reflects this in the queries, ensuring that the most
popular data is more likely to be shared with other nodes. Moreover, this scheme promotes
the storage of data replicas which can be shared among other nodes. Since the storage capac-
ity of the nodes is limited, a set of replacement algorithms are implemented, ensuring that
more popular content is present in a higher number of nodes.

PYRAMID
Yu and Bai [58] proposed the PYRAMID, which according to them is a “probabilistic

abstraction of contents contained in the vehicles”. They resort to a suite of probabilistic data
structures to approximate content with different granularities. This implementation aims
to answer the following questions: (i) which neighbor has the biggest contribution, and (ii)
which packet of a specific content should be transferred. In order to overcome those challenges,
two mechanisms were developed: (i) task prioritization, and (ii) content reconciliation. The
first one helps to identify the appropriate transaction partners among a set of vehicles. The
other one uses a membership test to avoid transmitting redundant contents. In order to
implement these mechanisms, a probabilistic representation of the nodes’ storage content must
be exchanged among vehicles. The authors confirmed that with the PYRAMID abstraction,
the fact that two vehicles are in range of communication and exchange coarse-granularity
sketches and fine-granularity summaries of the storage content before starting the exchange
of data packets, leads to an improvement of the efficiency of vehicular P2P systems. Moreover,
this approach has the cost of additional communication and small computational overhead.

Others
Several other works have been proposed to handle the content distribution challenge using

a P2P (pure or hybrid).
Frenkiel et al. [59] proposes the Infostation which is used to provide low-cost short-range

communications to passing vehicles. From an Infostation vehicles can download voice mes-
sages, faxes or e-mails. Yuen et al. [60] investigated the use of this concept for non-cooperative
content sharing, allowing vehicles to download a file from the Infostation and exchange it
among nodes in an opportunistic manner.

Nandan et al. [61] proposed the AdTorrent which is a content distribution application
to disseminate advertising information in a limited local area. In this scheme, digital bill-
boards with wireless capabilities are deployed along the roadside and are continuously showing
advertising contents (e.g. hotel virtual tours, movie trailers, etc.). This content is also dis-
seminated to the passing vehicles which then exchange it in a P2P scheme using a pure V2V
communication.

35

3.3.2.2 Network Coding Schemes

The main goal of a content distribution scheme is to distribute the content as fast and
as reliable as possible. According to Gkantsidis and Rodriguez [62], the issue of an efficient
content distribution scheme can be modeled using graph-theory, the network nodes being the
vertices and the edges of the graph the connections. Thus, a key question comes up: can the
optimal throughput be achieved in the process of content delivery from the server to each
one of the receivers? Ahlswede et al. [63] answers that question, showing that the theory
of network coding allows optimal throughput along with computational efficiency. When
network coding is applied, the nodes create and forward encoded information along the edge
of the graphs to their neighbors. This procedure is illustrated in Figure 3.6.

Receiver
recovers

original by
matrix

inversion

Random
mixing

Intermediate
nodes

buffer

e = [e1 e2 e3 e4] encoding vector
tells how packet was mixed
(e.g. coded packet c = §eipi,
where pi is the original packet)

Figure 3.6: Network Coding, based on [64]

In 2005, Gkantsidis and Rodriguez [62] proposed the use of this concept for large scale
content sharing in the wired Internet using a P2P system, showing that network coding
improves both speed of content distribution and system reliability. Following these studies,
the use of network coding for content distribution in VANETs is a recent field of study which
has presented very satisfying results. Several schemes and strategies which use network coding
for content dissemination are presented below.

VANETCODE

Ahmed and Kanhere [65] proposed a content distribution scheme specifically designed for
a vehicular environment called VANETCODE, which relies on the network coding concept
[62,63]. The authors propose a division of the content under dissemination into smaller blocks
which are stored in road-side gateways which act as content servers. Each server produces

36

a linear combination of the blocks using randomly selected coefficients. The result of this
operation is then shared through the nodes’ vicinity. The proposed scheme uses broadcast
communication to distribute the encoded blocks amongst one-hop neighbors. According to the
authors, by using this scheme there is no need to perform a peer or piece selection, therefore
optimizing resource usage.

Figure 3.7-(a) illustrates a scenario where this strategy is applied. There are four vehicles
(A, B, C, and D) within the communication range of the gateway, and all of them are
requesting the content. The content is divided in two blocks (B1 and B2), and each one
of them in also divided in smaller pieces B11, B12, B21, and B22. This division reduces
the number of coefficients required for encoding. After the request, the gateway randomly
encoded the pieces by combining the first elements of each block (B11 and B21) with an
encoded coefficient, C11 and C12, respectively. Similarly, it also encoded the second pieces
of each block. After that, the gateway sends the encoded block (together with the encoded
vector) to the requesting node. This procedure is repeated for all of the requesting vehicles
by using different encoded coefficients (C21, C22, C31, C32, C41, and C42).

Another scenario of application is described in Figure 3.7-(b), where all vehicles are outside
of the communication range of the gateway. In this case, the vehicles do not wait for the next
gateway and share their data blocks amongst each other. Contrarily to the P2P content
distribution which uses mechanisms for piece selection, in this scheme there is no need to
explicitly request a specific block since all of them are linearly independent, whereby any
block received from a neighbor is beneficial. This sharing procedure is similar to the one
performed by the gateway in Figure 3.7-(a) since node C peeks random coefficients and
linearly combines all of the blocks currently in its storage.

The decoding process occurs when a node captures a sufficient number of blocks with
linearly independent coefficients, since this decoding is performed by solving a set of linear
equations.

This scheme was one of the first works that showed a practical implementation of the
network coding concept for content dissemination in a vehicular environment. Because of this
fact, a detailed description of it was performed.

CodeTorrent
Also using the network coding concept, Lee et al. proposed CodeTorrent [66], which can

be considered as an extension of the work developed by Gkantsidis and Rodriguez [62] but
applied to a vehicular network. The authors designed an entirely new protocol aiming to solve
the majority of the problems caused by the use of MANETs-P2P protocols in a VANET. The
design of this strategy is based on random linear network coding and mobility assisted data
propagation as presented by Bai and Helmy in [67].

The mechanism of content distribution can be summarized as follows. A sender node,
which has a content to disseminate, initially broadcasts the content description (number of
pieces, file identification, etc.) to its vicinity. The sender node also divides the file into
smaller pieces (p1...pn) which are coded in groups (using a randomly generated encoded
vector e = [e1...en]), giving origin to coded frames (c) (c =

∑n
k=1 ekpk). The nodes exchange

coded frames instead of file pieces. Every time a node sends a new coded frame, the encoded
vector e is randomly selected from a finite field which is attached to the coded frame. This
last behavior justifies the name of random linear coding. In order to recover n file pieces,
a receiver node must collect more than n coded frames which must have encoded vectors e
linearly independent of each other. This strategy also deployed a recoding procedure in the

37

Access Network

RSU

Content

Direction of movement

B11 B12

B1 B2
B21 B22

B11 C11

+B21 C12

B12 C11

+B22 C12

B11 C21

+B21 C22

B12 C21

+B22 C22

B11 C31

+B21 C32

B12 C31

+B22 C32

B11 C41

+B21 C42

B12 C41

+B22 C42

RSU sends each node
an encoded block with

coefficient vectors

At time t1 nodes are in
range of the RSU

C11

C12

C21 C22

C31 C32

C41 C42

(a)

At time t2 nodes are not
in range of the RSU

(b)

This node encodes its
available blocks and

broadcasts it; The other
nodes get encoded the block

Figure 3.7: Encoding and distribution of contents in VANETCODE, based on [65]

intermediate nodes, which is identical to the one already described for the initial sender node.

The authors compared the proposed scheme with the CarTorrent, achieving a lower down-
load delay along with a more robust behavior in scenarios that are characterized by a high
mobility. However, they concluded that their approach does not completely solve the issues
in the VANET P2P system, but it is an easy way to overcome some of those challenges.

CodeCast

Some of the same authors that designed CodeTorrent also proposed a content distribution
scheme using the network coding concept, called CodeCast [68]. According to the authors,
this protocol is specially tailored for applications with low loss and latency constraints such
as video/audio streaming. Similarly to the CodeTorrent, CodeCast also uses random network
coding to achieve loss recovery and path diversity keeping the network overhead at low values.

The packets’ coding, recoding and decoding procedures are equal to the ones implemented
in the CodeTorrent, whereby these will not be described here. Regarding this process, the
authors made some considerations about the blocksize and gensize, which are defined as the
size (in pieces) of each file’s block and number of coded packets per block, respectively (in [68]
blocksize is equal to gensize). The authors claim that the bigger the blocksize, the greater
both the efficiency gain and the delay (since a node needs blocksize coded packets to decode
a block).

This work introduces a new concept called ranking. When an intermediate node does not
have blocksize pieces to generate a new coded packet, this node combines a lower number of
pieces to yield a coded packet and an additional field is recorded as the rank in the header
of the coded packet. Thus, a coded packet with a rank smaller than blocksize indicates that

38

the sender node is in need of more coded packets of this specific block. Once this information
is gathered, a node can send coded packets of this generation in order to solve the detected
problem.

3.3.2.3 Multi-technology Schemes

Several works of content dissemination in vehicular environments use additional communi-
cation technologies and are not focused on the IEEE 802.11p and WAVE standards discussed
in Chapter 2. This subsection aims to highlight some of the characteristics related with those
works, and make some considerations in order to understand their feasibility in non-urgent
content dissemination.

In the previously presented works, the Wi-Fi technology is recurrently presented as a
possible communication technology. However, it also introduces a set of challenges as listed
in subsection 2.2.4. Thus, the option should mostly be the use of DSRC technologies which
bring a set of advantages and enhancements when compared to the Wi-Fi technology.

The other set of technologies that are mostly used for content dissemination in vehicular
environments are the cellular technologies. Due to its high availability and considerably high
throughputs (specially with LTE), these networks have been studied as a mean to dissemi-
nate information through a vehicular network. However, the use of cellular networks brings
additional challenges and drawbacks that must be considered in the design of content dissem-
ination schemes. Gerla et al. [47] identified three main challenges. The first is the fact that
cellular networks use point-to-point dedicated channels which can be noisy and lossy leading
to problems related with the TCP window. The second one is the fact that the spectrum as-
sociated with those networks is limited and its expansion in very expensive. Finally, the most
relevant drawback is the high connection cost when compared to the WAVE technology or
even with Wi-Fi, which will lead to free-rider problems similar to the ones of BitTorrent [69].

Gerla et al. [47] proposed the use of CarTorrent and CodeTorrent considering the avail-
ability of both Wi-Fi and LTE radio interfaces. Their work is focused on real time multimedia
content download, whereby they state that the use of LTE (cellular network) brings advan-
tages when compared to a pure Wi-Fi approach. Moreover, they concluded that the ideal
deployment is a hybrid scheme which uses Wi-Fi for V2V and V2I communications along with
LTE only for V2I communication. The authors concluded that a hybrid approach should be
deployed since the reliance on only one technology is not effective. For example, the simul-
taneous download by a large number of vehicles from the same cellular tower could lead to
congestion and blocking. On the other hand, the Wi-Fi solution fails in sparse vehicular
networks and scarce APs availability. Thus, a synergy between the two technologies is highly
recommended. To overcome the challenges associated with the cellular network, the authors
proposed the use of network coding to strengthen the LTE connection, the selection of main
peers (which first download pieces directly from the cellular repeater and afterwards dissem-
inate it using a P2P system). The authors also suggested the use of reputation and locked
out the free loaders to overcome the free riding problem.

Other works have been done using multiple technologies for content dissemination, espe-
cially for multimedia and emergency applications. Atat et al. proposed a scheme for delay-
sensitive content distribution via P2P collaboration using LTE for long-range communications
and Wi-Fi for short-range communications. Also, for the distribution of delay-sensitive con-
tent, Lee et al. proposed Cooperative Video Streaming over Vehicular Networks (CVS-VN).
This scheme uses the cellular network (3G/3.5G) and DSRC to enhance a better QoS during

39

a video-stream.
Although the use of different technologies, especially the cellular ones such as UMTS or

LTE, bring additional advantages and enhance delivery throughputs, their use is not relevant
in the context of this work. The main goal of this Dissertation is the implementation of
several strategies for the dissemination of non-urgent content. Thus, the high cost associated
with those technologies does not justify their use for non-urgent content download. However,
as a future insight it is important to understand that these technologies can support the
introduction of new services and applications.

3.3.3 Critical Factors for Dissemination

Regarding the previous stated works and additional survey, it was clear that there is a set
of critical factors which directly impact a content dissemination scheme in a vehicular network
using a hybrid P2P strategy. It is considered a hybrid P2P system, since in the vehicular
environment the content dissemination scheme resorts to the fixed-infrastructure using V2I
communication along with a V2V communication through a pure P2P system. The following
main factors are identified: (i) network mobility and density, and (ii) piece and peer selection.
.

3.3.3.1 Network Mobility and Density

VANETs are a specific set of networks inside of MANETs. According to Bai and Helmy
[67], mobility is a major factor that impacts the performance of MANETs, whereby it is
possible to conclude that this impact is also relevant in the specific case of VANETs, since their
high mobility is one of their main characteristics. Bai and Helmy also claim that, although the
mobility adds several challenges, it also provides opportunities to enhance the performance
of MANETs protocols and schemes, assisting in the diffusion of information throughout the
network. Grossglauser and Tse [70] produced the first work which pointed out that mobility
can improve the network capacity, thus being a positive factor. As an example, Shah et al.
used this concept to provide a service of collection of sensory information [32]. Thus, in this
work, the network mobility is not considered a drawback, but instead will be very useful to
extend the content dissemination to other geographical areas.

According to Gerla et al. [47], a high density of vehicles favors the P2P schemes since it
promotes a higher exchange of content pieces, leading to a faster delivery. However, if this
density is too high, additional problems related to network congestion might appear.

The majority of content distribution schemes is based on broadcasting in order to achieve a
higher reachability. Since radio signals are likely to overlap with others in the neighborhood, a
straightforward broadcasting by flooding is usually very costly because it will result in serious
redundancy, contention, and collision, which is the broadcast storm problem. This problem is
particularly relevant in high density networks (e.g. parking lot of vehicles). Tseng et al. [71]
identifies this problem and proposes several schemes to address it in a MANET.

3.3.3.2 Piece and Peer Selection

According to Legout et al. [72], the piece and peer selection are two key factors in a P2P
content distribution scheme. In a P2P scheme the content under dissemination is divided
into smaller pieces that are exchanged among vehicles, these being clients and servers at the
same time, whereby they can send and receive any piece to and from any other network node

40

(peer). The piece and peer selection assumes a crucial role, whereby an efficient piece selection
strategy is mandatory to enhance a successful dissemination.

In terms of the peer selection, if the communication is performed in broadcast and all the
vehicles are able to act as relay nodes, this selection has a minor importance since every node
tends to broadcast information to all of their neighbors. However, as seen in the REDEC
work [55], an efficient peer selection could maximize service capacity of the system, along
with keeping the network resources usage as low as possible.

As seen in a large amount of P2P schemes, the rarest first algorithm is the chosen piece
selection strategy. This is the strategy employed by BitTorrent, which consists of the selection
of the rarest piece to be disseminated first. According to [73,74], the rarest first algorithm
presents a better performance than random piece selection strategies. On the other hand,
Gkantsidis and Rodriguez [62] performed a simulation study which concluded that the rarest
first policy could lead to a scarcity of certain pieces of the content under dissemination,
whereby they proposed an approach based on network coding, which has the already stated
potential advantages and enhancements.

3.3.4 Summary

This section displayed an overview of several content distribution schemes in a vehicular
environment. There are P2P schemes which only use V2V communication to distribute the
content and others that also use the fixed-infrastructure performing a V2I communication.
Moreover, several schemes which use network coding concept to enhance their performance
were also presented. The use of other types of technologies such as cellular (3G/3.5G/4G)
and Wi-Fi is also important when the content has highly restricted requirements concerning
its dissemination.

The great majority of the P2P schemes presented relies on gossiping. As stated by Gerla
et al. [47], gossiping has a large set of advantages. This concept works efficiently in vehicular
environments characterized by intermittent connectivity, and where the content is spread
hop-by-hop across the network vehicles through opportunistic contacts until it reaches the
final destination. However, this gossiping model can lead to large delivery delays, which are
only acceptable for the dissemination of non-urgent contents.

In order to overcome the previously mentioned and other challenges (e.g. peer selection
and high packet overhead), the concept of network coding was used in several content dis-
tribution schemes. As stated by Ahmed and Kanhere [65], the randomization introduced by
network coding enhances distribution efficiency. Several works have been developed in the
last years, and in the majority of the cases their performance outstrips the P2P schemes.

However, some contents require a higher QoS during this dissemination. Thus, several
works proposed the use of other technologies to accomplish those goals. The most used is
the cellular technology, especially the last generations (3G/3.5G/4G), since they have higher
throughputs and their design is focused on data communications. On the other hand, cellular
technology uses point-to-point communication channels which can lead to high congestion if
a large number of vehicles are connected to the same repeater. Moreover, the higher cost of
these cellular technologies when compared to the DSRC make them less desirable for non-
urgent content distribution scheme.

A set of key factors that must be addressed in a content distribution scheme design are
also identified. The most relevant are the network mobility and density patterns, and the
piece and peer selection.

41

3.4 Simulation

As in many other networks, vehicular network simulation is essential to develop and test
new protocols and systems before advancing into real-world deployment and experimentation.
Wherefore, according to [75,76], in order to minimize the gap between reality and simulation
and the number of experimentations, the simulation mechanisms must be as accurate as
possible.

In this section two key components of VANET simulation will be analyzed: Mobility
Models and Network Simulators. At the end, DTN and VANET simulators, specially built
for vehicular environments will be described. A more complete survey of this topic is available
in [77].

3.4.1 Mobility Models

A key characteristic of VANETs is the mobility of nodes. Therefore, an appropriate
mobility model is needed to perform an accurate simulation of these networks. According
to [78,79], vehicular mobility models can be classified as macroscopic and microscopic.

Macroscopic models describe the general properties of mobility, such as road topology,
vehicle density, speed limits, number of lanes, traffic patterns, etc. On the other hand,
microscopic models aim to give a detailed view of mobility, considering each car as a distinct
element. Thus, according to Toledo [80], the car behavior is modeled in a more detailed way
and is dependent on the state of its neighboring vehicles and the driver’s characteristics.

Traditional MANET mobility models are not suitable for VANET simulation, whereby new
mobility generation tools were developed specially for vehicular environments. These models
are inserted as input parameters in network simulators, to model the vehicles’ mobility. Below
a set of existing mobility models are presented and at the end of this section a critical analysis
of these will be made.

Simulation Urban MObility (SUMO) [81,82] is one of the most popular mobility simulators
for VANETs. It is an open-source traffic simulator which allows modeling of inter-modal
traffic systems (private and public transportation, and pedestrians). In addition to that, it
is a highly-portable solution which uses a microscopic mobility model to handle large road
networks with low processing requirements.

Development of Inter-VEhicular Reliable Telematics (DIVERT) [83] is a microscopic sim-
ulator which works with real maps. It was developed for V2V network simulation in urban
scenarios and considered two types of vehicles: sensors, vehicles with communication capa-
bilities, and vehicles, which do not have any communication feature and are just moving. It
is important to take into account vehicles which are not communicating since they introduce
challenges to communication, such as an obstruction to signal propagation.

VisSim [84] uses a microscopic model which includes car-following and pedestrian mobility
models. Moreover, it has a very powerful Graphical User Interface (GUI) which allows the
design of maps and simulation scenarios.

PARAllel MICroscopic Simulation of road traffic (PARAMICS) [85] is a scalable traffic
generator tool designed for a large variety of environments, from an isolated intersection to
a congested highway. It produces a microscopic model of the scenarios. It is used in more
than 80 countries by governmental agencies, academic researchers, commercial consultants,
and transportation companies and manufacturers.

42

VANET Mobility Simulation Environment (VanetMobiSim) [86] is based on CANU Mobil-
ity Simulation Environment (CanuMobiSim) [87] architecture . It is an open-source mobility
generator, specially designed for vehicular environments which provides a set of interesting
features for vehicular communication, such as specific speed limitation in certain roads. Fur-
thermore, it produces detailed vehicular movement traces using macroscopic and microscopic
models and allows the customization of simulation scenarios.

3.4.2 Network Simulators

There are a large set of network simulators available for a variety of purposes. In this
section the most popular network simulators are described, giving a special emphasis to the
ones suitable for VANETs or/and DTNs.

3.4.2.1 General Simulators

QualNET [88] was developed at the University of California and is maintained by Scalable
Network Technologies. It is a commercial version of GloMoSim [89,90]. It provides accurate
wireless simulation models based on Bit Error Rate (BER). Qualnet’s mobility models are
rather limited even though they provide a significant set of propagation models which include
a specific designed model for VANETs called CORNER [91]. Moreover, it has a powerful GUI
and is a scalable solution being able to simulate scenarios with thousands of nodes.

According to [92], OMNeT++ is a modular, extensible, component-based C++ simulation
platform and library, primarily for building any kind of network simulators, either computer
networks or any other. Since it is an extensible framework, specific modules can be added to
the initial framework making it suitable for a specific network, such as a VANET. OMNeT++
already has a set of additional libraries for specific networks. The MiXiM [93] is a simula-
tion framework for mobile and wireless networks which uses the OMNeT++ simulator. It
offers detailed models of propagation, interference estimation, power consumption and MAC
protocols, supporting vehicular communications.

NS-2 [94] was initially developed by United States (US) Defense Advanced Research
Projects Agency (DARPA) through the Virtual InterNetwork Testbed (VINT) project. This
simulator has been, for a long time, the elected choice for academic research. It is an open-
source solution implemented in C++ and Tool Command Language (TCL) which covers a
very large number of applications, network types and elements, protocols, and traffic models.
However, it does not have any radio propagation model suitable for VANETs communication.
Regarding this, Gukhol and Cherkaoui [17] developed an implementation of IEEE 802.11p to
NS-2 simulator. Due to its complexity the development of NS-2 was discontinued in 2010.

NS-3 [95] is an evolution of NS-2 and it recently turned into the most adopted network
simulator by the research community since its code documentation has been well organized
facilitating the use of it. NS-3 relies on C++ and Python for the implementation of new
simulation models. Moreover, TCL, which was one of the sources of complexity in NS-2, was
eliminated. In contrast to NS-2, NS-3 provides a wireless model based on BER being suitable
for wireless communication simulation. Weingartner et al. [96] conclude that NS-3 has the
overall better performance among a set of widely used network simulators.

43

3.4.2.2 VANETs simulators

As mentioned before, a variety of mobility and network simulators are available, however,
to perform an accurate simulation of a vehicular network, they need to be assembled together.
In the following paragraphs the most significant integrations of these two important pieces [14]
are introduced.

Traffic and Network Simulation Environment (TraNS) [97,98] integrates network and mo-
bility simulators (SUMO [81] and NS-2 [94]) to simulate a VANET behavior. It was the first
simulator to create a feedback loop between mobility and networks simulators. It comprises
two modes of operation: application-centric and network-centric. The application mode, the
network simulator is able to influence the mobility simulator. In the second mode, the net-
work simulator just parsed mobility logs to perform its operations. Since 2008 that TraNS is
not maintained, although it was very important in the past and established a turning-point
in VANETs simulators.

VEhicles In Network Simulation (VEINS) [99] integrates SUMO and the INET framework
[100] of OMNeT++ [92] simulator. Both components work in parallel to perform Inter-Vehicle
Communication (IVC) evaluation and communicate through the Traffic Control Interface
(TraCI) [101] allowing bidirectionally-coupled simulation of road and network traffic. VEINS
is an open-source solution which relies on a trusted vehicle mobility model and on fully-
detailed model for vehicular communications layers (IEEE 802.11p and WAVE). Furthermore,
it allows the introduction of models to modulate the shadowing effects caused by buildings as
well as by vehicles. The simulator was validated through a set of experiments using different
V2V communication protocols.

iTETRIS [102] is an European project that joins SUMO [81] and NS-3 [95]. The architec-
ture of iTETRIS is completely modular and flexible wich allows the integration of a variety
of mobility and network simulators trough open Application Programming Interfaces (APIs).
The iTETRIS Control System (iCS) is the central module responsible for the coordination
between both simulators. The applications are implemented in an external block on top of
iCS module, whereby platform users can create their applications in a “language-agnostic”
way.

National Chiao Tung University Network Simulator (NCTUns) [103] is different from the
previous simulators since it does not relies on a junction of two different simulators (mobility
and network), but it builds everything from scratch. The main goal is to create a network
simulator capable of acting as an accurate mobility simulator for vehicular environments. Ac-
cording to Wang and Li [103], NCTUns supports the simulation and emulation of a VANET
which uses the IEEE 802.11p and WAVE standards. Furthermore, it supports distinct vehicle
mobility models, road network construction, simulation and emulation of OBUs or RSUs, and
communication using a variety of protocols such as IEEE 802.11b (operating in a infrastruc-
ture or ad-hoc mode).

3.4.2.3 DTNs simulators

The routing and network protocols specially developed for DTNs need to be evaluated
whereby DTN simulators were created since the real-experiment requires the deployment of a
testbed which can be somewhat flexible, expensive, and limited. To evaluate the performance
of such protocols, the simulator needs to include node mobility in its execution. According to
[104], the source of this mobility could be (a) synthetic mobility models, and (b) obtained from

44

real-world measurements. A variety of projects have been collecting traces (nodes position,
contacts duration and time, and peers) of contacts between network nodes [105–107]. Such
information constitutes a valuable source of information for validating and improving the
characteristics of synthetic models. However, realistic data can be quite limited in number
of nodes and coverage area whereby sometimes the use of a model-based synthetic mobility
generation is more useful since it could be more flexible and scalable (see section 3.4.1).

DTNSIM [108,109] was developed by Jain et al. to compare the performance of routing
protocols in a DTN. It is a Java-based implementation working as a discrete event simulator.
In this simulator the nodes have limited storage capacity and it can create and destroy nodes
and links dynamically, temporary, or permanently. The links are modulated as attached to
nodes performing a directional communication, with a finite propagation delay and band-
width. The availability of a link can also be controlled randomly or by specifying in a file a
certain up time for a certain link.

The Opportunistic Network Environment (ONE) simulator [104,110,111] is a Java-based
simulator specifically designed for evaluating routing and application protocols in a delay-
tolerant environment. Most of the DTN simulators focus only on routing simulation. How-
ever, the ONE simulator combines a set of functionalities such as routing, mobility modeling,
notions of energy consumption, visualization and analyzing modules, and statistical reports.
The ONE simulator already has a set of default routing protocols: Direct Delivery, First Con-
tact, Spray-and-Wait (SaW) [42], Probabilistic Routing Protocol using History of Encounters
and Transitivity (PRoPHET) [112,113], Epidemic [39], and MaxProp [40]. Furthermore, it
also defines three different mobility models: random movement, map-constrained random
movement, and human behavior based movement.

3.4.3 Summary

As was seen, there is a wide range of mobility models available, all of them contemplating
different features and distinct levels of detail. Although the reviewed mobility models aim to
replicate an accurate model of the network behavior, it is always an approximated model, not
being an exact replication of it. Moreover, the more detail a mobility model encompasses, the
more processor hungry it will be, whereby it is a crucial factor on the simulation procedure.

In this work we have access to a full dataset of information which contains mobility
and network data of two 24-hour periods. Information about the vehicles’ location, speed,
direction of movement, or its neighbors are stored in those datasets. Thus, there is no need
to resort to a mobility model which would be responsible for the input of vehicle mobility to
the network simulator. The collected information is used as an input to the platforms used
to evaluate the proposed content distribution strategies in Chapter 6.

There are already a large set of network simulators available which contemplate specific
solutions for generic, delay-tolerant, and vehicular networks. Despite there being this wide
array of simulators, it was decided not to use any of these. This decision is due to the
pre-existence of a Matlab emulator created by IT and Veniam R© which emulates the upload
process of information from remote sensors to the fixed infrastucture of the vehicular network,
assuring the transport of information through the vehicles. Thus, as described in Chapter
5, this already developed emulator was subverted to emulate a content distribution scenario
where mobile nodes collect data from the fixed infrastructure and spread it out through the
vehicular network using vehicles to carry this information. Moreover, since the proposed con-
tent distribution strategies must be implemented in the Helix DTN solution, a new emulator

45

was developed, since none of the described simulators are able to exactly recreate the behavior
of this new solution. This emulator is described in Chapter 5 and several improvements and
features are added under the scope of this work.

The mobility of the previous emulators is introduced through the use of the real data
collected and stored in the previously mentioned datasets.

3.5 Delay Tolerant Networks’ Implementations

After regarding the theoretical concepts associated with vehicular networks and delay tol-
erant networks, this section presents the results of a survey on real implementations of the
Bundle Protocol [28]. The following subsections briefly introduce the implementation, out-
lines design features, and highlight some of the characteristics of each implementation relevant
to this work. First the general implementations suitable for use in the large part of DTNs are
introduced. After that, several implementations specifically developed for a vehicular envi-
ronment are presented and discussed. In this section is also described a new implementation
of a DTN for a vehicular environment that is used as the selected implementation during this
document.

3.5.1 Widespread Solutions

The Bundle Protocol was defined by Scott and Burleigh [28]. These researchers developed
their work in the Delay Tolerant Network Research Group (DTNRG), which is a research
group from the Internet Engineering Task Force (IETF). The main goal of this research
group is the study, development and implementation of architecture and protocols to operate
in challenging environments where continuous connectivity is not ensured. Within this con-
text, they developed the Bundle Protocol, which implements an overlay network allowing the
connectivity and communication in those challenging environments.

Several implementations of the Bundle Protocol were developed. The most used by the
research community are presented in the following sections.

3.5.1.1 DTN2

DTN2 [114] is the reference implementation of the Bundle Protocol proposed by the
DTNRG which provides a flexible framework for DTN experimentation and real-world de-
ployment.

The system architecture of DTN2 is illustrated in Figure 3.8. The bundle router module is
the major component of the implementation. It requires several information about the state
of the system to perform routing decisions. After the decisions are made, the router sends a
set of instructions to the forwarder which is responsible for executing the actions. As such,
DTN2 separates the control from execution which allows easy extension, modification and
replacement of the router module. The functionalities and specifications of each module are
described as follows.

The Bundle Router is responsible for making routing decisions (e.g. select a route).
It makes its decisions based on external events, which affect routing decisions, and passes
a set of instructions to the Bundle Forwarder who is responsible for the execution of
routing decisions. To execute these instructions, the forwarder interacts with the storage
and the convergence layers. Separating the bundle forwarder from the router allows the

46

Bundle

Forwarder

TCP FileUDP
Persistent Storage

...

Registration

Store

Bundle

Store

Registration

Manager

Application

IPC

Management

Interface

Contact

Manager

Bundle

Router
Fragmentation

Module

Tcl console

and Config

Convergence Layers

Figure 3.8: DTN2 system architecture, based on [114]

implementation of several routing policies, and the separation of the calculation of instructions
from their execution providing an isolation of the routing code from changes in other internal
APIs.

Convergence Layers are adapters between Bundle Protocol and underlying transport
and network layers (e.g. TCP or User Datagram Protocol (UDP)). They allow the conversion
of bundles into proper data streams capable of being transported by underlying transport
protocols from one hop to another.

Persistent Store is composed by two databases which are responsible for storing the
content of bundles during the carry phase of the SCF mechanism.

Fragmentation Module is the module responsible for the fragmentation and further
reassembling of bundles. When all the fragments of a certain bundle have been received, this
module signals the router.

Contact Manager is responsible for keeping an updated record about available links.
This information includes historic data about their connectivity and performance, and also
information about possible future contacts. After converting this information into an abstract
contact description, the router module uses it to perform routing decisions.

The DTN2 implementation provides a set of routing protocols such as PRoPHET [112,
113,115], Delay Tolerant Routing for Developing Regions (DTLSR) [116,117], flood [118],
tca-router [119], external [120] and static [121].

3.5.1.2 ION

Interplanetary Overlay Network (ION) [122] is the Bundle Protocol implementation pro-
posed by Jet Propulsion Laboratory (JPL) specially developed to operate on spacecrafts in
an inter-planetary environment. It was designed to support high-speed, small-footprint de-
ployment of DTN in embedded systems.

The design of ION is similar to a database and the persistent storage is based on the
Simple Data Record (SDR) which already exists in spacecrafts. The SDR module allows

47

storing on disk, in memory or in both. It also ensures the data integrity in case of database
failure.

The concept of shared-memory is used to design the all system architecture but also to
establish communication between sender and receiver processes. In ION, there is no discovery
of neighbors, the contacts are scheduled. In space environments the available bandwidth is
small whereby the ION system is optimized for this characteristic, supporting Compressed
Bundle Header Encoding (CBHE) [123] and Licklider Transmission Protocol (LTP) [124]. In
addition, it also implemented the Bundle Streaming Service (BSS) [125] for streaming audio
and video over a DTN.

3.5.1.3 IBR-DTN

DTN2 is the reference implementation adopted by DTNRG, but unfortunately it is not
suited for embedded systems. This fact precludes its use in networks composed by devices
which have constraints in terms of performance and energy. To fill this gap, the Institut
für Betriebssysteme und Rechnerverbund (IBR) of the Technische Universität Braunschweig
(TUB), in Germany, developed a new implementation of the Bundle Protocol called IBR-
DTN [126].

IBR-DTN was specially developed for embedded systems and runs in OpenWRT [127]
which is a Linux-based Operating System (OS) created to run on this type of hardware.
Nowadays, it runs on a variety of systems and OSs, such as Windows, Mac OS, or even
Android.

Figure 3.9 shows an architectural overview of IBR-DTN. According to [126], the imple-
mentation of IBR-DTN follows two guidelines. The first one is to minimize the external
requirements (e.g. libraries). This guideline is due to the fact that sometimes these external
dependencies are not available for certain platforms, or the disk/memory space needed for
them is prohibitive. This feature also allows the easy exportation of IBR-DTN to other plat-
forms. The second guideline was to keep the software as modularized as possible. Therefore,
the IBR-DTN was tailored to the capabilities of the used platform.

transmit

Discovery Agent

Event
Switch

Connection Manager

Base Router

HTTPCL
UDPCL
TCPCL

IPND

Epidemic

Retransmission Neighbor

get

Wall Clock

API Server

Bundle Storage

TCPCL

SQLite
Simple Static

get / store

Asynchronous Events

Figure 3.9: IBR-DTN system architecture, based on [126]

According to Schildt et al. [126], the architectural design of IBR-DTN is divided into
several modules which will be presented and discussed below.

Event Switch is the core module of the IBR-DTN implementation, and it is responsible
for dispatching raised events to all proper sub-modules. A high level of competition among

48

the modules can be achieved due to the queuing of events to a private work queue of module’s
thread. Any module (existing or new) can raise or receive an event to communicate with other
modules. The architecture allows the creation of new applications by any standard module.
The standard implementation already has events related storage, routing or neighboring.

Discovery Agent is the module responsible for the discovery of neighboring nodes. It
performs the discovery implementing the DTN IP Neighbor Discovery (IPND) version one
or two as specified in [128], and IP-discovery frames compatible with DTN2. The Discovery
Agent is the entity which implements the DTN IPND. This entity controls the appearance
and disappearance of neighbors and, when one of them occurs, it generates an event reporting
it. This event is heard by the Base Router module and, if there is any bundle for the discovered
neighbor, the node sends it.

Connection Manager is responsible for interconnecting the CLAs with IBR-DTN in-
ternal modules. As mentioned before, the lower protocols used to establish a connection
among DTN daemons are called CLAs. In the IBR-DTN architecture these elements are
implemented as modules, and each one of these modules provides an interface to transfer
(and receive) bundles to (from) other nodes. The transfer and reception processes generate
global events and, in case of reception of a new bundle, it is stored in the Bundle Storage.
The IBR-DTN has four different convergence layers:

• TCP Convergence Layer : this convergence layer is compatible with [129]. It uses a
handshake mechanism between daemons and can split bundles into segments, which are
then acknowledged by the receiving node;

• UDP Convergence Layer : this convergence layer is compatible with [130]. To fit in the
UDP requirements the size of the bundles used within this convergence layer have a
maximum size equal to the UDP datagram maximum size;

• Hyper Text Transfer Protocol (HTTP) Convergence Layer : this convergence layer is
based on libcurl [131] and can use a HTTP server to send and receive bundles;

• Low Personal Area Network (PAN) Convergence Layer : this convergence layer supports
the IEEE 802.15.4 MAC protocol [132] which is used in various WSNs.

To implement the characteristic SCF mechanism of DTNs a storage module is required,
the Bundle Storage. This module has to be able to store bundles for long periods of time.
When the routing module wants to peek a bundle to send, it queries the storage asking for a
specific bundle. Within the querying the bundle can be identified by multiple parameters as
its unique ID or its destination. The IBR-DTN offers three different types of storage:

• Memory : this is a non-persistent storage and it is chosen by default when no storage
path is defined. In this case, bundles are stored in Random Access Memory (RAM),
and the maximum possible number of bundles stored is limited by the OS;

• File based storage: this is used when a storage and path are defined. In this case,
bundles are stored persistently (e.g. in a hard disk), and remained stored even if the
device is turned off. Since the memory is no longer used to store bundles, the device
can use all the memory for system processes (e.g. routing, neighbor discovery, etc);

• SQLite: this type of storage relies on a SQLite database [133] and can be useful for
more complex routing modules.

49

Bundle Router is responsible for managing the interaction between the implemented
routing modules with the IBR-DTN standard modules (Bundle Storage, Connection Man-
ager and Discovery Agent) to perform routing decisions. It receives information about new
incoming neighbors, sent by Discovery Agent and, when a node wants to send a bundle, it
contacts the Connection Manager and request the correct CLA to tranfer the information.
IBR-DTN offers several different routing sub-modules:

• Static: all the routes and paths are configured at the beginning of execution and it is
assumed that they are always available.

• Neighbor : information is sent to all the neighbors discovered by the Discovery Agent
(at the time of decision).

• Epidemic: this sub-module implements an Epidemic Routing [39]. The major difference
introduced by the IBR-DTN implementation is the use of a BloomFilter [134] mechanism
instead of summary vectors. In addition to that, it also propagates a “purge” vector
through the network to inform the nodes which bundles can be deleted from storage.

• PRoPHET: this sub-module implements the PRoPHET routing protocol [112,113].

• Retransmission: it is responsible for signaling errors occurred during the transmission
of a bundle. When a transmission error occurs, the bundle is re-queued and remains
in storage for further retransmission. There are two types of errors, permanent and
temporary. A bundle is retransmitted only if the error is temporary.

Wall Clock establishes a global clock to be used by IBR-DTN. This module provides a
global time tick event used by Event Switch to dispatch the events in the other modules.

The IBR-DTN provides a socket-based API, the IBR-DTN API, reusing the bundle
streaming protocol. The interface can be a TCP-socket to establish communication through
different machines, or a Unix Domain Socket (UDS), to be used locally. The IBR-DTN
provides a library to be linked to applications in order to simplify the creation of bundles. As
such, all supported DTN features of the daemon are immediately ready. The implementation
does not support out-of-band messages which invalidates real-time configuration.

Such as DTN2, IBR-DTN also provides a set of applications for testing and debugging.
They are summarized in Table 3.2.

3.5.1.4 Others

There are other implementations but these are less widespread compared with the pre-
vious. For example, the POSTELLATION [135,136], JDTN [137], Bytewall [138], or DT-
Talkie [139].

3.5.1.5 Comparison of implementations

Table 3.2 summarizes the previous characteristics of the widespread implementations pre-
viously described. It was added to the table information about less used implementations
such as POSTELLATION [135,136], Bytewall [138], and DT-Talkie [139].

50

T
a
b

le
3.

2:
D

T
N

s
w

id
es

p
re

ad
so

lu
ti

on
s

co
m

p
ar

is
o
n

D
T

N
Im

p
le

m
e
n
ta

ti
o
n

O
S

P
ro

g
ra

m
m

in
g

L
a
n

g
u

a
g
e

S
e
c
u

ri
ty

S
u

p
p

o
rt

A
p

p
li
c
a
ti

o
n

s
R

o
u

ti
n

g

D
T

N
2

[1
1
4
,1

40
,1

4
1
]

L
in

u
x
,

M
ac

O
S

X
,

S
o
la

ri
s,

F
re

eB
S

D
an

d
L

in
u

x
o
n

A
R

M

C
+

+
O

p
en

S
S

l
an

d
p

ar
ti

al
su

p
p

or
t

fo
r

B
S

P
[1

42
]

d
tn

p
in

g,
d

tn
se

n
d

,
d

tn
re

cv
,

d
tn

cp
a
n
d

d
tn

cp
d

S
ta

ti
c,

E
p

id
em

ic
[3

9
],

F
lo

o
d

in
g
,

P
R

oP
H

E
T

[1
1
2,

1
13

],
D

T
L

S
R

[1
16

],
T

C
A

[1
4
3]

,
ex

te
rn

a
l

ro
u

ti
n

g
v
ia

X
M

L

IO
N

[1
2
2
,1

44
,1

4
5
]

L
in

u
x
,

M
ac

O
S

X
,

S
o
la

ri
s,

F
re

eB
S

D
,

V
x
W

or
k
s,

W
in

d
ow

n
s

an
d

u
C

li
b

c

C
(n

ot
sp

ec
ifi

ed
)

S
p

ac
e

fl
ig

h
ts

an
s

su
p

p
o
rt

fo
r

B
u

n
d

le
S

tr
ea

m
in

g
S

er
v
ic

e
[1

2
5]

C
G

R
[1

46
]

P
O

S
T

E
L

L
A

T
IO

N
[1

3
5,

13
6
]

W
in

d
ow

s,
M

a
cO

S
X

,
L

in
u

x
,

*
B

S
D

an
d

R
T

E
M

s

C
T

C
P

ov
er

T
ra

n
sp

or
t

L
ay

er
S

ec
u

ri
ty

(T
L

S
)

su
p

p
or

t

d
tn

p
in

g,
d

tn
p

on
g,

d
tn

se
n

d
,

d
tn

re
cv

,
H

T
T

P
/H

T
T

P
S

p
ro

x
y

an
d

v
id

eo
st

re
a
m

in
g

(n
o
t

sp
ec

ifi
ed

)

IB
R

-
D

T
N

[1
26

,1
4
7,

14
8
]

O
p

en
W

R
T

,
D

eb
ia

n
/
U

b
u

n
tu

,
D

eb
ia

n
A

R
M

,
M

ac
O

S
X

,
G

en
to

o
L

in
u

x
,

W
in

d
ow

s
an

d
A

n
d

ro
id

C
+

+
C

om
b

in
at

io
n

of
4

le
ve

ls
(n

on
e,

au
th

en
ti

ca
te

d
b

u
n

d
le

s,
en

cr
y
p

te
d

b
u

n
d

le
s,

si
gn

ed
b

u
n

d
le

s)
b

as
ed

on
[1

42
]

d
tn

se
n

d
,

d
tn

re
cv

,
d

tn
tr

ig
ge

r,
d

tn
p

in
g,

d
tn

tr
a
ce

p
a
th

,
d

tn
in

b
ox

,
d

tn
ou

tb
ox

a
n

d
d

tn
st

re
a
m

S
ta

ti
c,

P
R

o
P

H
E

T
[1

1
2,

1
13

],
E

p
id

em
ic

[3
9
]

a
n

d
F

lo
o
d

in
g

B
y
te

W
a
ll

a
[1

3
8
]

A
n

d
ro

id
A

n
d

ro
id

S
D

K
1.

6
S

u
p

p
or

t
fo

r
B

u
n

d
le

S
ec

u
ri

ty
P

ro
to

co
l

(B
S

P
)

d
tn

p
in

g
an

d
e-

m
a
il

S
ta

ti
c

a
n

d
P

R
oP

H
E

T

D
T

-T
al

k
ie

[1
39

]
M

ae
m

o
b

as
ed

N
o
k
ia

In
te

rn
et

T
a
b

le
t,

S
y
m

b
ia

n
,

M
ac

O
S

X
,

L
in

u
x

an
d

O
p

en
m

ok
o

S
y
m

b
ia

n
O

S
S

D
K

(n
ot

sp
ec

ifi
ed

)
P

ra
ct

ic
al

v
oi

ce
co

m
m

u
n

ic
at

io
n

F
lo

o
d

in
g

51

3.5.2 Helix

3.5.2.1 Introduction

In previous works developed in the Network Architectures and Protocols (NAP) [149]
research group several problems were identified when implementing a DTN software in a ve-
hicular environment. Tavares [150] implemented and tested two implementations: DTN2 [114]
and IBR-DTN [126] and he detected a set of problems. The author noticed that DTN2 had
a bad implementation of the PRoPHET and flood routing protocols. Furthermore, he con-
cluded that DTN2 is not robust in high mobility environments precluding its use in VANETs.
Thus, he implemented and ran a few tests successfully in IBR-DTN implementation. As a
continuation work, Guedes [151] successfully tested the IBR-DTN in a large-scale vehicu-
lar network. However, he concluded that IBR-DTN introduces unnecessary complexity for
intended applications.

Regarding this, at the end of 2014, a partnership between IT NAP [149] and Veniam R©

started the development of a new implementation of the Bundle Protocol. The new imple-
mentation, called Helix, was specially designed to operate in VANETs and its main goal is
to reduce the complexity associated with other implementations (e.g. IBR-DTN). This is a
proprietary solution , whereby only a brief explanation of its architecture and functionalities
will be given in the following subsections.

The Helix software is developed in a C/C++ programming language and was designed to
be highly modular and extensible. It supports communications using the reference standard
IEEE 802.11p and WAVE protocols, and further the conventional Wi-Fi technology, IEEE
802.11a/b/g.

3.5.2.2 Architecture

An overview of Helix architecture is described in Figure 3.10. As illustrated, it is composed
by seven modules: Neighboring, Socket, API Management, Storage, reception (RX), and
Routing. Each one of them is responsible to implement and execute a set of functions necessary
to the operation of a DTN. In order to run their functions, modules can interact with each
other through Inter-Process Communication (IPC) sockets, and a node can exchange packets
with other nodes using the UDP transport protocol.

Communication

The Socket and RX modules can be included within the communication since they work
in tandem to process incoming and outcoming packets of data or control (e.g. neighboring
messages).

The Socket module is an abstraction layer to send/receive packets to/from neighboring
nodes, and it manages the access to a UDP socket.

The RX module has an internal thread which is constantly checking if any data was
received in the UDP socket. When it occurs, the RX module analyses and classifies the
packets according to its flags (e.g. Neighbor Acknowledgment (ACK), End-to-End (E2E)
ACK, etc.), destination EID (endpoint or relay), and service ID (control or data). After this
classification, the module forwards the packets to the routing module (data packets), or to
the neighboring module (neighboring control packets).

Neighboring Discovery

52

API Header HELIX Header Payload

API Management
(UNIX Socket)

Neighboring

Socket
(UDP)

Routing
(decision)

RX

Storage

DB Tables

DB Data

UDP Header HELIX Header PayloadIP Header

UWME

Options

Options

vMajor vMinor

expiryDate

0

srcEID

dstEID

8 16 32 63

serviceID

prevEID hash

dstInfo

dataLength optionsLength

priority nNeigh flags Options (variable)

Payload (variable)

24 48

Figure 3.10: Helix architecture

Analogously to the Discovery Agent module in IBR-DTN, the Neighboring module is
responsible for the discovery of neighboring nodes. It can operate with different types of
neighboring nodes depending on the communication interface that has been used. It supports
communication through Wi-Fi, WAVE, and Ethernet interfaces. Furthermore, it defines a
new type of neighbors as Static to deal with predefined static routes between nodes. Since
it is developed for vehicular communications, the WAVE neighbors are OBUs or RSUs, the
nodes with Wi-Fi interfaces are typically sensors or endpoints, and the RSUs and servers
located in the core network are connected to an Ethernet interface or a static link.

The initialization of the Neighboring module is done by the Routing agent (at its creation).
After that, it performs a periodical search for new neighbors. Each node sends a Neighbor
Announcement packet advertising its presence. Upon receiving such packet, a node updates
its internal neighboring tables with a set of information: EID, IP address, type (e.g. RSU
or OBU), communication port, and Received Signal Strength Indicator (RSSI) - specific of
WAVE neighbors.

The developers faced a set of challenges in order to maintain updated neighboring tables

53

of multiple interfaces from different technologies in order to minimize the routing wrong
decisions. Their main goals were to minimize flooding messages in the network and the
consumption of resources (e.g. CPU), and to exploit the advantages of WAVE brought by
the WME (see section 2.2.4) such as service announcements. Thus, the selected strategy was
the creation of one class for each type of Neighboring with its own thread (see Figure 3.11).

Neighboring

WAVE WiFi Ethernet Static

Figure 3.11: Neighboring classes

A set of methods was created in each class to update the internal neighboring table or
access their information. In the WAVE class, methods were developed to register/deregister
a Provider Service (PS) for Helix, check for the communication channel, and create one if
there is none available, get network information (e.g. IP address and network mask) of
WAVE interfaces, and get information about a specific type of neighbors (e.g. only OBUs
ou RSUs) or a certain EID. In the Wi-Fi class, the methods created also allow to obtain
information about a specific neighbor or a set of them, check the network information related
with this interface, and manage the thread to send periodically Neighbor Discovery messages
in broadcast (if node is an OBU), reply to Neighbor Announcements, and update internal
tables. In the Ethernet class, methods were also created to get information about neighboring
nodes, update internal neighboring tables, and retrieve network information of this interface.
However, these methods are only applicable to RSUs and local servers. The methods in the
Static class only maintain a list of Neighbors from the configuration file (e.g. remote servers).

Persistent Storage

The Storage module is responsible for storing several packets and other information that
is relevant for the forwarding decision. The development of this module aims to fit a set of
requirements to do not compromise the performance and transfer opportunities, and minimize
the packet losses, had to be robust in order to deal with unexpected power outages, allow a
binary storage of network packets, and perform fast queries to accommodate routing decisions.

The persistent storage module is responsible for holding the data psackets and the addi-
tional information required to handle and forward them. This module is in the center of all
the activity happening around a node - it can be queried by the Routing module regarding
the existence of a packet in Storage, and if the packet is new, receive it. At the same time,
an application can push a packet to the Storage that is to be sent to another node, and the
Routing is also performing its algorithm of packet forwarding.

All this can happen concurrently, as some blocks are running their own threads and there
is no synchronism between them. Therefore, it is very important that the Storage is able to
handle all these processes in an efficient way. Every public operation is thread-safe and that
means that threads may be blocked while some other operation is occurring.

As illustrated in Figure 3.12, the Storage module contains two sub-modules: StorageDisk
and StorageRAM ; and its logical organization can be divided into two internal sub-blocks:
StorageData (contained in RAM+Disk) and StorageInfoTables (only contained in RAM).
StorageData manages the persistent storage of packets on disk, it writes/reads files to get

54

packet contents (using a file per helix packet), and uses the StorageRAM sub-module to
improve the performance of such operations. StorageInfoTables are in-memory tables with
search optimization in order to perform easy and fast queries. The tables are implemented in
the StorageRAM sub-module and four different organized tables are available: Expiry (order
by expiry time), OnHold (order by time on hold left), Own (packets which are meant for
this node and are ordered by serviceID), and NoData (table of packets known, but no data
is stored on disk, they are ordered by expiry time). Furthermore, there is another table
which organized the storage packets according to its identifier, called hash. Such tables allow
easy and fast queries such as “Next packet to expire”, “Next packet to expire for destination
EID=123”, or “Contains packet with hash=234?”, among others.

Storage

Info Data
RAMDisk

Logical

organization

Software

implementation

Figure 3.12: Storage organization

Routing
The Routing module is responsible for the decision of “which packets” should be sent

to “what neighbor” at “what time”. The major challenges at the development were related
to the maximization of the delivery of useful information to its destination and the sent
information during transfer windows, minimization of the CPU consumption, and balancing
of the load between nodes. Furthermore, it aims to minimize the replicas in the network and
the packets maintained in Storage.

Helix adopted a hybrid routing solution since it routes per Neighbor and per Packet type.
The first routing decision is based on the packet type (data or control), but the remaining
process depends on the node’s type. Thus, the following class diagram (see Figure 3.13)
was implemented. At the RX module the packet is already filtered based on its type, being
forwarded to a specific part of the Routing module. In order to send a packet a node must
check if it has any available neighbors and select one (or more) to send a packet that should
be picked from the Storage module.

Routing

WiFi endpoint Server RSU OBU

Figure 3.13: Routing classes

However, this module is still in a development phase, and only supports upload traffic flows
from sensors or endpoints to local servers. Thus, the main application already implemented
and tested in Helix is the collection of sensor data and its forwarding to the Internet for
statistical treatment.

55

API Management
A Helix node interacts with external applications trough the API Management module.

This module uses UNIX sockets Datagram Communications (connectionless) to manage data
and control messages between Helix and Helix Apps. It was defined that IPC messages should
be used to separate control from data messages.

This module has a thread to treat packets from Helix Apps through the API socket
and creates an abstraction layer to send/receive Helix Packets to/from API. Furthermore,
it manages the access of Helix Apps to Helix (registration and deregistration). It has an
auxiliary thread responsible for pulling own packets from Storage module.

A set of Helix Apps are already developed and tested such as HelixPing, HelixSend-
String/HelixRecvString, HelixSendFile/HelixInbox, and HelixMonitor/HelixCollectMonitor.

3.5.2.3 Operating Flowchart

As illustrated in Figure 3.14, Helix is a multi-thread software composed by multiple mod-
ules operating concurrently. Before the launching of these threads, the Helix is configured.
This procedure analysises the configuration file and, according to its content, defines all the
relevant parameters to run Helix as specified in this file. Along with other parameters, the
configuration file specifies the port of the socket module, storage capacity, APIs, log and
storage paths, interfaces of communication, or version of routing. All of this information is
used in the procedure of creation and initialization of all the modules (threads) created in
Helix. Thus, as the configuration file is read, the modules are created and initialized.

The creation of each object/module is associated with the launch of a new thread re-
sponsible for executing the behavior of this module as was designed. Since the moment that
each thread is initiated they work concurrently to access the shared resources of the ma-
chine/platform on which they are running. This strategy makes Helix a suitable solution for
platforms where the usage of resources is critical, such as a vehicular network.

Once all the threads are launched, the program runs until an external signal is sent. This
signal is typically executed by the developer or user through a keyboard, and is interpreted
by Helix as a command to stop all the threads and save the program context.

3.5.2.4 Packets Structure

The bundle layer is implemented above the transport layers, as suggested in the reference
specification of DTN, Request for Comments (RFC) 4838 [2]. However, the Helix implemen-
tation does not strictly follow the reference specification of the Bundle Protocol described in
RFC 5050 [28]. The main difference is related with the bundles, which in this case are called
Helix Packets. The structure of the packet is as follows (see Figure 3.10):

• HelixHeader

– Helix Version

– Service ID (e.g. Neigh Discover or Content Distribution)

– Source and Destination EIDs

– Destination information (e.g. board version and node type)

– Previous custodian EID

56

Configuration

Daemonize

Init Storage

Cleaning

Init API Management

Init Routing

Init Socket/RX

Init Neighboring

Running

[cleaning signal]

[no cleaning signal]

Figure 3.14: Helix operating flowchart

– Hash (unique identifier for a packet)

– Expiry Date (time of creation + lifetime)

– Payload Length

– Options Length

– Priority

– Current number of neighbors that received the packet

– Flags to identify the packets type (e.g. Neighbor ACK, E2E ACK, Delivered)

• Options: this is an optional field, options can be added later (e.g. list of neighbors
where the packet was received)

• Payload: array of bytes with a maximum of 32 KB (if options were added the maximum
size would decrease)

3.5.2.5 Applications

Helix was created mainly forecasting its use for two applications:

• Collect Data: Periodic Measurements from any Devices (e.g. OBUs logging/monitoring,
sensors for garbage container status, environmental sensors, etc.)

• Content Distribution: Software Updates, Commercials/Advertisements, Entertain-
ment Content (e.g. TV shows, daily news, popular videos, etc.)

57

3.5.2.6 Configuration

The Helix configuration is done using an auxiliary JavaScript Object Notation (JSON)
[152] file which is read and parsed at the beginning of the execution. Several settings are
configured in this file such as storage capacity and path, node EID, communication interfaces
name, and static routes. An example of it is written below.

"\ac{EID}": "20001",

"socket_port": "4556",

"storage_path": "/root/DTN/Storage/",

"storage_cap": "3",

"api_path": "/root/DTN/api/",

"log_path": "/root/DTN/Log",

"log_output": "2",

"log_level": "2",

"11g_ifaces": ["wlan0"],

"11p_ifaces": ["wlan1"],

"eth_ifaces": ["br-lan"],

"static_routes": [

{

"Address": "192.168.7.111",

"\ac{EID}": "20001",

"Port": "4556"

}

]

3.5.3 Summary

In this section a set of DTN implementations were presented. First the widespread so-
lutions are presented and described in order to take a brief look into the most used imple-
mentations. However, this first set of approaches is designed to be used in a wide range of
devices and platforms, whereby their use is not optimized for specific environments like a
vehicular network. In order to overcome this characteristic and tend to a specialized solution
for the implementation of a DTN in a vehicular network, IT in a partnership with Veniam R©

developed a new solution called Helix.

Helix software was specifically created to be used in the FutureCities project testbed
of Oporto city. As the main goal of this work is the implementation of several content
distribution strategies using delay-tolerant mechanisms to spread non-urgent information,
this new solution was selected to be the basis of this work. However, Helix is an initial
implementation which needs to be improved in order to enhance a successful deployment of
a content distribution service. Chapter 5 describes these improvements and modifications.

3.6 Chapter Considerations

In this chapter a considerable amount of previous and relevant work is presented and
discussed. The following topics summarize the described related work as well as identify a
set of key issues that are still not addressed and are overcome in this Dissertation.

58

Vehicular Delay Tolerant Networks
The VDTNs aim to overcome the intermittent connectivity and network disruption in

a VANET through the implementation of delay-tolerant mechanisms. VDTNs bring the
possibility of using V2V and V2I communications to bring a new set of applications, such
as media and traffic information dissemination, along with the possibility of using a vehicle
to collect information about the environment around it and disseminate that information
through the network.

In this section several VDTN projects were presented and described. However, there is a
lack of VDTNs projects in order to study and better understand the challenges and advantages
brought by this kind of networks. Thus, as a large vehicular network is available under the
scope of this Dissertation along with an already developed DTN solution for VANETs, this
work aims to design and implement a content distribution scheme of non-urgent information
using delay-tolerant mechanisms to run over this network. As shown in Chapter 6 this work
correctly implemented a content distribution scheme to be used in the FutureCities project
testbed, allowing the introduction of this new kind of services.

Content Distribution
In this chapter several content distribution schemes were presented. They were divided

into three main groups: P2P, coding, and the ones that use multiple technologies.
Most of the P2P schemes use the gossiping of control messages to handle the peer and

piece selection. They use this gossiping to advertise which pieces of the file they want to
download. However, this work proposes a different approach. Instead of advertising the
wanted pieces, the nodes periodically advertise their storage content. This approach gives
the sender node the responsibility of evaluating which are the most lacking pieces within its
vicinity. This change aims to speed up the initial content distribution since smaller messages
are exchanged at the beginning of the process, allowing for a faster evaluation of the next
packet to be sent. This approach is applied in the Local Rarest Bundle First (LRBF) and
Local Rarest Generation First (LRGF) strategies (described in Chapter 4).

Network coding proposes to overcome several challenges related with a pure P2P scheme.
The majority of the proposed schemes rely on random linear network coding in order to over-
come the peer and piece selection challenge. However, the CodeCast proposed an approach
which uses a new parameter called rank. This parameter allows the sender node to evaluate
which are the most lacking generations within its vicinity, and select the packets to send
according to them. Thus, during this work a similar approach is used when the LRGF is
applied.

The network mobility and density were identified as critical factors for disseminating con-
tent. Although the mobility in a network could lead to the link’s disruption and intermittent
connectivity, it can be also an advantage since it increases the coverage area to the content be
disseminated. Moreover, the intermittent connectivity can be overcome using delay tolerant
mechanisms, as proposed during this work. A detailed analysis of the mobility and density
impacts in the real network used for this work is performed in Chapter 6.

Simulation
Due to the logistics involved in real-world experimentation and similarly to other kinds of

networks, VANET simulation is a crucial point in the initial design thinking of new features.
Therefore, the simulation procedure must be as accurate as possible to minimize the gap

59

between reality and simulation, which is crucial for an easier real deployment of these features.
Several mobility models and network simulators were described in this chapter.

Regarding the mobility models, due to the availability of a robust dataset containing log-
ging information about the network nodes’ location, movement, and vicinity, there is no need
to use an already deployed model. The collected data will be used to introduce the mobil-
ity of the network in the platforms used for evaluation of the proposed content distribution
strategies in Chapter 6.

In terms of the network simulators, the need for their use in the evaluation of the pro-
posed content distribution strategies in a large-scale manner was clear. Thus, and given the
existence of a dataset with all the information needed to input mobility in the emulation
process, two new emulators are used as described in Chapter 5. This first one is a Matlab
emulator developed to easily design and evaluate content distribution strategies. The other
one is specific for developing and evaluating new features and services in the Helix software in
a large-scale manner. Thus, this is used to implement and test the proposed content distribu-
tion strategies as described in Chapters 5 and 6. Both emulators used mobility information
collected in two 24-hour periods (as previously mentioned) as input.

Delay Tolerant Networks Implementations
Several DTN implementations were presented and discussed in this section. After analyz-

ing the widespread DTN implementations, it was concluded that they are not targeted for
vehicular environments. Thus, a new DTN implementation developed by IT and Veniam R©

was presented as a solution for a vehicular network capable of using delay-tolerant mechanisms
in order to exchange data among nodes.

Regarding the implementation of several content distribution strategies in a vehicular
network, the Helix software will be used in this work as the basis DTN implementation where
a new service will be implemented. This service is the content distribution of non-urgent
data from remote servers to the mobile nodes using the fixed infrastructure and the vehicular
network itself to carry and forward the information. In order to do so, several improvements
and modifications are performed in the Helix software as described in Chapter 5.

60

Chapter 4

Content Distribution Schemes

4.1 Chapter Description

After the description of the fundamental concepts addressed in this Dissertation and along
with a description of related work performed in these research areas, it is important to clarify
what is the proposed solution in order to achieve an efficient content distribution process.
Thus, in this chapter the problem to be addressed is explained along with several strategies to
distribute content, whilst maximizing its delivery and consuming the fewest network resources
possible. These strategies are defined in accordance with the previous revision of literature.

This chapter is organized as follows:

• section 4.2 - Problem Statement : describes the main problem that this work aims to
address, which is the design of several content distribution schemes to be implemented
in a vehicular network.

• section 4.3 - Strategies to Stateless Choose Information: describes how the selection
of data to be broadcast by a vehicle is made and presents four different approaches to
perform that decision.

• section 4.4 - Strategies to Disseminate Information: describes a set of strategies and
techniques used to establish a balance between high delivery rates and low medium
congestion.

• section 4.5 - Chapter Considerations: depicts the conclusions and the summary of the
full chapter.

4.2 Problem Statement

A cooperation between the Universities of Aveiro and Porto and a spin-off of both, Veniam,
lead to the implementation of the largest – on a global level – vehicular communication
platform. This platform comprises more than 600 vehicles (taxis and buses) and fixed stations
and is located in Oporto city. This platform has been mainly used for two kinds of services:
(i) Internet access for the users of Sociedade de Transportes Coletivos do Porto (STCP) buses
and (ii) transportation of sensory information from its source to the core of the network where
it can be analyzed.

61

So, there is a need for the introduction of new kinds of services in order to increase the
array of applications and functionalities of this platform. It is within this context that this
dissertation studies and implements strategies that support the dissemination of non-urgent
information to be used on this vehicular platform.

As previously mentioned (see Chapter 2), vehicular networks have certain particularities
when compared with other types of networks due to the constant mobility of the nodes
that comprise the network and their wide geographical dispersion. These challenges lead to
an intermittent connectivity along with frequent network disruption, hindering the reliable
communication and exchange of data among nodes. In order to overcome these challenges,
and bearing in mind the transportation of non-urgent information, a DTN software called
Helix was specially created to be implemented in the FutureCities project’s vehicular network.
The implementation of this software widens the array of applications and services that can be
provided by the network. These services and applications should be focused on the transfer of
non-urgent information such as sensory data, advertisement contents, videos (non-real-time),
or tourism-related information.

Even though Helix was fully functional, in this initial phase it was mostly focused on the
basic structure of an architecture that supported delay-tolerant communications in a vehicular
environment. The work that has been developed up to today only allows for a limited array
of services that are mainly focused on the transmission of sensory information to the fixed
infrastructure using vehicles as data mules. However, the information is not carried in a multi-
hop manner. As such, the information flow starts at the sensor that transfers information
to an OBU that will transport it until it finds an RSU. As such, it is possible to conclude
that at this time Helix does not have a reliable service implemented for downloading existing
information on the fixed infrastructure and transporting it by multi-hop (through several
OBUs) on a vehicular network. It is only able to collect data from passing vehicles directly
to the network fixed infrastructure.

These constraints are mainly caused by the early stage of development of the Helix routing
module. This module is responsible for deciding which packets should be sent or stored, to
whom the data is to be transferred, and in which conditions the information should be sent,
among other responsibilities. This module is an important part for the introduction of any
kind of new service regarding the spreading or sharing of information between the network
nodes, such as the content distribution service. As such, the optimization and evolution of the
routing module is imperative to create the necessary conditions for the introduction of these
services. Moreover, other modifications and implementations must be performed in order to
introduce those kinds of services.

As already shown in Chapter 1, Figure 4.1 represents the envisioned scenario of this work.
This figure illustrates a dissemination process in which the content is located on remote
content servers located in the fixed infrastructure, and must be downloaded by all of the
network vehicles. The process of carrying, storing, and forwarding the data packets is the
responsibility of the vehicles which spread it along the network using broadcast communication
in order to reach the highest delivery rate as possible. The permanent availability of the
content is assured by the RSUs which are directly connected to those remote servers which
have the content under dissemination stored.

A content dissemination strategy aims to achieve the highest delivery rate as possible,
reaching a large number of vehicles, as well as minimizing network resources consumption
during the period in which the content is being disseminated. Therefore, a strategy to im-
plement this kind of service must be carefully designed and implemented in order to achieve

62

Figure 4.1: Content distribution to-be scenario (illustrative)

such objectives. These goals are addressed when the sender nodes (fixed and mobile) are
performing the routing decision. The sender nodes must be able to decide the information to
be broadcasted, to what kind of nodes, the time at which it should be sent, the goal of such
content, along any other important parameter or characteristic associated with the content
under dissemination and the network. Thus, any strategy that aims to implement a content
distribution service must address all the previous goals and key factor decisions in order to
be correctly deployed.

Within this context, this dissertation aims to deploy a non-urgent content dissemination
service (e.g. advertisements, videos, and tourism-related information) distributing contents
from remote servers to the network vehicles using delay-tolerant communications. As such,
this study focused on two issues: (i) which is the strategy to use in order to select the packets
to be sent by broadcast – main focus of the study – and (ii) how to minimize the impact
of broadcasting on network congestion and take advantage of mobility profiles in order to
optimize delivery.

4.3 Strategies to Stateless Choose Information

This section discusses and describes how the selection of data to be broadcast by a vehicle is
made, presenting a set of suitable approaches in order to select the right data to be broadcast.

As previously discussed in section 3.3, a key factor to achieve a high delivery rate is
directly related with the process of selecting the right information to be sent. The sender
node, and owner of at least a piece of the content under dissemination, must evaluate which
is the best packet to be broadcast to its vicinity. However, this is not an easy decision since
the sender node needs to know what packets should be sent, when and if it is necessary to
send data. When the vehicular network is used to transport and spread the information in

63

broadcast, this factor presents an even greater relevance, since the selection must take into
account what is important for the majority of the sender node’s vicinity and not only for a
specific neighbor node.

Regarding the previous selection and decision challenge, and as discussed in section 3.3,
several strategies could be implemented. Some of them can be completely stateless, not
introducing additional information in the network in order to select the packets. On the other
hand, other strategies resort to additional control data to perform this decision. Typically, this
control data tends to be in the form of additional fields in the data packet header providing
metadata to help in the sending decision. In a more costly way, additional control packets
can be used to spread meta information through the network. As an example, these kinds of
packets can carry information about the content of a node’s storage, or spread a request for
a specific packet or content.

In order to overcome those challenges and as accurately as possible select the data to be
broadcast, four strategies have been proposed:

1. Random.

2. Least Number of Hops First (LNHF).

3. LRBF.

4. LRGF.

These strategies are designed assuming that information to be disseminated is stored on
an Internet server and is delivered to the VANETs through RSUs, which in turn will be sent
to OBUs (vehicles), and then OBUs spread the content through the network.

4.3.1 Random

The first proposed strategy does not require any knowledge about how the content has
been disseminated along the network. In order to perform the forwarding decision, the sender
node does not know anything about the storage content of its neighbors, or even about its own
stored packets. The decision is purely random, which means that the sender node randomly
selects packets from its storage and forwards them in broadcast. If any other additional
technique or restriction is applied, the sending of information is opportunistic, whereby every
time that a node contacts with other nodes it sends randomly selected packets from its storage.

Figure 4.2 illustrates an example of this strategy. The vehicle S randomly selects a packet
from its storage to send in broadcast to its vicinity composed by vehicles A, B, and C. Since
it only has the packets number 1, 2, 3, and 5, it broadcasts these packets in a random order
until there is at least one valid contact. As illustrated, the sender vehicle does not need to
know any information about its neighbors’ storage content in order to select the packets to
be sent.

One of the problems regarding the lack of knowledge about neighbors’ storage content
is the sending of packets that they already have. On the other hand, this strategy does not
introduce any overhead to perform the forwarding decision since it does not use any additional
information to perform the routing decision.

The main goal of this strategy is to study the behavior of an approach where no additional
information is used. As such, all the decisions are performed according to the already existent
data. Through this evaluation it will be possible to establish this strategy as a baseline of
comparison with the enhanced strategies further proposed.

64

? ? ? ? ? ? ? ? ? ?? ? ? ? ?

1 2 3 4 5

3

1

5

Bundle ID

Storage

Packets

to send

2

first

..
.

last

Receivers

broadcast
transmission

B CA

S

Figure 4.2: Forwarding decision of random strategy - example

4.3.2 Least Number of Hops First (LNHF)

The previous strategy does not require any type of intelligence to perform the forwarding
decision. Thus, the next step was to introduce a strategy based on one of two specific
characteristics of a packet: (i) number of transmissions, and (ii) number of hops. Moreover,
the forwarding decision is performed in a different way according to the type of sender node
(OBU or RSU).

The SCF mechanism is the basic concept of spreading a non-urgent content in the network
using vehicles as data mules. When a node receives a useful data packet (it is from the content
under dissemination and the receiver node does not have it yet), it stores it and carries this
data packet until it contacts with other vehicles. When this happens, a copy of the packet
is created and sent (in broadcast) to the node’s vicinity. When the neighbors receive the
packet, they update its internal information about the number of hops this packet already
has. Therefore, the content dissemination procedure is based on a multi-hop transfer of data
among the network vehicles, whereby the number of hops of a packet is directly related to the
number of nodes which already have a specific packet. This parameter can be easily used by
an OBU to decide which packet should be sent, without introducing a high network overhead
(a couple of extra bytes in the data packet header should be enough to implement it).

Another important factor is the number of transmissions of a packet. As mentioned
before, in a content dissemination process the sender node forwards a copy of its locally
stored data, whereby it can count how many times it creates a copy of the same data packet
to be forwarded to its neighbors. The higher the number of copies (or transmissions), the
higher is the probability of this packet already being stored by other nodes when compared
to other packets which have a lower number of copies. Regarding this consideration, this
parameter can be used as a metric in a content dissemination strategy in order to perform
the decision of which packet should be sent. Considering the specific case of the vehicular
network fixed infrastructure, the RSUs, this could be an important factor since the other
mentioned parameter (number of hops) cannot be used because the number of hops in an
RSU is always equal to zero (considering that the connection between the Internet server and
the RSU does not increase the number of hops).

As mentioned before, regarding the addition of these two parameters in the data packet

65

header (number of hops and number of transmissions), a new strategy is proposed that selects
the packet to be sent according to the number of hops (if the sender node is an OBU), or
according to the number of transmissions (if the sender node is an RSU).

Regarding the conceptual implementation of this strategy, it is clear that the sender nodes
must have internal structures to allow a fast selection of the packet to be sent. This is achieved
through the mapping between the packet ID and one of the mentioned parameters (number
of hops or number of transmissions). On the other hand, these auxiliary structures must be
different according to the node type since the selection decision is different between an RSU
and an OBU. An example of these internal structures is illustrated in Figure 4.3 where it
is clear that the first packet selected by an RSU must be the packet A since it has a lower
number of transmission. On the other hand, the OBU would select the packet C because it
has a lower number of hops.

First to
Peak

PacketID

C

B

nhops

1

3

A 2

First to
Peak

PacketID

A

C

ntx

1

3

B 2

(b)(a)

Figure 4.3: Internal stractures of LNHF strategy in an (a) RSU and (b) an OBU - conceptual

Figure 4.4 summarizes the previously described procedures of transmission and reception
when this strategy is applied. Thus, when a node has at least one valid neighbor (this is an
opportunistic strategy), if it is an OBU it will check the internal structure which maps the
packet ID according to its number of hops, and selects the first one. On the other hand, if it
is an RSU, the packet with less transmissions is selected. Once the packet is evaluated, its
number of transmissions is incremented and it is sent in broadcast. Since one of the sorting
factors changed, the internal structure must be re-sorted before the end of the process. From
the receiver’s point of view, if the node already has this specific packet, it checks the number
of hops recorded for this packet in its internal structure. If the received number of hops is
greater than the one currently stored, the higher value is assumed and the internal structure
is updated. However, if the receiver node does not have the packet, it increments the number
of hops field in the actual packet along with an update in its internal structures. Once again,
given that one of the sorting factors changed, the internal structure must be rearranged.

Figure 4.5 illustrates an example of the forwarding decision of this strategy. The sender
node does not have any information about its neighbors’ storage content. Therefore, if the
sender node is an RSU (Figure 4.5-(a)), the packets are selected according to the number of
previous transmissions, and the packets with a lower number of transmissions are forwarded
first, whereby packet number 1 is sent first. On the other hand, if the sender is an OBU, the
criteria is the number of previous hops. Thus, as illustrated in Figure 4.5-(b), the first packet
being sent by node S is the number 5, since it is the one with less number of hops, followed
by 1, 3, and 2. When a node receives a certain packet that already was stored, it updates the
number of hops if the received packet has a higher number of hops than the currently stored
one.

Contrarily to the first one, this strategy requires the addition of two new fields to store
the number of hops and number of transmissions. Due to this, an increase in the network

66

Sender Receiver

[is an OBU]

Select packet to sent
(with less hops)

Select packet to sent
(with less tx)

[is an RSU]

Increment number of tx

Send packet

Sort internal sructure

Increment number of
hops of the packet

Store packet

Sort internal structure

[does not have
the packet]

[has the packet]

[number of hops field
is greater than the
stored one]

Update number of hops
in the internal structure

[else]

Figure 4.4: Procedures for sending and receiving of data packets in the LNHF strategy -
conceptual

1 2 3 4 5

3

1

5

Bundle ID
Storage

Packets
to send

2

first

...

last

2 5 3 1Number of hops

? ? ? ? ?? ? ? ? ?

1 2 3 4 5

2

4

1

Bundle ID
Storage

Packets
to send

5

first

...

last

Receivers

2 4 3 5Number of tx

(a) (b)

? ? ? ? ?? ? ? ? ?
Receivers

broadcast
transmission

broadcast
transmission

BA

S

BA

S

Figure 4.5: Forwarding decision of LNHF strategy in a (a) RSU and (b) an OBU - example

67

overhead is expected.

4.3.3 Local Rarest Bundle First (LRBF)

As mentioned in the beginning of this chapter, a major challenge associated with a content
dissemination strategy is the decision of selecting which packet should be sent in order to
achieve the highest delivery rate possible. The first two proposed strategies aim to perform
this selection using as minimum control data as possible in order to not increase the network
overhead. However, in this strategy a quite different approach is proposed, which focuses on
the sender node’s vicinity storage content.

The ideal situation would be the one where the sender node has exact knowledge of
the storage content of its vicinity. Moreover, as the communication is broadcast, the ideal
situation would be one where the sender node exactly knows which is the most lacking content
in its vicinity. The implementation of a strategy that covers and achieves this ideal situation
tends to be very costly in terms of network resource consumption and can increase the network
overhead since the introduction of new control packets to spread the state information through
the network would be necessary. Although the implementation could lead to the previous
drawbacks, the potential advantages introduced by this kind of strategy justifies its design,
development, and evaluation for the challenge that this work is proposing to overcome.

The design of this strategy is based on a P2P communication which uses a local rarest
packet first policy similar to the rarest piece first download policy in torrent schemes: the least
available packet (measured in terms of the number of neighboring nodes having the packet) is
selected. Thus, each sender node needs to be aware of its vicinity storage content in order to
select the least available packet. In order to perform this decision several modifications and
new features need to be added. The following topics aim to address these new features and
how these could be implemented in a real vehicular network.

The conceptual design of this strategy is illustrated in Figure 4.6. This figure aims to
represent the As-Is and the To-Be situations. The first one represents a situation where the
sender node does not know which packets should be sent since it does not have any content
distribution strategy implemented. As an evolution of this scenario and a way to implement
the proposed strategy, the nodes A and B can periodically send a control packet advertising
their storage content. In an ideal situation, the sender node knows the exact content of its
neighbors’ storage. Regarding the example illustrated, vehicle A advertises that within its
storage it has the packets 1, 2 and 4 from a specific content, and node B advertises that it
has packets 1 and 4. Through these advertisements, in the to-be scenario, the initial sender
node (S) gets to know which are the packets that it needs to broadcast in order to send the
most useful information for its neighbors. Thus, given that the most lacking packets are the
packets 3 and 5, these are first ones to be broadcast by node S, followed by packets 2 and 4,
respectively. In order to perform this sending decision as fast as possible, the node needs to
have an auxiliary internal structure to map the stored packets in node S with the number of
neighbors that have those packets. As a footnote, and given the previously discussed LNHF
strategy, when two packets are equally lacking in the sender node’s vicinity, the tiebreaking
criteria could be the number of hops (in an OBU), or the number of packets transmission (in
an RSU).

From the conceptual point of view illustrated in Figure 4.6, it is possible to understand
the necessity to create a set of auxiliary internal structures. The sender node must have
an internal structure (such as a table) where it maps its own packets with the information

68

1 2 3 4 51 2 3 4 5

1 2 3 4 5

?

?

?

Packets to send

?

first
..
.

last
broadcast

transmission

BA

S

1 2 3 4 5

broadcast
transmission

BA

S

1 2 3 4 51 2 3 4 5 1 2 3 4 51 2 3 4 5

1 2 3 4 5

2

5

3

4

first

..
.

last
broadcast

transmission

BA

S

1 0 2 0

Packets to send

Vicinity info? ? ? ? Vicinity info? ? ? ? Vicinity info

(c)(b)(a)

Packet ID Packet ID Packet ID

Figure 4.6: LRBF strategy (a) As-Is, (b) intermediate, and (c) To-Be scenarios

collected from the network advertisements. This table or list must be sorted in order to
facilitate the sending decision, since the sender node only looks to the first position of such
table, picks the packet and broadcasts it. However, the information contained in this table
cannot be perpetual, whereby it must have a validation period, otherwise the sender node
could be using dated information to perform the forwarding decision. The decision is directly
related to the need to send the most lacking packets. Moreover, it has to be a compromise
between the refreshing time of those structures and the sending of packets, to maximize the
number of correct decisions and to keep the node’s resources consumption as low as possible.

Once the conceptual point of view of this strategy is explained and structured, it is
important to address the following question: how can the internal structures be updated in
order to perform the forwarding decision in a high mobility and mesh network? As suggested
by Figure 4.6-(b), the answer could be the use of additional control packets which advertise
the storage content of each node. These packets must have a set of fields in order to identify
the node, its contents, and the pieces of each content that it has (see an example in Figure 4.7).
Although this kind of information is essential, it is important to keep in mind that it has a
cost, the bigger the content (or contents) under dissemination, the bigger the advertisement
packet, leading to a potential network overhead increase. Another relevant factor is the
periodicity of these advertisement packets. The higher the frequency, the more accurate the
forwarding decision tends to be and the higher the delivery rate, since the sender node has
more accurate information. However, this pace cannot be too fast in order to keep the network
overhead in moderate value. In order to spread the state information through the maximum
number of vehicles as possible, these messages are broadcast by each vehicle. Moreover, the
internal structures can also be updated through the analysis of the received packets. Thus,
when a vehicle receives a data packet from another node, it gets to know that the sender node
already has a certain packet, whereby it can upload its internal structures to reflect this new
information.

Number

of Files
File ID

Total

Packets

Packets

Stored

Hash

#1

Hash

#N1

...

File #1

... File ID
Total

Packets

Packets

Stored

Hash

#1

Hash

#N2

...

File #M...

Figure 4.7: LRBF strategy advertisement packet structure - example

69

Figure 4.8 illustrates the procedure to send an advertisement packet and how a node
interprets a received one, when only a single file is under dissemination. Thus, in order to
send an advertisement packet, the sender node must first collect information about its own
storage in order to gather data about contents under disseminations: file identifier(s), packets
stored of each file (number and identifiers), along with other future relevant information.
Once this set of information is collected, the advertisement packet can be constructed and
sent in broadcast to the node’s vicinity. When a node receives an advertisement packet, first
of all it needs to identify the source node since this information is crucial to correctly update
its internal structures. The advertisement could carry information about several contents
under dissemination, whereby the receiver node must identify each one of them and which
packets the sender node has of each content. Once this information is collected, the receiver
node can update the internal structures responsible for keeping a state of which is the most
lacking packet in a node’s vicinity. As the sorting criteria of the internal structure responsible
for retrieving the first packet to be picked from storage may have been changed, this structure
must be re-sorted.

Sender Receiver

[is an OBU]

[is an RSU] Identify the source node

Identify the file ID

Sort internal structure

Update the internal
structures

Collect Storage Info
(file ID, no of pieces, ...)

Make packet

Send packet

Collect number and ID
of pieces

Remark: assuming a s ingle
fi le under dissemination

Figure 4.8: Procedures for sending and receiving of advertisement packets in the LRBF
strategy - conceptual

Another important procedure is the refreshment of the internal structures. As mentioned
before, the auxiliary structures are built using information from advertisement packets and
received data packets. This information is directly related to its vicinity, whereby, due to the
high network mobility, they are not continuously valid. Thus, a refreshment procedure must
occur to remove the dated information which could lead to inaccurate forwarding decisions.
Each entry of information must have a timestamp attached to facilitate the refreshment
procedure. As an example, when a node receives an advertisement packet announcing that
node X has the packet number 1 of file A, a timestamp must be attached or the previous one

70

must be replaced in the internal structure responsible for counting the number of neighbors
that have the same packet. Each entry that exceeds a specified valid time period must
be deleted and the internal structures must be re-sorted. This mechanism enables a more
accurate and correct forwarding decision.

Figure 4.9 summarizes the previously described procedures of transmission and reception
when this strategy is applied. Thus, when a node has at least one valid neighbor, which
according to the sender node’s internal structures needs at least one packet that the sender
node has, the transmission will occur. The sender node will check the internal structure which
maps the packet ID according to the most lacking packet, and selects the first one. Once the
packet is evaluated, its number of transmissions is incremented and sent in broadcast. Since
one of the sorting factors changed, the internal structure must be re-sorted before the end of
the process.

From the receiver’s point of view, if the node already has this specific packet, the corre-
sponding entry in the internal structure responsible for controlling how many neighbors this
specific packet has, is updated. However, if the receiver node does not have the packet, it
creates a new entry in the internal structure and stores the packet. Once again, as one of the
sorting factors changed, the internal structure must be rearranged.

Sender Receiver

Select packet to sent
(most lacking bundle)

Increment number of tx

Send packet

Sort internal sructure

Insert packet in the
internal structure

Store packet

Sort internal structure

[does not have
the packet]

[has the packet]

Update entry associated
with this packet in the

internal structure

Figure 4.9: Procedures for sending and receiving of data packets in the LRBF strategy -
conceptual

Contrarily to the LNHF strategy, in this approach the transmission of information is
not fully-opportunistic since the nodes are not sending data every time a valid contact is
established. The LRBF strategy should implement a mechanism that saves resources in
order to minimize the number of transmission conducing to lower network congestion. The
optimization of the forwarding decision (when should a node send information) is associated
with its vicinity. If at least one neighbor needs a packet that the sender node has, it must
broadcast this packet. If not, the sender nodes must stop the dissemination process.

71

Thus, at the beginning of the dissemination process, only RSUs are authorized to send
advertisement packets and any node can send data packets. Figure 4.10-(a) illustrates the
procedure to enable the broadcast of data packets. Node A, which is able to send adver-
tisement packets (that at the beginning can only be RSUs but after a time, also OBUs),
periodically sends these announcing its storage content. When an OBU which does not have
any content yet receives this advertisement (node B), it gets to know that there is content
under dissemination, whereby it updates the internal structures and starts broadcasting ad-
vertisement packets. When node A receives this announcement, it understands that there
is at least one neighbor which does not have any data associated with the content under
dissemination. Moreover, if the advertisement reports incomplete content and the receiver
node has data that is useful to the advertiser (data that it does not have), it spreads useful
data packets in broadcast.

The opposite situation is described in Figure 4.10-(b). A node should end the process of
dissemination if the current neighbors have completed the download of the content or when
it does not have any neighbors. Thus, when one (or both) of these conditions are met, the
refreshment procedure occurs in order to clean all the dated information from the internal
structure. If, at the end of this process the internal structure is empty, the node ends the
dissemination of data packets, stopping the content dissemination procedure.

I have this content [adv]

I do not have nothing [adv]

B starts broadcasting
of advert isements

I am sending this... [data]

RSU or OBU OBU

long period
without neighbors
or if all neighbors
have the content

refresh of internal
structure

internal structure
is empty

stop broadcasting
of data packets

node is broadcasting
data packets

RSU or OBU

(a) (b)

if content of B is
incompleted

and A has useful data

A starts broadcasting
data packets

A B
A is broadcast ing
advertisements

A B

A B

Figure 4.10: (a) start and (b) end of dissemination in the LRBF strategy

Figure 4.11 illustrates an example of a forwarding decision following this strategy assuming
that all of the advertisement process has occurred immediately before. The packets number
2 and 3 are lacking in all the neighbors whereby these are the first packets to be sent by node
S. After these, packet number 5 is sent since it is lacking in two neighbors (nodes B and C).
Finally, packet number 4 is sent since it is lacking in one neighbor (node A). Although packet
number 1 is lacking also in one single neighbor (node C), it is not sent since the sender node
does not have it.

4.3.4 Local Rarest Generation First (LRGF)

In this subsection another strategy to select which packet should be sent is proposed. This
strategy is based on the same principles as the previous one, but it considers the rarest coded

72

1 2 3 4 5 1 2 3 4 51 2 3 4 5

1 2 3 4 5

5

3

2

Bundle ID

Storage

Packets

to send

4

first

..
.

last

Receivers

broadcast
transmission

B CA

S

Figure 4.11: Forwarding decision of LRBF strategy - example

generation instead of the rarest packet to be sent.

As explained in subsubsection 3.3.2.2, the use of network coding in content distribution
schemes brings a set of advantages. This new approach leads to a better usage of the available
bandwidth, allowing the maximization of the multicast capacity. These fewer transmissions
can also lead to a better energy-efficiency which could be an important factor in mobile
networks. Network coding does not need to establish or find the optimal path from source to
destination to achieve the required throughput. Considering a many-to-all broadcast network,
similar to a content distribution scenario, the flooding of packets could not be the ideal
scenario due to the high overhead and high level of rebroadcasting; however, with network
coding the rebroadcast rate is reduced from O(NlogN) to O(N) [153].

On the other hand, network coding can lead to a set of drawbacks. Contrarily to the packet
routing approach, a completely decoded packet cannot be sent directly to its destination since
it is coded in multiple packets and the receiver node needs a set of coded packets in order
to decode the sent packet. In network coding, an intermediate node must wait for a number
of packets so that they can be combined, increasing the latency of the first packet. Another
drawback can be its robustness to lost packets. If one packet is lost, it can affect the decoding
of a certain packet; however, this drawback is most of the time overcame due to the redundancy
introduced by the coding procedure.

Using the concept of network coding, the original file is divided into frames by the applica-
tion which are then reorganized into a group of blocks (identified by blockid), each of which is
a set of blocksize adjacent frames. Assuming Random Linear Network Coding (RLNC) [154],
a coded packet is a random linear combination of frames which is coded using a vector element
in a certain finite field (typically a Galois Field). The encoding vector is stored in the header
of a coded packet, along with blockid and blocksize for the purpose of further decoding at the
receivers. A set of coded packets belongs to the same generation if they are associated with
the same blockid and a generation has gensize coded packets. To generate a coded packet
of a certain generation, blocksize frames of the block associated with that generation are
required. Upon receiving a coded packet, every node stores the packet in local memory for
further decoding. In order to decode all of the blocksize frames belonging to the same block,
a node needs to collect more than or an equal number of blocksize coded packets belonging to
the same generation, and their encoding vectors that are linearly independent of each other.

73

Figure 4.12 illustrates the previous procedure which is based on CodeCast protocol [68]. The
proposed strategy is based on RLNC but without re-codification in intermediary nodes, so an
intermediary node can only generate coded packets when it has a complete decoded block or
forward coded packets coded by other nodes.

Block (1,blocksize) Block (blockid,blocksize)

……….

Gen (1,gensize) Gen (blockid,gensize)

……….

Network
layer

Application
layer

... ...

Application frames

Coded packets

Random linear combination of block (1,blocksize) frames

Random linear combination of block (blockid,blocksize) frames

Figure 4.12: Relationship between application frames, blocks, and coded packets, based on [68]

In this case, it is considered that the number of coded packets from the same generation
available to be forward by the sender node is recorded in a field called rank, in the header of
the forward coded packet. A coded packet with a rank smaller than blocksize indicates that
the vehicle A is in need of more coded packets of that generation. On the other hand, if the
rank is equal to blocksize it means that the vehicle A already has decoded the associated block,
which means that there is no need to send coded packets from this generation. In response
to a rank lower than blocksize, vehicle B transmits more coded packets from the associated
generation to help vehicle A in the collection of additional coded packets of the most lacking
generation. With the rank information, it is not important to know the exact packet lacking
in a node, but only the amount of coded packets of a specific generation that need to be sent
in order to decode a block. This mechanism tends to decrease the network overhead since
the nodes do not exchange their storage content (such as in the LRBF strategy), and only
share information about the content generations, which is always smaller (assuming blocksize
greater than zero and equal sized packet fields).

The proposed strategy aims to implement a method to select which coded packets should
be sent. When a node collects blocksize coded packets, it will automatically generate the
additional gensize minus blocksize coded packets, leading to a higher network redundancy.
Once these coded packets are generated, the LRGF will perform its actions, choosing the
most suitable coded packet to be sent. Moreover, during the implementation it will be also
assumed that there is no re-codification in the intermediary nodes, whereby a coded packet
can only be coded once, and cannot be combined with other coded packets.

The practical implementation (not the conceptual view) of this strategy is not too different
from the LRBF strategy. An overview of the conceptual design of this strategy is illustrated
in Figure 4.13, which represents the current situation to select a packet to send (a), the
future moment of the forwarding decision (c), using (b) as an intermediate step to achieve
the proposed packet selection strategy. Similarly to the previous strategy, in the first one
the sender node does not know which coded packet should be forwarded since no forwarding

74

decision is implemented. In order to implement the proposed strategy, nodes A and B should
periodically disseminate an advertisement packet with their ranking. As mentioned before, the
ranking is a metric of how many coded packets, associated with a specific block/generation,
a node has within its storage. Through these advertisements the sender node S can evaluate
which is the generation of coded packets that is most lacking in its vicinity and randomly
choose coded packets from this generation to be broadcasted. In the Figure 4.13 example,
vehicle A advertises that it has a rank of 2 from generations 1, 2, and 3, and a rank of
zero regarding the generations 3 and 5. On the other hand, vehicle B has a rank of 0 from
generations 2, 3, and 5, and a rank of 2 from generations 1 and 4. Thus, using the advertised
data, sender node S selects and broadcasts the most useful information to its vicinity. Thus,
the most lacking generations are the ones identified by numbers 3 and 5, followed by generation
2. Similarly to the LRBF, in order to perform this forwarding decision as fast as possible, the
node should have an auxiliary internal structure to map the generation which the sender node
already has (completed or not completed) with the ranking criteria collected from its vicinity.
Regarding the previously discussed LNHF strategy, when two generations are equally lacking
in the sender node’s vicinity, the tiebreaking criteria could be the number of transmissions
associated with these generations (being equal for OBUs and RSUs).

1 2 3 4 51 2 3 4 5

1 2 3 4 5

?

?

?

?

first

..
.

last
broadcast

transmission

BA

S

1 2 3 4 5

broadcast
transmission

BA

S

1 2 3 4 51 2 3 4 5 1 2 3 4 51 2 3 4 5

1 2 3 4 5

2

5

3

4

first

..
.

last
broadcast

transmission

BA

S

1 0 2 0

Gen ID of coded
packets to be sent

Vicinity rank info? ? ? ? Vicinity rank info? ? ? ? Vicinity rank info

(c)(b)(a)

Generation ID

Stored coded packets

Generation ID Generation ID

Stored coded packets Stored coded packets

Gen ID of coded
packets to be sent

blocksize=1
gensize=2
(illustrat ive)

Figure 4.13: LRGF strategy (a) As-Is, (b) intermediate, and (c) To-Be scenarios

Regarding the conceptual point of view previously illustrated in Figure 4.13, the necessity
to create a set of support structures is clear. Similarly to the LRBF strategy, the sender
node must have an internal structure where the collected ranking information is mapped with
the generations stored (completed or not completed). This map must be sorted in order to
optimize the forwarding decision, since through this approach the sender node immediately
identifies the generation to be spread (the most lacking generation). Moreover, two situations
can be considered: (i) this structure only includes completed generations (with gensize coded
packets available to be sent), or (ii) uncompleted generations (with less than gensize coded
packets available). An example of both situations will be further explained in this section.
However, the information of this map cannot be perpetual, whereby it must have a maximum
validity time, to prevent the forwarding of data based on dated control information.

Once again, and similarly to the LRBF strategy, the same approach is used to update those
support structures. Additional control packets are periodically advertised by the network
nodes, spreading information about their storage content. These messages are broadcasted by

75

each vehicle to disseminate the state information through the maximum number of vehicles
as possible. These packets must have a set of fields in order to identify the node, which
contents/files it has, and which is the ranking of each generation of these contents (see an
example in Figure 4.14). Moreover, other generic fields can be added such as the blocksize
and genesize specified for each content. Once again, although the disseminated information
is essential for the forwarding decision, it has a cost. The bigger the content (or contents)
under dissemination and the lower the blocksize (more blocks), the bigger the advertisement
packet will be, leading to a potential network overhead increase. The periodicity of these
advertisement packets is also an important factor. A compromise must be established since
the higher the periodicity, the more accurate the forwarding decision tends to be (leading to
a higher delivery rate). However, if this parameter is too high, the network overhead can
increase excessively.

Number

of Files

File

ID

Block

#1

File #1

...

...

Rank

#1

Block

#N1

Rank

#N1

...
File

ID

Block

#1
...

Rank

#1

Block

#N2

Rank

#N2

File #M

Figure 4.14: LRGF strategy advertisement packet structure - example

Figure 4.15 illustrates the processes taken to send an advertisement packet and to handle
a received one, when only a single file is under dissemination. The process to send an adver-
tisement packet starts with the collection of storage information such as the file ID(s) under
dissemination, and for each one of them it can collect the associated blocksize and gensize,
along with the ranking of each block. As mentioned before, this ranking is limited to blocksize
and should retrieve the number of coded packets associated with a specific block/generation
which the sender node has stored. Once all of this information is collected, the advertisement
packet is made and sent in broadcast to the node’s vicinity. On the other hand, when a
node receives an advertisement packet, it identifies the node which has sent the packet. For
each reported content, it collects the file identifier and, if the receiver node already has the
reported block, it also collects the rank associated with the block. If more than one file is
reported in the advertisement packet, the last procedure is repeated for all of them. Once this
information is collected, the receiver node can update the internal structures responsible for
keeping a state of which is the most lacking generation in node’s vicinity. With the collection
of new information and subsequent update of the internal structures, the sorting criteria of
the structure responsible for signaling the most lacking generation may have been changed,
whereby this structure must be re-sorted.

As mentioned for the LRBF, the refreshment of the internal structures responsible for
identifying the next packet or, in the case of the LRGF strategy, the block/generation to which
the next coded packet belongs, is a crucial procedure. This structure is created and updated
using the advertisement packets periodically broadcasted by each node. As highlighted before,
a vehicular network is characterized by intense node mobility, implying a short valid time for
the broadcasted information. Thus, in order to overcome inaccurate forwarding decisions, a
refreshment procedure must occur. Similarly to the LRBF, each entry of the mapping table
must have a timestamp attached to facilitate the refreshment procedure. Each one of these
entries (one for each generation) should be a list of three parameters: neighbor identifier, rank,
and timestamp of when this information was collected. Each entry that exceeds a specified
valid time, must be deleted, and the internal structures re-sorted, in order to ensure a more

76

Sender Receiver

[is an OBU]

[is an RSU] Identify the source node

Identify the file ID

Sort internal structure

Update the internal
structures

Collect storage info
(file ID, gensize,

blocksize, rank, ...)

Make packet

Send packet

Collect blocks IDs
and ranks

Remark: assuming a s ingle
fi le under dissemination

Figure 4.15: Procedures for sending and receiving of advertisement packets in the LRGF
strategy - conceptual

accurate and correct forwarding decision.

Figure 4.16 summarizes the procedures of sending and receiving data packets when this
strategy is applied. When the sender node has at least one valid neighbor which, according
to the internal mapping of the sender node needs at least one coded packet associated with
a generation that the sender node has, the transmission will occur. First, the sender node
identifies the most lacking generation (through the internal mapping structure), and then
randomly selects a coded packet from this generation to be broadcasted. As remarked before,
there are two possible situations: (i) the sender node is only able to forward coded packets
which belong to a completely decoded block/generation, or (ii) it can forward coded packets
from a block/generation which has not been decoded yet. This second situation is not an
operation of recoding but only an additional feature of the LRGF strategy. Once the packet is
evaluated, its number of transmissions is incremented and sent in broadcast. Since one of the
sort factors changed, the internal structure must be re-sorted before the end of the process.

When a node receives a coded data packet, if it has already decoded the associated block,
it does not do anything. On the other hand, if there is no entry related to this coded
packet (same file ID, block and generation numbers) in the internal structure, a new entry
(addressing the received block’s generation) must be added to the internal structure. After
that, the received coded packet is stored and the internal structure responsible for mapping the
node’s storage (maps the block/generation with the number of coded packets stored of those
blocks/generations) is updated, signaling the existence of a new coded packet. This occurs
when a node receives at least blocksize coded packets from the same generation. From this
moment on, the node has gensize coded packets associated to the same block and generation

77

available to broadcast.

Sender Receiver

Select coded packet to
send (random)

Increment number of tx

Send coded packet

Sort internal sructure

[else]

[already decode the
block of this packet]

Identify generation
(most lacking generation)

[generation is not mapped
in the internal structure]

Insert generation in the
internal structure

(1) or (2)

(1) Consider completed
decoded generations

(2) Consider completed and not
completed decoded generat ions

Store coded packet

Generate additional
coded packets

[number of coded packets
stored is equal to blocks ize]

[else]

(3) To emulate the coding
module

(3)

Update internal structure

Figure 4.16: Procedures for sending and receiving data of packets in the LRGF strategy -
conceptual

Figure 4.17 illustrates the start and the end of the dissemination procedure for the LRGF
strategy. The start and the end of the dissemination process are defined in the exact same
way as in the LRBF strategy. The only difference is the fact that, in the LRBF strategy,
the nodes exchange packets between them, and in the LRGF there are coded packets being
exchanged among the network nodes.

As mentioned before, even though the node always sends the rarest generation, the for-
warding decision can be performed in one of two ways, which are represented in the following
examples.

The first one is illustrated in Figure 4.18. In this approach the sender node can only send
coded packets from a generation associated with an already decoded block. In the example
illustrated in Figure 4.18, the most lacking generation is the generation number 1 with a
total of 1 coded packet among all the neighboring nodes (A, B, and C). Thus, the selected
generation to send coded packets is number one. However, the sender node did not decode the
block associated with this generation yet. Due to this, coded packets of generation number

78

I have this content [adv]

I do not have nothing [adv]

B starts broadcasting
of advert isements

I am sending this... [data]

RSU or OBU OBU

long period
without neighbors
or if all neighbors
have the content

refresh of internal
structure

internal structure
is empty

stop broadcasting
of data packets

node is broadcasting
coded data packets

RSU or OBU

(a) (b)

if content of B is
incompleted

and A has useful data

A starts broadcasting
coded data packets

A B
A is broadcast ing
advertisements

A B

A B

Figure 4.17: (a) start and (b) end of dissemination in LRGF strategy

three will be sent, since it is the second most lacking generation and the sender node already
decoded the block associated with it. Once the generation to send is identified, the coded
packets are randomly selected among them.

1 2 3 4 5 1 2 3 4 51 2 3 4 5

1 2 3 4 5

7

9

Coded

Bundle ID
Storage

Bundles to send

8

first

..
.

last

Receivers

6 7 8 9

Gen 1 Gen 2 Gen 3

6 7 8 9 6 7 8 96 7 8 9

Gen 1 Gen 2 Gen 3Gen 1 Gen 2 Gen 3 Gen 1 Gen 2 Gen 3

Ranking table

7

3

1

Gen 2

Gen 3

Gen 1
broadcast

transmission

B CA

S

Figure 4.18: Forwarding decision of LRGF strategy - 1st situation - example

The second situation is similar to the first one and is illustrated in Figure 4.19. However, in
this case the sender node can forward coded packets which were coded by another node. Thus,
the sender node first sends the coded packets associated with the most lacking generation
(which it already has), whereby coded packets 3 and 2 are sent first.

4.4 Strategies to Disseminate Information

The previous strategies aimed to decide which are the packets to be sent and when a node
should send them based on network information collected and shared between the network

79

1 2 3 4 5 1 2 3 4 51 2 3 4 5

1 2 3 4 5

2

3

Coded

Bundle ID
Storage

Packets to send

8

first

..
.

last

Receivers

6 7 8 9

Gen 1 Gen 2 Gen 3

6 7 8 9 6 7 8 96 7 8 9

Gen 1 Gen 2 Gen 3Gen 1 Gen 2 Gen 3 Gen 1 Gen 2 Gen 3

Ranking table

7

3

1

Gen 2

Gen 3

Gen 1
broadcast

transmission

B CA

S

Figure 4.19: Forwarding decision of LRGF strategy - 2nd situation - example

nodes. Therefore, those strategies are focused on the stateless choice of information based
on the current status of the network. However, several other approaches can be used to help
and support those strategies in order to achieve a higher delivery rate as well as minimize the
network congestion.

As an example, assuming that the medium is equally shared by K neighboring nodes,
each node has access to 1/K of total bandwidth available to transmit data. On the other
hand, the main goal of a content distribution strategy is to deliver the information as soon
as possible, whereby broadcast communication is used.

Although the broadcast communication tends to increase the delivery rate, since the
information is spread to a high number of nodes at the same time, it also adds new challenges
related with the medium congestion. Sometimes the increase in network congestion due to the
broadcast transmission produces an opposite effect leading to a decrease in the delivery rate.
This last behavior tends to happen in high congestion environments where the bandwidth
available is not enough for the high number of nodes trying to transmit packets in broadcast.

Due to the previous analysis, it is possible to state that it is important to establish a
balance between a high delivery rate and a low medium congestion. The following subsections
describe some possible techniques which are used to achieve these goals.

4.4.1 Optimize Delivery

In the strategies to stateless choose the information to send, the sending decision was
based on information collected from sender nodes’ neighbors (through advertisement packets)
or from additional information added in the data packets. However, this decision did not
consider the environment around the sender node, such as the number of neighbors within its
vicinity.

Several techniques to increase the delivery rate have been studied during this work, re-
sulting in a set of decisions and guidelines. The first decision was to explore the broadcast
nature of wireless medium by sending all data packets in broadcast. This decision aims to
spread the information as fast as possible, maximizing the number of suitable receiver nodes.

80

However, there are other suitable approaches and techniques for delivery optimization. In
this work we proposed a technique which aims to minimize the number of transmissions and
maximize possible successful deliveries. The proposed technique sends information based on
the sender nodes’ vicinity, more precisely on the number of “valid neighbors”.

Before continuing, it is important to clarify the concept of “valid neighbor”. A valid
neighbor is considered to be one that does not already have the content (only possible to
determinate if an announcement mechanism is implemented) and has a link RSSI higher than
a certain threshold (e.g. 15 dBm).

In this technique a node sends packets based on its number of valid neighbors, promoting
the sending when the sender nodes have a higher number of neighbors. The main advantage
associated with this approach is the fact that the amount of times that a node transmits
information tends to be lower and, when it actually sends packets, these are sent to a higher
number of nodes keeping the delivery rate high. On the other hand, this technique can lead
to a wasting of valid contacts to send useful data to. This could be an important drawback
in low density networks which typically have a low number of valid contacts per sending
opportunity. Moreover, it is expected that this approach leads to high network congestion
in periods with high node density (e.g. rush hours in urban areas), creating a well-known
challenge called broadcast storm.

This approach can be deterministic or probabilistic. In the first one, a node only sends
packets if it has more than X neighbors. The second one establishes an increasing probability
of delivery as is shown in Figure 4.20, where a node has a specific probability of sending packets
according to the number of neighbors. Although both approaches were designed and tested
during the development stage, only the probabilistic one was implemented. This decision is
due to the fact that the probabilistic approach tends to be less abrupt when deciding if the
node should send, or not, packets in broadcast to its vicinity. Thus, using this technique a
node is not forbidden to send packets when it has less then a specific number of neighbors
but tends to send them less often, which achieves the main purpose of this technique without
neglecting the periods with a lower number of valid neighbors.

0

Number of neighbors

P
ro

b
ab

il
it
y

1

fP(n)

Xn1 Xn2

Pn1

Pn2

Xn

fP (n) =

Pn1 , Xn < Xn1

Pn2 − Pn1

Xn2 −Xn1

Xn +

(
Pn1 −

Pn2 − Pn1

Xn2 −Xn1

Xn1

)
, Xn1 ≤ Xn ≤ Xn2

Pn2 , Xn > Xn2

Figure 4.20: 1st probability function used in forwarding decisions

Regarding the probability function illustrated in Figure 4.20, the following considerations
should be remarked:

81

• If the number of valid neighbor is lower than Xn1 , the probability of sending is defined
by Pn1 .

• If the number of valid neighbor is larger than Xn2 , the probability of sending is defined
by Pn2 .

• If the number of valid neighbors is larger or equal than Xn1 and lower or equal than
Xn2 , the probability of sending is defined as an increasing function (framed between Pn1

and Pn2), whereby the higher the number of valid neighbors, the higher the probability
of sending information.

4.4.2 Minimize Congestion

As stated in the previous subsection, when the network nodes communicate through broad-
cast messages, a well-known challenge arrives - broadcast storm. This phenomenon could have
a major impact on network behavior since it leads to high network congestion which has a
direct impact on the content dissemination procedure. Thus, in this subsection a technique
to overcome this challenge is proposed.

In this work, the overall concept of spreading content through a vehicular network is based
on the SCF mechanism. Each time that a vehicle receives a packet belonging to a content
under dissemination, it stores it, and carries this packet until it reaches another vehicle. At
this moment, the node creates a copy of the packet stored and forwards it to the next vehicle,
which updates the internal packet information about the number of hops where this packet
already have been. Thus, this procedure is based on a multi-hop transfer of information
among vehicles, whereby the information about the number of hops is directly related to the
number of nodes which already have a specific packet.

Taking this into account, the number of hops can be used as a metric to estimate the
overall presence of a packet (or its copies) in the network. When the number of hops is high,
the probability of this packet already being stored by a considerable amount of nodes is also
high. On the other hand, if the number of hops is lower, it means that this packet must be
sent in order to increase its presence in the network. By enabling the sending of the most
lacking packets in the network, it promotes a more selective delivery which is focused on
the information that may be most lacking in the network. Besides this, it prevents that the
packets travel indefinitely through the network, using bandwidth that could be used by most
lacking packets.

Regarding the previous analysis and assumptions, a similar approach to the one used in
subsection 4.4.1 is proposed, however, it is based on the number of hops of a specific packet
instead of the number of valid neighbors. Similarly to the optimized delivery, the decision
to send (or not) a packet can be deterministic or probabilistic. As shown in Figure 4.21, if
a packet has 0 hops (it was not sent yet), and considering Ph2 = 1, it will be sent for sure.
However, if a packet has passed through more than Xh1 hops, the probability of sending
starts to decrease to a low value defined as the intersection of Xh2 and Ph1 , being the Xh1

the maximum number of hops where the probability of sending is established in Ph1 .
Regarding the probability function illustrated in Figure 4.21 and the proposed technique,

the following considerations should be remarked:

• If the number of hops is lower than Xh1 , the probability of sending is defined by Ph2 .

• If the number of hops is larger than Xh2 , the probability of sending is defined by Ph1 .

82

0

Number of hops
P
ro

b
ab

il
it
y

1

Xh1 Xh2

Ph1

Ph2

fP(h)

Xh

fP (h) =

Ph1 , Xn < Xh1

Ph2 − Ph1

Xh2 −Xh1

Xh +

(
Ph1 −

Ph2 − Ph1

Xh2 −Xh1

Xh1

)
, Xh1 ≤ Xh ≤ Xh2

Ph2 , Xn > Xh2

Figure 4.21: 2nd probability function used in forwarding decisions

• If the number of hops is larger or equal than Xh1 and lower or equal than Xh2 , the
probability of sending is defined as a decreasing function (framed between Ph2 and Ph1),
whereby the lower the number of hops, the lower the probability of sending information.

• This approach implies the existence of an extra field in the packets header to store its
number of hops.

Another technique to minimize the congestion relies on what type of nodes the sender node
has in its vicinity. This technique is based on our understanding of vehicle mobility in the
several scenarios in this dissertation - city scenarios - and on the kind of vehicles that comprise
the network in analysis - mainly buses. As such, in an urban scenario, vehicle density tends
to be fairly high in certain locations, such as main roads, city access roads, central locations,
commercial areas, metro stations, train stations, among others. Besides this, the vehicles that
comprise the network are mainly buses, which tend to have a well-defined route and travel
through a lot of the same places, namely the more central locations, as previously listed. It
is also worth noting that the buses are parked in large parking lots that can be occupied by a
large number of vehicles, whereby it is in these locations that quick information dissemination
occurs.

This technique aims to reduce the network congestion through the implementation of the
following approach. If the sender is an OBU and it has a valid neighbor which is an RSU, it
will not send the packets. This is based on the previous considerations and assumptions that
claim that it is very likely that the neighbors in the vicinity of this OBU had, have or will
have access to the same RSU and collect the content which is under dissemination.

An example of this is illustrated in Figure 4.22. Thus, at the beginning, vehicles A, B,
and C have direct contact with an RSU which always has the content under dissemination
available. So, all the three vehicles have access to the same RSU which is broadcasting a
certain content, whereby all the vehicles are listening the content from the fixed infrastructure.
Although vehicles A, B, and C are in the range of each other, due to the application of
this technique there is no communication among them, which, as previously clarified, is not
necessary. Later, when vehicle C reaches other vehicles (D and E), it will broadcast the
content previously collected from the RSU.

83

It is important to announce that this technique is implemented in all of the experiments
and evaluation procedures presented in Chapter 6.

IEEE 802.11p

Access Network

Fixed Infrastructure

RSU

IEEE 802.11p

RSU Road Side Unit

C CBA D

E

On Board Unit

Content under dissemination

Figure 4.22: Technique to minimize congestion based on type of node

4.4.3 Hybrid Technique

In the previous subsections two kinds of techniques were suggested to optimize the delivery
and to minimize the network congestion. However, in a content dissemination service both of
these enhancements are desirable, whereby in this work a hybrid technique is suggested using
these two already proposed approaches.

In both previous techniques a probabilistic approach is proposed in order to minimize the
undesirable effects brought by network congestion and enhance a higher delivery rate. Thus,
this hybrid technique aims to combine these two techniques by multiplying their characteristic
probability functions in order to produce a new one that reflects the main goals for which
they were previously designed. Assuming that both probability functions are independent and
uniformly distributed, a new probability of sending is evaluated by multiplying the previous
two: fp(nneighs, nhops) = fp(nneighs) × fp(nhops). Figure 4.23 illustrates a possible output of
this function and is the multiplication result of functions shown in Figure 4.20 and Figure 4.21.

Number of hops

0

Number of neighbors

P
ro

b
ab

il
it
y

1

0

Number of hops

P
ro

b
ab

il
it
y

1

Xh1 Xh2

Ph1

Ph2

N
u
m

b
er

 o
f
n
ei

gh
b
or

s

P
ro

b
ab

ility

1

0

fP(h)

Xh

fP(n)

Xn1 Xn2

Pn1

Pn2

Xn

Figure 4.23: 3rd probability function used in forwarding decisions

84

With the introduction of this new technique, it is expected that the advantages associated
with both aforementioned techniques are obtained. As such, an improvement in delivery
rates due to choosing the best scenarios for sending packets (when there are more neighbors)
is expected, as well as the minimization of network congestion since there will not be any
packets travelling for an unnecessary or excessive period of time.

4.5 Chapter Considerations

As identified in Chapter 1, the main goal of this work is the study, design and development
of content distribution schemes for non-urgent content dissemination. Thus, this Chapter
was focused on the description of the proposed schemes. Two different sets of strategies were
described: (i) Strategies to Stateless Choose Information and (ii) Strategies to Disseminate
Information. The implementation of these strategies is performed in Chapter 5 and their
performance is evaluated in Chapter 6.

Strategies to Stateless Choose Information

The first set of strategies is mainly focused on the selection of which packet should be
sent. Four strategies was proposed: (i) Random, (ii) LNHF, (iii) LRBF, and (iv) LRGF.

As the name implies, in the Random strategy, the packets to send are randomly selected
from the node’s storage. This strategy aims to perform a forwarding decision without adding
any additional control data in order to keep the network overhead as low as possible.

The next proposed strategy was the LNHF. This strategy performs the forwarding decision
using one of two parameters associated with each packet: number of hops and number of
transmissions. The number of hops represents the number of nodes which has stored this
packet (or a copy of it), whereby it can be used as a metric to understand how traveled is
the packet. The higher the number of transmissions, the higher is the probability of this
particular packet to be already stored by a higher number of nodes. Moreover, this decision
depends on the sender node type. In an RSU the number of hops can not be used as a
parameter to decide which packet should be sent, since all packets have the same number of
hops (assuming that RSU is directly connected to the content server). Thus, in the RSUs the
used criteria is the number of transmissions. On the other hand, the OBUs use the number of
hops as main criteria and the number of transmissions as a tiebreaker criteria. This decision
is due to the fact that OBUs have access to packets with different number of hops and this
criteria is a better indicator of the packet’s mobility.

The LRBF strategy is the first proposed strategy which aims to perform a forwarding
decision based on the sender node’s vicinity storage content. Thus, the sender node has to
identify which is the most lacking packet within its vicinity. To perform this evaluation,
the addition of advertisement packets is proposed. These packets periodically advertise the
node’s storage content, indicating which packets and contents they have stored. Once collected
the information about all the neighbors, the sender node can evaluate which are the most
lacking packets. Then, if the sender node has this packet stored, it can broadcast it to its
vicinity. Several considerations must be taken into account in the implementation of this
strategy. It is very important to establish a compromise between the periodicity of these
advertisement packets and the network overhead. The frequency of spreading advertisement
packets introduces more accuracy in the forwarding decision; however, due to the foreseeable
size of the advertisement packet, the network overhead can be considerably high.

85

The last strategy is proposed to be used in a network which has applied the network
coding concept. This strategy is focused on the selection of which coded packet should be
forward. In order to perform this decision, it is also proposed the use of advertisement packets
which should broadcast a parameter called rank. This parameter aims to identify which are
the most lacking block/generation in the sender node vicinity, and it is evaluated based on
the number of coded packets stored associated with a specific block/generation that a node
has. Although it uses advertisement packets, it is expected a lower network overhead when
this strategy is used compared to the LRBF approach. However, the advertisement packet
size is closely related with the blocksize parameter, which indicates the number of frames of
a block (the content is divided in blocks). On the other hand, it is also expected a slower
progress in the content distribution procedure (when compared to the LRBF strategy), since
a node needs to receive a minimum number of packets (blocksize) to decode a complete block.

Strategies to Disseminate Information
The previous strategies are focused on the stateless choice of information based on the

current status of the network. On the other hand, other strategies can be proposed to support
those strategies in order to minimize the network congestion and overhead along with optimize
the delivery rate. To enhance a fast content dissemination, all communications are performed
in a broadcast manner; however, this kind of approach leads to a high network congestion
which sometimes produces an opposite effect leading to a decrease in the delivery rate. Thus, it
is important to establish a balance between a high delivery rate and lower medium congestion,
whereby a set of techniques are proposed in order to achieve these goals.

The technique proposed for delivery optimization aims to minimize the number of trans-
missions and maximize possible successful deliveries. The proposed technique sends informa-
tion based on the sender nodes’ vicinity, more precisely on the number of “valid neighbors”
(connection’s link has a specific minimum power). When this technique is applied, a node
sends packets based on its number of valid neighbors, promoting the sending when the sender
nodes have a higher number of neighbors. The main advantage of this strategy is the lower
amount of times that a node transmits information, and when sent, they tend to reach a
higher number of nodes keeping the delivery rate high. However, this approach can lead to a
wasting of valid contacts and can increase the network congestion due to the high number of
vehicles involved in the transmission instant. The last issue can create a well-known challenge
called broadcast storm.

In order to mitigate the last identified challenge, a technique to overcome this challenge
was proposed. The content dissemination procedure is based on a multi-hop transfer of
information among vehicles, whereby the information about the number of hops is directly
related to the number of nodes which already have a specific packet. Thus, the number of
hops is used as a metric to estimate the overall presence of a packet (or its copies) in the
network. This technique promotes the sending of packets with a lower number of hops in
order to optimize the delivery of the most potential lacking packets. Moreover, it prevents
that the packets travel indefinitely through the network, using bandwidth that could be used
by most lacking packets. Another technique is proposed to minimize the network congestion,
and is focused on the neighbor type. If the sender node has a neighbor which is an RSU, it is
not able to forward packets because probably the majority of its neighbors had, have, or will
have access to the same RSU.

At the end, a hybrid technique is presented with the main goal of achieving the last to
premises: optimize delivery and minimize the network congestion. This technique is imple-

86

mented as a function of the two previously proposed techniques.

87

88

Chapter 5

Integration and Development

5.1 Chapter Description

Once the content distribution strategies are identified and designed (high-level), they need
to be developed and integrated in a set of platforms. Three platforms are used during this
Dissertation: a Matlab-based emulator, an emulator specifically designed to develop and
perform scalability tests of the DTN mechanisms, and finally the vehicular OBUs are used in
a laboratory environment. Thus, the proposed strategies are developed and implemented in
order to be evaluated on the previous platforms.

This chapter is organized as follows:

• section 5.2 - MatlabEmulator Development and Integration: describes the implementa-
tion of a Matlab-based emulator used to easily evaluate several strategies for content
distribution.

• section 5.3 - HelixEmulator : describes an emulator especially designed to perform scala-
bility tests of the DTN mechanisms along with a set of improvements and modifications
performed under the scope of this work.

• section 5.4 - Helix Integration: presents the main modifications performed in the DTN
HelixEmulator in order to implement the proposed content distribution strategies along
with the major challenges overcame in the process.

• section 5.5 - Vehicular OBUs Integration: describes the modifications and considera-
tions taken into account regarding a smooth transition from an emulation environment
of the HelixEmulator to the real network boards.

• section 5.6 - Chapter Considerations: depicts the conclusions and the summary of the
full chapter.

5.2 MatlabEmulator Development and Integration

5.2.1 Introduction

As concluded before (see section 3.4), several mechanisms can be used to emulate a network
and test a variety of protocols and strategies. However, none of them are ideal since each has

89

its singularity, being more or less complex and applicable to the proposed study. Compared
to the trivial or widespread solutions previously listed (see section 3.4), in order to perform
this study no mobility model is needed since a data log set collected from a real network
is available. Thus, the decision was to build a network emulator from the start in order to
emulate the content dissemination process using the collected information of the mobility of
vehicles.

In a previous work developed by Ricardo Matos from Veniam c©, an emulator was developed
and implemented in MATrix LABoratory (MATLAB) R© [155]. However, this emulator only
allows the dissemination of information in an upstream way, and so it was not able to run
and test a content dissemination process started by a server located in the core network to
the vehicles (OBUs) (downstream).

Thus, the decision was to implement a new emulator based on the previous one but which
allows multi-hop traffic in a downstream way and that implement the proposed dissemina-
tion strategies. Within this document, it is called MatlabEmulator. Along this section, its
architecture is explained and all of its characteristics are discussed.

5.2.2 Architecture and Operation Overview

As illustrated in Figure 5.1, the MatlabEmulator architecture can be divided mainly in
four stages/phases named from 0 to 3. They are described below.

In the first stage the configuration of the emulator and experiment is selected. The content
distribution scheme is defined here, as well as the log information source. Furthermore, the
experiment is also configured, parameters such as size file and scheduling of its dissemination
are also defined here.

The second phase is responsible for uploading the log information previously collected
and stored in log files into context variables used to perform routing decisions during the
emulation process.

The third phase is the main stage of the emulation process. Within this stage the multi-hop
routing decisions (transmission process) for dissemination, defined as strategies to stateless
choose information in Chapter 3.3, are made. After that, the reception process (particularly
the bandwidth control) is emulated. The strategies to disseminate information, described in
Chapter 3.3, are also implemented during this stage. Moreover, output variables used for
statistical analysis in the last phase are updated.

Finally, in the last stage, the statistical analysis of the emulation process using the output
variables resulting from the third stage is done. A more refined explanation of these stages is
done is the next sections.

Although the emulator operates in a sequential way, and the phases 1 to 3 are dependent on
each other and are all related to the configuration (phase 0), they can be executed separately.
At the end of stages 1 and 2, the data is stored into MATLAB files and can be updated by
the following stages at their beginning. All these options are configured at phase 0. This
feature was introduced because most of the times the context variables are common among
multiple experiments, since they are only related with the dataset of log information used, not
varying with the content distribution scheme selected. Moreover, the first stage can be time
consuming, whereby the possibility of running this stage separately improves time efficiency.

90

Configuration

Phase 1

Phase 0

Init Global Variables

Init Ouput Variables

Save Experiment Data
[experience time is up] [experience time is not over]

Update Global Variables

Init Local Variables

TX Process

RX Process

Update Nodes State
Phase 2

Statistical Analysis

Save Analysis Data
Phase 3

Load Info from Log Data

Init Context Variables

Save Context Variables

Figure 5.1: MatlabEmulator architecture and operation flowchart

5.2.3 Collected Log Data

Before describing the collection of log data procedure and the MatlabEmulator itself, it
is important to understand the log files structure. During these past months, two sets of log
data were collected during a 24-hour period in the vehicular testbed under the scope of this
work [8]. Both structures are roughly equal and only differ on a few extra fields added in
the last dataset of log files but with no influence in the resulting context variables. So, the
structure of the most recent set of log files is described in the following sections.

A log information is stored as a Comma-Separated Values (CSV) file, and its structure
is described in Figure 5.2. The main fields used in the evaluation of context variables are
described as follows. The additional information (e.g. cell and cell RSSI) can be used to
create and evaluate new context variables in the future.

• Node ID : this field allows the identification of the node where the log information was
generated.

91

• UNIX Timestamp: identifies the timestamp of when the log data was collected.

• GPS coordinates: indicates the geographical position of the node at this timestamp.

• Number of Neighbors: number of neighboring nodes at the indicated timestamp.

• Link info: this pair of values (ID,RSSI) specifies the link properties for each neighboring
node.

Node
ID

UNIX
Timestamp

GPS
coordinates

SpeedDirection Cell Endpoint Connection
Number

Neighbors
Link 1

(ID,RSSI)
Link N

(ID,RSSI)
...

Cell
RSSI

Figure 5.2: MatlabEmulator log file structure

5.2.4 Working Variables

MATLAB is based on matrix manipulation, whereby all variables are represented by a
matrix of one or more dimensions. As mentioned before, the used variables can be classified
in four groups/categories: context, global, local, and output. They are described as follows.

The Context variables are evaluated from the collection log data procedure, and provide
a set of parameters which allow the evaluation of the identification of nodes, their geographical
position at a certain time instant, their list of neighbors, among other characteristics. The
following list represents the resulting variables.

• nodes: vector containing a list of OBUs present in the log dataset.

• allnodes: vector containing a list of OBUs and RSUs present in the log dataset.

• timestamps: vector containing all the UNIX timestamps present in the log dataset.

• timesvalid: binary matrix which indicates if any log data was collected about a specific
node at a certain timestamp.

• rssineighbors: three dimensional vector which specifies, for a specific timestamp, the
RSSI link value of a connection between an OBU (or RSU) and other OBU.

• distneighbors: three dimensional vector which specifies, for a specific timestamp, the
distance (in meters) between an OBU (or RSU) and another OBU.

• gpscoordinates: matrix containing the GPS coordinates (latitude and longitude) of a
certain node (OBU or RSU) at a specific timestamp.

• RSSI_MIN: minimum link connection RSSI to ensure a stable and reliable communication
between two nodes. If an RSSI is greater than RSSI_MIN, a null packet loss for that
connection is assumed.

• Ta: sampling time of log data, it can assume one of the two values, 5 or 2 seconds,
depending on the DATASET selected.

• BUNDLE_SIZE: bundle size in bytes (default value of 32 KB).

92

• MAX_BUNDLE_SECOND: maximum number of bundles that a node can receive (or trans-
mit) during a sampling time according to a default bandwidth value of 1 Mbps and a
BUNDLE_SIZE of 32 KB.

As a remark, the BUNDLE_SIZE is defined based on the Helix data packet’s maximum
size (which is 32 KB) and the default bandwidth is defined to be a small percentage of the
maximum available bandwidth in the NetRider boards (which is 27 Mbps), since the proposed
content distribution service is not a high-priority service.

Global variables emulate the storage module of a node (OBU or RSU) and retain the
state of a bundle (or coded bundle). They are critical to perform forwarding procedures since
they establish if a bundle is available (or not) to be disseminated. Moreover, they retain other
characteristics of each bundle such as number of hops, number of transmissions, or, in case
of a coded bundle, the generation to which they belong.

• bundles_stored: three dimensional vector which stores the state of a bundle in a
specific node (OBU or RSU) at a specific timestamp. The node’s state is composed by
three components, (i) availability (never was available, is available, or it is no longer
available), (ii) number of hops, and (iii) number of transmissions.

• codbundles_stored: is similar to the previous one, but it represents a coded bundle
stored by a node, instead of a bundle. Furthermore, the second dimension is no longer
the number of hops, but the generation to which the coded bundles belong.

The Local set of variables are reseted at each iteration of the emulation procedure, and
they store instant information about the bundles (or coded bundles) to be forwarded, neigh-
bors of each node, and what is the file which is being spread.

• bundles_to_send: this matrix stores the number of bundles (or coded bundles) that
each node (OBU or RSU) will try to send to other nodes (OBU).

• bundles_already_sent: local matrix, inside the transmission process, that counts the
number of bundles (or coded bundles) already sent by a node (OBU or RSU).

• nodes_pernode: this matrix stores the RSSI link of each intended connection between
two nodes at this timestamp.

• indexs_bundles: is a two dimensional vector which stores the indexes of bundles se-
lected by a node to send (ordered according to the content distribution scheme) at this
timestamp.

• file_idx: this matrix identifies the file which is being disseminated at this timestamp.

Output variables are used in stage 3, when the statistical analysis is performed. The
resulting matrices are described below.

• broadcast_opportunities_total: number of times that a node (OBU or RSU) wants
to contact its neighbors (OBUs) per timestamp.

• broadcast_opportunities_used: number of times that a node (OBU or RSU) effec-
tively contacts its neighbors (OBUs) per timestamp.

93

• bundles_pernode: number of bundles (or coded bundles) stored per node (OBU or
RSU) per timestamp.

• files_completed: stores the timestamp when the node (OBU) has received a com-
pleted file, or zero if it has not.

• bundles_received_bad: number of bundles (or coded bundles) that a node (OBU)
received and already had per timestamp per node.

• bundles_received_good: number of bundles (or coded bundles) that a node (OBU)
received and did not already have per timestamp per node.

• bundles_rejected_bad: number of bundles (or coded bundles) that were rejected (due
to bandwidth limitation) by the destination node (OBU) and were missing per times-
tamp per node

• bundles_rejected_good: number of bundles (or coded bundles) that were rejected
(due to bandwidth limitation) by the destination node (OBU) and were not missing in
destination node per timestamp per node.

• bundles_listened: number of bundles (or coded bundles) heard in the medium per
timestamp per node (OBUs).

• bundles_transmitted: number of bundles (or coded bundles) transmitted (in broad-
cast) per timestamp per node (OBUs and RSUs).

5.2.5 Phase 0 - Configuration

The process of configuration starts with the definition of macro variables. They are
responsible for setting the main characteristics of the data collection uploading, simulation,
and statistical analysis procedures. The description is done below.

• DATASET: sets the collection of log data to be used by the emulator. The following values
can be defined:

2 - Dataset of October 2014 (see section 6.4).

3 - Dataset of February 2015 (see section 6.4).

• FILTER_NODES: defines if all nodes will be emulated or only a few based on smaller
lists which only contain a specific set of nodes (for example based on their geographical
location along the experiment).

• FILTER_NODES_TI and FILTER_NODES_TF: when FILTER_NODES is enable these macros
define the start and the end of emulation, and also what is the sub-dataset (previously
evaluated based on a specific criteria) that will be used..

• RUN_PHASE_X: it is divided into three variables (phases I, II, and III), and allows the
separate execution of different stages (as mentioned before, see section 5.2.2).

• LIMITED_LIFETIME: defines the lifetime of bundles, particularly it defines if a bundle
(or a set of bundles) will continue to be forwarded by OBUs after the end of availability
of the file, to which they belong, in RSUs.

94

• LIMITED_RX_FILTER: restrain the reception bandwidth limitation only to a specific pe-
riod of time, which can be defined in the emulator (default is between 6am and 12pm).

• LIMITED_REPLICAS: restrain the forwarding of bundles by the OBUs (replicas) only to
a specific period of time, which can be defined in the emulator (default is between 6am
and 12pm).

• RSU_STATIONs: allows (or not) the introduction of two specific RSUs, which are located
in the parking lot of the transportation company, in the emulation process.

• REPLICAS: allows (or not) the forwarding of bundles by the OBUs (replicas), implement-
ing a multi-hop transmission.

• RX_FILTER: allows (or not) the reception bandwidth limitation to a specific value, which
can be defined in the emulator (default is 1 Mbps).

• TX_VERSION: defines the transmission/forwarding process characteristics, mostly the
limitation related with the optimized delivery and minimized congestion. The following
values can be defined:

1 - Deterministic approach based on a neighboring threshold (send if number of
neighbors ≤ NEIGH_THRESH).

2 - Deterministic approach based on a neighboring threshold (send if number of
neighbors ≥ NEIGH_THRESH).

3 - Deterministic approach based on a hops threshold (send if number of hops l
MAX_HOP).

11 - Probabilistic approach based on a decreasing probability function of number
of hops as illustrated in Figure 4.21.

12 - Probabilistic approach based on an increasing probability function of number
of neighbors as illustrated in Figure 4.20.

13 - Probabilistic approach based on an hybrid solution described in Figure 4.23.

• ORDERING_VERSION: defines the strategies to stateless choose information (random,
LNHF, LRBF, and LRGF content distribution schemes), and some variants of each.
The following values can be defined:

0 - Enables Random strategy.

2 - Enables LNHF strategy.

1 - Enables LRBF strategy.

11 - Enables LRGF strategy - 1st situation (see subsection 4.3.4).

11 - Enables LRGF strategy - 2nd situation (see subsection 4.3.4).

• CODING: if the coding approach (LRGF content distribution scheme) is active, this macro
is enabled.

After the “main” macros, the “auxiliary” ones are defined. The first set is related to the
chosen TX_VERSION. If the transmission version is a deterministic one, the following auxiliary
macros will be defined:

95

• NEIGH_TRESH: defines a threshold related with the number of neighbors of a transmitter
node. If the instant number of neighbors is lower (or greater) than this value, the node
will forward bundles to its neighbors.

• MAX_HOP: defines a maximum number of hops that a bundle can “travel” through the
network. The dissemination of a certain bundle will stop when it reaches this value.

On the other hand, if it is a probabilistic approach, the following auxiliary macros will be
defined:

• X1, X2, P1, and P2: these macros are related with the definition of the probability
functions illustrated in Figures 4.20, 4.21, and 4.23.

If a probabilistic approach which involves limitation based on the number of neighbors and
number of hops is defined, two new pairs of (X1,P1) and (X2,P2) are defined, to establish the
probabilistic functions related to both types of limitations.

Next, the auxiliary macros related to the file to be spread are defined. The three main
settings related to it are the number of files to be spread and their size, and the dissemination
periods of each one. So, the following auxiliary macros have been defined:

• F_SIZE: defines the size of the files (in number of bundles).

• i_F_BEGIN and i_F_END: define the beginning and ending of each file spreading.

Finally, if the coding (LRGF content distribution scheme) is active, the two main param-
eters are the following:

• BLOCKSIZE: defines the number of bundles within a block (it has to be a multiple of
F_SIZE).

• GENSIZE: defines the maximum number of coded bundles that can be generated from a
certain block.

5.2.6 Phase 1 - Collection of Log Data

Figure 5.3 illustrates the data collection process. The origin of the log information is
OBUs, although there is a need to create information about the RSUs neighbor list and their
links, whereby a backtracking approach is used to generate such log files. As an example,
if OBU A has as neighbor RSU B with a link’s RSSI of X dBm, thus RSU B also has a
neighbor A with a link’s RSSI of X dBm. According to the RSU_STATIONs macro, which
establishes the use (or not) of the RSUs of the collection stations in the emulation process,
a list of RSUs to be used is generated. Since the two datasets of log information collected
and used by the emulator presented different sampling time collection of 5 and 2 seconds,
according to the DATASET macro, the sampling time Ta (or emulation time step) is defined.
After that, the BUNDLE_SIZE (in bytes) is defined and the default value is 32 KB. Based
on the previously define value, the bandwidth limitation (in number of bundles per second),
MAX_BUNDLE_SECOND, is evaluated. One important parameter is the minimum RSSI to have
a stable connection which guarantees the delivery of information between nodes without any
packet loss. The default value of this variable is established as 15 dBm.

If there is any file in the log folder, the Node ID and UNIX Timestamps are collected while
there are still logs to read. Moreover, the nodes, allnodes and timestamps variables are

96

updated. Furthermore, if FILTER_NODES is enabled, the nodes and RSUs vectors are updated
with a specific predefined set of nodes. After that, the context variables are initiated, and
all the log files are read to update them, particularly the timesvalid, rssineighbors, and
gpscoordinates vectors.

Since the data collection only has information about OBUs, the RSUs statical geographical
location is introduced manually. Using this information and the previously collected OBUs
location, the distance between nodes is evaluated and stored in the distneighbors variable.

A set of neighboring statistical analysis is performed at this stage, information about how
many neighbors, what type of nodes they are, if they are valid neighbors (link RSSI greater
than RSSI_MIN), among others, is stored in several variables. This information is useful to
evaluate global metrics associated with an overview study of the network behavior that can
be used to define the transmissions parameters.

Finally, the evaluated context variables are saved to be used in the following stages.

5.2.7 Phase 2 - Emulation

This is the main stage of the emulator since it performs the emulation process itself. At
the beginning, the global and output variables are initiated. After this initial operation, a
sequential process starts which extends until the experience time is up (see Figure 5.1). This
last iterative process is described in detail in the following sections.

5.2.7.1 Update and Init Variables

The global variables are mutable during the emulation process since the files have a specific
dissemination time interval. So, the bundle_stored (or codbundles_stored) needs to be
uploaded during the process. When the file under dissemination changes, these variables
update the bundle state in storage into not available (if it was available in the past), whereby
the forwarding of such bundles is no longer possible.

Moreover, if the LIMITED_RX_FILTER or LIMITED_REPLICAS macros are active, the RX_-

FILTER and REPLICAS macros, respectively, need to be updated.

5.2.7.2 Transmission Process

The transmission process flowchart is presented in Figure 5.4.
As the emulator was developed to emulate the content dissemination of a file, the traffic

flow is downstream (from local servers to endpoints). Thus, since only two types of nodes are
considered (OBUs and RSUs), the file is considered to be instantly available in the RSUs and
remained stored during the whole dissemination process, and there are only two possible link
flows: (i) from RSUs to OBUs, and (ii) from OBUs to other OBUs. Once the transmission of
a bundle can start in both OBUs and RSUs, the iterative transmission process runs across the
allnodes vector. While there are still nodes to emulate, the transmission process is emulated.

If the timestamp is valid (log data was collected about this node in this timestamp), the
neighbor list is derived. This list consists in a set of pairs (neighbor ID, link RSSI) and is
evaluated based on the context variable rssineighbors. Since the destination node is always
an OBU, the RSUs are excluded from the neighbors list. Furthermore, only valid neighbors
(link’s RSSI greater than RSSI_MIN) are presented within this list. Finally, if a node has
a valid RSU in its vicinity, the neighbors list is empty since there is a high probability of
node neighbors also having contact with this same RSU. This last modification has the goal

97

Set RSUs List

Set Bundle Size

[all log fi les were read or there
are no log files in log folder]

[there are log files in log folder]

Capture new node

Capture new timestamp

[all log fi les were read]

Save Context Variables

Set RSU GPS coordinates

Evaluate Dist. between nodes

Neigh Statistical Analysis

Set Bandwidth Limitation

Set Sampling Time

Init Context Variables

Update Context Variables

[there are log files to read]

Load Filtered Nodes List

[FILTER_NODES is
enabled]

[else]

Figure 5.3: MatlabEmulator data collection (phase 1) process flowchart

of optimizing the delivery (since the RSU already has all of the file), and minimizing the
congestion (since this node will not forward any bundle within this time interval).

According to the previously defined TX_VERSION, some restrictions can be applied. The
neighbors list is empty (which invalidates the continuation of the transmission process) in the
following conditions related with the number of neighbors:

• Deterministic approach

– TX_VERSION has the value 1 (or 2) set, which implies a limitation based on the

98

[there are nodes to emulate]

[timestamp valid]

Derive Neighbors List

Order Bundles in \Storage"

Evaluate Bundles to Send

[timestamp is not valid]

[all nodes were emulated]

[all bundles were sent or
there are no bundles to send]

[there are bundles to send]

[bandwidth is available]

[bandwidth is not available]

[list is not empty]

[list is empty]

[there are valid neighbors left]

[there are no valid neighbors left]

stateless choose
information

Update Local/Global/Output Variables

Figure 5.4: MatlabEmulator transmission process flowchart

number of neighbors, and the number of neighbors is larger (or lower) than the
threshold defined by NEIGH_TRESH

• Probabilistic approach

– TX_VERSION has the value 12 set, which implies a limitation based on the number
of neighbors, and the probability of sending (evaluated based on X1, X2, P1, and
P2 macros) is lower than a uniformly generated random number between 0 and 1.
A more detailed description of this probability function is in section 4.4.

Once the neighbor list is derived, and if the list is not empty, the emulator proceeds to the
“storage” ordering. The content distribution scheme is defined by setting the TX_VERSION and
ORDERING_VERSION macros. The latter is responsible for establishing the strategy to stateless
choose information (bundles) from the storage. How that choice is made is described below.

99

The first approach (ORDERING_VERSION=0) is the Random selection of bundles within the
stored and available bundles (identified with 1 in bundles_stored matrix). Thus, the storage
is organized based on the resulting randomly ordered vector of bundles.

If LNHF is the selected content distribution scheme (ORDERING_VERSION=2), the bundles
are ordered in a different way depending on the type of sender node. If it is an RSU, the
storage is ordered according to the number of transmissions: the bundle with a lower number
of transmissions is the first to be disseminated to other vehicles. On the other hand, if the
sender node is an OBU, the first bundle in storage is the one with a lower number of hops.
The number of transmissions is obtained from the bundles_stored matrix, which has the
number of times that a bundle has been broadcasted stored in one of its dimensions.

The LRBF strategy is selected setting the ORDERING_VERSION macro to 1. In this ap-
proach, the bundles lacking on the node’s valid neighbors are evaluated using bundles_-

stored vector. Once the bundles lacking are evaluated, the bundles stored by the sender
node are ordered according to the most common bundles lacking in its neighbors, being the
first bundle in storage the most lacking bundle in the node’s valid neighbors that the sender
node has.

Finally, if the selected content distribution scheme is the LRGF, three different approaches
are implemented. Nevertheless the implementation of the announcement of neighbors rank-
ing is similar among them. This procedure is illustrated in Figure 5.5. First, if there are
valid neighbors with content (coded bundles) in their storage, the ranking is evaluated. The
ranking is the number of coded bundles within their storage, truncated to a maximum value
of BLOCKSIZE. The ranking is evaluated for all valid neighbors and all generations of the file.
This process results in two vectors containing the accumulated ranking for each generation
and the number of times that information about a certain generation was received.

After collecting the rankings, and if any was collected, the storage is ordered according
to the selected version of LRGF content distribution scheme. All versions order the storage
according to the most common generations lacking, however, there are small differences among
them. If the version 11 was selected (1st situation in subsection 4.3.4), only coded bundles
associated with the already decoded blocks (at least BLOCKSIZE coded bundles were received)
are mapped in storage and available to be forwarded. On the other hand, if the version
13 is selected (2nd situation in subsection 4.3.4), coded bundles belonging to non-decoded
blocks can also be mapped in storage and, thereafter be forwarded by the sender node. In
the two previous versions, the storage is mapped in groups of BLOCKSIZE coded bundles. In
other words, the first BLOCKSIZE coded bundles in the storage belong to the most lacking
generation, the second set of BLOCKSIZE coded bundles belong to the second most lacking
generation, and so on.

All the previous ordering strategies aim to put at the head of storage the most suitable set
of bundles (or coded bundles) according to the selected content dissemination scheme. Thus,
the evaluation of bundles (or coded bundles) to send is simply done by scrolling the map of
storage iteratively. However, some transmission versions (indicated by TX_VERSION macro)
impose a filtering of the pre-selected bundles to send based on the number of hops of each
bundle. Thus, as described in section 4.4, there are two filtering scenarios: limitation by (i)
maximum number of hops using a deterministic approach imposed by MAX_HOP macro, or (ii)
using a probabilistic approach imposed by a probability function illustrated in Figure 4.21.

Once the bundles (or coded bundles) to send are evaluated, an iterative process which is
responsible for updating local, global and output variables begins. This procedure emulates
the intention of sending a bundle by the sender node, in broadcast, to all its neighbors. A

100

[all the storage content of valid neighbors was read]

[there are valid neighbors left]

Evaluate Ranking

Update Ranking Vector

[ranking ≥ BLOCKSIZE]

Truncate Ranking

[else]

Increment Number of Ranks

[Number of Rcv Ranks ≥ 1]

[else]

[else]

[else]

[ORDERING -VERSION=11]

[ORDERING-VERSION=12]

Order Bundles (version 11)

Order Bundles (version 12)

[else]

[there are generat ions to analize]

[else]

[ORDERING-VERSION=13]

Order Bundles (version 13)

Figure 5.5: MatlabEmulator ranking announcements flowchart

node only sends information if bundles resulted from the previous procedures, and while it
has available bandwidth. The limitation of bandwidth is performed to emulate the physical
channel and it is achieved by limiting the maximum number of bundles (or coded bundles) that
the sender node can broadcast (MAX_BUNDLES_SECOND) in a time interval of Ta seconds. The
broadcast transmission of information is emulated by crossing all the neighbors demonstrating
the interest to send data to each of them. Only valid neighbors can received the information,
whereby the intention of sending is limited to neighbors which link’s RSSI is above the RSSI_-
MIN. Another restriction is related to the REPLICAS macro. If it is active, both OBUs and
RSUs can send bundles; otherwise, only RSUs can perform this operation.

5.2.7.3 Reception Process

At the end of the transmission process, the emulator knows which bundles (or coded
bundles) a node wants to send. However, if the bandwidth is limited, not all of the intended
bundles will be delivered to the nodes. On the other hand, if no reception bandwidth limitation
is imposed, all the bundles are stored by their destination nodes.

As described in Figure 5.6, when the bandwidth limitation is active (RX_FILTER enable),
the reception process starts with the assignment of bundles to the destination nodes (only
OBUs). In this initial phase, the nodes (OBUs and RSUs) that each reception node (only

101

OBUs) will accept to communicate with, and how many bundles each will send through that
node are determined. It is important to remember that each node is only able to receive a
maximum of MAX_BUNDLES_SECOND bundles within a time interval of Ta. Thus, each receiver
node will sort its neighbors (that it wants to send bundles to) according to the link’s connection
RSSI.

After that, if the number of nodes that want to communicate with the receiver node is
lower or equal than MAX_BUNDLES_SECOND, these nodes are inspected in a circular way, and for
each iteration the number of bundles that the sender node wants to transmit to the receiver
node is assigned. On the other hand, if the number of sender nodes is equal or higher than
MAX_BUNDLES_SECOND, one bundle of each sender node is assigned. These processes continue
until the maximum number of bundles is selected, or all the bundles were assigned.

Once the assignment process ends, a set of local, global, and output variables are up-
dated. The most important variables updated in this stage are the bundles_stored (bundles
availability and number of hops), and codbundles_stored matrices (only coded bundles
availability). An important note is the fact that, in order to update the number of hops
when a node already had this specific bundle, it is always considered the bundle with a higher
number of hops. So, if bundle X with n1 hops is received and it is already in storage but it
has n2 hops, the field is updated with n2 if n2 > n1.

5.2.7.4 Update Nodes State

This stage is particularly important when the LRGF strategy is selected. A node could
decode a block of a file if at least BLOCKSIZE coded bundles of the same generation were
received. Thus, if a node has at least BLOCKSIZE coded bundles of the same generation, it
will decode the correspondent block. Therefore, all bundles associated with that block must
be set to 1 in bundles_stored matrix, indicating their availability to be forwarded. This
update is only done if the previous value was not 2 (meaning that they are no longer available
but they were in the past). Moreover, since the receiver node has at least BLOCKSIZE coded
bundles associated to the same block/generation, and regarding the considerations about the
coding process in section 4.3, the receiver node is able to encode a complete generation of
coded bundles. Thus, a set of additional coded bundles (equal to GENSIZE-BLOCKSIZE) are
now available to be broadcasted, whereby the codbundles_stored matrix is updated.

Furthermore, in order to allow the determination of the time at which a specific node
received the content, the bundles_pernode stores the current timestamp in the bundles
received during this iteration.

5.2.8 Phase 3 - Statistical Analysis

Once all output variables are collected, they can be used to evaluate a set of metrics
and provide a statistical analysis of the selected content distribution scheme. The resulting
metrics are described as following.

1. Percentage of the file(s) stored in each node (only OBUs) past a specific time (default
is 4 hours) since the beginning of the dissemination process.

2. E2E delay is the elapsed time to receive the complete file in an OBU since the beginning
of the dissemination process. In the plot only the nodes that received all the bundles
are considered.

102

[else]

Sort Sender Nodes

[reception bandwidth is not limited]

[there are poss ible reception nodes left]

[all the possible reception nodes were evaluated]

[there is, at least, one sender node]

[else]

[number of sender nodes ≤
MAX-BUNDLES-SECOND]

[number of sender nodes >
MAX-BUNDLES-SECOND]

Assign Bundles to Node

[less than MAX-BUNDLES-

SECOND were ass igned]

[else]

[there are sender nodes
left to evaluate]

[else]

[MAX-BUNDLES-SECOND
were assigned]

[else]

[there sender nodes
left to evaluate]

[else]

[less than MAX-BUNDLES-

SECOND were ass igned]

Assign Bundle to Node

[else]

[all nodes were evaluated]

Update Local/Global/Output Variables

[else]

Figure 5.6: MatlabEmulator reception process flowchart

3. Delivery rate is considered to be the percentage of emulated OBUs that successfully
downloaded the content under dissemination, and this metric is evaluated on an hour-
by-hour basis.

4. Cumulative percentage of files distributed in the network (all the OBUs) along the
experience.

103

5. Progress rate measures the rate of progress of completed download files averaged over
all nodes over a specific time interval (default is 20 minutes).

6. Number of bundles received at time interval (Ta) and the cumulative number at the end
of the experiment. The bundles are classified as bad (if a node already had the bundle),
or good (if it did not).

7. Number of bundles rejected by bandwidth limitation at time interval (Ta) and the
cumulative number at the end of experience. The rejected bundles are classified as bad
(if a node did not have the bundle), or good (if it already had it).

8. Number of heard bundles by the network at time interval (Ta). This metric is evaluated
through the cumulative sum of all the bundles that the OBUs heard in the medium,
and it can be interpreted as a medium congestion metric.

9. Number and mean number of transmitted bundles by the network (OBUs and RSUs)
at time interval (Ta).

10. Histogram counting the number of bundles that have a specific number of hops.

11. Histogram counting the number of OBUs that have a specific bundle.

5.2.9 Auxiliary Functions and Modules

In order to implement some strategies to disseminate information (to be explored in this
document or in future approaches), two auxiliary functions were developed and described as
follows.

The first one is created to generate the probability functions illustrated and defined in
Figures 4.20, 4.21, and 4.23. The function returns a probability value (between 0 and 1)
which can be used to define the probability of transmission. To evaluate this probability a
set of four arguments are passed: X1, X2, P1, and P2. Their meaning varies according to the
objective of the function used, as explored in section 4.4. Through the correct selection of the
input arguments, it is possible to replicate the probability functions previously illustrated in
section 4.4. The implemented algorithm is described as follows.

Algorithm 5.1 Evaluate probability according to a given probability function profile

Input: 0 < P1, P2 ≤ 1 ∧X2 > X1 ≥ 0 ∧ x ≥ 0
Output: y = f(X1, X2, P1, P2, x)

if x ≤ X1 then
y ⇐ P1

else if x ≥ X2 then
y ⇐ P2

else
m⇐ (P2 − P1)/(X2 −X1)
b⇐ P1 −m×X1

y ⇐ m× x+ b
end if

104

Another interesting metric to be evaluated is the distance between two different nodes. In
the proposed solutions there are no approaches using this criteria to perform the forwarding
decision, although, in the future it could be useful. In addition to the transmission purpose,
this parameter can be used to study the network behavior, or as in this document, to evaluate
if a node enters a specific geographical area.

The developed function was adapted from a previous work of Ramin Shamshiri from the
University of Florida, and evaluates the distance between two points according to their GPS
coordinates. To perform this operation he uses the Carlson [156] model. The implemented
algorithm to perform this calculation is illustrated in 5.2

Algorithm 5.2 Evaluate the distance between two points through the GPS coordinates

Output: d = f(lat1, long1, lat2, long2)

majconst ⇐ 6378137
minconst ⇐ 6356752.3142
h⇐ 334.9

angle1 ⇐ atan(min2const/maj
2
const × tan(lat1 × π/180)))× 180/π

angle2 ⇐ atan(min2const/maj
2
const × tan(lat2 × π/180)))× 180/π

r1 ⇐
√

1/(cos2(angle1 × π/180)/maj2const + sin2(angle1 × π/180)/min2const) + h
r2 ⇐

√
1/(cos2(angle2 × π/180)/maj2const + sin2(angle2 × π/180)/min2const) + h

xy1 ⇐ r1 × cos(angle1 × π/180)
xy2 ⇐ r2 × cos(angle2 × π/180)
xy3 ⇐ r1 × sin(angle1 × π/180)
xy4 ⇐ r2 × sin(angle2 × π/180)

X ⇐
√

(xy1 − xy2)2 + (xy3 − xy4)2
Y ⇐ 2π × ((xy1 + xy2)/2)/360× (long1 − long2)
d⇐

√
(X2 + Y 2)

5.3 HelixEmulator

5.3.1 Introduction

The HelixEmulator is the second platform used to implement and evaluate the content
distribution strategies previously proposed. This emulator was developed by in our research
group (NAP) and aims to create a platform to develop and evaluate code specifically designed
for DTN mechanisms (see subsection 3.5.2). It allows the creation of multiple processes that
run DTN software (each one of them emulates a single node) providing a scalable framework
to evaluate content distribution strategies or other routing algorithms. In this subsection
an overview of the emulator structure is given along with several improvements that were
developed and implemented during this dissertation.

105

5.3.2 Modifications and Improvements

Although the work so far developed in the emulator was quite significant, there are some
improvements to be implemented along with new features. The list of modifications and
improvements can be summarized as follows.

Update MySQL Database

Contrarily to other emulators (or simulators), in the HelixEmulator there is no mobility
model. The mobility of the vehicles is introduced based on data acquired in the real vehicular
network in Oporto city. As previously mentioned there is no log data with origin in RSUs
whereby a backtracking approach was used to create it. As an example, if OBU A has as
neighbor RSU B with a link’s RSSI of X dBm, then RSU B also has a neighbor A with a link’s
RSSI of X dBm. The initial version of the HelixEmulator only had in its database information
about OBUs, whereby it is necessary to update the MySQL database with information related
to RSUs.

This information is generated in the same way as in MATLAB, and the generated matrices
are saved as CSV files. After that, a Python script [157] was created to load this new informa-
tion into the already existent tables in the Structured Query Language (SQL) database. As
will be explained further in this document, there are two different datasets of log information
which have different fields, and thus, two scripts were created.

Enable Broadcast Messages

The initial version of the HelixEmulator only provided unicast transmission of informa-
tion. Thus, a significant set of changes was performed in order to provide the capability
of communication in a broadcast manner. The emulator uses Zero-M Queue (ZMQ) [158]
messages to communicate between processes (each process emulates a vehicle/node) in a
server-subscribers model. Thus, it was necessary to create a ZMQ message and send it to
multiple subscribers, maintaining a stable context and content during this procedure. This
procedure was previously done through the creation of multiple messages (each one for each
suitable subscriber) which was an incorrect approach.

Bandwitdh Limitation Module

An aspect neglected by the emulator was the bandwidth whereby no bandwidth, limitation
was possible. Regarding this, a new module to limit the available bandwidth is implemented.
A more detailed explanation is given in subsection 5.3.5.

Neighbor List Update Bug

The HelixEmulator updates the neighbor list of each node through control messages that
carry information collected from the database which establish the ID of each neighbor and
the link’s RSSI. When a process (node) receives these messages, the neighbor list is updated.
These messages are exchanged with a certain periodicity. Thus, if a node does not receive
any message during this period, its neighbor list should be cleaned. However, this procedure
was not working whereby this bug was fixed by checking if in the period any control message
was received. If not, the neighbor list is empty.

Segment Nodes to Emulate

The initial version of the HelixEmulator emulates all nodes which have information within

106

the database. When not all nodes are running (number of processes launched is lower than
number of nodes in the database), the neighbors list was wrong. As an example, if node A is
running, node B is not being emulated, and the original neighbor list of A is B and C, the
list does not change and node B remains as neighbor of A (which is incorrect).

Thus, a different approach was created in order to correct this problem. Before starting
HelixEmulator, two auxiliary files called obu list filter ref and rsu list filter ref must be cre-
ated to specify which are the nodes to be emulated. Once created, the file is loaded to an
internal structure that is used to guarantee that only information about the nodes running is
loaded from the database into the emulator.

Modular Code Structure

The HelixEmulator source code project can be compiled to use the emulator or to generate
code to be executed in the OBUs (this code needs to be cross-compiled before it runs on
the boards). There are several macros (related with the implemented content distribution
strategies) and modules that must be changed according to the platform (emulator or boards)
where the Helix code needs to be executed. As such, the code was structured in a modular way
in order to allow an easy compilation. As an example, when the code is compiled without
the emulator (to be executed on the boards or directly on a machine such as a personal
computer), the bandwidth module is not compiled and is excluded from the source code,
since this limitation must be guaranteed by the physical medium.

Improve Statistical Analysis

The HelixEmulator did not have a robust platform to register metadata to be used in
a further statistical procedure. The Logging module (see subsubsection 5.4.2.4) created for
Helix software provides a way to perform statistical analysis of the emulator behavior along
with the content distribution strategy efficiency.

5.3.3 Architecture and Operation Overview

The HelixEmulator was initially designed to be used on a single machine, running one
emulator process and several Helix processes. However, it has been thought out to be scalable
so that in the future one can run a distributed system to emulate the network. Therefore, the
ZMQ [158] message queuing framework was used. Currently, it uses IPC for communications,
but in the future TCP or UDP can be also used.

In the source code of the Helix software, it was possible to change the Socket module and
make it listen to this IPC socket instead of an UDP socket (that is used on the OBUs). How-
ever, different types of messages flow between the emulator and the nodes (Helix processes),
such as control messages sent by the emulator or regular Helix packets sent from node to
node, and therefore a middle layer was introduced.

When Helix is being configured, a socket for IPC communications (to send to other nodes
and receive control messages from the emulator) is created. Additionally, an in-proc socket
was created to send regular packets to the Socket module. Thus, when a Helix process receives
a control message (with node information), the important fields (such as the node’s position
and the neighboring list) are updated and the Socket block does not receive it since it is not
a regular packet. However, when the Helix receives a regular packet (which is not a control
message) it forwards it through the in-proc socket up to the Socket module, hence making
Helix “believe” it has received a packet from another node.

107

In order to support the exchange of messages between the processes involved in the emu-
lation procedure, an additional class was developed (see Figure 5.7).

EmuMessageHeader

+emu_key : uint32_t
+msg_type : uint32_t
+if_type : uint32_t
+dest_node : DTNeid
+src_node : DTNeid
+user_data_length : size_t

+print() : void

Figure 5.7: HelixEmulator message header class

This class allows the implementation of the previously described procedure, whereby when
a node sends information to the other(s) node(s) an object of this class is created and its fields
are initialized. The created object is a header joined with the Helix packet to be transmitted
which is used by the HelixEmulator to route the packet to its destination.

5.3.4 Collection of Log Data from MySQL Database

As explained before, control messages are periodically sent from the emulator to all the
nodes to update their internal state. This information is real information collected on a
testbed and is currently being queried from a MySQL database. As shown in Figure 5.8 three
tables were created: “timestamps”, “neighbors” and “rsu”.

Node
ID

UNIX
Timestamp

GPS
coordinates

SpeedDirection Cell
Cell
RSSI

Entry
ID

Neigh
ID

UNIX
Timestamp

Link
RSSI

Entry
ID

Helix
version

location vnetwork
RSU
ID

Board
version

owner provider
GPS

coordinates
uptime lastping

(a)

(b)

(c)

Figure 5.8: HelixEmulator database tables: (a) timestamps, (b) neighbors, and (c) rsu

The “timestamps” table contains information about a timestamp regarding a specific
node ID. The second table relates a row in the “timestamps” table to a set of neighbors that
was seen by the corresponding node ID at that sample. Finally, the “rsu” table contains
information regarding RSUs at the time the data collection was performed.

Once the files that contain the 24h data collection are obtained, their contents should
be imported to a database in order to be used in the emulator. A Python [157] script was
created to help on this task. However, before using it, it is crucial to check if the data log
files still are in agreement with the implemented Python scripts. Since the data log files of
the second set of collection data were different from the initial dataset, several modifications
were performed on the provided script to accommodate the changes.

The emulator retrieves the information from the MySQL database in the JSON format.
This is done using an Apache server and Hypertext Preprocessor (PHP) with connectors to

108

the MySQL database. There are two APIs available: one to get the list of RSUs and another
one to get the network status at a given timestamp. Once the server is up and running and
both APIs are accessible, two simple HTTP GET requests can be made to retrieve the stored
information in the database. After the successful queries, the HelixEmulator parses the JSON
into a well-known and defined emulator control packet to send to every node in order for them
to update their internal state.

This control message is implemented using a class with the structure illustrated in Fig-
ure 5.9. It contains several information very important to the emulator, such as the position
of nodes, list of neighbors and their links characteristics.

EmuControlMsg

+latitude : float
+longitude : float
+heading : int
+vel : int
+cell_rssi : int
+connection_type : emu_connection
+num_neigh : uint8_t
+neigh_id : DTNeid [20]
+neigh_rssi : uint8_t [20]
+neigh_isRSU : bool [20]

+print() : void

Figure 5.9: HelixEmulator control message class

5.3.5 Bandwidth Limiter Module

The HelixEmulator did not have any mechanism for bandwidth limitation, whereby it did
not approach the physical channel or service’s bandwidth characteristics. Thus, an additional
module was developed to be included in the HelixEmulator.

The Bandwidth Limiter module is responsible for imposing a maximum reception and
transmission bandwidth in each node. The class that implements it is illustrated in Fig-
ure 5.10. The fundamental data members are two counters named of rx_packets_counter

and tx_packets_counter, which respectively count the number of packets received and trans-
mitted by a node. These counters are updated every time that a node receives or transmits
a packet using incRx and incTx methods. Furthermore, internally two macros are defined,
called MAX_RX_PACKETS_PER_PERIOD and MAX_TX_PACKETS_PER_PERIOD, that respectively de-
fine the maximum number of packets which a node can receive and transmit in a sample period
(macro called BANDWIDTH_SAMPLE_PERIOD). All the access and manipulation of variables are
performed using thread-safe methods.

This module has a dedicated thread (runBandwidthLim) which is responsible for period-
ically (with a period of BANDWIDTH_SAMPLE_PERIOD) reseting the internal counters. Thus,
every time that a node wants to send a packet or is receiving a packet from other nodes,
it must check its internal bandwidth counters to ensure the availability of bandwidth (see
Figure 5.11). Such queries are performed using the canRX and canTx methods.

109

BandwidthLim

+handler : pthread_t
+desc : static const char*
+bandwidth_mutex : pthread_mutex_t
-tx_packets_counter : uint32_t
-rx_packets_counter : uint32_t

+BandwidthLim()
+~BandwidthLim()
+incRx() : void
+incTx() : void
+canRx() : bool
+canTx() : bool
+resetCounters() : void
+runBandwidthLim() : void*
+helper() : static void*
-resetRxCounter() : void
-resetTxCounter() : void

Figure 5.10: HelixEmulator BandwidthLim module collaboration diagram

[node can send packets]

[else]

Sleep CYCLE_DELAY

Cleaning

Run Forwarding Decision [node can receive packets]

[else]

Received Data Packet from RX

Run Reception Procedure

Logging

(a) (b)

Figure 5.11: HelixEmulator BandwidthLim (a) forwarding decision and (b) reception
flowcharts

5.4 Helix Integration

5.4.1 Introduction

In order to implement the proposed content distribution strategies in the Helix software
several steps need to be taken and challenges to be overcome. Thus, the Helix integration
stage is the crucial phase of this work. This section describes the modifications regarding the
implementation of the content distribution schemes in the Helix software and the enforcement
of the transmission decision capabilities.

110

5.4.2 Global Modifications

Several modifications to the Helix architecture were performed in order to implement
the content distribution schemes presented before. As illustrated in Figure 5.12, the initial
architecture of Helix (see Figure 3.10) is modified mainly in the Routing, Storage, RX modules,
and packet header. Furthermore, two auxiliary modules were added, Handler (which has
a set of sub-modules) and Logging. The Handler module can be divided into three sub-
modules according to the selected content distribution scheme: HandlerLNHF, HandlerLRBF,
or HandlerLRGF. The Random strategy is directly implemented in the peeking procedure
of the Storage module. The Logging module is introduced to collect log data from content
distribution experiments and, at the end, perform a statistical analysis.

API Header HELIX Header Payload

API Management
(UNIX Socket)

Neighboring

Socket
(UDP)

Routing
(decision)

RX

Storage

DB Tables

DB Data

UDP Header HELIX Header PayloadIP Header

UWME

Options

Options

Logging

Handler

LNHF

LRBF

LRGF

Modification

Addition

Figure 5.12: Helix architecture - modified and added modules

In the following sections, the global modifications performed to integrate the selected
content distribution schemes into Helix software are described.

5.4.2.1 Helix Support Library and Packet Handling

Along with the Helix daemon, a support library, called libhelix, was developed with several
functions to be used by applications and to define a few general specifications. Our focus is
not related with helix applications, whereby the auxiliary functions developed for that will
not be described. The key functionality introduced by this support library to our work is the
structure of Helix packet header as described in Figure 3.10.

In order to integrate the content dissemination strategies into Helix software, the Helix-
Header was modified. As illustrated in 5.13, several fields were modified or introduced. The

111

following list describes their (new) meaning:

• serviceID : this field identifies the service to which this packet belongs. As new types of
services were introduced, this field was changed.

• nNeigh: the initial definition of this file was the current number of neighbors that
received the packet or, in the case of neighboring announcements, it represented the
total number of neighbors of a certain node. However, in the implemented strategies it
has a slightly different meaning, being responsible to identify the number of hops that
this packet has traveled.

• flags: new types of packets related with new service IDs (and corresponding content
dissemination schemes) were introduced, namely the advertisements. Thus, this field
can have a different meaning in an advertisement packet.

• fileID : identifies the file to which this packet belongs.

• totalPacketsFile: identifies the total number of packets which the file identified by fileID
has.

• blockID : identifies the block to which this packet belongs (only relevant for LRGF
strategy).

• blockSize: identifies the size of a block in number of packets (only relevant for LRGF
strategy).

• genSize: identifies the size of a generation in number of coded packets (only relevant
for LRGF strategy).

UDP Header HELIX Header PayloadIP Header Options

vMajor vMinor

totalPacketsFile

expiryDate

0

srcEID

dstEID

8 16 32 63

serviceID

prevEID hash

dstInfo

dataLength optionsLength

priority nNeigh flags fileID blockID

blkSize genSize Options (variable)

Payload (variable)
Modification

Addition

24 48

Figure 5.13: Helix packet header - modified and added fields

Four new service IDs (DTN_CONTENT_DIST_1. . . 4) were allocated to the content distribu-
tion service. These multiple IDs can be used to identify different types of contents or specific
services within the content distribution (e.g. high priority, only for a specific set of nodes,

112

etc.). In addition to that, a new type of packet was introduced, the advertisement (used in
LRBF and LRGF strategies). Thus, a new mask to identify the type of packet through the
flag field was added and called DTN_FLAG_ADV_MASK.

The Helix developers created an auxiliary class to handle Helix packets. Within this
class, several methods were created to, for example, make a new packet, print it, serialize
(or deserialize) an outcoming (or incoming) packet, among others. Since the Helix header
was modified and new fields were added, some of the previous methods had to be rebuilt.
Thus, the serialize and deserialize methods were modified to introduce the serialization (or
deserialization) of the new added fields in these processes.

5.4.2.2 RX Module

As mentioned in section 3.5.2.2, Helix has a module responsible for forwarding the received
packets from Socket module to other modules (Routing or Neighboring). This classification
is based on the service ID and/or in flags presented in the received packet. Since a new type
of flag was introduced to identify advertisement packets, the RX module was modified to deal
with it. Thus, as illustrated in Figure 5.14, a new action was introduced comparatively to
the initial operation flow. If the packet is an advertisement, its handling is performed by the
Routing module using the advHandler method.

As an addition, Figure 5.14 also illustrates the remaining handling procedures when a
packet is received. If the packet is a neighboring announcement, it will be forwarded to the
Neighboring module to update information related with the node’s vicinity. All the other
types of packet acknowledgments, advertisements, and data, are forwarded to the Routing
module and being handled by ackHandler, advHandler, and pktHandler, respectively.

5.4.2.3 Storage Module

As mentioned before (see section 3.5.2.2), the storage has the responsibility of persistently
keep the data and control information, but also to provide methods to access and retrieve such
information. Thus, several peeking methods were developed by the authors, and it is possible
to peek a packet according to its destination, serviceID, or expiration time. However, for the
implemented content distribution schemes, new methods of peeking were needed according
to other parameters, such as packet hash which is used to identify the packets in the Handler
modules’ internal structure. Therefore, two new peeking methods were created:

• peek_hash(uint32_t packethash): this function returns a copy of the stored packet
identified by packetHash.

• peek_rand(): this function returns a copy of the stored packet in a random way, so it
returns any other packet mapped in storage and available to be returned.

Both methods only peek packets from the expiry table (list of available packets to be returned).
The packets to be forwarded are organized by storage module in two tables: Expiry and

onHold. In the first one the packets are sorted in ascending order according with their lifetime.
When a packet is peeked from the expiry table, it could be transfered to the onHold table for
a certain period of time from ST_MIN_ONHOLD to ST_MAX_ONHOLD. This feature was introduced
to prevent the starvation of packets with a higher lifetime, since no intelligence was introduced
in the peeking procedure by expiry time, and thus the packet with the lowest lifetime was
always peeked first. However, with the implementation of an intelligent choice of packets

113

Query Socket

[socket has packets]

[else]

Cleaning

Check ServiceID

[neigh announcement] [else]

Handle Neigh Announcement Check Packet Flags

Handle Advertisement Handle Data PacketHandle Neigh Ack

[else]

[advertisement]

[neigh acknowledgement]

Modifications/Additions

Located in
Routing

Located in
Neighboring

Figure 5.14: Helix reception process flowchart

(according to packet hash) there is no need to perform such transfer of packets between the
two tables since the starvation problem, caused by the continuously peeking of the packet
with the lower expiry date in the expiry table, is avoided. Thus, whereby the ST_MIN_ONHOLD

to ST_MAX_ONHOLD macros are set to 0.

Finally, the mapping of data in the hard disk is done using an approach similar to a
memory mapping scheme [159]. Within its implementation, the maximum number of pages
allowed to be used, MAX_PAGES is defined. This is a key macro and must be considered during
the implementation of content distribution schemes since a lower value can not be enough to
map all the files to be disseminated if it has a high size. A value of 300 was selected, instead
of the default value of 100, since it proved enough to map a file of approximately 200 MB.

5.4.2.4 Logging Module

The main factor which leads to the implementation of this module from the start was
the lacking of features and functionalities related with content distribution evaluation within

114

Helix software. Furthermore, and following a similar approach that was used in the Mat-
labEmulator, it is crucial to collect log information during the dissemination process that
can be used at the end to perform a statistical analysis of the procedure. The class used to
implement this module is described in Figure 5.15.

Logging

+handler : pthread_t
+log_path : static char
+full_path : static char
+desc : static const char*
+logging_mutex : pthread_mutex_t
-packets_stored_total : uint32_t
-packets_stored_per_timestamp : uint32_t
-packets_transmitted_total : uint32_t
-packets_transmitted_per_timestamp : uint32_t
-packets_lis tened_per_timestamp : uint32_t
-packets_recv_good_per_timestamp : uint32_t
-packets_recv_bad_per_timestamp : uint32_t
-packets_reject_good_per_timestamp : uint32_t
-packets_reject_bad_per_timestamp : uint32_t
-control_packets_number_per_timestamp : uint32_t
-control_packets_size_per_timestamp : uint32_t
-log_id : uint32_t
-timestamp : time_t
-last_timestamp : time_t
-generator : static std::default_random_engine
-distribution_usec : std::uniform_int_distribution<int>

+Logging()
+~Logging()
+runLogging() : void*
+helper() : static void*
+inc_packets_stored_total() : void
+inc_packets_stored_per_timestamp() : void
+inc_packets_transmitted_total() : void
+inc_packets_transmitted_per_timestamp() : void
+inc_packets_listened_per_timestamp() : void
+inc_packets_recv_good_per_timestamp() : void
+inc_packets_recv_bad_per_timestamp() : void
+inc_packets_reject_good_per_timestamp() : void
+inc_packets_reject_bad_per_timestamp() : void
+inc_control_packets_number_per_timestamp() : void
+inc_control_packets_size_per_timestamp(uint32_t : packet_size) : void
-save2File()

Figure 5.15: Helix Logging module collaboration diagram

Thus, the Logging module performs a randomly time register of log data collected along
the process. As illustrated in Figure 5.16, the module can operate in two different ways,
according to its framework. If it is being used with the HelixEmulator, the timestamp is
collected according to the emulation timestamp. On the other hand, if it is running on a
dedicated board or computer, the collected timestamp is the actual time. In addition to
this, if the HelixEmulator is active, a random sleep is added to randomize the access of
the emulation timestamp among all the processes running concurrently. After that, and if
the timestamp changes from the previous one, the log data is saved to a file to be further
analyzed. At the end, the thread sleeps a random time between MIN_TIME_STEP_LOG and
MAX_TIME_STEP_LOG. If the HelixEmulator is active, it is important that these macros are at
equal distance from the emulation time step, since some log data has to be collected with a
constant periodicity equal to the emulation time step.

Several information is collected along the dissemination process. A definition of the vari-
ables used to store this information is presented below.

• log_id: unique number which identifies the log entry.

115

[else]

Sleep Random Time

[HelixEmulator on]

[timestamp != last timestamp]

Collect TimestampEvaluate Actual Time

Sleep Random Time

Update Last Timestamp

Save Log Data to File

[else]

Cleaning

[HelixEmulator off]

[else]

Figure 5.16: Logging module operation flowchart

• node_eid: endpoint identifier of the node where information was generated.

• timestamp: UNIX timestamp which identifies the time when an entry was registered.

• packets_stored_total: total number of files stored by a node since the beginning of
the dissemination procedure.

• packets_transmitted_total: total number of files transmitted by a node since the
beginning of the dissemination procedure.

• packets_stored_per_timestamp: number of packets stored during a sample period.

• packets_transmitted_per_timestamp: number of packets transmitted during a sam-
ple period.

116

• packets_listened_per_timestamp: number of packets heard in the wireless medium
during a sample period.

• packets_recv_good_per_timestamp: number of packets stored by a node which it does
not have yet during a sample period.

• packets_recv_bad_per_timestamp: number of packets stored by a node which it al-
ready has during a sample period.

• control_packets_number_per_timestamp: number of control packets transmitted dur-
ing a sample period.

• control_packets_size_per_timestamp: cumulative size of control packets transmit-
ted during a sample period.

• expiry_table_size: actual size of the expiry table of storage.

• onhold_table_size: actual size of the onHold table of storage.

After saving the log data into a file, all the variables related with a sample period are
reset to zero. The resulting file is a CSV file which can be easily treated (e.g. in MATLAB)
to perform statistical analysis.

All the access and manipulation of internal variables are performed using thread-safe
methods since multiple threads may try to access to them simultaneously.

5.4.3 Routing Module Description

The integration procedures performed to implement the content distributions schemes
previously presented rely mostly on modifications and additions to the Routing module of
the Helix software. Thus, it is important to better understand how this module is implemented
and how it works, whereby it will be presented in this section.

A simplified version of the Routing module collaboration diagram is presented in Fig-
ure 5.17. In this diagram the integrated modules and methods to handle the content dis-
tribution schemes are already included, together with the Logging and BandwidthLim (only
used if HelixEmulator is running) modules previously discussed. To perform the forwarding
decision of packets, the Routing module creates a set of objects, namely to access storage data
and metadata, communication modules (Socket module), and possible APIs that are running.
Furthermore, it is responsible for the integration of handling modules of content distribution
strategies.

The Routing module is a core module of Helix since it is responsible for treating the
received packets and decide what packets should be sent and to whom. Thus, it defines
an interface to handle the incoming and departing packets. The most important methods
to treat incoming packets from the RX module are the ackHandler which is responsible
for acknowledgment packets, pktHandler for data packets, and advHandler (integrated for
content distribution schemes implementation) to deal with advertisement packets. Regarding
the interaction with the Socket module to send control packets, sending methods to send
packets to other nodes are defined: sendNeighAck, sendEndAck, and sendContAdv. When
it is necessary to send a data packet, the Routing module directly uses the pointer to the
Socket object (helixSocket) to send it in broadcast or unicast way. Other methods related

117

Routing

+handler : pthread_t
+handlerAdvertisement : static void*
+generator : static std::default_random_engine
+distribution_usec_adv : std::uniform_int_distribution<int>
+helixSocket : static Socket*
+storage : static Storage*
+apiMan : static ApiManagement*
+handlerLNHF : static HandlerLNHF
+handlerLRBF : static HandlerLRBF
+handlerLRGF : static HandlerLRGF
+log : static Logging
+is2sendAdv : static bool
+is2sendAdv_mutex : pthread_mutex_t
+desc : static const char*
+rt_version : static int

+Routing()
+~Routing()
+runRouting() : virtual void*
+runAdvertisement() : void*
+ackHandler(p : Packet*, from : DTNip) : virtual void
+pktHandler(p : Packet*, from : DTNip, endpoint : bool) : virtual void
+advHandler(p : Packet*, from : DTNip) : virtual void
+sendNeighAck(hdr : HelixHeader, dest : DTNip, port : DTNport, data : char*,
hopList : bool) : int
+sendEndAck(hdr : HelixHeader, hash : uint32_t) : void
+sendContAdv(hdr : HelixHeader, dest : DTNip, port : DTNport, data : char*) :
int
+NeighIsOnList(NeighEid : DTNeid, eids : DTNeid*, nEids : uint32_t) : bool
+IsToMe(packet_info : nodeInfo, eid : DTNeid) : bool
+IsToOthers(packet_info : nodeInfo, eid : DTNeid) : bool
+setIs2sendAdv(flag : bool) : void
+getIs2sendAdv() : bool
+probFunction(tx_version : uint32_t, x1 : uint32_t, x2 : uint32_t, p1 : uint32_t,
p2 : uint32_t, value : uint32_t) : float_t
+helperAdvertisement() : static void*
-adv_logic_v3() : void
-adv_logic_v4() : void
-adv_v3(p : Packet*, from : DTNip) : void
-adv_v4(p : Packet*, from : DTNip) : void

HandlerLRBF

Attributes

Methods

HandlerLRGF

Attributes

Methods

HandlerLNHF

Attributes

Methods

Socket

Attributes

Methods

Storage

Attributes

Methods

StorageRAM

Attributes

Methods

Logging

Attributes

Methods

BandwidthLim

Attributes

Methods

API Management

Attributes

Methods

+handlerLNHF +handlerLRBF +handlerLRGF

+log

+bwLim

+apiMan

+helixSocket

+storage

+_ram

Figure 5.17: Helix Routing module collaboration diagram

specifically to content distribution strategies integration, like advertisement related methods,
will be discussed further in this document.

As mentioned before, Helix adopted a hybrid routing solution since it routes per neighbor
and per packet type. The first routing decision is based on the packet type (data or control),
but the remaining process depends on the node type. Thus, it presents the inheritance diagram

118

illustrated in Figure 5.18. In this diagram the structure of RoutingServer and RoutingWiFi

classes is omitted since in this document it is assumed that only OBUs and RSUs are running
as content distribution nodes. Those classes are used by Wi-Fi (e.g. sensors) and Server type
of nodes as handlers of their routing decisions.

RoutingServer

Attributes

Methods

RoutingWiFi

Attributes

Methods

RoutingOBU

-desc : static char*
-version : static int

+RoutingOBU(version : int)
+~RoutingOBU()
+runRouting() : void*
+ackHandler(ack : Packet*, from : DTNip) : void
+pktHandler(p : Packet*, from : DTNip, endpoint : bool) :
void
+helper() : static void*
-logic_v0() : void
-ack_v0(ack : Packet*, from : DTNip) : void
-pkt_v0(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v1() : void
-ack_v1(ack : Packet*, from : DTNip) : void
-pkt_v1(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v2() : void
-ack_v2(ack : Packet*, from : DTNip) : void
-pkt_v2(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v3() : void
-ack_v3(ack : Packet*, from : DTNip) : void
-pkt_v3(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v4() : void
-ack_v4(ack : Packet*, from : DTNip) : void
-pkt_v4(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v5() : void
-ack_v5(ack : Packet*, from : DTNip) : void
-pkt_v5(p : Packet*, from : DTNip, endpoint : bool) : void

Routing

Attributes

Methods

RoutingRSU

-desc : static char*
-version : static int

+RoutingRSU(version : int)
+~RoutingRSU()
+runRouting() : void*
+ackHandler(ack : Packet*, from : DTNip) : void
+pktHandler(p : Packet*, from : DTNip, endpoint : bool) :
void
+helper() : static void*
-logic_v0() : void
-ack_v0(ack : Packet*, from : DTNip) : void
-pkt_v0(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v1() : void
-ack_v1(ack : Packet*, from : DTNip) : void
-pkt_v1(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v2() : void
-ack_v2(ack : Packet*, from : DTNip) : void
-pkt_v2(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v3() : void
-ack_v3(ack : Packet*, from : DTNip) : void
-pkt_v3(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v4() : void
-ack_v4(ack : Packet*, from : DTNip) : void
-pkt_v4(p : Packet*, from : DTNip, endpoint : bool) : void
-logic_v5() : void
-ack_v5(ack : Packet*, from : DTNip) : void
-pkt_v5(p : Packet*, from : DTNip, endpoint : bool) : void

Figure 5.18: Helix Routing module inheritance diagram

Both RoutingOBU and RoutingRSU classes are quite similar regarding their interface, al-
though their implementation (content of methods) is very different since they have completely
distinct behaviors when receiving or sending a packet. The implementation of each method
belonging to versions 2 to 5 will be discussed further in this document. RoutingOBU and
RoutingRSU are derived from Routing class which has defined virtual methods to treat pack-
ets (both sent and received). Thus, these methods are redefined by these two classes in order
to implement their own routing decision according to their type. Included in these methods
are ackHandler and pktHandler, which are invoked when a node receives, respectively an
acknowledgment or data packet. Moreover, the method responsible for the forwarding deci-
sion (runRouting), which is invoked by a periodic thread to send packets, is redefined. Each
one of the previous methods can be split into a set of auxiliary methods used according to
the routing version which is running. Versions 2 to 5 are reserved for content distribution
strategies (2-LNHF, 3-LRBF, 4-LRGF, and 5-Random).

119

5.4.4 Content Distribution Schemes Implementation

In the following topics the implementation and integration of the previously mentioned
content distribution schemes, namely Random, LNHF, LRBF, and LRGF, is presented and
discussed. The explanation includes a description of the handling class (when it was imple-
mented), main auxiliary structures, and a description of the reception and forwarding data
and, when they exist, advertisement packets and auxiliary threads.

Since the communication between nodes is always performed in a broadcasted manner,
no acknowledgment packet was implemented, whereby there is no need to implement or
redefine handling methods to this type of packets. Moreover, when the flowcharts and flows
of information are described, it is assumed that Helix is running on a real board and not in
HelixEmulator, whereby the BandwidthLim module is not included in this analysis. However,
a topic about how to generate the initial content distribution packets in RSUs in order to
initially store the content, since it is assumed that there is no local server in this procedure
is included.

5.4.4.1 Random

The random strategy relies mostly on the Storage module manipulation, not requiring
an implementation of any additional module or structures. This strategy relies on peeking a
random packet from storage. Thus, a new method to randomly peek packets from storage was
implemented. The peek_rand method was added to Storage module and returns a random
packet from the expiry table if it contains any packets.

Forwarding Decision

The forwarding decision flowchart is illustrated in Figure 5.19, which describes the behav-
ior of the runRouting thread when the Random strategy is selected. First the sender node
checks if it has neighbors and if all of them are OBUs. If this condition fails the process jumps
to its end. On the other hand, and if it has any packets in its storage, it proceeds to a random
peek of a packet using the peek_rand method. If any packet was peeked and if it belongs to
a content that is under dissemination, the field responsible for identifying the source node of
the packet (prev_EID) is updated and the packet is sent in broadcast to its neighbors. If the
previous conditions are not fulfilled, the process jumps to its end. Before finishing, the logging
variables like packets_transmitted_total and packets_transmitted_per_timestamp are
incremented. At the end, the process sleeps for CYCLE_DELAY microseconds (default value is
200 ms) and after that it resumes the process. The thread ends when a signal of cleaning is
activated, jumping to the clean up functions (see Figure 3.14).

Reception of a Data Packet

In Figure 5.20 the procedure carried out when a data packet is received from the RX
module is described. The analysis is divided in two processes, since the procedure varies
according to the node type. If the receiver is an OBU and the packet was received from a
WAVE interface, the node ID is added to the packet’s hop list and, if the node does not
have store this packet, it pushes the packet to storage. On the other hand, if one of the
previous conditions fail, the procedure jumps to the logging phase. Thus, when the node
does not have the received packet, a set of logging counters are updated, registering the
number of stored packets in total and within this timestamp, and the number of good packets

120

[else]

Update Packet

[node has neighbors and all are OBUs]

[else]

Sleep CYCLE_DELAY

[node has packets in storage]

Peek Random Packet

[else]

[a packet was peeked]

[it is a content dist packet]

[else]

Send Packet in Broadcast

Logging

Cleaning

Figure 5.19: Helix integration Random strategy data packet forwarding decision flowchart

received (packets_stored_total, packets_stored_per_timestamp, and packets_recv_-

good_per_timestamp). However, if a packet already stored was heard, the number of bad
packets received is incremented (packets_recv_bad_per_timestamp). In both cases, the
number of heard packets within this timestamp (packets_listened_per_timestamp) is also
incremented. On the other hand, if the receiver node is an RSU, the packet is discarded since
the dissemination procedure is always downstream (from RSUs to OBUs or among OBUs).

Initial Generation of Content Distribution Packets
The procedure to initially store packets in RSUs is illustrated in Figure 5.21. Once the

number of packets is defined, all the packets are created and stored. First the packet’s header
is initialized and a packet is created (join of header and payload) and pushed to storage.

121

[packet is from a WAVE interface]

[else]

Received Data Packet from RX

Add to Hop List

[packet is not in storage]

Logging

[else]
Push Packet to Storage

Received Data Packet from RX

Discard Packet

(a) (b)

Figure 5.20: Helix integration Random strategy data packet reception in (a) an OBU and (b)
an RSU flowcharts

[else][all packets created]

Define Number of Packets

Init Packet Header

Make Packet

Push Packet to Storage

Figure 5.21: Helix integration Random strategy generation of content distribution packets
flowchart

122

5.4.4.2 Least Number of Hops First (LNHF)

The LNHF was implemented creating an auxiliary architecture responsible for identifying
the next packet to be forwarded and to keep the storage content and packets information such
as the number of transmissions and number of hops updated.

Auxiliary Structures

Figure 5.22 gives an overview of the structures used to implement this architecture. The
first one is a hash table which has as a key element, the packet’s hash, and as a data element
a pointer to the internal memory where information about that packet is stored. The second
one is a double-linked list of pointers to internal memory where objects of type Node are stored
with informations about stored packets. These structures are used mostly for two reasons.
The first one is to provide an optimized way to identify the next packet to send according to a
specific parameter, which is achieved through the use of a linked list always sorted according
to this parameter. The second one is to quickly access an internal Node associated to a certain
packet’s hash and collect or change internal information about it.

hash Node*

1 ptr1

... ...

M ptrM

hashTable

prev

next

Node*

linkList

prev

next

Node*

Figure 5.22: Helix integration HandlerLNHF implemented structures

As previously mentioned, multiple objects are created and stored in the internal memory,
and each one contains several information about a specific content distribution packet already
in storage identified by a unique hash. Each time that a node receives a packet that it does
not have yet, it creates an object of type Node associated with the received packet and updates
the handling structures. If a node already exists, it only updates the object and the structures
if necessary. Thus, the number of entries of hashTable and linkLinkList must be equal to
the number of content distribution packets stored by this node.

Implementation Scheme

Figure 5.23 shows an example of the implemented scheme and its behavior to select the
packet to be forwarded. The scheme varies according to the node type. If it is an OBU, the
double-linked list is sorted according to the number of hops (nHops), the element pointed by
head the one with less number of hops. When multiple elements have an equal number of
hops, the number of transmissions is the tie-breaking criteria. On the other hand, if it is an
RSU the list is sorted according to the number of transmissions (nTx), the first element being
the one with less transmissions.

Regarding this previous analysis, it is possible to explain the example of Figure 5.23. If
the sender node is an OBU, the first packet to be peeked from storage will be the packet
with hash number 4, since it has the lowest number of hops among all the stored packets
(2 < 4 < 8). Thus, the first element of the linkLinkList is the one associated with the
Node pointed by ptr4. The next element of the linkLinkList is the Node associated with

123

the packet which has the second lower number of hops that is the packet pointed by ptr1.
In the third position of peeking is the packet which has the same number of hops than the
last element, but with a lower number of transmissions, which is the packet pointed by ptr9.
Finally, the last element is the packet which has the highest number of hops and the highest
number of transmissions among the packets with an equal number of hops. This packet is
associated with the Node pointed by ptr6.

On the other hand, if the sender node is an RSU, the first packet to be peeked from storage
will be the packet with hash number 9, since it has the lowest number of transmissions among
all the stored packets (1 < 4 < 5 < 9). Thus, the first element of the linkLinkList is the
one associated with the Node pointed by ptr9. The next element of the linkLinkList is the
Node associated with the packet which has the second lowest number of transmissions that
is the packet pointed by ptr1. In the third position of peeking is the packet which has the
third lowest number of transmissions, which is the packet pointed by ptr6. Finally, the last
element is the packet with has the highest number of transmissions among the packets. This
packet is associated with the Node pointed by ptr4.

hash Node*

1 ptr1

4 ptr4

9 ptr9

prev

next

ptr4

prev

next

ptr1
6 ptr6

prev

next

ptr9

prev

next

ptr6

Node

hash=1

nHops=4

nTx=4

...

Node Node Node

ptr1 ptr4 ptr6 ptr9

linkLinkList

internal memory

hashTable

head tail

hash=4

nHops=2

nTx=9

...

hash=6

nHops=8

nTx=5

...

hash=9

nHops=8

nTx=1

...

ptr9 ptr1 ptr6 ptr4

OBU

RSU

Figure 5.23: Helix integration HandlerLNHF implementation scheme

Implemented Code

In order to implement the LNHF strategy, a new class of objects was created which
is illustrated by Figure 5.24. As mentioned before, the Routing module creates an object
(handlerLNHF) of this class to perform the routing decisions according to this strategy. In-
ternally, the HandlerLNHF class creates a nested class called Node. Each object of this nested
class must be associated with a specific content distribution packet identified by a unique
hash.

Regarding the LNHF strategy, the most important parameters of the Node class are the
packet identifier (hash), number of transmissions (nTx) and hops (nHops) associated with this

124

packet. To access and manipulate these members a set of thread-safe methods were developed.
The HandlerLNHF class is responsible for the implementation of the support structures and
also for their communication with the internal memory where Node objects are stored. This
class also has access to the Storage module to have access to some specific information related
to a packet. The hash table is implemented using the well-known map template of C++, and it
is called hashTable. Furthermore, a double-linked list is implemented using another template
of C++, list, and it is called linkLinkList.

To manipulate and access these structures several thread-safe methods were developed,
such as add2LinkList (to add an element to the linkLinkList), add2HashTable (to add an
element to the hashTable), and sortLinkList (to sort the linkLinkList). The last one is
performed according to the node’s type and uses one of two auxiliary comparison methods:
linkListCompOBU, if it is an OBU or, if it is an RSU, linkListCompRSU. These methods
are used to compared the number of hops/transmissions between adjacent nodes during the
sorting procedure. Since Node is a nested class of HandlerLNHF the methods to access and
manipulate from outside are implemented in outer class. The most important methods are the
insertNode (to insert a new Node), removeNode (to remove a Node), updateNode (to update
an existent Node according to new information), incnTxNode (to increment the number of
transmissions of the packet associated with this Node), and getNode (to collect information
about a Node).

It is possible to manipulate the hash table and the linked list at the same time since they
have independent mutex, but a Node object can only be manipulated by one entity at the
same time since it has a unique internal mutex.

Once the overall implementation is discussed, the two main procedure of content distri-
bution schemes and how they were implemented will be described.

Data Packet Forwarding Decision
Figure 5.25 describes the forwarding decision procedure of data packets. This is basically

the description of the runRounting thread of the Routing module and its behavior is equally
independent from the node’s type. The procedure is executed with a periodicity of CYCLE_-
DELAY microseconds (default value is 200 ms), and the end of the procedure is immediately
before the start of this sleep. Thus, if a node has neighbors which are all OBUs, and has
packets in storage, a hash from linkLinkList is peeked. This operation is performed invoking
the getFirstAvailableNode method which returns the hash associated with the first element
of linkLinkList which is assumed to be updated accordingly with a specific parameter
(number of hops, if node is an OBU, number of transmissions, if it is an RSU). If a hash was
retrieved, there is an attempt to collect the packet associated with that hash from storage
through peek_hash method. If there is no packet associated with this hash in storage, the
information associated with it is removed from structures linkLinkList and hashTable, and
also from the internal memory.

After that the packet is peeked from storage and, if it is not in the OnHold table, the
service ID associated with it is analyzed. Otherwise, the procedure jumps to its end. If
it is not a content distribution packet, all elements associated with this hash are removed
from the internal structures and the procedure ends. Otherwise, the packet is updated in
the following fields, prev_EID with the ID of the sender node and, if the number of hops
registered in packet’s header is lower than the one recorded in the internal memory (Node’s
object), the numNeigh field (which represents the packet’s number of hops) is updated with
the recorded value. After that, the packet is sent in broadcast to the node’s vicinity, and the

125

HandlerLNHF

+link_list_mutex : pthread_mutex_t
+hash_table_mutex : pthread_mutex_t
+storage : Storage*
-linkLinkList : std::list<HandlerLNHF::Node*>
-hashTable : std::map<uint32_t,HandlerLNHF::Node*>
-desc : static const char*

+HandlerLNHF()
+~HandlerLNHF()
+init() : void
+clean() : void
+insertNode(hash : uint32_t, nHops : uint8_t, isOnHold : bool, nTx : uint32_t) : int
+removeNode(hash : uint32_t) : void
+existsNode(hash : uint32_t) : bool
+updateNode(hash : uint32_t, neigh_id : uint32_t, t : time_t) : int
+getFirstAvailableNode(retHash : uint32_t&) : bool
+incnTxNode(hash : uint32_t) : bool
+printHashTable() : void
+printLinkList() : void
+sortLinkList() : void
-add2LinkList(pNode : Node*, sort : bool) : void
-add2HashTable(pNode : Node*) : void
-remFromLinkList(pNode : Node*) : void
-remFromHashTable(hash : uint32_t) : void
-getNode(hash : uint32_t, pNode : Node*&) : bool
-linkListCompOBU(first : const HandlerLNHF::Node* const &, second : const
HandlerLNHF::Node* const &) : static bool
-linkListCompRSU(first : const HandlerLNHF::Node* const &, second : const
HandlerLNHF::Node* const &) : static bool

Storage

Attributes

Methods

+storage

HandlerLNHF::Node

-hash : uint32_t
-nHops : uint8_t
-isOnHold : bool
-nTx : uint32_t
-mutex : pthread_mutex_t

+Node(hash : uint32_t, nHops : uint8_t, isOnHold : bool, nTx : uint32_t)
+~Node()
+incnTx() : void
+getHash() : uint32_t
+getnHops() : uint8_t
+getIsOnHold() : bool
+getnTx() : uint32_t

Figure 5.24: Helix integration HandlerLNHF sub-module collaboration diagram

nTx filed of internal memory’s object is incremented, and linkLinkList is sorted since one
of the comparison parameters was updated. Before finishing, the logging variables such as
packets_transmitted_total and packets_transmitted_per_timestamp are incremented.

Data Packet Reception

In Figure 5.26 the procedure carried out when a data packet is received from the RX
module is illustrated. Since the procedure varies according to the node type, the analysis is
divided in two. If the receiver is an OBU and the packet was received from a WAVE interface,
the node ID is added to the packet’s hop list. After that, the existence of a Node in internal
memory associated with the packet received is tested. If there is any Node, and the packet
was received from a valid neighbor, a new one is created using the insertNode method. This
method creates a new object of type Node and fills its members with the packet’s identifier
(hash) and the number of hops (numNeigh) and transmissions (nTx) set to 0, and also adds
new entries to the hash table and to the double-linked list which both has a pointer to the
internal memory address where the created Node is stored. After that, the linkLinkList is
sorted since a new element was introduced. Otherwise, if a Node associated with the received
packet already exists, and the packet number of hops field numNeigh is greater than the value

126

[else]

Peek Packet from Storage

[node has neighbors and they are all OBUs]

[else]

Sleep CYCLE_DELAY

[node has packets in storage]

Get Hash from LinkList

[packet is in storage]

[it is a content dist packet]

[else]

Cleaning

[a hash was retrieved]

[else]

Remove Elements of Hash

[packet is not on hold]

[else]

[else]

Update Packet Remove Elements of Hash

Logging

Send Packet in Broadcast

Sort LinkList

Figure 5.25: Helix integration LNHF strategy data packet forwarding decision flowchart

of the number of hops recorded (nHops), the numNeigh attribute of Node is updated with the
received value. If not, the packet’s field is updated with the recorded value. If nHops was

127

updated, the linkLinkList is sorted.
When the internal structures are updated or a new Node and respective entries of struc-

tures are inserted, and if the packet is not in storage, it is stored. Otherwise, the proce-
dure jumps to the logging phase. Thus, when the node does not have store the received
packet the counters of the number of packets stored and packets good receives are incre-
mented (packets_stored_total, packets_stored_per_timestamp, and packets_recv_-

good_per_timestamp). However, if an already stored packet was heard, the number of wrong
received packets is incremented (packets_recv_bad_per_timestamp). In both cases, the
number of listened packets in this timestamp is also incremented (packets_listened_per_-
timestamp). On the other hand, if the receiver node is an RSU, the packet is discarded since
the dissemination procedure is always downstream (from RSUs to OBUs or among OBUs).

Initial Generation of Content Distribution Packets
The procedure to initially store packets in RSUs is illustrated in Figure 5.27. Once the

number of packets is defined, all packets are created and stored. First the packet’s header
is initialized and a packet is created (join of header and payload). After that, the packet
is pushed to storage and a Node in internal structures is created. Since a new packet was
pushed, linkLinkList is updated.

128

[packet is from a WAVE interface]

[else]

[is from a valid
neigh]

Received Data Packet from RX

Add to Hop List

[else]

[packet’s node already
exists in structures]

[else]

[packet is not in storage]

Logging

[else]
Push Packet to Storage

[packet numNeigh is
greater than nHops]

Update Node

Sort linkLinkList

[else]

Insert Node

Received Data Packet from RX

Discard Packet

(a) (b)

Update Packet

Figure 5.26: Helix integration LNHF strategy data packet reception in (a) an OBU and (b)
an RSU flowcharts

129

[else][all packets created]

Define Number of Packets

Init Packet Header

Make Packet

Push Packet to Storage

Insert Node

Sort linkLinkList

Figure 5.27: Helix integration LNHF strategy generation of content distribution packets
flowchart

130

5.4.4.3 Local Rarest Bundle First (LRBF)

The LRBF was implemented by creating an auxiliary architecture responsible for iden-
tifying the next packet to be forwarded implementing all the features and functionalities to
achieve this goal. As its major feature, the LRBF implementation added new control packets
responsible for advertising the storage content to the node’s neighbors in order to perform the
forwarding decision. Moreover, this implementation introduces the possibility of spreading
multiple files simultaneously, although this last feature is not the core of this implementation
but only an add-on.

Auxiliary Structures

Figure 5.28 describes an overview of the structures used in the implementation of this
strategy. The first one is a hash table which has the same elements as the previously presented
in Figure 5.22, whereby its key element is the packet’s hash, and the data element is a pointer
to the internal memory where information about that packet is stored. Likewise the previous
one, the second used structure is also similar to the one used in the LNHF strategy, being a
double-link list of pointers to internal memory where objects of type Node with informations
about stored packets are stored. The number of entries of hashTable and mainLinkList

must be equal to the number of content distribution packets stored by a node.

Compared to the LNHF strategy a new structure was added to map the files that are
being spread through the network. It is also an associative container, but now it stores
elements formed by a combination of a key value, fileID, and a mapped value, a pair of two
values: number of packets stored of that file (nPacketsStored), and total packets of that
file (totalPackets). Since each node must know what are the most common bundles in its
neighbors, a new structure was added to Node class, the listPairs. This is a double-link
list of a pair of values: ID of the neighbor (neighID), and the time when the information
indicating that the neighbor identified by neighID had the packet associated with this Node

(time_last) was collected.

hash Node*

1 ptr1

... ...

M ptrM

hashTable

prev

next

Node*

mainLinkList

fileID pair(nPacketStored, totalPackets)

1 (nPS1,tP1)

... ...

N (nPSN,tPN)

mapFiles

prev

next

Node*

prev

next

neighID

listPairs

prev

next

neighID

time_last time_last

…

listPairs
...

Node

Figure 5.28: Helix integration HandlerLRBF implemented structures

131

Similarly to the LNHF strategy, these structures are used mostly for two reasons. The
first one is to provide an optimized way to identify the next packet to send, and the second
one is to have fast access to an internal Node associated to a specific packet’s hash. The new
table maps the files which are being spread, whereby it allows to detect when a node download
all the packets of a certain file. Since each Node has a content distribution packet associated,
the listPairs (which is the sorted list of Nodes according to the strategy criteria) allows to
identify which neighbors have a specific packet. The timestamp of when the control data was
collected (time_last) is used in periodical refreshes to the listPairs since, if a neighbors
moves away from the node’s vicinity, the information should be discarded in order to perform
a more accurate forwarding decision.

Implementation Scheme
An example of the implemented scheme and its behavior to select the packet to be for-

warded is shown in Figure 5.29. The double-link list (mainLinkList), responsible to indicate
the packet to be sent, is sorted according to the number of neighbors which have a spe-
cific packet (size of the listPairs associated with this packet). In the first position of the
(mainLinkList), which is pointed by head, it is stored a pointer to the Node which has the
shortest listPairs list, meaning that more neighbors are in need of that packet. When mul-
tiple elements of the mainLinkList have associated an equal size of listPairs, the number
of transmissions is the tie-breaking criteria. As mentioned before, listPairs of each node
store information about which neighbors have the packet associated with this Node, whereby
the one with smallest size means that it is the most lacking packet in the node’s vicinity.

Regarding this previous analysis, it is possible to explain the example of Figure 5.29. In
the internal memory there is information about four packets (already stored by the sender
node) which is organized in objects of type Node. The listPairs list stores information
collected from neighboring nodes which allows the understanding of how many neighbors
already have a specific packet (each element of this list is associated with a neighbor). Thus,
the size of the listPairs is directly associated with the most lacking packet within the sender
node vicinity. The mainLinkList is a double-link list which allows a faster selection of the
next packet to be forwarded, whereby it is sorted according to the size of listPairs list.
Since the Node associated with the packet with hash number 4 is the most lacking packet
(shortest size of listPairs), a pointer to it is stored in the first position of mainLinkList

list. Following the same reasoning, the next pointed Node is the one identified by hash 1 and
pointed by ptr1. Since the number of transmission is the tiebreaker criteria, the next packet
to be sent is the one pointed by ptr9 and the last one pointed by ptr6.

Implemented Code
In order to implement the LRBF strategy a new class of objects was created. This is

described in Figure 5.30. The Routing module creates an object (handlerLRBF) of this class
to perform the routing decisions according to this strategy. Similar to HandlerLNHF, the
HandlerLRBF class creates a inner class called Node. Each object of Node class has associated
a specific content distribution packet identified by an unique hash.

To perform the forwarding decisions according to the LRBF strategy, the Node class has
the following members: hash, fileID, listPairs, and nTx. A set of thread-safe methods were
developed to access and manipulate these members. Among them, the most important are
incnTx (to increment number of transmissions method of the class Node), updateListPairs,
refreshListPairs, getListPairsSize, and listPairsComp. The updateListPairs allows

132

hash Node*

1 ptr1

4 ptr4

9 ptr9

prev

next

ptr4

prev

next

ptr1
6 ptr6

prev

next

ptr9

prev

next

ptr6

Node

hash=1

sizeListPairs=6

...

Node Node Node

ptr1 ptr4 ptr6 ptr9

mainLinkList

internal memory

hashTable
head tail

hash=4

sizeListPairs=2

...

hash=6

sizeListPairs=8

nTx=5

...

hash=9

sizeListPairs=8

nTx=1

...

Figure 5.29: Helix integration HandlerLRBF implementation scheme

the update of the listPairs list with a new element, or updating the time_last parameter
if an element of neigh_id already exists. On the other hand, refreshListPairs is peri-
odically called to clean dated elements of listPairs. An element is considered dated if it
was not updated for a period longer than ELEMENT_VALID_TIME seconds (default value is 60
s). getListPairsSize is fundamentally used by the sort function of mainLinkList, since it
relies mostly on the size of listPairs of each node within it. Finally, listPairsComp is used
as the comparison function of the sort method of listPairs which sets the older updated
element at the head of the list. This approach improves the refreshing procedure that will be
further discussed in this document. Furthermore, two class constructors were implemented,
which allow the creation of new objects in one of two ways: (i) an object with an empty
listPairs, or (ii) with one element in listPairs.

To implement the support structures, a new class called HandlerLRBF was developed which
is responsible for the communication between them and objects of inner class Node stored in
the internal memory. This class also has access to the Storage module in order to have access
to specific information related to a packet. The well-known template of C++ map is used to
implement the hashTable and mapFiles structures, the mainLinkList is implemented using
the list template.

Among the several thread-safe methods developed to access and manipulate the inter-
nal structures, the most relevant are peekMainListHashes, add2MainList, add2HashTable,
add2MapFiles, runRefresh, and sortLinkList. Since Node is an inner class of HandlerLRBF,
the methods to access and manipulate from the outside are implemented in the outer class.
The most important methods are the insertNode, insertEmptyNode, getFirstAvailableNode,
removeNode, updateNode, incnTxNode, and getNode. Here is not given a complete descrip-
tion of these methods since it will be done in the following topics as justified.

It is possible to manipulate the hashTable, mapFiles, and mainLinkList at the same

133

time since they have an independent mutex, but a Node object can only be manipulated by
one entity at the same time since it has an unique internal mutex.

HandlerLRBF

+handlerRefresh : pthread_t
+main_list_mutex : pthread_mutex_t
+hash_table_mutex : pthread_mutex_t
+map_fi les_mutex : pthread_mutex_t
+return_packet_flag_mutex : pthread_mutex_t
+storage : Storage*
-mapFiles : std::map<uint8_t,std::pair<uint16_t,uint16_t>>

-mainLinkList : std::list<HandlerLRBF::Node*>

-hashTable : std::map<uint32_t,HandlerLRBF::Node*>

-desc : static const char*
-returnPacketFlag : static bool

+HandlerLRGF()
+~HandlerLRGF()
+init() : void
+clean() : void
+insertNode(fi leID : uint8_t, totalPacketsOfFile : uint16_t, hash : uint32_t, neigh_id : uint32_t,
t : time_t, nTx : uint32_t) : int
+insertEmptyNode(fi leID : uint8_t, totalPacketsOfFile : uint16_t, hash : uint32_t, sortMainList
: bool) : int
+removeNode(hash : uint32_t) : void
+existsNode(hash : uint32_t) : bool
+updateNode(hash : uint32_t, neigh_id : uint32_t, t : time_t) : int
+getFirstAvailableNode(retHash : uint32_t&, fi leIDflag : bool, fi leID : uint8_t) : bool
+incnTxNode(hash : uint32_t) : bool
+hasDifHashesToSend(v : const std::vector<uint32_t> &) : bool
+printHashTable() : void
+sizeOfHashTable() : uint32_t
+printMainList() : void
+sortMainList() : void
+peekMainListHashes(vbuf : std::vector<uint32_t>) : bool
+peekMainListHashesFromFile(fi leID : uint8_t, vbuf : std::vector<uint32_t>) : bool
+incnPacketsStored(fi leID : uint8_t) : int
+existsInMapFiles(fi leID : uint8_t): bool
+add2MapFiles(fi leID : uint8_t, totalPacketsOfFile : uint16_t, sizeInPackets : uint16_t) : int
+setReturnPacketFlag(flag : bool) : void
+getReturnPacketFlag() : bool
+runRefresh() : void*
+helperRefresh() : pthread_t
-add2MainList(pNode : Node*, sort : bool) : void
-add2HashTable(pNode : Node*) : void
-remFromMainList(pNode : Node*) : void
-remFromHashTable(hash : uint32_t) : void
-getNode(hash : uint32_t, pNode : Node*&) : bool
-updateMapFiles(fi leID : uint8_t, sizeInPackets : uint16_t) : int
-nPacketsStoredFromFile(fi leID : uint8_t, retVal : uint16_t&) : int
-totalFileSizeInPackets(fi leID : uint8_t, retVal : uint16_t&) : int
-fi leCompleted(fi leID : uint8_t) : int
-allFilesCompleted() : int
-getAllFilesID(vbuf : std::vector<uint8_t>&) : int
-getFilesIDlack(vbuf : std::vector<uint8_t>&) : int
-mainListComp(first : const HandlerLRBF::Node* const &, second : const HandlerLRBF::Node*
const &) : static bool

Storage

Attributes

Methods

+storage

HandlerLRBF::Node

-fi leID : uint8_t
-hash : uint32_t
-listPairs : std::list<std::pair<uint32_t,time_t>
-nTx : uint32_t
-mutex : pthread_mutex_t

+Node(fi leID : uint8_t, hash : uint32_t, neigh_id : uint32_t, t :
time_t, nTx : uint32_t)
+Node(fi leID : uint8_t, hash : uint32_t)
+~Node()
+incnTx() : void
+refreshListPairs(time_ref : time_t) : uint32_t
+updateListpairs(neigh_id : uint32_t, t : time_t) : int
+isEmptyListPairs() : bool
+printListPairs() : void
+sortListPairs() : void
+getFileID() : uint8_t
+getHash() : uint32_t
+getnTx() : uint32_t
+getListpairsSize() : uint32_t
-listPairsComp(first : const std::pair<uint32_t,time_t>, second :
const std::pair<uint32_t,time_t>) : static bool

Figure 5.30: Helix integration HandlerLRBF sub-module collaboration diagram

Start and End of Dissemination
There are two key flags that define when a node can send data and/or control packets. The

134

one responsible for allowing the broadcast of advertisement packets is called is2sendAdv and
is initialized as false in OBUs and true in RSUs. If this flag is enabled, a node can broadcast
advertisement packets to its neighbors; otherwise it must until the is2sendAdv change its
value to true. The other flag, returnPacketFlag, is initialized as false in both OBUs and
RSUs and, when enabled, allows the broadcast of content distribution data packets.

Thus, when Helix starts running, only RSUs send advertisement packets and any node
sends data packets. Figure 5.31-(a) illustrates the procedure to enable the broadcast of data
packets. The node which is able to send advertisement packets(is2sendAdv flag is active),
periodically sends advertisement packets announcing its storage content. At the beginning
this node can only be an RSUs but after a time, can also be an OBU, since at the beginning
of the dissemination only the RSUs known the existence of a content to be spread trough the
network. When an OBU which does not have any content yet receives this advertisement, it
gets to know that there is content to be downloaded, whereby it updates the internal structures
and can start the broadcast of advertisement packets (changes its is2sendAdv flag to true).
So, it advertises that it does not have any packet of such content. When the first node receives
this announcement, it understands that there is at least one neighbor which does not have
any data associated with the content under dissemination. Moreover, if the advertisement
reports incomplete content and the receiver node has data useful to the advertiser (data that
it does not have), it changes its returnPacketFlag to true to be able to send useful data
packets in broadcast.

On the other hand, as described in Figure 5.31-(b), a node should end the process of
dissemination when it does not have any neighbors or if the current neighbors have completed
the download of the content. Thus, when these conditions are reached, the refresh thread
empties listPairs and sets the returnPacketFlag to false, unauthorizing the sending of
content distribution packets.

A B
“I have this content” [adv]

“I do not have nothing” [adv]

is2sendAdv
[false → true]

“I am sending this...” [data]

RSU or OBU OBU

returnPacketFlag
[false]

is2sendAdv
[false]

long period
without neighbors
or if all neighbors
have the content

↓
refresh of listPairs

↓

listPairs is empty
↓

returnPacketFlag
[true → false]

returnPacketFlag
[true]

RSU or OBU

(a) (b)

if content of B is
incompleted

and A has useful data
↓

returnPacketFlag
[false → true]

is2sendAdv
[true]

Figure 5.31: Helix integration HandlerLRBF (a) start and (b) end of dissemination

Refresh Thread

As mentioned before, the elements in listPairs have a limited lifetime of ELEMENT_-

135

VALID_TIME seconds. Thus, a thread was created in order to, in a periodical way, check the
validity of listPairs’s elements and erase the expired ones.

Figure 5.32 describes how this thread is implemented. At the beginning of the procedure,
the actual time (time_ref) is collected which is the time reference to evaluate the validity
of each element. For each element of the mainLinkList, the refresh of listPairs using the
refreshListPairs method is done. This method runs through all elements of listPairs

and, if the information is no longer valid (time_ref-time_last is lower than ELEMENT_-

VALID_TIME), this element will be erased from listPairs. Since the listPairs is sorted
according to time_last value, the iterative process continues until it reaches a valid element
because all the further elements are valid.

After that, if any element from listPairs was removed, the list must be sorted whereby
flag is2sort is set to true and, if listPairs is empty, flag isAllEmpty is enabled to report
the list emptiness. If one or both conditions are not fulfilled, the respective flags are not
enabled. After that, if listPairs is empty (isAllEmpty is enabled) the broadcast of packets
is interrupted (returnPacketFlag is disabled). This last procedure guarantees the end of
the dissemination process when all the node’s neighbors have the content (see Figure 5.31).
If necessary, the mainLinkList is sorted since at least one element of listPairs of a certain
Node was removed.

This thread is executed with a random periodicity between MIN_REFRESH_PERIOD and
MAX_REFRESH_PERIOD seconds to avoid possible starvation caused by fixed periodicity. How-
ever, these two macros should be kept closer in order to set a more accurate refreshment
period.

Data Packet Forwarding Decision
The flowchart presented in Figure 5.33 illustrates how the forwarding decision of data

packets in this strategy is done. The thread runRouting is running this procedure to imple-
ment the LRBF strategy, and its behavior is equally independent from the node’s type. This
procedure has an approximate periodicity of CYCLE_DELAY microseconds (default value is 200
ms).

So, if the sender node has neighbors and all are OBUs, and it has packets in storage, the
method getFirstAvailableNode is invoked to peek the hash that will be loaded from storage.
This method returns the hash associated with the first element of the sorted mainLinkList

(remember that this list is sorted according to the size of each Node’s listPairs). A hash is
only retrieved if the sender node has permission to do it (canReturnPacketFlag is active).
Furthermore, if there is an element of mainLinkList associated to a packet that is not stored,
that Node is added to the delete list to be deleted at the end, and the procedure iterates to
the next Node to collect another hash to be retrieved.

After that, if a hash was retrieved and it identifies a content distribution packet, the
packet is updated (fields prev_EID and numNeigh - similarly to LNHF strategy), being then
broadcasted. If the picked hash does not identify a content distribution packet, the Node

associated with it is deleted from internal structures and memory using the removeNode

method. Once the packet is sent, the number of transmissions of Node is incremented and
the mainLinkList is sorted. At the end of the procedure, the logging variables packets_-

transmitted_total and packets_transmitted_per_timestamp are incremented.
The runRouting thread runs until a cleaning signal is sent.

Data Packet Reception

136

[else]

Refresh listPairs

Sleep Random Time Cleaning

Collect time_ref

Set is2sort Flag
[else]

Set isAllEmpty Flag
[else]

[if l istPairs is empty]

Disable returnPacketFlag
[else]

[if isAllEmpty flag is active]

[else]
Sort mainLinkList

[if is2sort flag is active]

Erase Element

[all elements of listPairs
were evaluated]

[else]

[element is valid]

[else]

[at least one element of
listPairs was removed]

[all elements of mainLinkList were evaluated]

Figure 5.32: Helix integration LRBF strategy refresh thread flowchart

The procedure carried out when a data packet is received from the RX module is illustrated
in Figure 5.34. If the receiver node is an RSU, the packet is discarded since the dissemination
procedure is always downstream (from RSUs to OBUs or among OBUs). On the other hand,
if the receiver is an OBU and the packet was received from a WAVE interface, the packet’s
hop list is updated with the ID of the receiver node.

If there is any Node in internal structures associated with packets received, a new Node is
inserted. There are two ways to insert this new Node according to the sender node’s type. If
it is received from an OBU, a completed Node is added using the method insertNode. This
method creates a new Node and also initializes the listPairs with a new element composed

137

[else]

[node has neighbors and all are OBUs]

[else]

Sleep CYCLE_DELAY

Get First Available Hash

[it is a content dist packet]

Send Packet in Broadcast

Logging

Cleaning

[a hash was retrieved]

[else]

[else]

Update Packet

Delete Node

[else]

[canReturnPacketFlag active]

Get Hash from mainLinkList

[a hash was retrieved]

[else]

[packet is in storage]

[else]

Add to Delete List

Iterate to next Node

[node has packets in storage]

Delete Nodes

Update Node

Sort mainLinkList

Figure 5.33: Helix integration LRBF strategy data packet forwarding decision flowchart

138

by the sender ID and actual timestamp (uses Node’s constructor with five arguments). On
the other hand, if the sender node is an RSU, it is not important to use that information
for the forwarding decision since a node only needs information about the content of its
neighbors which are OBUs. Thus, a method to only create a new Node (and respectively
create new entries in structures) with an empty listPairs was developed, and is called
insertEmptyNode. This procedure allows the receiver node to add information about a new
packet to structures without misrepresenting the forwarding decision with useless information.
If the incoming packet added information about a new content to download, the receiver node
must be able to start forwarding advertisement packets claiming for this content (is2sendAdv
is enabled).

However, if it already exists a Node associated with the received packet in structures,
and the sender node is a valid neighbor and an OBU, the Node is updated. To perform this
updated the updateNode method is used. This method can do one of two things: (i) add a
new element to listPairs, or (ii) update an existing element. If a new element is added,
the size of listPairs changes, whereby the mainLinkList must be sorted; otherwise the
procedure jumps to the intermediary stage where it joins the other branch of the flowchart.

Once the internal structures are updated or a new Node is inserted and respective entries of
structures, if the packet is not in storage, it is stored and the number of stored packets of this
file is updated in mapFiles. If it is, the procedure jumps to the logging phase. Then, if the
node does not have the received packet, the total number of packets along with the amount
of packets stored in this timestamp are incremented (packets_stored_total and packets_-

stored_per_timestamp), and the number of good received packets (a node does not have
it yet) is incremented (packets_recv_good_per_timestamp). Although, if a packet already
stored was heard, the packets_recv_bad_per_timestamp is incremented. The number of
heard packets in this timestamp (packets_listened_per_timestamp) is incremented in both
cases.

Advertisement Procedures

Packet Structure
The LRBF strategy relies on the exchanging of advertisement messages announcing the

content of the node’s storage (see Figure 4.11). To implement these messages, advertisement
packets were introduced and follow the structure illustrated by Figure 5.35. Such packet
is an accumulated set of information about the content that is being spread through the
network and the node has knowledge about it. Thus, in the LRBF content distribution
scheme an advertisement packet starts with the total number of files known by the node
followed by specific information about each file. This information has the file identifier, the
total number of packets that compose this file and how many of them a node has already
stored. Furthermore, if not all of the packets were collected by the node, the advertisements
also have the list of hashes belonging to this file that are stored in the node’s storage. This
set of information is replicated for each known file. Every element of this packet has a size of
4 Bytes. In the following topics it is discussed how a node fills the advertisement packet and
how the information is used by its receiver.

Forwarding Decision
The advertisement packet forwarding decision flowchart is presented in Figure 5.36. If

is2sendAdv flag is active, advertisement packets will be sent, whereby the advertisement

139

[packet is from a WAVE interface]

[else]

[is from a RSU]

[is from a valid neigh]

[is from an OBU]

Insert Empty Node

Received Data Packet from RX

Add to Hop List

[else]

[packet’s node already
exists in structures]

[else]

Insert Node

Set is2sendAdv Flag

[detected new file to download]

[else]

[packet is not in storage]

Logging

[else]

Update MapFiles table

Push Packet to Storage

[is from a valid neigh and it
is an OBU]

Update Node

Sort mainList

[else]

Received Data Packet from RX

Discard Packet

(a) (b)

[else]

[a new element was
added to listPairs]

Figure 5.34: Helix integration LRBF strategy data packet reception in (a) an OBU and (b)
an RSU flowcharts

140

Number

of Files
File ID

Total

Packets

Packets

Stored

Hash

#1

Hash

#N1

...

File #1

... File ID
Total

Packets

Packets

Stored

Hash

#1

Hash

#N2

...

File #M...

4 Bytes

Figure 5.35: HandlerLRBF advertisement packet structure

packet needs to be built using the peekMainListHashes method. This method starts to get
all the known files ID using the getAllFilesID method and recording the number of files
known in the return vector. If the node knows any file, it will evaluate which is the known
content for each one of them, otherwise the procedure ends here. Thus, for each known
file, the file ID, total number of packets of file, and number of packets stored of this file, are
recorded in the return vector. If the file is completely downloaded, no more information about
that file will be recorded since the neighbors just have to know that this file is completely
downloaded in this node. On the other hand, if the file is not completely downloaded, for
each element of mainLinkList that is associated with this file ID, the corresponding hash in
return vector is recorded.

At the end of the procedure the return vector must have the same structure as illustrated in
Figure 5.35. Once the information is collected, the header of the advertisement packet is filled
as just as the payload (where the collected information is stored). After that, the packet is sent
through broadcast and logging variables which count the number of control packet advertised
per timestamp(control_packets_number_per_timestamp) incremented and the size of the
control packets forwarded in this timestamp (control_packets_size_per_timestamp) is
updated.

The sending of advertisement packets is controlled by a thread called runAdvertisement.
This thread is invoked in a random periodical way between a minimum and a maximum
value, MIN_CONT_ADV_PERIOD and MAX_CONT_ADV_PERIOD, respectively. The thread runs until
a cleaning signal is sent.

Reception

The procedure carried out when an advertisement packet is received from the RX module
is illustrated in Figure 5.37 and it does not depend on the receiver node’s type. So, if the
advertisement packet is from a WAVE interface, the payload is isolated from the header and
its first 4 bytes (which represent the number of files known by the sender node) are peeked. If
the peeked value is greater than zero, all the advertised files will be evaluated. So, the payload
content is iteratively analyzed and the file identifier, total number of packets of it, and the
number of packets of the file stored by sender node are collected. If the file is completed in
the sender node and no information exists about it in the mapFiles table, this file is added to
mapFiles and since the node became aware of a new file to download it should start sending
advertisement packets, whereby is2sendAdv flag is enabled.

On the other hand, if a file is not completed in the sender node and there are announced
hashes to evaluate, the hash is peeked, vHashes vector is updated with this hash, and if it
is not already in internal structures and in storage, a Node is inserted using the inserNode

method. Otherwise, the Node is updated, which means that listPairs is updated that can
result in a change of its size. If this change happens, the mainLinkList must be sorted. At

141

[is2sendAdv flag is active]

[else]

Random Sleep between MIN_ADV_PER and MAX_ADV_PER

Peek mainListHashes

Send Packet in Broadcast

Logging

Cleaning

[buffer was fil led]

[else]

Create and Fill Adv Packet

[else] [there are still files left to evaluate]

Record Hashes Stored

[there are still nodes left to
check]

[else]

Get all filesID Known

Rec Number of Files Known

Record fileID

Record Total Packets

Record Hash

Iterate to next Node

[hash belongs to this file]

[else]

[else]

[fi le is completed]

Figure 5.36: Helix integration LRBF strategy advertisement packet forwarding decision
flowchart

the end, if the node has any different hashes in its storage, the returnPacketFlag must be
set to true since there is information that a neighbor does not have all the content. This
evaluation is performed by the hasDifHashesToSend method.

The previous procedure is repeated until all the advertised files are evaluated.

Initial Generation of Content Distribution Packets

The procedure to initially store packets in RSUs is illustrated in Figure 5.38. Once the
number of packets is defined, all the packets are created and stored. First the packet’s header
is initialized and a packet is created (join of header and payload). After that, the packet is

142

[packet is from a WAVE interface]

[else]

Received Adv Packet from RX

Peek Number of Files

[else]

[there are still files left
to evaluate]

[does not exists in mapFiles]

[else]

Add to mapFiles table

Peek Hashes Stored

Peek fileID

Peek Total Packets

[fi le is not completed]

[else]

[there are announced
hashes to evaluate]

[else]

Set returnPacketFlag

Peek Hash

[packet with this hash already
in structures and in storage]

Insert Node

[else]

Set is2sendAdv Flag

[there is a new
fi le to download]

[else]

Update Node

Sort mainLinkList

[else]

[new element was
added to l istPairs]

Set is2sendAdv Flag

Push to vHashes

[if the receiver has
different hashes to send]

[else]

Figure 5.37: Helix integration LRBF strategy advertisement packet reception flowchart

143

pushed to storage and an empty Node in internal structures is created. The insertEmptyNode
is used since the packet is not from any OBU but it is only internally created. Since a new
packet was pushed, also mapFiles and mainLinkList are updated.

[else][all packets created]

Define Number of Packets

Init Packet Header

Make Packet

Push Packet to Storage

Insert Empty Node

Update mapFiles

Sort mainLinkList

Figure 5.38: Helix integration LRBF strategy generation of content distribution packets
flowchart

144

5.4.4.4 Local Rarest Generation First (LRGF)

In this subsection the implementation of the LRGF strategy in the Helix software is
described. There are several differences between this implementation and the last one (of
the LRBF strategy). Those differences are justified mainly by the use of the network coding
concept in the LRGF content distribution scheme, which is explained in detail in section 4.3.
Although the coding module is not deployed, the proposed strategy considered the existence
of coded packets to be forwarded and aims to optimize the algorithm to select which coded
bundles should be broadcasted first. Thus, during this integration a set of assumptions have
been assumed, such as the existence of coded packets to be forwarded (without a deployed
coding module) instead of “normal” packets like in the LRBF generation. The emulation of
the coding module is achieved using increased network redundancy through the generation
of more coded packets. Another relevant information is about the decoding procedure: the
receiver node must be able to understand when it is able to decode a certain block (only
able if already has received at least blocksize packets). The new structures must allow the
easy selection according to the most lacking generation of coded bundles in the sender node.
Regarding these concerns and considerations several new data structures have to be developed
and introduced during the integration of this content distribution scheme.

The LRGF content distribution strategy was implemented through the development of
an auxiliary framework mostly responsibly for the identification of the next packet to be
forwarded. As mentioned before (see section 4.3.4), in this strategy each node periodically
advertises a rank per generation and this information is used in the forwarding decision. To
implement this behavior additional control packets were introduced responsible for advertising
the node’s ranking to their neighbors. As in LRBF strategy, it is also possible to disseminate
multiple files at the same time; however, this feature is not the core of the implementation
and is only an add-on.

It is important to remember that, when this strategy is used, the content is divided in
blocks which are clusters of packets and, when they are coded, each block has a specific gen-
eration of coded packets associated. During the following explanation there is no distinction
from block and generation since they are closely in terms of implementation.

Auxiliary Structures

The developed architecture relies mostly on the structures illustrated by Figure 5.39.
The first one is a block table (blockTable) with two elements, where the key element is an
identifier of a block and the data element is a pointer to a region of internal memory where
the information of such block is stored. Likewise the previous implementation, the second
structure is a double-linked list (called blockList) of pointers to regions in the internal
memory where objects of Block type are stored. Since these structures are responsible to
keep a tracking about the sender node storage, their number of entries/elements must be equal
to the number of blocks/generations of content stored by a node. The last two structures
follow the same idea of hashTable and mainLinkList in the LRBF strategy. However, they
are applied to a different type of object of class Block which has information about a specific
block/generation of a content.

As in LRBF implementation, a table (mapFiles) to map the files that are being spread
through the network is also used. However, compared to the previous one, it adds a set of
additional information in order to achieve a complete knowledge of dissemination contents.
The key element of this table is the file ID, and the data element is composed by a tuple of

145

information which includes the size of the file in packets, the number of stored packets, the
file size in blocks, number of blocks known by this node, blocksize, and gensize of the file
identified by fileID.

Moreover, the Block class implements two additional structures to handle the implemen-
tation of this strategy. The first one is a double-link list (listRankNeighs) of a tuple of
values which identifies the neighbor (neighID), the ranking (rank) of the generation asso-
ciated with this Block, and the time at which this information was collected (time_last).
Since each block/generation has associated a specific set of packets (each one of them identi-
fied by a unique hash), another double-link list was created to easily retrieve a hash of this
block/generation and monitor when enough packets of the same generation were collected in
order to decoded the associated block. If a neighbor goes away from the node’s vicinity, the
information in listRankNeighs should be discarded to perform a more accurate forwarding
decision, whereby time_last information is very useful.

Analogously to the previous strategies, the blockTable and blockList were created
mainly to provide a faster access to the region in the internal memory where objects of
class Block are stored, and to quickly peek the hash which identifies the packet to be picked
from the storage in order to be sent. Since the forwarding decision relies on the weight of
lacking packets from a certain generation in the sender node’s neighbors, listRankNeighs
provides the necessary framework to organize the ranking information. In addition to that,
listHashes is useful to store an updated state of stored packets belonging to a specific
block/generation, providing a quick retrieve of a hash.

blockID Block*

1 ptr1

... ...

M ptrM

blockTable

prev

next

Block*

blockList

fileID tuple(sizeInPackets, nPacketsStored, sizeInBlocks, nBlocksKnow, blockSize, genSize)

1 (sIP1,nPS1,sIB1,nBK1,bS1,gS1)

... ...

N (sIPN,nPSN,sIBN,nBKN,bSN,gSN)

mapFiles

prev

next

Block*

prev

next

neighID

listRankNeighs

prev

next

neighID

rank rank

…

listRankNeighs
listHashes
...

Block listHashes

prev

next

hash

prev

next

hash

time_last time_last

Figure 5.39: Helix integration HandlerLRGF implemented structures

146

Implementation Scheme

In Figure 5.40 an example of the implemented scheme and how it works concerning the
forwarding decision is given. The blockList is sorted based on the sumRank variable which is
a summation of all ranks of the listRankNeighs list, and it is updated every time that this
list changes. Thus, to prioritize the sending of the most lacking generation, the first element
of blockList is the Block object with a lower sumRank although, if there is more than one
element with equal values, the number of transmissions is the tie-breaking criteria.

Regarding this previous analysis, it is possible to explain the example of Figure 5.40. The
internal memory contains information about four file’s blocks (at least some coded packets
associated with each one of them was already stored by the sender node) which is organized
in objects of type Block. The sumRank attribute stores the accumulated advertised ranking
(by the sender node neighbors) associated with a specific block/generation (identified by
blockID), which allows the understanding of which is the most lacking generation of coded
packets in the sender node vicinity. The blockList is a double-link list which allows a faster
selection of the next packet to be forwarded (pointed by head), whereby it is sorted according
to sumRank. Since the Block associated with the block number 4 is the most lacking generation
(smaller value of sumRank), a pointer to it is stored in the first position of mainLinkList list.
Following the same reasoning, the next pointed Block is the one identified by BlockID 1 and
pointed by ptr1. Since the number of transmission is the tiebreaker criteria, the next coded
packet to be sent is the one pointed by ptr9 and the last one pointed by ptr6.

blockID Block*

1 ptr1

4 ptr4

9 ptr9

prev

next

ptr4

prev

next

ptr1
6 ptr6

prev

next

ptr9

prev

next

ptr6

Block

blockID=1

sumRank=4

...

Block Block Block

ptr1 ptr4 ptr6 ptr9

blockList

internal memory

blockTable
head tail

blockID=4

sumRank=1

...

blockID=6

sumRank=5

nTx=4

...

blockID=9

sumRank=5

nTx=1

...

Figure 5.40: Helix integration HandlerLRGF implementation scheme

Implemented Code

Similar to the previous strategies, a new class of objects to handling the implementation
of LRGF strategy called HandlerLRGF was developed. Its content (attributes and methods)
is described in Figure 5.41. Thus, the Routing module creates an entity of this class, called

147

handlerLRGF to handle the forwarding decision in this content distribution strategy. More-
over, and likewise the previous handling classes, it implements an inner class called Block.
In the LRGF strategy the packets are organized according to their block or, if they are coded
packets, their generation, whereby each object of class Block has a unique block/generation
associated, where multiple hashes can be referred.

Block’s class has several attributes that are used to perform forwarding decision according
to the LRGF strategy. The most relevant are: fileID, blockID, sumRank, and nTx. All the
other attributes are also crucial to the implementation, although they are not directly used
as a criteria in the forwarding decision. A set of thread-safe methods to access and manage
these attributes was developed. There are some which perform key operations during the
handling of this strategy, such as incnTx (to increment the number of transmissions of a
certain block), updateSumRank (used to update the sumRank attribute which is the key sorted
parameter to the blockList), getSumRank, updateListRankNeighs (used when information
of an already known neighbor is fresher than older data), refreshListRankNeighs (used to
check the validation of the listRankNeighs)), and listRankNeighsComp.

The listRankneighs is updated adding a new element or, if a certain neigh_id already
exists, updating the time_last parameter. To do this, the updateListRankNeighs method is
used. Since the elements of listRankNeighs have a limited lifetime, the refreshListRankNeighs
method is periodically called to check the list’s content validity. Every element that was not
updated for a period of ELEMENT_VALID_TIME seconds, is deleted from the list.

The blockList is sorted according to the sender node neighbors’ ranking. This infor-
mation is stored in listRankNeighs, and for each element there is a corresponding element
with a specific rank. The sorting procedure is done using a sum of all element ranks within
the same Block. Thus, the getSumRank and updateSumRank are used to collect and update
this information. The sumRank attribute must be updated every time a modification in the
listRankNeighs is performed.

Finally, listRankNeighsComp is used as a comparison function of a built-in sorted function
of the C++ list template when listRankNeighs is sorted. This method sets as the first
element of listRankNeighs the one which has been updated the longest. This approach is a
key feature regarding a faster update of this list.

Moreover, the class provides two different constructors to allow the creation of new Block

objects in one of two ways: (i) an object with an empty listRankNeighs, or (ii) with one
element within it. Another list, called listHashes, was created and it is crucial to select what
are the returned hashes at forwarding decision moment. Within it are stored all the packet’s
hashes of this block/generation (identified by blockID) which a node has in its storage. This
list of information is used to quickly and accurately return a valid packet hash (hash associated
with a stored packet).

In order to implement the HandlerLRGF class several well-known templates of C++ were
used. Such as map, which is used to create the mapFiles and blockTable structures, and
also the list template, used in blocklist. The HandlerLRGF class is the main entity in the
whole handling procedure, since it is responsible for ensuring the communication between
objects of this class and inner objects of the Block class, and also to manage the access and
manipulation of the internal memory.

A large and diverse set of thread-safe methods were developed to provide external ac-
cess and manipulation of Block objects, but also to enable the internal communication be-
tween members of HandlerLRGF class and objects of its inner class Block. Among them the
most relevant are peekBlockListIDsRank, add2BlockList, add2BlockTable, add2MapFiles,

148

runRefresh, sortBlockList. As mentioned before, Block is an inner class of HandlerLRGF,
whereby the methods to access and manage its internal member from outside are implement in
the outer class. Among these, the insertBlock, insertEmptyBlock, getFirstAvailableHash,
removeBlock, updateBlock, incnTxBlock, and getBlock are noteworthy. A deeper expla-
nation of these methods will be given along the document as required.

As aforementioned all the methods are thread-safe, therefore it is possible to access and
manage the internal structures (blockTable, mapFiles, and blockList) at the same time,
since they have an independent mutex. However, each object of class Block can only be
accessed by one entity at a time.

Start and End of Dissemination
Similarly to the LRBF strategy two auxiliary flags are used to define when a node can

send data and/or advertisement packets, returnPacketFlag and is2sendAdv, respectively.
The is2sendAdv is initialized as true in RSUs and false in OBUs. If this flag is enabled, a
node can broadcast advertisement packets to its vicinity, otherwise it cannot. The other one,
returnPacketFlag, is initialized as false in both RSUs and OBUs and, when enabled, allows
the broadcast of data packets.

At the beginning, any node sends data packets and only RSUs send advertisement packets.
The procedure to enable the broadcast of data packets is described in Figure 5.42-(a). Thus,
the node which has enabled the is2sendAdv flag, periodically sends advertisement packets
announcing its storage content (how many and which are the blocks that it has, along with the
associated ranking of each one of them). When an OBU which does not have any content yet
receives this advertisement, it updates the internal structures and changes its is2sendAdv flag
to true since it gets to know that there is content to be downloaded. After that it announces
that it does not have any packet of such content. When node A receives this advertisement,
it acknowledges that there is at least one node within its vicinity that does not have any data
associated with the content under dissemination. In addition to that, if the advertisement
packet reports an incomplete content and the node B has data, it starts broadcasting data
packets, whereby its returnPacketFlag is changed to true.

Contrarily, as shown in Figure 5.42-(b), a node should end the dissemination process when
it does not have any neighbors or if its vicinity has completed the download. When these
conditions are reached, the refresh thread empties the current information about the node
vicinity (empties listRankNeighs) and disables the broadcasting of data packets (sets the
returnPacketFlag to false).

Refresh Thread
The information collected from the advertisement packets has a limited lifetime of ELEMENT_-

VALID_TIME seconds. Thus, a thread to periodically check the validity of listRankNeighs’
elements and erase the expired ones was implemented.

The operational procedure of this thread is described in Figure 5.43 which is close to
the equivalent implemented thread for the LRBF strategy. Therefore, the process starts
with the collection of the actual time (time_ref). After that, and until all elements of
blockList have been evaluated, each one of the listRankNeighs is updated through the
refreshListRankNeighs method. This method iterates through all the elements of listRankNeighs
until it reaches a valid one. When an expired element is detected, it is erased from the list
and the next one is checked. However, if a valid one is detected, all further elements are also
valid since the listRankNeighs is sorted according to the timestamp when each list entry was

149

HandlerLRGF

+handlerRefresh : pthread_t
+block_lis t_mutex : pthread_mutex_t
+block_table_mutex : pthread_mutex_t
+map_fi les_mutex : pthread_mutex_t
+return_packet_flag_mutex : pthread_mutex_t
+storage : Storage*
-mapFiles : std::map<uint8_t,std::tuple<uint16_t,uint16_t,uint16_t,uint16_t,uint8_t,uint8_t>>

-blockList : std::list<HandlerLRGF::Bock*>

-blockTable : std::map<uint16_t,HandlerLRGF::Bock*>

-desc : static const char*
-returnPacketFlag : static bool

+HandlerLRGF()
+~HandlerLRGF()
+init() : void
+clean() : void
+insertBlock(fi leID : uint8_t, totalFileSizeInPackets : uint16_t, totalFileSizeInBlocks : uint16_t,
blockID : uint16_t, blockSize : uint8_t, genSize : uint8_t, sumRank : uint32_t, : nTx uint32_t,
neigh_id : uint32_t, rank : uint8_t, t : time_t, hash : uint32_t) : int
+insertEmptyBlock(fi leID : uint8_t, totalFileSizeInPackets : uint16_t, totalFileSizeInBlocks :
uint16_t, blockID : uint16_t, blockSize : uint8_t, genSize : uint8_t, sumRank : uint32_t, : nTx
uint32_t, hash : uint32_t, sortBlockList : bool) : int
+removeBlock(fi leID : uint8_t, blockID : uint16_t) : void
+existsBlock(fi leID : uint8_t, blockID : uint16_t) : bool
+addHash2Block(fi leID : uint8_t, blockID : uint16_t, hash : uint32_t) : int
+removehashFromBlock(fi leID : uint8_t, blockID : uint16_t, hash : uint32_t) : void
+existsHashInBlock(fi leID : uint8_t, blockID : uint16_t, hash : uint32_t) : bool
+updateBlock(blockID : uint16_t, neigh_id : uint32_t, rank : uint8_t, t : time_t) : int
+getFirstAvailableHash(retHash : uint32_t&, onlyCompletedBlocks : bool, fi leIDflag : bool,
fi leID : uint8_t) : bool
+incnTxBlock(fi leID : uint8_t, blockID : uint16_t) : bool
+canRecvPacketOfBlock(fi leID : uint8_t, blockID : uint16_t) : bool
+hasDiffBlocksToSend(fi leID : uint8_t, v : const std::vector<uint16_t> &) : bool
+printBlockTable() : void
+sizeOfBlockTable() : uint32_t
+printBlockList() : void
+sortBlockList() : void
+peekBlockListIDsRank(vbuf : std::vector<uint16_t>) : bool
+incnPacketsStored(fi leID : uint8_t) : int
+existsInMapFiles(fi leID : uint8_t): bool
+add2MapFiles(fi leID : uint8_t, totalFileSizeInPackets : uint16_t, nPacketsOfFileStored :
uint16_t, totalFileSizeInBlocks : uint16_t, nBlocksOfFileKnow : uint16_t, blockSize : uint8_t,
genSize : uint8_t) : int
+setReturnPacketFlag(flag : bool) : void
+getReturnPacketFlag() : bool
+runRefresh() : void*
+helperRefresh() : pthread_t
-add2BlockList(pBlock : Block*, sort : bool) : void
-add2BlockTable(pBlock : Block*) : void
-remFromBlockList(pBlock : Block*) : void
-remFromBlockTable(blockID : uint16_t) : void
-getBlock(fi leID : uint8_t, blockID : uint16_t, pBlock : Block*&) : bool
-updateMapFiles(fi leID : uint8_t, sizeInPackets : uint16_t) : int
-nPacketsStoredFromFile(fi leID : uint8_t, retVal : uint16_t&) : int
-nBlocksKnownFromFile(fi leID : uint8_t, retVal : uint16_t&) : int
-incnBlocksKnownFromFile(fi leID : uint8_t) : int
-totalFileSizeInPackets(fi leID : uint8_t, retVal : uint16_t&) : int
-totalFileSizeInBlocks(fi leID : uint8_t, retVal : uint16_t&) : int
-blockSizeOfFile(fi leID : uint8_t, retVal : uint16_t&) : int
-genSizeOfFile(fi leID : uint8_t, retVal : uint16_t&) : int
-fi leCompleted(fi leID : uint8_t) : int
-allFilesCompleted() : int
-getAllFilesID(vbuf : std::vector<uint8_t>&) : int
-getFilesIDlack(vbuf : std::vector<uint8_t>&) : int
-blockListComp(first : const HandlerLRGF::Block* const &, second : const
HandlerLRGF::Block* const &) : static bool

Storage

Attributes

Methods

+storage

HandlerLRGF::Block

-fi leID : uint8_t
-totalFileSizeInPackets : uint16_t
-blockID : uint16_t
-totalFileSizeInBlocks : uint16_t
-blockSize : uint8_t
-genSize : uint8_t
-sumRank : uint32_t
-nTx : uint32_t
-canAddHashToListHashes : bool
-listHashes : std::list<uint32_t>
-listRankNeighs : std::list<std::tuple<uint32_t,uint8_t,time_t>
-mutex : pthread_mutex_t

+Block(fi leID : uint8_t, totalFileSizeInPackets : uint16_t,
totalFileSizeInBlocks : uint16_t, blockID : uint16_t, blockSize :
uint8_t, genSize : uint8_t, sumRank : uint32_t, nTx : uint32_t,
neigh_id : uint32_t, rank : uint8_t, t : time_t, hash : uint32_t)
+Block(fi leID : uint8_t, totalFileSizeInPackets : uint16_t,
totalFileSizeInBlocks : uint16_t, blockID : uint16_t, blockSize :
uint8_t, genSize : uint8_t, sumRank : uint32_t, nTx : uint32_t,
hash : uint32_t)
+~Block()
+incnTx() : void
+updateSumRank() : int
+refreshListRankNeighs(time_ref : time_t) : uint32_t
+updateListRankNeighs(neigh_id : uint32_t, rank : uint8_t, t :
time_t) : int
+isEmptyListRankNeighs() : bool
+printListRankNeighs() : void
+sortListRankNeighs() : void
+isEmptyListHashses() : bool
+printListHashses() : void
+add2ListHashses(hash : uint32_t) : int
+remFromListHashses(hash : uint32_t) : void
+existsHashInListHashses(hash : uint32_t) : bool
+peekHashFromListHashses(listPos : uint32_t, retHash :
uint32_t&) : int
+getFileID() : uint8_t
+getFileSizeInPackets() : uint16_t
+getBlockID() : uint16_t
+getFileSizeInBlocks : uint16_t
+getBlockSize() : uint8_t
+getGenSize() : uint8_t
+getSumRank() : uint32_t
+getnTx() : uint32_t
+getCanAddHashToListHashses() : bool
+getListHashesSize() : uint32_t
+getListHashesSizeNotTruncate() : uint32_t
+getListRankNeighsSize() : uint32_t
-listRankNeighsComp(first : const
std::tuple<uint32_t,uint8_t,time_t>, second : const
std::tuple<uint32_t,uint8_t,time_t>) : static bool

Figure 5.41: Helix integration HandlerLRGF sub-module collaboration diagram

150

A B
I have this content [adv]

I do not have nothing [adv]

is2sendAdv
[false true]

I am sending this... [data]

RSU or OBU OBU

returnPacketFlag
[false]

is2sendAdv
[false]

long period without
neighbors or if all
neighbors have the

content

refresh of listRankNeighs

listRankNeighs is empty

returnPacketFlag
[true false]

returnPacketFlag
[true]

RSU or OBU

(a) (b)

if content of B is
incompleted

and A has data

returnPacketFlag
[false true]

is2sendAdv
[true]

Figure 5.42: Helix integration HandlerLRGF (a) start and (b) end of dissemination

updated (time_last value), being the first element the oldest one. An element is considered
to be valid if it was updated in the previous period of ELEMENT_VALID_TIME seconds (or until
time_ref-time_last is lower than ELEMENT_VALID_TIME).

If in the refreshing process any element was erased from listRankNeighs, this structure
needs to be sorted (flag is2sort is set to true) and the sumRank attribute (responsible for
keeping a record about the ranking of a specific generation in the node vicinity) is updated, its
value must change in order to be in compliance with the listRankNeighs content. Further-
more, if the node does not have information about its vicinity ranking (since listRankNeighs
was empty), the isAllEmpty flag is enabled and the node stops the broadcasting of coded
packets (returnPacketFlag is disabled) since there is no longer information to perform the
forwarding decision. This procedure guarantees the end of the dissemination process when
all neighbors have the content or if there are no neighbors for a long period of time. On the
other hand, if listRankNeighs still has a valid element, the returnPacketFlag is enabled.
Since changes in listRankNeighs were performed, the blocklist must be sorted in order to
be in compliance during the forwarding decision.

This thread is executed with a random periodicity between MIN_REFRESH_PERIOD and
MAX_REFRESH_PERIOD seconds to avoid possible starvation caused by a fixed periodicity.

Data Packet Forwarding Decision

A similar approach to the previous implementations was taken in order to make a for-
warding decision according to the LRGF strategy, and its flowchart operation is illustrated in
Figure 5.44. Thus, the runRouting thread was modified and is equal in both types of nodes.
The thread is awake with a periodicity of CYCLE_DELAY microseconds (default value is 200
ms).

When the thread is awake, if the node has neighbors and all of them are OBUs, and
its storage is not empty, the internal structures implemented to handle this strategy will be
queried in order to evaluate which is the packet to be sent. To perform this operation, the
getFirstAvailableHash method is used since it is the method developed to return the hash
of the coded packet that should be sent first. Within this method, if the broadcasting of data
packets is enable (returnPacketFlag is true) the taken procedure is as follows.

151

[else]

Refresh listRankNeighs

Sleep Random Time Cleaning

Collect time_ref

Set is2sort Flag
[else]

Set isAllEmpty Flag
[else]

[if l istRankNeighs is empty]

Disable returnPacketFlag
[else]

[if isAllEmpty flag is active]

[else]
Sort blockList

[if is2sort flag is active]

Erase Element

[all elements of listRankNeighs
were evaluated]

[else]

[element is valid]

[else]

[no element was removed
from listRankNeighs]

[all elements of blockList were evaluated]

Update sumRank

Figure 5.43: Helix integration LRGF strategy refresh thread flowchart

Since the blockList is sorted according to the ranking, the first element will be the one
with a lower value of sumRank (meaning that block/generation is the most lacking one in
the node’s vicinity). Thus, the blockList is iterated until a valid hash from this survey
is not returned. There are two ways to perform the survey: (i) only considering packets
from completed decoded blocks, or (ii) enabling the return of hashes belonging to packets
of a generation that is not decoded yet (meaning that this packet was coded by another
node and this node will only forward it). These two situations are distinguished through

152

the setting of completeGenFlag; when enabled only coded packets from generations asso-
ciated with completed decoded blocks can be forwarded; otherwise is the second one which
is deployed. Thus, the iterative process through blockList continues until a valid Block is
reached. After that, the size of the listHashes associated with the selected Block is eval-
uated in order to randomly generate a number which identifies the position in listHashes

where the hash to be returned is stored. This position is evaluated using the information
returned by getListHashesSizeNotTruncated method, which returns the listHashes size
not truncated to blocksize hashes. Once the hash is peeked, and if it is available in storage,
the procedure jumps to its end. Otherwise, it re-evaluates the hash to be peeked or, if there
are no more attempts, it iterates to the next Block.

Once the hash of the packet to be pushed from storage is collected and if it is a content
distribution packet, its prevEID (identifier of the packet source node) and numNeigh (number
of hops) fields are updated (similar to the previous strategies). After that, the packet is sent in
broadcast to the nodes’s vicinity and (in the internal structures) the number of transmissions
of the associated Block is incremented. Since one of the sorting parameters of blockList

was updated, it must be sorted using the sortBlockList method. Likewise the previous
implementations, at the end of the procedure the logging variables packets_transmitted_-
total and packets_transmitted_per_timestamp are incremented.

Finally, the runRouting thread runs until a cleaning signal is sent.

Data Packet Reception
Figure 5.45 and Figure 5.46 describe what are the procedures when a node (OBU or RSU)

receives a data packet from the RX module. Similarly to the other implementations, when an
RSU receives a data packet, it discards it since the transfer of data information one-directional
(from RSUs to OBUs or among OBUs). Otherwise, if the packet is received in an OBU and
comes from a WAVE interface, a set of procedures will be performed.

First of all, the packet’s hop list is updated with the ID of the receiver node. If the Block

associated with the received packet does not exist in the internal structures, and that packet
comes from a valid neighbor, a new object of type Block will be inserted.

The creation of this new element depends on the type of the sender node. If the packet
is received from an OBU, a completed new Block is added using the insertBlock method.
This method allows the creation of a new Block and also initializes the listRankNeighs and
listHashes with new elements composed by the sender ID, a default rank (value is set to 0),
and, in the case of listHashes, with a new element containing the received packet’s hash.
This last set of operations is achieved using the Block’s constructor composed by 11 input
arguments.

If the packet was received from an RSU, it is not relevant to register information about the
sender node, since it is not a potential receiver of information in the dissemination process,
whereby the internal structures used for handling the forwarding decision do not need to be
updated with this kind of information. However, it is important to store information about
the received content, whereby an empty Block is created using the insertEmptyNode method.
This method creates a new Block (and respectively new entries in internal structures) with
an empty listRankNeighs and listHashes. This approach precludes the misrepresenting of
metadata crucial to forwarding decisions, and only adds information about a new Block to
be downloaded. If new content to download was detected the is2SendAdv flag is enabled in
order to trigger the advertisement to further nodes.

On the other hand, if the associated Block already exists, or if procedures finished the

153

[else]

[node has neighbors and all
are OBUs]

[else]

Sleep CYCLE_DELAY

Get First Available Hash

[it is a content dist packet]

Send Packet in Broadcast

Logging

Cleaning

[a hash was retrieved]

[else]

[else]

Update Packet

Remove from listHashes

[else]

[canReturnPacketFlag active]

Get Random Hash from listHashes

[a hash was retrieved]

[else]

[packet is in storage]

[else]

Remove Hash from listHashes

[node has packets in storage]

Update Block

Sort blockList

Iterate to next Block

[completedGenFlag act ive and generat ion is
completed or completedGenFlag is inactive]

[else]

[there are attempts left
within this block]

[else]

Figure 5.44: Helix integration LRGF strategy data packet forwarding decision flowchart

154

creation of a new one, the node will decide if it can store the received packet or not. Thus, if the
node can receive packets of this blockID and does not have it in storage, it pushes the packet.
A node can only push packets of not completed blocks, whereby a flag was created, called
canAddHashesToListHashes, per each Block in order to signal the authorization (or not) of
this procedure. After that, the packet’s hash is added to the listHashes of the associated
Block through the addHash2Block method which in turn uses the add2ListHashes. Thus,
if the hash does not exist in listHashes it will be added to it. If, with the addition of a new
hash, the number of hashes of the some blockID (size of listHashes) reaches the blockSize,
genSize-blockSize new packets will be generated. This approach enables the emulation of
the coding process since it generates the redundancy introduced by this type of strategy.
Since a new packet was added to storage, the mapFiles table is updated and the number of
stored packets is incremented.

Finally, several logging counters are updated, namely, the number of stored and heard
packets, along with if the node does not have the received packet the packets_stored_-

total, packets_stored_per_timestamp, and packets_recv_good_per_timestamp counters
are incremented. Although, if a packet already stored was heard, the packets_recv_bad_-

per_timestamp is incremented. The packets_listened_per_timestamp is incremented in
both cases.

Advertisement Procedures

Packet Structure
The implementation of the LRGF strategy mostly relies on advertisement messages which

inform which are the blocks/generations and respective ranking a node has. Thus, to imple-
ment these messages, packets of advertisement whose structure is described in Figure 5.47
were introduced. This packet has a set of information about the contents that are being
spread through the network, but also about the specific content of the sender node storage.

The structure implemented is mainly by two types of information: (i) generic information
about a specific file, and (ii) information about the sender node storage content. The first set
has elements which identify the file, and delivery generic information about it: number of total
packets and blocks, number of packets stored by the sender node and which blocks/generation
he knows, and also which is the block size and generation size of defined to this file. After
this generic data, a set of pair of values (block/generation ID, ranking) are given. Each pair
is composed by an identifier of the block/generation which the sender node knows and its
ranking. The ranking is defined in number of packets between 0 (sender node knows the
block/generation but does not have any data of it) and BLOCKSIZE (sender node knows the
block and already decoded it). This set of information is replicated for each known file and any
element of it has a size of 2 Bytes. In the following paragraphs is discussed the advertisement
packets forwarding decision. Moreover, is explained how a node fills the advertisement packet
and how the information is used by the receiver node.

Forwarding Decision
Figure 5.48 illustrate the implemented forwarding decision flowchart of an advertisement

packet. Once the is2sendAdv flag is enabled, the peekBlockListIDsRank is invoked in order
to collect all the Block’s IDs which this node has store and the ranking associated with this
generation of coded packets.

Thus, this method starts to collect all the IDs of the files that are known by this node

155

[packet is from a WAVE interface]

[else]

[is from an RSU]

[is from a valid neigh]

[is from an OBU]

Insert Empty Block

Received Data Packet from RX

Add to Hop List

[else]

[packet’s block already
exists in structures]

[else]

Insert Block

Set is2SendAdv Flag

[new file detected to download]

[else]

[can receive packets from this block and
does not have this packet in storage]

Add Hash to Block

Logging

[else]

Identify Block

Push Hash to listHashes

[can add hash to listHashes]

Generate Packets

[else]

[else]

[size of listHashes
equal to blocksize]

Update MapFiles table

Push Packet to Storage

Update Flag

Figure 5.45: Helix integration LRGF strategy data packet reception in an OBU flowchart

(through the getAllFilesID method), and records it in the vector to be returned at the end
of the procedure. If a node has information about at least one file, for all the collected files are
collected and recorded several information about the file. Included in those are the identifier

156

Received Data Packet from RX

Discard Packet

Figure 5.46: Helix integration LRGF strategy data packet reception in an RSU flowchart

Number

of Files

File

ID

Total

Packets

Packets

Stored

Block

#1

File #1

...

...

2 Bytes

Total

Blocks

Blocks

Known

Block

Size

Gen

Size

Rank

#1

Block

#N1

Rank

#N1

...

File

ID

Total

Packets

Packets

Stored

Block

#1

File #M

...

...

Total

Blocks

Blocks

Known

Block

Size

Gen

Size

Rank

#1

Block

#N2

Rank

#N2

...

Figure 5.47: HandlerLRGF advertisement packet structure

of the file, the total number of packets and blocks of it, the number of packets stored and
blocks known by this node, and also the block and generation size. After this, the procedure
fills the return buffer with a set of pair of values representing the stored content of this file.
Each pair is composed by the block/generation identifier and the ranking which is the number
of coded packets or, if the block it is already decoded, the number of packets (it is equal to
blocksize). If the node has the complete file, it only sends information about the IDs which
identify the files’ blocks. However, if the node does not have information about any file, the
procedure ends before start all the previous procedure.

Once filled, the buffer passed for peekBlockListIDsRank, it must have the same structure
as illustrated in Figure 5.47. After that, the header of the advertisement packet is filled and
the packet is created joining the header with the payload (where the collected information is
stored) and the packet is sent in broadcast. Finally, the logging variables control_packets_-
number_per_timestamp and control_packets_size_per_timestamp are updated.

Similar to the LRBF strategy, this procedure is controlled by a thread (runAdvertisement)
which is invoked in a random periodical way between MIN_CONT_ADV_PERIOD and MAX_CONT_-

ADV_PERIOD. This procedure runs until a cleaning signal is sent.

Reception

Every time that an advertisement packet is received by a node, it has to execute the
procedure illustrated in Figure 5.49. This procedure is invoked in the RX module and it does
not dependent on the receiver node’s type.

Thus, if the packet comes from a WAVE interface the node peeks the number of files
advertised (first 2 bytes). After that, while there are still files left to evaluate, for each one of

157

[is2sendAdv flag is active]

[else]

Random Sleep between MIN_PER_ADV and MAX_PER_ADV

Peek blockListIDsRank

Send Packet in Broadcast

Logging

Cleaning

[buffer was fil led]

[else]

Create and Fill Adv Packet

[else] [there are still files left to evaluate]

Record Blocks Known

[there are still blocks
left to check]

[else]

Get all filesID Known

Rec Number of Files Known

Record fileID

Record Total Packets

Record blockID

Record listHashes Size

[block belongs to
this file]

[else]

Record Total Blocks

Record Packets Stored

Record blocksize

Record gensize

Iterate to next Block

[else]

[fi le is completed]

Figure 5.48: Helix integration LRGF strategy advertisement packet forwarding decision
flowchart

them it is peeked the identifier of the file, the total number of packets and blocks, the number
of packets stored and blocks known by this node, and also the block and generation size.

If the sender node announces that it has the complete file, and such file does not exist
in mapFiles table of the receiver node, the file is added to the table and the is2sendAdv is

158

turned-on, enabling the broadcasting of advertisement packets. As previously mentioned the
enabling of this flag is crucial to the beginning of the dissemination process, since the node
notice a new file to download.

On the other hand, if the file is not completed, and the sender node announces that it
knows (at least) one block from this file, the packet will be analyzed in more detail. Thus,
the block ID and rank are peeked, and the vBlockID vector is updated with the peek block
ID. If this block is not already in the internal structures, a new Block is inserted using the
insertBlock method, and if there is a new file to download the flag is2sendAdv is defined as
true. However, if already exists a block identified by this blockID in the internal structures,
the block is updated with this newer information of ranking and, if a new element was added
or updated to the listRankNeighs variable, the blockList is sorted.

At the end, if the receiver has different blockIDs from the same file to send to the sender
node the returnPacket flag is enabled. Otherwise, the procedure jumps to the beginning of
the process in order to analyze the information of the next file.

Initial Generation of Content Distribution Packets

Figure 5.50 illustrates the initial procedure to create and store multiple packets in an
RSU in order to be disseminated in the future. This is a very similar process of the one taken
into consideration for LRBF strategy. Thus, the header of the packet is created for each one
and, after that, a packet is created (attachment of Helix header and payload). Each header
is created accordingly to the generation and block that they belong. Once all packets are
created, they are pushed to the persistent storage, where they remained during their lifetime.
Since the packet is not from any OBU, the insertEmptyNode method is used and a new entry
in the internal structures is created (along a new Block) which is crucial to the dissemination
process. Moreover, since a new packet was pushed, also mapFiles is updated and blockList

sorted.

5.5 NetRider Boards Integration

The source code developed for the HelixEmulator is the exact same code that runs on the
boards (OBUs or RSUs) of a real vehicular network. When compiled, this code generates a
binary file (set of instructions executed by a processor of a computational system). However,
the HelixEmulator runs on a linux-based operating system which is different from the one
implemented on the boards. The NetRider boards have an OpenWRT-based operating system
implemented called VeniamOS1.

The boards have limited resources (CPU and memory) and the compilation procedure
requires a significant amount of time and processing. Moreover, the limited space of the hard
disk in the boards does not allow the complete installation of an operating system whereby
most of the times several libraries used by the source code of the programs are missing and
need to be added to the operating system.

Thus, the source code needs to be cross-compiled from a linux-based system to an OpenWRT-
based system (VeniamOS) and a specific processor (AR71xx MIPS32). In order to perform
this procedure, the Veniam R© has released a build system of the VeniamOS similar to the one
of the OpenWRT [160]. This is a set of makefiles and patches that automates the process of

1VeniamOS is a proprietary operating system of VeniamR© based on OpenWRT [127]

159

[packet is from a WAVE interface]

[else]

Received Adv Packet from RX

Peek Number of Files

[else]

[there are still files left
to evaluate]

[does not exists in mapFiles]

[else]

Add to mapFiles table

Peek Total Blocks

Peek fileID

Peek Total Packets

[fi le is not completed]

[else]

[packet announces at least
one block known]

[else]

Set returnPacket Flag

Peek blockID

[block with this ID already in
structures]

Insert Block

[else]

Set is2sendAdv Flag

[there is a new
fi le to download]

[else]

Update Block

Sort blockList

[else]

[new element was added or
updated to RankNeighs]

Peek Blocks Known

Peek blocksize

Peek gensize

Set is2sendAdv Flag

Peek Rank

Push to vBlockID

[else]
[if the receiver has different

blocksIDs from the same file to send]

Figure 5.49: Helix integration LRGF strategy advertisement packet reception flowchart

building a complete VeniamOS-based system that allows the developers to easily generate a
cross-compilation toolchain and a root filesystem for embedded systems such as VeniamOS.

160

[else][all packets created]

Define Number of Packets

Init Packet Header

Make Packet

Push Packet to Storage

Insert Empty Block

Update mapFiles

Sort blockList

Define blocksize and gensize

Check Block ID

Figure 5.50: Helix integration LRGF strategy generation of content distribution packets
flowchart

This toolchain is mainly responsible for generating installer files for the target system
which has a different architecture/processor from the one where the build-root is used. Thus,
this toolchain was used to cross-compile the code from a computer which has an Intel-64bit
system to the boards that use a MIPS32 system.

The VeniamOS build-system was used to cross-compile the source code of two programs.
The first one was the Helix support library (called libhelix) and the other was the modified
source code of Helix.

Once the source code of the modified Helix is compiled, the program is able to run on
the boards. However, this is not enough to perform communication among nodes. The Helix
architecture imposed time restrictions for all the nodes in the same network whereby they
have to be synchronized to be able to communicate. Thus, this was another key element of
the integration in the boards: to provide a correct time synchronization between nodes of the
network.

In a real network, the synchronization is assured by the GPS since each node has an
equipment of this technology. However, if the network is deployed in a place where there is no
GPS signal, other approaches must be taken. Thus, several other synchronization mechanisms
were considered such as Precision Time Protocol daemon (PTPd) [161] and Network Time
Protocol (NTP) [162].

In the end, the choice resides in the NTP because it is a native protocol of OpenWRT

161

installation. According to Guedes [151], NTP is a networking protocol to synchronize the
clocks between computational systems over packet-switched, variable-latency data networks.
This protocol aims to synchronize all the devices with Coordinated Universal Time (UTC)
assuring a millisecond precision. In order to attenuate the effects of variable network latency
and delay, NTP uses an algorithm to select accurate time servers. NTP is usually described
as a client-server protocol, but can be easily used in a P2P mode.

This integration results in two documents that aim to handle the installation and running
of the developed software in the boards (see Appendix A). The first one is entitled com-
pileFromHelixEmuToNetRider and is a set of instructions to compile the source code from
the HelixEmu project to the NetRider boards. There are also some specific characteristics of
the source code described that were implemented in order to deploy the content distribution
schemes on the boards. The second document, called runContentDistExperimentInBoards
focuses on concerns and warnings regarding the running of a content distribution experiment
on the NetRider boards.

5.6 Chapter Considerations

This Chapter focused on the implementation of the content distribution schemes proposed
in Chapter 4. A large set of platforms was used to implement and evaluate those strategies.
The three platforms covered in this Chapter are a Matlab-based emulator, an emulator specifi-
cally designed to develop and perform scalability tests of the DTN mechanisms, and finally the
vehicular OBUs used in a laboratory environment. The main considerations of this Chapter
are described as follows.

MatlabEmulator

Due to the existence of two large datasets with data collected from a real vehicular network,
which has information regarding the vehicles’ mobility, position, neighboring, and commu-
nication capabilities, a new emulator was developed from the start. The MatlabEmulator
was implemented to evaluate content distribution strategies using DTN mechanisms. The
mobility model is created using the collected real data. The main reason for its development
was the non-existence of an easy and fast platform to develop and evaluate the proposed
content distribution strategies without deploying a real network or produce complex code
for a typical network emulator. In Chapter 6 this platform is used to evaluate the proposed
content distribution schemes. Moreover, during the design process of the proposed strategies,
it was used to test and evaluate a variety of approaches and schemes, and proved to be a very
useful tool in this process. In the future, it could be used to implement and evaluate other
strategies as it is not restricted to the proposed ones.

HelixEmulator and Helix Integration

Although the MatlabEmulator is an efficient tool to design and quickly evaluate content
distribution schemes, the code developed on this platform is not prepared to be executed by
the DTN software (Helix) used in this work. Thus, a new emulator was developed to allow
the implementation of source code directly on this software, whereby the emulated code is the
exact code that will be running on the vehicles’ boards (when exported to them). Moreover,
the emulator has the capability to run hundreds of processes at the same time, enabling
the emulation of a large set of vehicles (each process emulates a vehicle), and allowing the

162

testing of the content distribution strategies’ scalability. Similarly to the MatlabEmulator,
the emulation process is supported by the collected datasets which create a mobility model
of the reality. This emulator allows the direct compilation of the source code to the vehicular
OBUs, which is a major improvement compared to the MatlabEmulator. In Chapter 6 this
platform is used to evaluate the proposed content distribution schemes.

Regarding the integration of the proposed content distribution schemes in the DTN soft-
ware (Helix), several new modules were created. In this section the implementation and
integration of those modules was described in detail. These modules aim to handle the im-
plementation of these strategies. As an example, they implement the internal structures
responsible for evaluating which packet should be sent first. Moreover, a Logging module was
created in order to collect log information during a content distribution experiment. This
module can be used during an emulator experiment and also in a real experiment, and is the
source of the logging data used in the evaluation of the proposed schemes in Chapter 6.

NetRider Boards Integration
Finally, in this last section a set of guidelines necessary to integrate and run the developed

source code on the NetRider boards was described. Since the OS where the code was developed
is not the same as the one installed on the NetRider boards, a cross-compile procedure must
be performed. Another challenge is related with the boards’ synchronization. In the real
network, the boards’ synchronization is achieved using GPS technology. However, if the
network is deployed in a covered place, whereby there is no GPS signal, the boards have to
use P2P or client-server synchronization protocols such as NTP or PTPd. As outputs of this
integration procedure, two documents were produced regarding the installation and running
of the developed software. These two documents describe the majority of the steps performed
in the installation and running of the laboratory evaluation in Chapter 6.

163

164

Chapter 6

Evaluation

6.1 Chapter Description

Once designed and implemented, the content distribution strategies need to be evaluated
in the presented wide range of platforms. Thus, this chapter presents the equipments used in
the evaluation, the evaluated scenarios as well as the main results on a variety of platforms.

This chapter is organized as follows:

• section 6.2 - Equipment and Software: description of the main characteristics and spec-
ification related to the equipment and software used along the wide range of platforms.

• section 6.3 - Support Scripting : describes the implemented scripts used to support the
evaluation process, to run experiments as well as to perform statistical analysis.

• section 6.4 - Scenarios and Experiment Description: detailed description of the sce-
narios evaluated, covering a set of parameters as number of nodes, geographical area,
dissemination periods, among others.

• section 6.5 - Evaluated Metrics: presents the metrics used in the statistical analysis
in order to evaluate and compare the performance among several content distribution
strategies.

• section 6.6 - Initial Study of the Network : describes an overview of the network under
evaluation based on previously collected log information that allows to obtain a set of
global metrics and trends that characterized this vehicular network.

• section 6.7 - MatlabEmulator Evaluation: presents the main results achieved through
the MatlabEmulator platform.

• section 6.8 - HelixEmulator Evaluation: presents the main results achieved through the
HelixEmulator platform.

• section 6.9 - Laboratory Evaluation: presents the main results achieved through the
Laboratory platform.

• section 6.10 - Chapter Considerations: depicts the conclusions and the summary of the
full chapter.

165

6.2 Equipment and Software

The following section describes the equipment and software used in the evaluation of the
implemented content distribution strategies (on multiple platforms), and also to develop and
test the MatlabEmulator and HelixEmulator.

The development of the MatlabEmulator and the evaluation of the proposed scenarios
were performed in a machine with the specifications illustrated in Table 6.1. The MATLAB
version used in the development is enunciated in Table 6.2, but the emulator is also compatible
with newer versions.

Processor Intel R© CoreTMi7-2670QM CPU @ 2.20 GHz x4
Memory RAM 8.00 GB
Operating System 64-bit Windows 7 Enterprise (SP1)

Table 6.1: Machine used to develop and run the MatlabEmulator

MATLAB R© Version 7.12.0.635 (R2011a)

Table 6.2: Software used to develop and run the MatlabEmulator

The HelixEmulator was developed and modified in one machine which is not the same
where it is running. The specifications of this machine are specified in Table 6.3.

Processor Intel R© CoreTMi5-3230M CPU @ 2.60 GHz x 4
Memory RAM 3.80 GB
Operating System 64-bit Ubuntu 14.04 LTS

Table 6.3: Machine used to develop and modify the HelixEmulator

Due to the heavy computational effort required to run the HelixEmulator and the long
emulation time, two identical Virtual Machines (VMs) are used. These VMs were configure
using VMware vSphere 5 software and their specifications are described in Table 6.4. Using
two VMs enables the emulation of different scenarios in parallel which optimizes the evaluation
process. The two VMs were located in different clusters being shared with other processes
whereby some experiments may have slightly different values of performance metrics (CPU
usage, load, and free memory) when a similar result is expected.

Processor Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz x 8
Memory RAM 12 GB
Operating System 64-bit Ubuntu 14.04 LTS

Table 6.4: VMs used to run the HelixEmulator

Figure 6.1 shows the boards used in the laboratory experimentation which are the same
as used in the FutureCities testbed. This board is an intelligent router that allows the
communication among vehicles and between vehicles and infrastructure by using multiple
access technologies. Table 6.5 has the main characteristics of the NetRider boards. Moreover,
there are a set of additional features that are also relevant:

• Low power consumption (< 6 W).

166

• IEEE 802.11a/b/g and 802.11p modules.

• High-gain external antennas for each access technology operating in the following fre-
quencies/technologies: 2.4 GHz (IEEE 802.11a/b/g), 5.9 GHz (IEEE 802.11p), and
cellular (3G/4G).

• Ethernet, serial (RS-232) and USB ports.

Figure 6.1: NetRider board (RSU/OBU)

Processor AR71xx MIPS32
Memory RAM 64 MB
Operating System VeniamOS Release: 05.27.14
Hard Disk 128 MB

Table 6.5: NetRider board specifications

6.3 Support Scripting

In order to support the evaluation of the proposed content distribution strategies several
scripts were developed. This set of scripts can be divided into three based on their purpose:
(i) update of databases, (ii) support to integration and evaluation in the platforms, and (iii)
used for statistical analysis.

In the first group, scripts in MATLAB were developed to generate logging of information of
RSUs, since in the collected data of the real-testbed it does not exist (there is only information
about OBUs). Thus, using a back-tracking approach based on the logs of OBUs, these logs
were created and used as input data in the MATLAB emulator. As an example, if an OBU
A has in its list of neighbors (in the real-testbed collected data) the RSU B with an RSSI of
X, the generated log of B has a neighbor A with a link’s RSSI of X. As in MATLAB, the
databases created to be used by the HelixEmulator also did not contain information about
RSUs as transmitter nodes. Thus, the created log information for the MatlabEmulator was
also loaded in the databases of the HelixEmulator. This loading was achieved by creating
a python script which interacts with the already created tables in the MySQL database.
Moreover, in one of the datasets used in the evaluation some information was duplicated,
whereby a series of amendments have been made in the dataset to handle this situation.

Regarding the integration and evaluation in the multiple platforms used to evaluate the
proposed solutions, a set of supporting scripts were developed. The MatlabEmulator runs
directly on any type of machine that can run the MATLAB software. On the other hand, the

167

machine where the HelixEmulator was developed and compiled and the machine used to run
it are not the same (even though they have a similar operating system). Thus, a bash script
was created to automatically compile the source code of the emulator and send the resulting
binary files to the running machine. The use of the HelixEmulator involves the creation of two
types of processes: master program of the emulator, and several helix programs that could
be initiated as OBUs or RSUs. Thus, a bash script was developed in order to launch multiple
helix processes and one emulator process stating the node type, the start and the end of the
emulation process. For the integration on the NetRider boards, scripts which automatically
cross-compile the source code and generate an opkg packet [163] were developed, and installed
on the boards. An auxiliary script to run the evaluated experiment was also developed and
guarantees an accurate repetition. Moreover, a MATLAB script to evaluate what were the
nodes that entered in a specific geographical area during a certain period of time was also
developed. This script is crucial to evaluate the content distribution schemes within specific
scenarios (e.g. rush hour, parking lot, etc.), and its result is used as an input for both
the MatlabEmulator and the HelixEmulator to specify which are the nodes that should be
emulated.

Finally, multiple scripts were created to perform the statistical analysis of the large quan-
tity of generated data from the platforms used in the evaluation. The MatlabEmulator already
has a built-in module to perform this statistical analysis. On the other hand, since the He-
lixEmulator and the NetRider boards are not able to directly perform content distribution
statistical analysis and collecting of log data, a Logging module was developed. This module
produces a large quantity of data that must be analyzed in order to perform an accurate eval-
uation of the implemented strategies. Moreover, to evaluate the performance (in compliance
with subsection 6.5.3) of the machine that runs the HelixEmulator and the NetRider boards
a bash script was developed. Thus, a MATLAB script was created to perform a statistical
analysis of the data generated by the Logging module and the performance script. In prac-
tice, two scripts were developed since one is specific to the HelixEmulator and the other to
the NetRider boards. Furthermore, another MATLAB script was developed to facilitate the
comparison between the multiple strategies and platforms.

6.4 Scenarios and Experiment Description

6.4.1 OPorto Testbed

In this section a description of the evaluated real testbed is given. Among other character-
istics, the context, location, and specifications of this large VANET are described. Moreover, a
description of the evaluated scenarios is also given, focusing on different dissemination regions
and time periods.

6.4.1.1 Network Overview

This vehicular network located in Oporto city has been deployed in common projects with
both Universities of Aveiro and Porto, IT, and Veniam, and is supported by a infrastructure
network of the Porto Digital [164]. This testbed interconnects hundreds of vehicles (public
buses, garbage trucks, and municipality vehicles) in order to provide a set of services such
as Internet access and delay-tolerant communications to transport non-urgent information
(sensors and logs).

168

In order to better understand the network topology and behavior, it has been performed
two data collections of 24-hour each. As mentioned in subsection 5.2.6 this data is composed
by a variety of information such as GPS coordinates or lists of neighbors, per time sample.
The first collection was carried out on the 31st of October, 2014 from 00am to 12pm, and the
second one on the 12th and 13th of February, 2015 from 6pm to 6pm. Table 6.6 describes the
amount of nodes (OBUs and RSUs) presented in the network during the collection period
and also the sampling period of the log data.

Dataset OBUs RSUs Sampling Period (Ts)

October 2014 337 17 5s

February 2015 396 50 2s

Table 6.6: Total number and type of nodes collected for each dataset

From the Table 6.6 an increase in the number of nodes of the network is clearly noticeable.
Figure 6.2 and Figure 6.3 visually highlight the enforcement in the road side infrastructures
carried out from October 2014 to February 2015. The number of RSUs (red dots) increases
more than 190% and the number of OBUs had a lower increase of 17%. Moreover, the
coverage area of the network in February is quite larger than in October, extending into
the surrounding area of the city center and providing connectivity in one of the most busy
roundabout of Oporto (rotunda da Boavista).

Figure 6.2: Testbed description (October 2014)

6.4.1.2 Evaluated Scenarios

The datasets are composed by data collected from all the network nodes being filtered
based on their geographical position or time period. Thus, several scenarios for content
distribution can be deployed and evaluated during the 24-hour period where information
was gathered. In order to obtain a full understanding about the feasibility of the content
distribution schemes, a set of scenarios were evaluated. These scenarios are divided based on
geographical regions and time periods as described as follows.

City Center

169

Figure 6.3: Testbed description (February 2015)

As illustrated by the gray circle in Figure 6.4, the first geographical region selected is the
Oporto city center. This circle is centered in Aliados and has a radius of 1 km. This region
is selected due to the high density and mobility of the OBUs and due to the great number
of deployed fixed infrastructures (red dots in Figure 6.4). Thus, both emulators considered
all the vehicles and RSUs that are within this geographical area during (at least) a sampling
time interval.

(a) - October 2014 (b) - February 2015

Figure 6.4: City center scenario

As described in Table 6.7, two periods to disseminate the content through the network were
considered: (i) Rush Hour and (ii) non-Rush Hour. The first one occurs during the morning
period (from 6am to 10am) and aims to analyze the behavior of the proposed strategies in
a period where the number of nodes is quite high since the number of vehicles traveling in
direction to the city center is high. The non-Rush Hour period is framed between 10am
and 2pm when the majority of the buses tend to be parked in the parking lots whereby the
number of vehicles in the city center is lower than in the previous period. This fact allows
an evaluation of the proposed strategies in a scenario characterized by an often intermittent
connectivity between the network nodes and a sparse network topology.

170

Period Region Dataset OBUs RSUs

Rush Hour 06am-10am
City center

Oct 2014 129 11
Feb 2015 161 18

non-Rush Hour 10am-02pm
Oct 2014 66 11
Feb 2015 133 18

Parking 08pm-12pm Parking lot
Oct 2014 110 1
Feb 2015 120 1

Table 6.7: Number and type of nodes evaluated for each period and dataset

Parking Lot

The second geographical area that was evaluated is described in Figure 6.5. This scenario
aims to evaluate the behavior of the content distribution strategies within a parking lot. In
this case, the parking lot of Via Norte was selected. Among the two existing ones, this is
the biggest parking lot of a public transportation company and can be mapped as a circle
with 150 meters radius. This parking lot has an RSU located in its center which is the RSU
number 447. In this document, the RSUs located in a parking lot can be also called Collection
Station (STA). This geographical area is mainly characterized by a high density of nodes and
a very low mobility since most of the time the vehicles are parked. Thus, it is a potential
good environment for content distribution due to its high density of nodes but it is expected
that the network congestion will be a serious problem.

In this scenario and as described in Table 6.7 only one time period is evaluated. The
selected time period is comprised between 8pm and 12pm since this is the period with more
traffic in the selected parking lot. There are other interesting periods, however in those periods
the nodes do not remain parked for a long period of time, and it is not ideal to perform an
evaluation in this kind of network topology.

(a) - Overview at October 2014 (b) - Zoom in the parking lot of RSU 447

Figure 6.5: Parking lot scenario

171

6.4.2 Laboratory Testbed

The previous scenarios were tested in the developed emulators in order to evaluate the
scalability and performance of the proposed strategies. However, the software was developed
in order to be implemented in a real vehicular network where the nodes are deployed us-
ing the NetRider board previously described. Thus, a testbed was deployed in a laboratory
environment in order to test the best strategy that resulted from the evaluation in the em-
ulators. This implementation does not aim to test the scalability of the proposed solution
but it is mainly focused on demonstrating that the proposed implementation works in a real
environment and not only in the developed emulators.

Figure 6.6 illustrates the deployed scenario in a laboratory environment. This figure
represents a draft of the plant of the building number two of the Instituto de Telecomunicações
of Aveiro. In this experiment five nodes from two different types of (OBU and RSU) are used.
The scenario aims to emulate a real content distribution scenario where the connectivity
among the network nodes is intermittent and where there is a node which acts as a mobile
data mule (OBU number 107) node to deliver information collected from an access point
(RSU number 172) to the remote nodes (OBUs number 109 and 217). The OBU number 132
is fixed and aims to emulate the periods when an OBU is parked in a parking lot where it has
direct contact with an RSU. The Table 6.8 resumes the traveling time and distance between
different points of the scenario.

From To
Time Distance

[s] [m]

A B 15 29

B C 15 23

C D 15 25

D E 15 23

E B 15 25

B A 15 29

Table 6.8: Laboratory testbed description

The timeline of the experiment is described in Figure 6.7. The testbed is deployed as a
circuit which is delimited by points A to E. The OBU number 107 runs through this circuit
three times during the experiment and follows a path that starts in A (where it stays for
a period of 30 seconds) and goes through B, C, D, E, B, and ends in the starting point A.
This circuit takes an average time of 90 seconds and, along with the stopping period in A,
is repeated three times in the same experiment whereby it takes a total time of 6 minutes.
Using this deployment it is expected that the mobile OBU downloads the file from the RSU
during the period that it is stopped in point A, and disseminates the downloaded content
through the sparse nodes of the network (fixed OBUs number 109 and 217). Moreover, the
OBU number 132 should download the file faster than the other nodes, since it emulates a
parked vehicle with direct contact with an RSU.

172

217

109

172

132

107

Mobile OBU

RSU

Fixed OBU

A

C

DE

B

10m

Figure 6.6: Laboratory testbed description

Stop
in A

0 30 6045

B C

9075

D E

105

B
Stop
in A

120 150 180165

B C

210195

D E

225

B
Stop
in A

240 270 300

B C

330315

D E

345

B

360

A

285 t(s)

START END

Figure 6.7: Laboratory testbed description - experiment timeline

173

6.5 Evaluated Metrics

In this section the evaluated metrics are described. These metrics are divided into three
major groups: (i) network overview, (ii) content distribution, and (iii) performance. During
the evaluation both datasets are analyzed, even though, they are completely independent
since they were collected in different periods and have a different number of nodes. Thus, all
the metrics must be compared in experiments within the same dataset.

6.5.1 Network Overview Metrics

Before the beginning of the evaluation procedure, it is crucial to better understand what
are the main characteristics and specifications associated with the network and testbed under
evaluation. Regarding that, several metrics were collected and they are described as follows:

1. Active time is the amount of time that an OBU remains operational, and it is evaluated
assuming that each log received (in the collected dataset) represents an increase of Ts
seconds (sampling period of the data collection) to this metric.

2. Number of (valid) contacts are the number of times that a certain node can establish a
contact with a neighbor. Thus, as an example, when a node at a specific time instant
has a vicinity comprising 5 nodes, the total number of contacts registered at this time
is 5. However, if among these five, 2 of them have a link connection below 15 dBm and
another is an RSU, the number of valid contacts is reduced to 2, since only connections
equal or above 15 dBm can establish downstream (from an RSU to an OBU, or among
OBUs). This metric can also be represented normalized according to the number of
different nodes (OBU or RSU) which collected the information about the number of
contacts.

3. The OBU’s mobility can be measured using the number of collected contacts between
an OBU and other nodes divided according to their type (OBU, RSU, and STA). Thus,
if an OBU has a higher number of contacts with an RSU than with a STA, it indicates
that it has been traveling more in the city center than parked in the parking lot.

6.5.2 Content Distribution Metrics

During the evaluation procedure the following content distribution metrics were evaluated:

1. Delivery rate is considered the percentage of emulated OBUs that successfully down-
loaded the content under dissemination, and this metric is evaluated on a hour-by-hour
basis.

2. Cumulative percentage of file distributed in the network (all the OBUs) throughout the
experiment.

3. E2E delay is the elapsed time to receive the complete file in an OBU since the beginning
of the dissemination process. In the plot only the nodes that received all the packets
are considered.

4. Progress rate measures the rate of progress of completed download files averaged over
all nodes over a specific time interval (default is 20 minutes).

174

5. Number of listened packets by the network per hour. This metric is evaluated through
the cumulative sum of all the packets that the OBUs listened in the medium, and it can
be interpreted as a medium congestion metric.

6. Number and size of transmitted advertisement packets by the network (OBUs and
RSUs) per hour (only measured in the HelixEmulator).

6.5.3 Performance Metrics

During a heavy simulation procedure it is important to monitor the performance of the
simulator machine, since sometimes it could be above its own limits and distort the final
results. Thus, during the emulation procedure of the HelixEmulator several performance
metrics are collected and evaluated. These are described in the following topics. As a footnote,
no performance metric was measured during the MatlabEmulator evaluation, since it works
in a sequential way, which guarantees that all tasks are initiated, run, and completed every
time.

CPU Usage
CPU usage can be defined as a metric on how much the processor is working and is given

in a percentage of CPU time over the total CPU’s capability. Also called CPU time, this
metric measures the amount of time for which a CPU was used for processing the set of
instructions of an OS.

Since the HelixEmulator launches a large set of processes, each one of them with mul-
tiple threads, this metric is useful to quantify how the processor is shared between them.
Furthermore, it allows to quantify the overall business of the system.

The CPU usage information is collected in a UNIX OS. This information is available in the
/proc/stat path of the OS. The CPU usage is evaluated by dividing the difference between
total CPU time and idle CPU time, with the total CPU time as shown in Equation 6.1.
The total and idle times are measured during a specific sampling period (default value is 10
seconds).

CPUusage =
TOTALtime − IDLEtime

TOTALtime
× 100 (6.1)

Load
UNIX operating systems have a metric called load which is a measurement of the compu-

tational work under performing [165]. In a Linux OS, to evaluate the load, processes waiting
for CPU and other resources (e.g. processes waiting to read from or write to the disk) are
counted. The instant load does not mean too much since it can vary quite fast. Thus, usually
the load average on a certain period of time is evaluated.

In [166] an analogy with load and traffic is made which is very illustrative of the meaning of
load. It compared a single-core CPU with a single lane of traffic with a maximum car capacity.
Thus, a decent metric would be “how many cars are waiting at a particular time” [166]. If
there are cars in lane, the traveling time will increase compared to a situation where there are
no cars backed up. So, a possible measure of this behavior is the following classification (i)
0.00, if there is no traffic on the bridge at all, (ii) 1.00, if the lane is exactly at capacity, and
(iii) >1.00 if there is backup. So, if the load is 2.00 that means that the exact same number
of the current cars within it are waiting to enter in the lane. Thus, Assuming that cars are

175

the processes under execution which use a slice of CPU time or queued up to use the CPU,
this analogy describes what the load is.

In the case of multi-processors, the maximum load is given by the number of processor
cores available. As an example, if the CPU has 8 processors, the load should always be below
8.0. However, one of the processors is typically dedicated to the operating system, whereby
only the remaining processors are allocated to other programs. Thus, it is assumed that the
maximum load should be the total number of single-core processors (or cores) minus one.

This measure is given by the UNIX operating systems in the /proc/loadavg path, and
can refer to a sample period of one, five, and fifteen minutes.

Memory
Another important metric is related to the main memory (RAM) of the OS. When a

program/process is executed, the OS assigns a certain memory space, and loads the program
binary code into memory. Thus, since multiple processes and threads are running at the same
time, it is important to monitor the evolution of memory along the experiment period.

The information is collected through the UNIX command free, which gives the total,
free, and used memory of the system at this time instant.

6.6 Initial Study of the Network

As previously mentioned, two datasets of information were collected from a real VANET
and, in this work, several strategies of content distribution are studied. Thus, regarding a
correct understanding of the network, its behavior and characteristics, an initial study is
crucial.

This first approach allows a more accurate routing decision and development of protocols
to disseminate information through the whole network in a real context. Moreover, this
overview is quite useful to adapt the strategies related to network congestion control and
optimized delivery, since it provides useful information about the number of contacts of a
node and its mobility during a 24h period.

6.6.1 Active Time of OBUs

Figure 6.8 illustrates the total active time of all OBUs during a 24-hour period. As
mentioned before two datasets of log information were collected during a 24-hour period,
the number of OBUs is refereed in Table 6.7. Thus, in Figure 6.8 each bar represents the
total active time of all OBUs in one hour of collection data. The active time is evaluated by
multiplying the number of times that a node generates a log information file by the sampling
period (Ts). After analyzing this data it is possible to conclude that in both collected datasets,
there are periods with a higher number of active OBUs than others.

In October, the periods with a higher number of active nodes occur during the early
morning (7am to 12am) and evening (2pm to 8pm). The low level of contacts between 11am
and 1pm is justified by the nodes that are parked in the parking lot at the end of the morning
service and remain parked until the beginning of the evening.

In February, the active time is more uniform during the day being nearly constant between
7am and 10pm. This profile could be due to the increase in the number of nodes in the dataset.
Moreover, a constant decrease of active time is registered between 12pm and 6am since most
of the vehicles are parked.

176

Another important characteristic is the fact that, when a vehicle parks (or stops for any
reason), the OBU continues to communicate during a period of approximately one to two
hours. Thus, if a vehicle parks at 11pm, it could remain active until 1am. This last fact
justifies the still high number of active nodes after midnight.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

60

120

180

240

300

14
8.

9
12

9.
8

90
.6

67
.8

60
.8

72
.5

17
7.

8 22
6.

9
23

8.
6

24
9.

9
22

5.
6

15
8.

8
94

.0
20

4.
4

22
8.

9
23

8.
5

24
2.

3
26

0.
6

25
2.

1
25

2.
6

25
4.

8
18

3.
4

14
4.

4
15

9.
1

Time (h)

T
ot

al
 a

ct
iv

e
tim

e
(h

)

192021222324 1 2 3 4 5 6 7 8 9 101112131415161718
0

80

160

240

320

400

29
5.

0
29

7.
9

28
0.

1
21

7.
4

17
3.

2
15

8.
8

17
7.

9
15

8.
7

12
0.

9
10

5.
1

90
.3

85
.7

22
2.

0 28
1.

5
30

5.
9

31
6.

3
30

4.
4

29
7.

4
26

7.
9

26
1.

9
26

8.
4

26
7.

9
28

3.
3

28
0.

4

Time (h)

T
ot

al
 a

ct
iv

e
tim

e
(h

)

(a) - October 2014 (b) - February 2015

Figure 6.8: Network overview - Total active time of OBUs

6.6.2 Number of Contacts

Figure 6.9 registers the total number of contacts (with OBUs and RSUs) that a node
(OBU) registered per hour. The number of contact are evaluated counting the number of
time that a node (OBU) has connection to other nodes (OBUs and RSUs). As an example, if
node A has a connection with node B during 10 sampling intervals, the number of contacts
will be 10. Thus, the number of contacts is also directly related with the duration of the
connection. The results are organized according to the node’s type, which means that each
bar in an hour period represents a specific node type. The count may contain duplicated values
since, if node A registered a contact with node B, both node’s counters will be incremented.
Another note is the fact that the number of contacts in February will be always higher than
in October due to the increasing number of nodes and also to the lower sampling period.

As expected, the periods with a higher number of contacts are nearly similar to the ones
where nodes remain most of the time active. Nevertheless, the peaks are more pronounced
during the periods around the midday and the beginning of the night. This can result from
the simultaneous arrival of multiple vehicles to the same place (parking lots).

However, not all of the contacts are valid to perform a constant dissemination, whereby
the previous results must be analyzed excluding the non-valid contacts. In Figure 6.10 all
the contacts with a link’s RSSI below 15 dBm are not suitable to perform a downstream
transmission of data and are excluded, due to the fact that the link quality is decreased and
the number of lost packets is significant. This filtering results in a decrease in the number of
registered contacts compared to the previous analysis.

On the other hand, the absolute number of contacts is not enough to fully understand
what are the types of nodes with a higher number of contacts per hour. Thus, in Figure 6.11,
the normalized value of valid contacts per hour is illustrated. The normalization allows for
a better understanding of the network behavior since it provides an approximate metric of

177

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

720

1440

2160

2880

3600

Time (h)

N
um

be
r

of
 c

on
ta

ct
s

(x
10

3)

OBU
RSU
STA

192021222324 1 2 3 4 5 6 7 8 9 101112131415161718
0

1440

2880

4320

5760

7200

Time (h)

N
um

be
r

of
 c

on
ta

ct
s

(x
10

3)

OBU
RSU
STA

(a) - October 2014 (b) - February 2015

Figure 6.9: Network overview - Number of all type of contacts per hour

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

720

1440

2160

2880

3600

Time (h)

N
um

be
r

of
 c

on
ta

ct
s

(x
10

3)

OBU
RSU
STA

192021222324 1 2 3 4 5 6 7 8 9 101112131415161718
0

1440

2880

4320

5760

7200

Time (h)

N
um

be
r

of
 c

on
ta

ct
s

(x
10

3)

OBU
RSU
STA

(a) - October 2014 (b) - February 2015

Figure 6.10: Network overview - Number of valid contacts per hour

where the nodes stay for a long period of time. So, as illustrated, the STAs have always a
higher number of valid contacts because they are located in the parking lots where nodes tend
to be stopped for a long period of time. On the other hand, when not parked OBUs tend
to be in movement producing a lower number of contacts, since they establish contact for a
reduced time period and could be located in dark-zones where they do not have any type of
neighbors.

6.6.3 Mobility of OBUs

The information about the established contacts can also be useful to better understand
the OBUs mobility. When the type of contacts (valid or non-valid) of an OBU with RSUs and
STAs are individually analyzed, it is possible to “recreate” their path along the day. Thus, if
the majority of contacts are established with a STA, it means that the OBU is mostly parked
in a parking lot. On the other hand, if the majority of them are with RSUs, the probability

178

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

10

20

30

40

50

Time (h)

M
ea

n
nu

m
be

r
of

 c
on

ta
ct

s

OBU
RSU
STA

192021222324 1 2 3 4 5 6 7 8 9 101112131415161718
0

16

32

48

64

80

Time (h)

M
ea

n
nu

m
be

r
of

 c
on

ta
ct

s

OBU
RSU
STA

(a) - October 2014 (b) - February 2015

Figure 6.11: Network overview - Normalized number of valid contacts per hour

that the OBUs have been travelling in the city is quite high.

Figure 6.12 illustrates the previously described metric. Due to the increase of the number
of RSUs between October and February, the presented results are quite different, although
the conclusions about the mobility of the OBUs are nearly the same. Thus, in both datasets
two scenarios can be clearly identified: OBUs located mostly (i) in the city, and (ii) in the
parking lots.

In both datasets the OBUs start to have more contacts with STAs approximately after
9pm and remain parked until 6pm. After 6am the OBUs start traveling through the city and,
at midday, some of them returned to the parking lots where they remained for a period of
one or two hours and then returned to the city. This behavior is more clearly observed in
October due to the lower number of RSUs located in the city when compared to the latest
period of February. This higher number increases the number of contacts between OBUs and
RSUs during the day, providing a better coverage to the vehicular network.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

14

28

42

56

70

Time (h)

N
um

be
r

of
 c

on
ta

ct
s

(x
10

3)

RSU
STA

192021222324 1 2 3 4 5 6 7 8 9 101112131415161718
0

216

432

648

864

1080

Time (h)

N
um

be
r

of
 c

on
ta

ct
s

(x
10

3)

RSU
STA

(a) - October 2014 (b) - February 2015

Figure 6.12: Network overview - Mobility of OBUs

179

6.7 MatlabEmulator Evaluation

In the initial phase of this work the MatlabEmulator was developed. The main idea
behind its development was to create an easy platform to evaluate a variety of strategies and
approaches to disseminate content through a vehicular network. Thus, in this section a set
of results and conclusions resulting from that study are presented and discussed.

The approach to evaluate the proposed strategies is divided in two. The first one is related
to “Stateless Choose Information” and aims to study the individual behavior of the strategies
described in section 4.3. The second one is focused on solving problems related with a high
congestion of the medium without jeopardizing the delivery of information (see section 4.4).

6.7.1 Strategies to Stateless Choose Information

All four proposed strategies to stateless choose information are evaluated. The standard
experiment is characterized by the dissemination of a 100 MB file divided in 3008 packets
of 32 KB each. The three previously described scenarios are evaluated: (i) Rush Hour, (ii)
non-Rush Hour, and (iii) Parking.

In this emulator the immediate sending and reception of the advertisement packets is
assumed whereby all the nodes have all the necessary information to perform a routing deci-
sion. Thus, in the LRBF and LRGF strategies the advertisement process is implicit, and it
is assumed that the nodes know exactly what their neighbors have stored, being this an ideal
scenario. In order to approximate the emulator’s behavior to the real behavior of this type
of service in the real network the bandwidth is limited to 1 Mbps.

Moreover, in the LRGF strategy only the second situation (see section 4.3) that considers
the possibility of forwarding coded packets by other nodes is evaluated, since it presented
a better performance compared to the first one. In this strategy, a block is composed by 8
packets and, when coded, results in a generation of 12 coded packets since these are the most
common values in the literature.

6.7.1.1 Rush Hour Period

Both Figure 6.13 and Figure 6.14 represent metrics associated with the percentage of the
delivery along the rush hour period. The first one only counts the number of nodes which
have completely received the file, and the second one is related to the percentage of file spread
through the network (even if the file is not completed).

Analyzing the results it is clear that LRBF and LRGF have the best behavior in terms
of delivery. On the other hand, the Random strategy is quite inefficient since it can not
completely deliver the file to almost any nodes. The LNHF strategy appears in the middle
achieving a higher delivery of complete files than the Random strategy.

All the strategies converge to a high percentage of files distributed in the network. How-
ever, the Random and LNHF strategies take more time than the other two to achieve the
same percentage. Thus, it can be concluded that the intelligence introduced in the LRBF
and LRGF strategies by the advertisement packets can lead to a better performance in terms
of delivery of completed files.

The next two metrics (Figure 6.15 and Figure 6.16) are related to the delivery time. The
first one represents the time that each node tokes to download the complete file, whereby only
information about that node is displayed. The second metric is the progress rate and aims to
give a perspective about how quick is the delivery of the file in each one of those nodes.

180

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

Rand
LNHF
LRBF
LRGF

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.13: MatlabEmulator evaluation comparison in rush hour period - Percentage of nodes
with complete file per hour - Delivery rate

6 7 8 9 10
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

Rand
LNHF
LRBF
LRGF

6 7 8 9 10
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.14: MatlabEmulator evaluation comparison in rush hour period - Percentage of file
distributed in network throughout the experiment

Thus, analysing the results and based on the statistical analysis of Table 6.9, it can be
concluded that the LRBF and LRGF strategies have the best performance since, in mean,
the download process is faster than in the others. On the other hand, the random and LNHF
strategies have the worst behavior. Moreover, as the progress rate shows, in the two better
strategies (LRBF and LRGF) the majority of the downloads are concluded in the first two
hours. Contrarily, most of the complete downloads of random and LNHF strategies occurs
during the last half of the experiment.

Finally a metric regarding the evaluation of the medium congestion is analyzed and illus-
trated in Figure 6.17. Thus, every time that a node (only OBUs) listens to a packet a counter
is incremented, whereby if this value is higher in a specific strategy than in another, it means
that the medium is more congested.

The results of the two datasets are quite different. This mismatch can be justified by a

181

0 25 50 75 100 125
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

Rand
LNHF
LRBF
LRGF

0 25 50 75 100 125 150
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.15: MatlabEmulator evaluation comparison in rush hour period - Time to receive
the complete file per node - E2E delay

Strategy
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

Rand 3.88 ±0.17 3.86 ±0.07

LNHF 2.99 ±0.47 2.91 ±0.28

LRBF 1.98 ±0.14 1.61 ±0.12

LRGF 2.31 ±0.15 1.86 ±0.13

Table 6.9: MatlabEmulator evaluation comparison in rush hour period - E2E delay statistics

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

Rand
LNHF
LRBF
LRGF

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.16: MatlabEmulator evaluation comparison in rush hour period - Progress rate

different network behavior in terms of number of contacts. Remembering the initially study
of the network, in October there is a high increase in the number of contacts between 9am and
10pm which justified the sudden increase of listened packets in this period. Since in February
the network profile in terms of number of contacts is more stable and flat, the number of

182

listened packets in the Random and LNHF are approximately equal and constant throughout
the experiment.

This increasing is only verified in the Random and LNHF strategies due to their lack of
intelligence, which means that, if they have more valid contacts (opportunities to transmit
packets), they send more packets. On the other hand, there is a common behavior among
the two datasets which is the decreasing of the listened packets in the last periods of the
experiment when the LRBF and LRGF are used. This decreasing is justified by the fact that
the transmission of packets decrease when the majority of a node’s vicinity has downloaded
the file. In this situation the node does not send any packet once no node needs any more
packets. Furthermore, since the delivery ratio is higher and the end-to-end delay is lower
in the LRBF strategy, it has a lower number of listened packets because of the last giving
reason.

7 8 9 10
0

720

1440

2160

2880

3600

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

Rand
LNHF
LRBF
LRGF

7 8 9 10
0

340

680

1020

1360

1700

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.17: MatlabEmulator evaluation comparison in rush hour period - Number of listened
packets by the network (only OBUs) throughout the experiment

6.7.1.2 non-Rush Hour Period

It is now important to evaluate a scenario with a very different profile from the previ-
ous, where there is a lower number of vehicles and consequently a decrease in the number
of contacts. This behavior is more pronounced in October than in February due to the re-
inforcement of the network infrastructure which leads to an increase in connectivity among
nodes. The following results aim to evaluate the performance of the proposed strategies in
this period. The analysis is structured as the previous one, being focused on the delivery
ratio, delivery delay, and network congestion.

Figure 6.18 and Figure 6.19 show that the delivery rate in this period when in October is
very reduced. This results from a lack of connectivity during the path from the city center to
the parking lots where the vehicles remained parked during the midday. The abrupt increase
in the delivery rate in the last hour of the experiment is due to the arrival of multiple vehicles
into the city center after a period of being parked. On the other hand, analyzing the delivery
rate in the dataset of February is clearly understanding the effect of the reinforcement of
the infrastructures. Thus, during the travel to the parking lots, the vehicles pass through a

183

higher number of RSUs enhancing the delivery. In this case the behavior is similar to the one
previously discussed to the rush hour period.

The tendency among the strategies remains according to the one observed in the rush
hour period. Thus, the LRBF presents the higher delivery rate, followed by the LRGF, and
with a very low delivery rate, the LNHF and Random strategies.

11 12 13 14
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

Rand
LNHF
LRBF
LRGF

11 12 13 14
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.18: MatlabEmulator evaluation comparison in non rush hour period - Percentage of
nodes with complete file per hour - Delivery rate

10 11 12 13 14
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

Rand
LNHF
LRBF
LRGF

10 11 12 13 14
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.19: MatlabEmulator evaluation comparison in non rush hour period - Percentage of
file distributed in network throughout the experiment

In terms of the delay in the delivery in the experiment of October, the majority of the
files are downloaded in the final hour due to the reasons stated above. On the other hand,
in the February dataset the behavior is similar to the one registered during the rush hour
period of February. Moreover, as Table 6.10 shows, the strategies with a better behavior are
the LRBF and LRGF strategies, followed by the LNHF and Random strategies. Figure 6.20
and Figure 6.21 prove the previous statement.

Analyzing the metrics related to the network congestion presented in Figure 6.22, it is also

184

0 25 50
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

Rand
LNHF
LRBF
LRGF

0 25 50 75 100 125
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.20: MatlabEmulator evaluation comparison in non rush hour period - Time to receive
the complete file per node - E2E delay

Strategy
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

Rand - - 3.49 ±0.25

LNHF 3.40 - 2.37 ±0.41

LRBF 3.54 ±0.15 1.43 ±0.14

LRGF 3.54 ±0.37 1.69 ±0.14

Table 6.10: MatlabEmulator evaluation comparison in non rush hour period - E2E delay
statistics

10 11 12 13 14
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

Rand
LNHF
LRBF
LRGF

10 11 12 13 14
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.21: MatlabEmulator evaluation comparison in non rush hour period - Progress rate

possible to detect a different behavior from October to February. Due to the high number of
contacts during the 10am to 12am period in October, the number of listened packets is higher
in this period, decreasing at the end of the non rush hour period. In February, the behavior

185

is more constant since the number of contacts are also flat. Nevertheless, in both periods a
gradual decrease of listened packets in the LRBF and LRGF strategies was registered, due
to the intelligence introduced which allows a more accurate decision of transmissions. As the
number of contacts remains stable, the number of listened packets in Random and LNHF
also follows this behavior, since they are closely dependent on the number of contacts sending
packets every time that a node can contact another one.

11 12 13 14
0

480

960

1440

1920

2400

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

Rand
LNHF
LRBF
LRGF

11 12 13 14
0

240

480

720

960

1200

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.22: MatlabEmulator evaluation comparison in non rush hour period - Number of
listened packets by the network (only OBUs) throughout the experiment

6.7.1.3 Parking Period

This period has several specificities quite different from the previous two. This is the time
period where the majority of the vehicles (buses) arrive into the parking lot to be parked until
the morning of the next day. Thus, as seen in the initial network study, this period presents a
higher number of contacts since the vehicles are parked in the same geographical region and
remain active for (at least) one hour after the engine stops. As in the previous periods the
analysis of the parking period is divided in three aspects: delivery ratio, delay in the delivery,
and network congestion.

Regarding the delivery ratio, this period has a slightly different profile comparing to the
other two. As Figure 6.23 and Figure 6.24 illustrate, this difference is more prominent in the
first dataset than in the February period. In October, in the first two hours of the experiment
the LNHF strategy has a delivery ratio close to the LRGF strategy, although after that
the delivery ratio of LRGF increases a lot and the number of completed files in the LNHF
strategy has a gentle increase. Once again, this different behavior is justified by the lack of
intelligence of the LNHF strategy which reveals its inability to successful completely delivery
a high number of files even when the overall percentage of the file distributed in the network
is quite high. The strategy with a better delivery ratio is the LRBF, followed by the LRGF
and LNHF.

The major difference regarding the previous periods is the fact that the difference between
the LRBF and the LRGF increased significantly. This change of behavior is mainly justified
by two things. The first one is related to the latency of the strategies. The LRGF needs

186

to collect blocksize coded packets in order to decode the associated block, whereby the
process is slower. The second one is due to the high concentration of nodes (this period has
a higher number of contacts) which enhances the performance of the LRBF since the ideal
advertisement procedure is assumed. Thus, a node knows exactly which is the storage content
of its vicinity, and could send (in broadcast) the most lacking packets.

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

Rand
LNHF
LRBF
LRGF

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.23: MatlabEmulator evaluation comparison in parking period - Percentage of nodes
with complete file per hour - Delivery rate

20 21 22 23 24
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

Rand
LNHF
LRBF
LRGF

20 21 22 23 24
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.24: MatlabEmulator evaluation comparison in parking period - Percentage of file
distributed in network throughout the experiment

The delay in the delivery is also different from the previous periods as shown in Figure 6.25
and Figure 6.26. Despite the lower delivery ratio, the LNHF strategy presents a lower delay
in the delivery when compared to the LRGF, since it delivers mostly in the first period of
the experiment (see Table 6.11). Once again, the LRBF strategy has the lowest delivery
end-to-end delay of the four evaluated approaches.

Compared to the other evaluated periods, in general, the file is delivered with a a lower
end-to-end delay due to the high concentration of nodes within the same geographical area.

187

Moreover, the frequent contact with the RSU deployed in the parking lot helps in the decrease
of this metric.

0 25 50 75 100
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

Rand
LNHF
LRBF
LRGF

0 25 50 75 100
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.25: MatlabEmulator evaluation comparison in parking period - Time to receive the
complete file per node - E2E delay

Strategy
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

Rand 3.19 ±0.81 3.27 ±1.50

LNHF 1.33 ±0.34 2.02 ±0.93

LRBF 1.04 ±0.14 1.17 ±0.15

LRGF 2.25 ±0.18 2.13 ±0.15

Table 6.11: MatlabEmulator evaluation comparison in parking period - E2E delay statistics

20 21 22 23 24
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

Rand
LNHF
LRBF
LRGF

20 21 22 23 24
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.26: MatlabEmulator evaluation comparison in parking period - Progress rate

Figure 6.27 describes the evolution of the number of listened packets by the network

188

throughout the experiment. The same conclusions can be taken from both the October and
February datasets. In the periods with a higher number of contacts, the number of listened
packets is also high in the Random and LNHF strategies. On the other hand, in both periods
a gradual decrease of listened packets in the LRBF and LRGF strategies was registered due
to their intelligence which allows for a more accurate routing decision. Moreover, the LRBF
strategy always presents a lower number of listened packets compared to the LRGF strategy,
which means a lower network congestion (better performance).

21 22 23 24
0

1200

2400

3600

4800

6000

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

Rand
LNHF
LRBF
LRGF

21 22 23 24
0

1200

2400

3600

4800

6000

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

Rand
LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.27: MatlabEmulator evaluation comparison in parking period - Number of listened
packets by the network (only OBUs) throughout the experiment

6.7.1.4 Analysing the Impact of Content Distribution Parameters

After a detailed analysis of the content distribution strategies configured as default, it is
important to analyze the impact of some parameters in the dissemination of a content. Thus,
in this subsection two parameters are analyzed: (i) the size of the file to be disseminated,
and (ii) block and generation size. Only the LRBF and LRGF strategies are evaluated, since
they have the best overall behavior in the previous analysis.

Impact of the File Size on the Delivery Rate and Delay

The most important factor in a dissemination process is the content under dissemination.
For example, it is crucial to know if a content is to be disseminated in real-time, which size it
has, what is its type, etc. Thus, the impact of the content size in the dissemination process
is evaluated. Three file sizes are used: (i) 75 MB, (ii), 100 MB, and (iii) 150 MB.

The analysis focuses on the delivery rate and delay impact and all the three dissemination
periods are evaluated. All the periods present the same behavior when confronted with
different file sizes whereby all of them are analyzed simultaneously.

Regarding the delivery rate (see Figure 6.28, Figure 6.29, and Figure 6.30), it is clear
that there is an unequivocal relation with the content size. The bigger the content size, the
lower the delivery rate. The highest delivery rate was registered in the dissemination of the
75 MB file, and the lowest one in the experiment of the 150 MB. On the other hand, all
the experiments converge to near values of delivery rate. Thus, it can be concluded that the

189

LRBF strategy successfully disseminated a 150 MB through the majority of the network in a
four hour period. The only exception is the non-rush hour period in the October dataset.

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

75MB
100MB
150MB

7 8 9 10
0

20

40

60

80

100

Time (h)
D

el
iv

er
y

ra
tio

 (
%

)

75MB
100MB
150MB

(a) - October 2014 (b) - February 2015

Figure 6.28: MatlabEmulator evaluation impact of the file size during the rush hour period -
Percentage of nodes with complete file per hour - Delivery rate

11 12 13 14
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

75MB
100MB
150MB

11 12 13 14
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

75MB
100MB
150MB

(a) - October 2014 (b) - February 2015

Figure 6.29: MatlabEmulator evaluation impact of the file size during the non-rush hour
period - Percentage of nodes with complete file per hour - Delivery rate

In terms of the delivery delay, the Figure 6.31, Figure 6.32, and Figure 6.33 show that
the delivery is slower when the content size increases. A more detailed analysis is described
in Table 6.12, Table 6.13, and Table 6.14. This analysis corroborates the previous statement,
and it is clear that the file size increases the delivery delay.

190

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

75MB
100MB
150MB

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

75MB
100MB
150MB

(a) - October 2014 (b) - February 2015

Figure 6.30: MatlabEmulator evaluation impact of the file size during the parking period -
Percentage of nodes with complete file per hour - Delivery rate

0 25 50 75 100 125
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

75MB
100MB
150MB

0 25 50 75 100 125 150
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

75MB
100MB
150MB

(a) - October 2014 (b) - February 2015

Figure 6.31: MatlabEmulator evaluation impact of the file size during the rush hour period -
Time to receive the complete file per node - E2E delay

File Size
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

75 MB 1.73 ±0.13 1.37 ±0.11

100 MB 1.98 ±0.14 1.61 ±0.12

150 MB 2.41 ±0.14 1.96 ±0.13

Table 6.12: MatlabEmulator evaluation impact of the file size during the rush hour period -
E2E delay statistics

191

0 25 50
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

75MB
100MB
150MB

0 25 50 75 100 125
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

75MB
100MB
150MB

(a) - October 2014 (b) - February 2015

Figure 6.32: MatlabEmulator evaluation impact of the file size during the non-rush hour
period - Time to receive the complete file per node - E2E delay

0 25 50 75 100
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

75MB
100MB
150MB

0 25 50 75 100
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

75MB
100MB
150MB

(a) - October 2014 (b) - February 2015

Figure 6.33: MatlabEmulator evaluation impact of the file size during the parking period -
Time to receive the complete file per node - E2E delay

File Size
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

75 MB 3.47 ±0.16 1.15 ±0.14

100 MB 3.54 ±0.15 1.43 ±0.14

150 MB 3.76 ±0.23 1.77 ±0.15

Table 6.13: MatlabEmulator evaluation impact of the file size during the non rush hour period
- E2E delay statistics

192

File Size
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

75 MB 0.89 ±0.14 1.05 ±0.15

100 MB 1.04 ±0.14 1.17 ±0.15

150 MB 1.39 ±0.15 1.55 ±0.16

Table 6.14: MatlabEmulator evaluation impact of the file size during the parking period -
E2E delay statistics

193

Impact of Block and Generation Size on the Delivery Rate and Delay
Another important factor when the LRGF is used, is the block and generation size. Thus,

the impact of the block and generation size in the dissemination process is evaluated. Four
combinations of values (blocksize/gensize) are used: (i) 4/6, (ii) 4/8, (iii) 8/12, and (iv) 8/16.
These values are based on the most common approaches used in the literature which selects
a 4 or 8 block size with a redundancy of 50% or 100%. The content under dissemination is a
100 MB file.

The analysis focuses on the delivery rate and delay impact and all the three dissemination
periods are evaluated. All the periods present the same behavior when confronted with
the different combinations of block and generation size, whereby all of them are analyzed
simultaneously.

Regarding the delivery rate (see Figure 6.34, Figure 6.35, and Figure 6.36), there is an
unequivocal relation with the block size. When the block size is 4, the delivery rate tends to
be higher than when the size is 8. A node can download faster the content if the number of
coded packets that it must collect in order to decode an entire block is smaller.

On the other hand, the introduced redundancy is defined by the generation size, since
the number of additional coded packets is set according to this value. Thus, as the results
show, the higher the generation size, the higher the delivery rate, since there are more coded
bundles in the network, increasing the dissemination redundancy. However, the impact of the
generation size is smaller compared to the block size.

All the experiments converge to near values of delivery rate. Thus, it can be concluded that
the LRGF strategy successfully disseminated a 100 MB file in a four hour period independently
of the (blocksize,gensize) pair of values.

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

4/6
4/8
8/12
8/16

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

4/6
4/8
8/12
8/16

(a) - October 2014 (b) - February 2015

Figure 6.34: MatlabEmulator evaluation impact of the block and generation size during the
rush hour period - Percentage of nodes with complete file per hour - Delivery rate

Regarding the delivery delay, the Figure 6.37, Figure 6.38, and Figure 6.39 show that the
delivery is faster when the block size is smaller. A more detailed analysis is summarized in
Table 6.15, Table 6.16, and Table 6.17. This analysis corroborates the previous statement,
being clear the increase of the delivery delay with the block and generation size increment.

194

11 12 13 14
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

4/6
4/8
8/12
8/16

11 12 13 14
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

4/6
4/8
8/12
8/16

(a) - October 2014 (b) - February 2015

Figure 6.35: MatlabEmulator evaluation impact of the block and generation size during the
non rush hour period - Percentage of nodes with complete file per hour - Delivery rate

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

4/6
4/8
8/12
8/16

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

4/6
4/8
8/12
8/16

(a) - October 2014 (b) - February 2015

Figure 6.36: MatlabEmulator evaluation impact of the block and generation size during the
parking period - Percentage of nodes with complete file per hour - Delivery rate

Block/Gen
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

4/6 2.10 ±0.14 1.74 ±0.12

4/8 2.09 ±0.14 1.71 ±0.12

8/12 2.31 ±0.15 1.86 ±0.13

8/16 2.29 ±0.15 1.82 ±0.13

Table 6.15: MatlabEmulator evaluation impact of the block and generation size during the
rush hour period - E2E delay statistics

195

0 25 50 75 100 125
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

4/6
4/8
8/12
8/16

0 25 50 75 100 125 150
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

4/6
4/8
8/12
8/16

(a) - October 2014 (b) - February 2015

Figure 6.37: MatlabEmulator evaluation impact of the block and generation size during the
rush hour period - Time to receive the complete file per node - E2E delay

0 25 50
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

4/6
4/8
8/12
8/16

0 25 50 75 100 125 150
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

4/6
4/8
8/12
8/16

(a) - October 2014 (b) - February 2015

Figure 6.38: MatlabEmulator evaluation impact of the block and generation size during the
non rush hour period - Time to receive the complete file per node - E2E delay

Block/Gen
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

4/6 3.55 ±0.18 1.54 ±0.14

4/8 3.54 ±0.18 1.53 ±0.14

8/12 3.52 ±0.37 1.69 ±0.14

8/16 3.59 ±0.31 1.63 ±0.14

Table 6.16: MatlabEmulator evaluation impact of the block and generation size during the
non rush hour period - E2E delay statistics

196

0 25 50 75 100
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

4/6
4/8
8/12
8/16

0 25 50 75 100
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

4/6
4/8
8/12
8/16

(a) - October 2014 (b) - February 2015

Figure 6.39: MatlabEmulator evaluation impact of the block and generation size during the
parking period - Time to receive the complete file per node - E2E delay

Block/Gen
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

4/6 2.27 ±0.19 2.19 ±0.14

4/8 2.18 ±0.18 2.14 ±0.15

8/12 2.25 ±0.18 2.13 ±0.15

8/16 2.18 ±0.17 1.99 ±0.16

Table 6.17: MatlabEmulator evaluation impact of the block and generation size during the
parking period - E2E delay statistics

197

6.7.2 Strategies to Disseminate Information

After a detailed analysis of the content distribution strategies, it is important to evaluate
the proposed techniques to minimize the network congestion as well as increase the delivery
rate. Thus, in this subsection three dissemination techniques are analyzed: (i) to optimize
delivery, (ii) to minimize the network congestion, and (iii) a hybrid approach trying to achieve
both previous goals. These techniques are detailed in section 4.4.

Only the LRBF strategy is evaluated since it displayed the best overall behavior in the
previous analysis. Moreover, only the rush hour and parking periods are evaluated since
they have higher network congestion whereby the proposed techniques should be applicable
to them. The two most important metrics to evaluate are the delivery rate and the network
congestion (number of listened packets), whereby only these metrics are evaluated. The file
under dissemination is the same as used in all the MatlabEmulator experiment (size of 100
MB).

These techniques are defined according to several parameters as detailed in section 4.4.
Thus, the methodology used to evaluate these parameters was a trial and error approach.
This might not be the ideal approach, but the usage of different techniques to evaluate these
parameters (e.g. fitness function) is not covered in the scope of this Dissertation. The main
goal is to identify easily deployed and efficient techniques to minimize the network congestion
and achieve a better delivery rate. Due to this objective, once a successful value for these
parameters is found, the concept is demonstrated. In the future other approaches can be used
in order to evaluate such parameters.

Given that the proposed strategies are used to solve a problem that is detected in the previ-
ous analysis – network congestion – and intend to increase delivery rates, the MatlabEmulator
will be used as a platform for behavior evaluation. The fact that only the MatlabEmulator is
used allows for a quick analysis of the impact of these techniques on content dissemination.

6.7.2.1 Optimize Delivery

As previously mentioned in section 4.4, in this technique the Xn1 , Xn2 , Pn1 , and Pn2 are
parameters that characterize the increasing probability function – as illustrated in Figure 4.20
– are defined. The suggested parameters were obtained through trial and error, as mentioned
before. As such, two sets of values were defined to be used in this first technique:

• (Xn1 , Xn2 , Pn1 , Pn2) = (0, 4, 0, 1)

• (Xn1 , Xn2 , Pn1 , Pn2) = (0, 3, 0.5, 1)

This technique aims to enhance packet delivery by making the decision to send when the
sending node has a high number of neighbors instead of cases where there are less neighbors.

Two separate time periods were evaluated in order to analyze the behavior of the suggested
technique in these different situations. By analyzing the results obtained for the rush-hour
period (see Figure 6.40), it is possible to conclude that the suggested technique does not
produce the wanted results. On the other hand, for the parking period (see Figure 6.41) a
higher delivery rate is achieved when this technique is used. These results may be justified by
the fact that, during the rush-hour period, the average number of valid contacts is relatively
low and therefore contact opportunities are wasted. As such, the use of this technique leads
to a low delivery rate. The case of the parking period is different given that for most of the
time the vehicles are parked in the parking lot whereby they have a high number of neighbors.

198

As such, by enhancing the delivery when the nodes have a high number of neighbors, it is
possible to attain higher delivery rates for most time periods.

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 4, 0, 1)
(0, 3, 0.5, 1)
none

7 8 9 10
0

20

40

60

80

100

Time (h)
D

el
iv

er
y

ra
tio

 (
%

)

(0, 4, 0, 1)
(0, 3, 0.5, 1)
none

(a) - October 2014 (b) - February 2015

Figure 6.40: MatlabEmulator evaluation of optimize delivery technique in rush hour period -
Percentage of nodes with complete file per hour - Delivery rate

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 4, 0, 1) (0, 3, 0.5, 1) none

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 4, 0, 1) (0, 3, 0.5, 1) none

(a) - October 2014 (b) - February 2015

Figure 6.41: MatlabEmulator evaluation of optimize delivery technique in parking period -
Percentage of nodes with complete file per hour - Delivery rate

During the rush-hour period it is possible to observe that network congestion (see Fig-
ure 6.42 and Figure 6.43) is higher at the beginning of the experiment, when no technique
for delivery optimization is used. However, this trend is altered over the course of the exper-
iment. As mentioned before, this behavior can be explained by the fact that in the LRBF
strategy, as the delivery rate increases, network congestion decreases since a large number of
nodes already has the file, and there is no further need for continuous file sending. During
the parking period it is possible to observe that this technique leads to a decrease in network
congestion when compared to a situation where this technique is not applied. The reasons
that justify this behavior are the same as the ones mentioned for the rush-hour period.

199

It is therefore possible to conclude that the suggested technique should mainly be applied
in time periods and scenarios where the average number of valid neighbors is high. Out of
the tested scenarios, this technique proved to be more applicable during the parking period.

7 8 9 10
0

80

160

240

320

400

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 4, 0, 1)
(0, 3, 0.5, 1)
none

7 8 9 10
0

160

320

480

640

800

Time (h)
N

um
be

r
of

 p
ac

ke
ts

 (
x1

03)

(0, 4, 0, 1)
(0, 3, 0.5, 1)
none

(a) - October 2014 (b) - February 2015

Figure 6.42: MatlabEmulator evaluation of optimize delivery technique in rush hour period -
Number of listened packets by the network (only OBUs) throughout the experiment

21 22 23 24
0

620

1240

1860

2480

3100

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 4, 0, 1)
(0, 3, 0.5, 1)
none

21 22 23 24
0

840

1680

2520

3360

4200

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 4, 0, 1)
(0, 3, 0.5, 1)
none

(a) - October 2014 (b) - February 2015

Figure 6.43: MatlabEmulator evaluation of optimize delivery technique in parking period -
Number of listened packets by the network (only OBUs) throughout the experiment

200

6.7.2.2 Minimize Congestion

Section 4.4 describes this technique, in which the Xh1 , Xh2 , Ph1 , and Ph2 are parameters
that characterize the decreasing probability function, as illustrated Figure 4.21. Similarly to
the previous technique, the parameters are suggested based on a trial and error approach. As
such, two sets of values were defined to be used in this second technique:

• (Xh1 , Xh2 , Ph1 , Ph2) = (0, 3, 0.7, 1)

• (Xh1 , Xh2 , Ph1 , Ph2) = (0, 4, 0.6, 1)

The main and only goal of this technique is to reduce network congestion through a
limitation based on the number of hops of a certain packet. As such, this technique prioritizes
the sending of packets that have a small number of hops, since these traveled less through the
network and are therefore probably lacking to a larger number of vehicles. On the other hand,
the probability of sending is reduced when a certain packet has a high number of hops since
there is a higher probability of the packet existing in a larger number of nodes. Two separate
time periods were evaluated in order to analyze the behavior of the suggested technique in
these different situations.

The results obtained for the rush-hour period (see Figure 6.44) and for the parking period
(see Figure 6.45) are very similar. In both periods the delivery rate slightly increases when the
congestion minimization technique is used. This result is justifiable given that a decrease in
network congestion leads to an increase in available bandwidth. Therefore, the now-available
bandwidth can be used for the sending of the least traveled packets, that exist in a smaller
number of vehicles, increasing the diversity of the network packets and enabling a higher
delivery rate.

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 3, 0.7, 0.1)
(0, 4, 0.6, 0.1)
none

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 3, 0.7, 0.1)
(0, 4, 0.6, 0.1)
none

(a) - October 2014 (b) - February 2015

Figure 6.44: MatlabEmulator evaluation of minimize congestion technique in rush hour period
- Percentage of nodes with complete file per hour - Delivery rate

Regarding the most important metric associated with this technique, it is possible to
conclude that the network congestion is reduced when this technique is used. Both for the
rush-hour period (see Figure 6.46) and the parking period (see Figure 6.47) there is a decrease
in the number of listened packets in the network. This is justified by the lack of need to re-
send highly traveled packets, given that these are probably already highly disseminated in the

201

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 3, 0.7, 0.1) (0, 4, 0.6, 0.1) none

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 3, 0.7, 0.1) (0, 4, 0.6, 0.1) none

(a) - October 2014 (b) - February 2015

Figure 6.45: MatlabEmulator evaluation of minimize congestion technique in parking period
- Percentage of nodes with complete file per hour - Delivery rate

network. This is very relevant during the parking period since in this scenario the majority of
the nodes are concentrated in a small geographical area, and therefore do not need to travel
much to be disseminated (by broadcast) by a large number of vehicles.

Thus, it is possible to conclude that the proposed technique should mainly be applied to
scenarios that are characterized by high vehicle density, such as the parking scenario.

7 8 9 10
0

80

160

240

320

400

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 3, 0.7, 0.1)
(0, 4, 0.6, 0.1)
none

7 8 9 10
0

160

320

480

640

800

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 3, 0.7, 0.1)
(0, 4, 0.6, 0.1)
none

(a) - October 2014 (b) - February 2015

Figure 6.46: MatlabEmulator evaluation of minimize congestion technique in rush hour period
- Number of listened packets by the network (only OBUs) throughout the experiment

202

21 22 23 24
0

620

1240

1860

2480

3100

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 3, 0.7, 0.1)
(0, 4, 0.6, 0.1)
none

21 22 23 24
0

820

1640

2460

3280

4100

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 3, 0.7, 0.1)
(0, 4, 0.6, 0.1)
none

(a) - October 2014 (b) - February 2015

Figure 6.47: MatlabEmulator evaluation of minimize congestion technique in parking period
- Number of listened packets by the network (only OBUs) throughout the experiment

203

6.7.2.3 Hybrid Approach

Section 4.4 describes this technique, in which the Xn1 , Xn2 , Pn1 , and Pn2 are parameters
that characterize the increasing probability function, which is multiplied by a decreasing
probability function characterized by parameters Xh1 , Xh2 , Ph1 , and Ph2 , as illustrated in
Figure 4.23. The parameters were defined based on the two previous subsections which already
evaluated four sets of values for those parameters. As such, four sets of values were defined
to be used in this third technique:

• (Xn1 , Xn2 , Pn1 , Pn2) = (0, 4, 0, 1) and (Xh1 , Xh2 , Ph1 , Ph2) = (0, 3, 0.7, 0.1)

• (Xn1 , Xn2 , Pn1 , Pn2) = (0, 4, 0, 1) and (Xh1 , Xh2 , Ph1 , Ph2) = (0, 4, 0.6, 0.1)

• (Xn1 , Xn2 , Pn1 , Pn2) = (0, 3, 0.5, 1) and (Xh1 , Xh2 , Ph1 , Ph2) = (0, 3, 0.7, 0.1)

• (Xn1 , Xn2 , Pn1 , Pn2) = (0, 3, 0.5, 1) and (Xh1 , Xh2 , Ph1 , Ph2) = (0, 4, 0.6, 0.1)

The goal of this technique is to optimize the delivery (making the decision to send when the
sending node has a high number of neighbors instead of cases where there are less neighbors),
keeping network congestion low (through a limitation based on the number of hops of a
certain packet). As such, this technique follows the same premises as the previous two and is
focused on taking advantage of their synergy. Thus, the probability of forwarding a packet
is lower when the node has a lower number of hops and wants to send a packet which has a
high number of hops. On the other hand, the forwarding probability is high if the number
of hops is closer to zero and the number of neighbors is high. Two separate time periods
were evaluated in order to analyze the behavior of the suggested technique in these different
situations.

The results obtained for the rush-hour period (see Figure 6.48) and for the parking period
(see Figure 6.49) are similar. In both periods, the delivery rate increased when this hybrid
technique was applied. These results are justified by the synergy of the two previous ap-
proaches, which takes advantage of the gains introduced by each one of them. The previously
detected negative effect of the optimized delivery strategy in the delivery rate is evidenced in
the rush-hour period of the October dataset.

By analyzing the metric related with the network congestion, it is possible to conclude that
it is reduced when this technique is used. Both in the rush-hour period (see Figure 6.50) and
the parking period (see Figure 6.51), the number of listened packets in the network decreases.
Due to the weight of the minimize congestion strategy, this behavior is more relevant during
the parking period, since in this period the majority of the nodes are concentrated in parking
lots (which have a restricted area), and therefore do not need to be forwarded through a large
number of vehicles.

Thus, it is possible to conclude that the proposed technique should mainly be applied to
scenarios which are characterized by high vehicle density, such as the parking scenario.

204

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 4, 0, 1) | (0, 3, 0.7, 0.1)
(0, 4, 0, 1) | (0, 4, 0.6, 0.1)
(0, 3, 0.5, 1) | (0, 3, 0.7, 0.1)
(0, 3, 0.5, 1) | (0, 4, 0.6, 0.1)
none

7 8 9 10
0

20

40

60

80

100

Time (h)
D

el
iv

er
y

ra
tio

 (
%

)

(0, 4, 0, 1) | (0, 3, 0.7, 0.1)
(0, 4, 0, 1) | (0, 4, 0.6, 0.1)
(0, 3, 0.5, 1) | (0, 3, 0.7, 0.1)
(0, 3, 0.5, 1) | (0, 4, 0.6, 0.1)
none

(a) - October 2014 (b) - February 2015

Figure 6.48: MatlabEmulator evaluation of a hybrid approach technique in rush hour period
- Percentage of nodes with complete file per hour - Delivery rate

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 4, 0, 1) | (0, 3, 0.7, 0.1)
(0, 4, 0, 1) | (0, 4, 0.6, 0.1)
(0, 3, 0.5, 1) | (0, 3, 0.7, 0.1)
(0, 3, 0.5, 1) | (0, 4, 0.6, 0.1)
none

21 22 23 24
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

(0, 4, 0, 1) | (0, 3, 0.7, 0.1)
(0, 4, 0, 1) | (0, 4, 0.6, 0.1)
(0, 3, 0.5, 1) | (0, 3, 0.7, 0.1)
(0, 3, 0.5, 1) | (0, 4, 0.6, 0.1)
none

(a) - October 2014 (b) - February 2015

Figure 6.49: MatlabEmulator evaluation of a hybrid approach technique in parking period -
Percentage of nodes with complete file per hour - Delivery rate

205

7 8 9 10
0

80

160

240

320

400

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 4, 0, 1) | (0, 3, 0.7, 0.1)
(0, 4, 0, 1) | (0, 4, 0.6, 0.1)
(0, 3, 0.5, 1) | (0, 3, 0.7, 0.1)
(0, 3, 0.5, 1) | (0, 4, 0.6, 0.1)
none

7 8 9 10
0

160

320

480

640

800

Time (h)
N

um
be

r
of

 p
ac

ke
ts

 (
x1

03)

(0, 4, 0, 1) | (0, 3, 0.7, 0.1)
(0, 4, 0, 1) | (0, 4, 0.6, 0.1)
(0, 3, 0.5, 1) | (0, 3, 0.7, 0.1)
(0, 3, 0.5, 1) | (0, 4, 0.6, 0.1)
none

(a) - October 2014 (b) - February 2015

Figure 6.50: MatlabEmulator evaluation of a hybrid approach technique in rush hour period
- Number of listened packets by the network (only OBUs) throughout the experiment

21 22 23 24
0

620

1240

1860

2480

3100

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 4, 0, 1) | (0, 3, 0.7, 0.1)
(0, 4, 0, 1) | (0, 4, 0.6, 0.1)
(0, 3, 0.5, 1) | (0, 3, 0.7, 0.1)
(0, 3, 0.5, 1) | (0, 4, 0.6, 0.1)
none

21 22 23 24
0

820

1640

2460

3280

4100

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

(0, 4, 0, 1) | (0, 3, 0.7, 0.1)
(0, 4, 0, 1) | (0, 4, 0.6, 0.1)
(0, 3, 0.5, 1) | (0, 3, 0.7, 0.1)
(0, 3, 0.5, 1) | (0, 4, 0.6, 0.1)
none

(a) - October 2014 (b) - February 2015

Figure 6.51: MatlabEmulator evaluation of a hybrid approach technique in parking period -
Number of listened packets by the network (only OBUs) throughout the experiment

206

6.8 HelixEmulator Evaluation

Several strategies were implemented and evaluated in the MatlabEmulator since it is a
simpler platform that allows an easy and fast implementation along with an accurate eval-
uation. Once these strategies were evaluated, three of them were selected as the ones that
should be implemented in the Helix software. Although the proposed strategies (Random,
LNHF, LRBF, and LRGF) were implemented, only three of them are evaluated since they are
the ones with better performance (in the MatlabEmulator). Thus, in this section the three
evaluated strategies are the following: LNHF, LRBF, and LRGF.

The MatlabEmulator and HelixEmulator were designed for the same purpose (evaluate
content distribution strategies) but they have different implementations and assumptions.
This fact does not allow a complete and direct comparison between their results

The standard experiment is characterized by the dissemination of a 75 MB file divided in
2256 packets of 32 KB each. The disseminated file is smaller compared to the MatlabEmulator
evaluation, since the computational capability of the machine used to run the HelixEmulator is
not good enough to handle the requirements needed to disseminate a larger file. The software
used to create and run a VM does not allow the extension of the processing power (increase
number of cores or their frequency), whereby this extension was not possible. Only two of the
three previously described scenarios are evaluated: (i) Rush Hour and (ii) non-Rush Hour.

This emulator introduces the broadcasting of advertisement messages presenting a more
closer behavior to a real vehicular environment. Thus, the advertisement messages are used
by a node to discover the storage content of its vicinity. Moreover, in this emulator it is
possible to evaluate the overhead introduced by the dissemination of this type of meta-data
and its impact in the network.

In order to approximate the emulator behavior to the real behavior of this type of service
in the real network the bandwidth is limited to 1 Mbps using the BandwidthLim module.
Similarly to the MatlabEmulator, only the second situation of the LRGF strategy (see sec-
tion 4.3) is evaluated. In this strategy, a block is composed by 8 packets and, when coded,
it results in a generation of 12 coded packets since these are the most common values in the
literature.

In order to minimize the performance problems of the HelixEmulator several periodical
procedures do not have a fixed period, whereby they are defined as a random value in a
range. Thus, the advertisement packets are broadcasted with a periodicity between 5 and
10 seconds, and the refreshing of the internal structures between 15 and 30 seconds. These
are the default values. The valid time of an internal structure information, received from an
advertisement packet, is restricted to 22 seconds.

6.8.1 Strategies to Stateless Choose Information

6.8.1.1 Rush Hour Period

Figure 6.52 and Figure 6.53 illustrate the evolution of metrics associated with the percent-
age of the delivery throughout the experiment in the rush hour period. In the first one only
the nodes which completely receive the file are taken into account, and the other one is related
to the percentage of file downloaded in the network (even if the content is not completed).

The results clearly show that LRBF and LRGF have the best behavior in terms of delivery,
although the LRGF takes more time than LRBF to achieve the same delivery rate. Contrarily,

207

the LNHF strategy can not completely deliver the file, whereby it presents a lower efficiency
compared to the other two.

In terms of the percentage of file download by the network nodes, all strategies converge to
a high percentage. However, the LNHF strategy takes more time than the other two strategies
to achieve the same percentage. Thus, it can be concluded that the intelligence introduced in
the LRBF and LRGF strategies can lead to a better performance regarding a higher delivery
rate with lower delay.

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

LNHF
LRBF
LRGF

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.52: HelixEmulator evaluation comparison in rush hour period - Percentage of nodes
with complete file per hour - Delivery rate

6 7 8 9 10
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

LNHF
LRBF
LRGF

6 7 8 9 10
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.53: HelixEmulator evaluation comparison in rush hour period - Percentage of file
distributed in network throughout the experiment

Figure 6.54 represents the time that each node takes to download the complete content,
whereby only information about nodes which completely downloaded the file are displayed.
Figure 6.55 is the progress rate and aims to give a perspective about how quick the delivery
is.

According to Table 6.18 and analyzing the results, it is possible to concluded that the

208

LRBF and LRGF strategies have the best performance since, in mean, the download of the
content is faster than in the LNHF strategy. In addition to that, as the progress rate shows,
in the two better strategies (LRBF and LRGF) the great majority of downloads finish in
the first two hours. Further, in the LNHF strategy this occurs during the last half of the
experiment.

0 25 50 75 100 125
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

LNHF
LRBF
LRGF

0 25 50 75 100 125 150
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.54: HelixEmulator evaluation comparison in rush hour period - Time to receive the
complete file per node - E2E delay

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

LNHF
LRBF
LRGF

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.55: HelixEmulator evaluation comparison in rush hour period - Progress rate

The metric illustrated in Figure 6.56 regards the analysis of the network congestion.
Similarly to the MatlabEmulator evaluation, when an OBU hears a packet, a counter is
incremented. Thus, if this value is higher in a certain strategy than in another, it means that
the medium is more congested.

As in the MatlabEmulator evaluation, the results of the two datasets are very different.
According to the initial study of the network, in the first dataset (October) there is a high
increase in the number of contacts between 9am and 10pm which justified the increase of
listened packets in this period. On the other hand, the number of contacts in February is

209

Strategy
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

LNHF 2.39 ±0.52 2.86 ±0.21

LRBF 1.77 ±0.14 1.54 ±0.12

LRGF 2.06 ±0.14 1.85 ±0.12

Table 6.18: HelixEmulator evaluation comparison in rush hour period - E2E delay statistics

more stable whereby the number of listened packets in the LNHF are approximately equal
and constant throughout the experiment. The sudden increase is only verified in the LNHF
strategy due to its lack of intelligence; since if it has more valid contacts (opportunities to
transmit packets), it sends a higher number of packets.

In both datasets a decrease in the number of listened packets during the last periods of
the experiment when the LRBF or LRGF are used is registered. This behavior is related to
the fact that the transmission of packets decreases when the majority of a node’s neighbors
have successfully downloaded the content. In this case a node does not send any data packet
once no one in its vicinity needs it. The LRBF has the lowest number of listened packets
since it has the highest delivery ratio and lowest E2E delay.

7 8 9 10
0

660

1320

1980

2640

3300

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

LNHF
LRBF
LRGF

7 8 9 10
0

320

640

960

1280

1600

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.56: HelixEmulator evaluation comparison in rush hour period - Number of listened
packets by the network (only OBUs) throughout the experiment

The set of metrics that are illustrated in Figure 6.57 and Figure 6.58 have the goal of
analyzing the impact of advertising packets on the network.

An increase in the number of advertising packets sent is visible over time. This was
expected since the more nodes are aware of the content under dissemination, the larger the
number of advertisements in the network.

In terms of the size of advertisements, there is a clear difference between both strategies.
At the start of the process, the LRBF strategy adds a larger overhead to the network when
compared to the LRGF strategy. This is due to the fact that in LRBF, while the node has
not yet received the entire file, it will be announcing every hash it owns of that same file
(in order to map every package of the file 4 bytes are needed). Once it possesses the entire

210

file, the node proceeds to only send generic information about it (total number of packets
and identifier), which largely reduces the size of the advertisement packets. On the other
hand, the size of the advertisement packets in the LRGF strategy has smaller variance given
that, in the worst case scenario, they send the ranks of all the generations (total number of
generations is less than the total number of packets) and, in the best case, they only send
generic information about the content (file identifier, block size, generation size, etc.).

When both strategies converge in terms of delivery rates, it is expect that, in the final
period of the experiment, the total size of the advertisement packets is higher in LRGF due
to the aforementioned reasons.

7 8 9 10
0

6

12

18

24

30

Time(h)

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

 (
x
1
0

3
)

LRBF

LRGF

7 8 9 10
0

8

16

24

32

40

Time(h)

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

 (
x
1
0

3
)

LRBF

LRGF

(a) - October 2014 (b) - February 2015

Figure 6.57: HelixEmulator evaluation comparison in rush hour period - Number of trans-
mitted advertisement packets in network throughout the experiment

7 8 9 10
0

10

20

30

40

50

Time (h)

S
iz

e
in

 M
B

yt
es

LRBF
LRGF

7 8 9 10
0

12

24

36

48

60

Time (h)

S
iz

e
in

 M
B

yt
es

LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.58: HelixEmulator evaluation comparison in rush hour period - Size of transmitted
advertisement packets in network throughout the experiment

Finally, Table 6.19 resumes the performance of the HelixEmulator machine. Three metrics
are monitored and all of them confirm the correct behavior of the machine. The mean load
is below the maximum value (which is 7 since it is the number of cores minus one).

211

Strategy
CPU Load Memory
[%] [%]

Avg Std Avg Std Avg Std

O
c
t

2
0
1
4 LNHF 10.3 4.7 2.2 2.8 12.3 4.0

LRBF 14.2 12.0 2.0 2.4 28.1 1.9
LRGF 5.3 2.8 0.7 0.8 10.5 2.5

F
e
b

2
0
1
5 LNHF 7.0 1.6 1.1 1.3 16.9 6.1

LRBF 9.1 11.9 1.3 1.8 23.6 5.6
LRGF 3.6 1.9 0.5 0.9 31.8 2.2

Table 6.19: HelixEmulator evaluation comparison in rush hour period - Computational per-
formance statistics

6.8.1.2 non-Rush Hour Period

This scenario has a very different profile comparing to the last one since there are less
vehicles and consequently a lower number of contacts. This behavior is more pronounced in
October than in February due to the addition of new RSUs which leads to a better network
coverage.

The following analysis aims to evaluate the performance of the three strategies (previously
analyzed) in this period. The analysis is structured as the previous one, being focused on
the delivery ratio, time concerning, network congestion, impact of advertisement packets, and
computational performance.

Figure 6.59 and Figure 6.60 show that the delivery rate in the October dataset is very low.
Similarly to the MatlabEmulator evaluation, this results from a lack of connectivity during
the trajectory from the city to the parking lot (where vehicles are parked during the midday).
Due to the arrival of a large number of vehicles from the parking lots to the city center, the
delivery rate abruptly increases in the last hour of the experiment (in October). However,
when analyzing the delivery rate in February, the effect of the network reinforcement (increase
in number of RSUs and network coverage) is clear. During the traveling period from the
parking lots to the city center, the vehicles pass through a higher number of RSUs, enhancing
the delivery.

Comparing to the rush hour period, the evolution of the delivery rate throughout the
experiment remains the same, whereby the LRBF presents the highest delivery rate, followed
by the LRGF, and with a very low delivery rate there is the LNHF strategy.

Regarding the delivery delay in the October dataset, the majority of the nodes finish the
content download in the final hour due to reasons stated before. On the other hand, in the
February dataset, the behavior is similar to the one registered during the rush hour period.
Moreover, as Table 6.20 shows, the strategies with better performance are the LRBF and
LRGF strategies, followed by the LNHF strategy. Figure 6.61 and Figure 6.62 confirm the
previous statement.

Figure 6.63 illustrates the metric related to the network congestion. Comparing the two
datasets, a different behavior from October to February is detected. In October, between
10am and 12am, the number of contacts is high which leads to a higher number of listened
packets. In the end of the experiment these metrics decrease drastically due to the lower
number of contacts. Due to the flat number of contacts in February, the number of listened
packets is more constant (at least in LNHF strategy). Nevertheless, both periods registered

212

11 12 13 14
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

LNHF
LRBF
LRGF

11 12 13 14
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.59: HelixEmulator evaluation comparison in non rush hour period - Percentage of
nodes with complete file per hour - Delivery rate

10 11 12 13 14
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

LNHF
LRBF
LRGF

10 11 12 13 14
0

20

40

60

80

100

Time (h)

P
er

ce
nt

ag
e

(%
)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.60: HelixEmulator evaluation comparison in non rush hour period - Percentage of
file distributed in network throughout the experiment

Strategy
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

LNHF 3.37 - 2.53 ±0.19

LRBF 3.40 ±0.22 1.36 ±0.13

LRGF 3.43 ±0.22 1.66 ±0.14

Table 6.20: MatlabEmulator evaluation comparison in non rush hour period - E2E delay
statistics

a gradual decrease of listened packets in the LRBF and LRGF strategies. This fact is due to
the intelligence of these strategies which improves the transmission decision.

The number of listened packets in the LNHF strategy varies according to the number of

213

0 25 50
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

LNHF
LRBF
LRGF

0 25 50 75 100 125 150
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.61: HelixEmulator evaluation comparison in non rush hour period - Time to receive
the complete file per node - E2E delay

10 11 12 13 14
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

LNHF
LRBF
LRGF

10 11 12 13 14
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.62: HelixEmulator evaluation comparison in non rush hour period - Progress rate

contacts, whereby it remains stable in the periods where the number of contacts is flat. On
the other hand, the number of listened packets decreases gradually in the LRBF and LRGF,
since in these strategies the nodes only send packets if their vicinity needs additional data.
Thus, the number of listened packets decreases with the increase of delivery rate.

Figure 6.64 and Figure 6.65 illustrate metrics that relate to additional advertisement
information in the network. These metrics are useful for analyzing the impact of this type of
information in the network.

Regarding the October dataset, the number of advertisement packets is higher in the
initial and final periods, and there is a decrease in the period between 1pm and 2pm. This
behavior may be due to the fact that the number of contacts – and, therefore, the number of
neighbors to whom information can be transmitted – is relatively low in the period between
1pm and 2pm (vehicles are parked). The increase in the number of advertisement packets in
the period after 2pm is due to the fact that the nodes move from the parking lots to the city

214

11 12 13 14
0

420

840

1260

1680

2100

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

LNHF
LRBF
LRGF

11 12 13 14
0

220

440

660

880

1100

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

LNHF
LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.63: HelixEmulator evaluation comparison in non rush hour period - Number of
listened packets by the network (only OBUs) throughout the experiment

center, which means that more RSUs are encountered. As such, it is possible to download
content and initiate the advertisement broadcast process. In February, the behavior is much
more uniform given that the increase in network coverage that occurred minimized the dark
zones between the parking lots and the city center.

When analyzing the size of the advertisement packets that were disseminated in each
strategy, it is possible to conclude that the behavior in February is very similar to the one
observed during the rush hour period. As such, and for the same reasons given for the
rush hour period (type and size of announced information), it is possible to observe that,
at the start of the process, the LRBF strategy adds a larger overhead to the network when
compared to the LRGF strategy. At the end of the experiment and considering that the
strategies converged in terms of delivery rates, the total size of the advertisement packets is
larger in the LRGF strategy due to the previously mentioned reasons regarding the rush hour
period.

Regarding the October dataset, the reduced delivery rate and the low percentage of file
dissemination in the network do not allow to support the conclusions related to the added
overhead in the initial part of the experiment. However, it is possible to analyze the last
hour of this experiment, since there was a considerable increase in the delivery rate and the
dissemination process was able to deliver a significant amount of packets to the network. In
this last hour the behavior is similar to the first hour of the experiment with the February
dataset. Thus, it is possible to observe that the added overhead by the LRBF is higher than
that of the LRGF strategy.

Finally, Table 6.21 resumes the performance of the HelixEmulator machine in the non-
rush hour period. Similarly to the previous analysis, three metrics are monitored and all of
them confirm the correct behavior of the machine. Is is shown that the mean load is below
the maximum value (7 since it is the number of cores minus one).

215

11 12 13 14
0

4

8

12

16

20

Time(h)

N
u
m

b
e
r

o
f
p

a
c
k
e

ts
 (

x
1
0

3
)

LRBF

LRGF

11 12 13 14
0

6

12

18

24

30

Time(h)

N
u
m

b
e
r

o
f
p

a
c
k
e

ts
 (

x
1
0

3
)

LRBF

LRGF

(a) - October 2014 (b) - February 2015

Figure 6.64: HelixEmulator evaluation comparison in non rush hour period - Number of
transmitted advertisement packets in network throughout the experiment

11 12 13 14
0

6

12

18

24

30

Time (h)

S
iz

e
in

 M
B

yt
es

LRBF
LRGF

11 12 13 14
0

16

32

48

64

80

Time (h)

S
iz

e
in

 M
B

yt
es

LRBF
LRGF

(a) - October 2014 (b) - February 2015

Figure 6.65: HelixEmulator evaluation comparison in non rush hour period - Size of trans-
mitted advertisement packets in network throughout the experiment

Strategy
CPU Load Memory
[%] [%]

Avg Std Avg Std Avg Std

O
c
t

2
0
1
4 LNHF 3.1 1.3 0.3 0.5 21.4 1.5

LRBF 5.2 5.0 0.4 0.5 18.6 3.3
LRGF 5.6 3.7 0.9 1.5 27.6 1.4

F
e
b

2
0
1
5 LNHF 5.7 1.0 0.8 0.9 29.3 9.7

LRBF 7.3 5.5 0.9 1.2 31.0 10.1
LRGF 2.9 1.4 0.3 0.5 38.3 5.2

Table 6.21: HelixEmulator evaluation comparison in non-rush hour period - Computational
performance statistics

216

6.8.1.3 Parking Period

The parking period is characterized as a time period where the majority of the vehicles
were, are, or will be parked in the parking lot. Thus, this is the period when the vehicles
density is higher whereby the neighboring list of each node is quite larger than in the other
time periods. As previously mentioned (see section 6.8) the software used to create and run
a VM does not allow the extension of the processing power (increase number of cores or their
frequency).

The combination of the two previous issues/characteristics results in a major challenge for
the HelixEmulator machines, responsible for running the emulator. The high number of nodes
trying to communicate with other nodes (in broadcast) produces a large number of emulator
internal messages (ZMQ messages) for control and data communication. Moreover, the large
amount of logging data communicated by the database to the emulator along with the queries
represents a huge amount of processing. The specifications of the available machines are not
robust enough to handle this level of processing. Several attempts were performed but all of
them with the same result: the VM crashes by overload CPU. Since there was no possibility
to leverage or improve the VM specifications, this period was not evaluated.

Although it was not evaluated, and based on the similar behavior between the MatlabE-
mulator and HelixEmulator registered in the previous periods, a similar behavior is expected.

6.8.1.4 Analysing the Impact of Content Distribution Parameters

After a detailed analysis of the content distribution strategies configured as default, it is
important to understand what is the impact of some parameters in the dissemination process.
Thus, in this subsection several parameters are varied and the content distribution strategies
are evaluated.

Since the rush hour period was the one with more accurate results (October dataset of
non-rush hour period presented a lower delivery rate), this period was selected to evaluate
the impact of such parameters. Only the LRBF strategy is evaluated since it had the best
overall behavior in the previous analysis. This test is only performed in this section since the
advertisement packets and period events related to the internal structures were only added
to the HelixEmulator integration (in MatlabEmulator the process was simpler)

Impact of the Advertisement Packets Periodicity

The first analysis aims to evaluate the impact of the advertisement packets’ periodicity in
the content distribution. As previously mentioned, the advertisement periodicity is not fixed,
being framed in a specific range. Thus, three ranges are evaluated: (i) 5 to 10 seconds, (ii) 15
to 30 seconds, and (iii) 40 to 60 seconds. All other periodic events are performed as default.

Figure 6.66 represents the delivery ratio (percentage of nodes with complete file) per hour.
Both October and February datasets have the same behavior. Thus, the lower the period of
advertisement packets transmission, the higher the delivery ratio. This is an expected result
since the faster the advertisement procedures, the faster the update of the internal structures,
improving the broadcasting decision. This improved decision allows a faster delivery of the
content.

Figure 6.67 illustrates the time to receive the complete file per node, and Table 6.22 sum-
marizes the average delivery delay for all the three evaluated ranges. As expected, when the
advertisement packets are sent more often, the delivery delay is lower than in the other ap-

217

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

[5,10]
[15,30]
[40,60]

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

[5,10]
[15,30]
[40,60]

(a) - October 2014 (b) - February 2015

Figure 6.66: HelixEmulator evaluation impact of the advertisement packets periodicity during
the rush hour period - Percentage of nodes with complete file per hour - Delivery rate

proaches. As the periodicity increases the delivery delay also increases. Figure 6.68 reinforces
the previous statements, since it is clear that the majority of the deliveries occur sooner when
the dissemination of advertisement packets is more often.

0 25 50 75 100 125
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

[5,10]
[15,30]
[40,60]

0 25 50 75 100 125 150
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

[5,10]
[15,30]
[40,60]

(a) - October 2014 (b) - February 2015

Figure 6.67: HelixEmulator evaluation impact of the advertisement packets periodicity during
the rush hour period - Time to receive the complete file per node - E2E delay

As previously mentioned for the LRBF strategy, the network congestion is related to
the delivery rate whereby the lower the delivery rate, the potentially higher is the network
congestion. Figure 6.69 clearly shows this behavior. At the beginning of the experiment
the network congestion is higher when the advertisement periodicity is lower because nodes
update their internal structures more often and send more packets to their vicinity. However,
as the nodes receive the content the network congestion tends to decrease. Since this delivery is
lower when the dissemination of the advertisement packets is less often, the network congestion
increases with the advertisement periodicity.

Figure 6.70 and Figure 6.71 represents the number of transmitted advertisement packets

218

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

[5,10]
[15,30]
[40,60]

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

[5,10]
[15,30]
[40,60]

(a) - October 2014 (b) - February 2015

Figure 6.68: HelixEmulator evaluation impact of the advertisement packets periodicity during
the rush hour period - Progress rate

Periodicity
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

[5,10] 1.77 ±0.14 1.54 ±0.12

[15,30] 2.04 ±0.15 1.69 ±0.13

[40,60] 2.52 ±0.16 1.99 ±0.15

Table 6.22: MatlabEmulator evaluation impact of the advertisement packets periodicity dur-
ing the rush hour period - E2E delay statistics

7 8 9 10
0

380

760

1140

1520

1900

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

[5,10]
[15,30]
[40,60]

7 8 9 10
0

180

360

540

720

900

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

[5,10]
[15,30]
[40,60]

(a) - October 2014 (b) - February 2015

Figure 6.69: HelixEmulator evaluation impact of the advertisement packets periodicity during
the rush hour period - Number of listened packets by the network (only OBUs) throughout
the experiment

along with their total size. The results are as expected, since the number of transmitted
advertisement packets increases when their dissemination is more frequent. This behavior

219

remains until the end of the experiment. On the other hand, the overhead introduced by the
advertisement packets (when their advertisement is more often) is higher in the beginning of
the experiment, but tends to converge to the same value as the other strategies. This behavior
is due to the fact that, when a node already has successfully downloaded the content, it sends
a smaller packet compared to the one sent when it does not have all the content. Thus, since
the delivery rate is higher when the advertisement broadcast is more frequent, the additional
overhead decreases in the end of the experiment.

7 8 9 10
0

6

12

18

24

30

Time(h)

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

 (
x
1
0

3
)

[5,10]

[15,30]

[40,60]

7 8 9 10
0

8

16

24

32

40

Time(h)

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

 (
x
1
0

3
)

[5,10]

[15,30]

[40,60]

(a) - October 2014 (b) - February 2015

Figure 6.70: HelixEmulator evaluation impact of the advertisement packets periodicity during
the rush hour period - Number of transmitted advertisement packets in network throughout
the experiment

7 8 9 10
0

10

20

30

40

50

Time (h)

S
iz

e
in

 M
B

yt
es

[5,10]
[15,30]
[40,60]

7 8 9 10
0

12

24

36

48

60

Time (h)

S
iz

e
in

 M
B

yt
es

[5,10]
[15,30]
[40,60]

(a) - October 2014 (b) - February 2015

Figure 6.71: HelixEmulator evaluation impact of the advertisement packets periodicity during
the rush hour period - Size of transmitted advertisement packets in network throughout the
experiment

Table 6.23 summarizes the performance of the machine that is running the HelixEmulator.
Thus, all metrics present worse values when the advertisement packets periodicity increases.
This fact is due to the higher number of messages (data and control) exchanged in the

220

HelixEmulator when the delivery process is slower (see Figure 6.69).

Periodicity
CPU Load Memory
[%] [%]

Avg Std Avg Std Avg Std
O

c
t

2
0
1
4 [5,10] 9.1 11.9 1.3 1.8 23.6 5.6

[15,30] 16.2 15.5 2.5 2.8 42.4 2.5
[40,60] 25.8 20.9 5.2 3.4 44.9 1.4

F
e
b

2
0
1
5 [5,10] 11.2 12.0 2.0 2.4 28.1 1.9

[15,30] 9.6 10.0 1.5 2.3 43.7 1.4
[40,60] 13.8 21.3 3.0 4.4 55.4 6.5

Table 6.23: HelixEmulator evaluation impact of the advertisement packets periodicity during
the rush hour period - Computational performance statistics

221

Impact of the Time the Information is Valid
Another important parameter used by both LRBF and LRGF strategies is the valid time

of an information in the node internal structures. For example, in the LRBF strategy, when a
node updates the internal structure responsible for storing and organizing information about
the vicinity storage content, this information only stays there for a certain period of (valid)
time. Thus, it is important to evaluate what is the impact of that time in the dissemination
process.

Three different valid times are tested: (i) 15 seconds, (ii) 22 seconds and (iii) 30 seconds.
The range of these times are limited to the minimum and maximum default values of the
refreshment procedure periodicity (15 and 30 seconds).

As can be observed in Figure 6.72 this parameter has a small effect in terms of deliv-
ery rate. Analyzing the delivery delay metric (illustrated in Figure 6.73, Figure 6.74, and
Table 6.24) the conclusion is the same, wherein the different approaches present the same
results. Regarding the network congestion illustrated in Figure 6.75, there are no major dif-
ferences among the different approaches unless in the last hour of the October experiment.
In this period, when a lower valid time is used, the number of listened packets is higher than
in the other approaches. In terms of the network overhead and HelixEmulator performance,
all experiments present similar values which lead to a conclusion that this parameter has a
lower impact on the content distribution strategy. The previous statement is supported by
Figure 6.76, Figure 6.77, and Table 6.25.

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

15
22
30

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

15
22
30

(a) - October 2014 (b) - February 2015

Figure 6.72: HelixEmulator evaluation impact of the valid information time during the rush
hour period - Percentage of nodes with complete file per hour - Delivery rate

222

0 25 50 75 100 125
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

15
22
30

0 25 50 75 100 125 150
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

15
22
30

(a) - October 2014 (b) - February 2015

Figure 6.73: HelixEmulator evaluation impact of the valid information time during the rush
hour period - Time to receive the complete file per node - E2E delay

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

15
22
30

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

15
22
30

(a) - October 2014 (b) - February 2015

Figure 6.74: HelixEmulator evaluation impact of the valid information time during the rush
hour period - Progress rate

Valid Time
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

15s 1.78 ±0.14 1.75 ±0.13

22s 1.77 ±0.14 1.76 ±0.14

30s 1.79 ±0.13 1.75 ±0.14

Table 6.24: MatlabEmulator evaluation impact of the valid information time during the rush
hour period - E2E delay statistics

223

7 8 9 10
0

140

280

420

560

700

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

15
22
30

7 8 9 10
0

180

360

540

720

900

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

15
22
30

(a) - October 2014 (b) - February 2015

Figure 6.75: HelixEmulator evaluation impact of the valid information time during the rush
hour period - Number of listened packets by the network (only OBUs) throughout the exper-
iment

7 8 9 10
0

6

12

18

24

30

Time(h)

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

 (
x
1
0

3
)

15

22

30

7 8 9 10
0

8

16

24

32

40

Time(h)

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

 (
x
1
0

3
)

15

22

30

(a) - October 2014 (b) - February 2015

Figure 6.76: HelixEmulator evaluation impact of the valid information time during the rush
hour period - Number of transmitted advertisement packets in network throughout the ex-
periment

Valid Time
CPU Load Memory
[%] [%]

Avg Std Avg Std Avg Std

O
c
t

2
0
1
4 15s 14.7 3.4 1.8 2.1 43.4 1.2

22s 14.2 12.0 2.0 2.4 28.1 1.9
30s 14.0 3.1 2.0 2.5 43.5 1.2

F
e
b

2
0
1
5 15s 9.1 11.8 1.3 1.8 26.0 2.7

22s 9.1 11.9 1.3 1.8 23.6 5.6
30s 9 11.4 1.4 1.9 26.9 2.7

Table 6.25: HelixEmulator evaluation impact of the valid information time during the rush
hour period - Computational performance statistics

224

7 8 9 10
0

10

20

30

40

50

Time (h)

S
iz

e
in

 M
B

yt
es

15
22
30

7 8 9 10
0

14

28

42

56

70

Time (h)

S
iz

e
in

 M
B

yt
es

15
22
30

(a) - October 2014 (b) - February 2015

Figure 6.77: HelixEmulator evaluation impact of the valid information time during the rush
hour period - Size of transmitted advertisement packets in network throughout the experiment

225

Impact of the Refreshment Periodicity
Finally, the refreshment periodicity to the internal structures is also tested. This is a very

important parameter in the LRBF and LRGF strategies, since it controls the periodicity of
the refreshment process which is responsible for validating if the information presented in such
structures remain valid. For example, in the LRBF strategy, when a node updates the internal
structures responsible for storing and organizing information about vicinity storage content,
this information can only stay there for a certain period of (valid) time. The refreshment
process is responsible to check the valid time of this type of information on a periodical basis.
Thus, it is important to evaluate what is the impact of that time in the dissemination process.

Three different ranges of refreshment are tested: (i) from 15 to 30 seconds with a valid
time of 22 seconds, (ii) from 30 to 50 seconds with a valid time of 40 seconds, and (iii) from
50 to 60 seconds with a valid time of 55 seconds. For each one of them the valid time is set
in the middle.

As illustrated by Figure 6.78 this parameter has a small effect on the delivery rate. Re-
garding the delivery delay metric (illustrated in Figure 6.79, Figure 6.80, and Table 6.26), the
same conclusions are valid, wherein the different approaches present the same results. Taking
into account the network congestion illustrated in Figure 6.81, a smooth trend is observed.
When the refreshment periodicity is high, the network congestion increases (more packets are
transmitted). This behavior is due to a higher period of wrong information in the internal
structures. If the refreshment is slower, a node thinks that the information in its internal
structures is still good and continues the sending of data packets even if its vicinity already
has the content (node does not have updated its structures yet). In terms of the network over-
head and HelixEmulator performance, the experiments converge to similar values whereby the
lower impact of this parameter in the content distribution strategy can be concluded. The
previous statement is supported by Figure 6.82, Figure 6.83, and Table 6.27.

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

([15,30],22)
([30,50],40)
([50,60],55)

7 8 9 10
0

20

40

60

80

100

Time (h)

D
el

iv
er

y
ra

tio
 (

%
)

([15,30],22)
([30,50],40)
([50,60],55)

(a) - October 2014 (b) - February 2015

Figure 6.78: HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Percentage of nodes with complete file per hour - Delivery rate

226

0 25 50 75 100 125
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

([15,30],22)
([30,50],40)
([50,60],55)

0 25 50 75 100 125 150
0

1

2

3

4

Nodes completed (OBUs)

T
im

e
(h

)

([15,30],22)
([30,50],40)
([50,60],55)

(a) - October 2014 (b) - February 2015

Figure 6.79: HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Time to receive the complete file per node - E2E delay

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

([15,30],22)
([30,50],40)
([50,60],55)

6 7 8 9 10
0

10

20

30

40

50

Time (h)

P
ro

gr
es

s
(%

)

([15,30],22)
([30,50],40)
([50,60],55)

(a) - October 2014 (b) - February 2015

Figure 6.80: HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Progress rate

Periodicity
October 2014 February 2015

Avg C.I. (95%) Avg C.I. (95%)
[h] [h] [h] [h]

[15,30] 1.77 ±0.14 1.54 ±0.12

[30,50] 1.82 ±0.14 1.59 ±0.11

[50,60] 1.84 ±0.13 1.61 ±0.11

Table 6.26: MatlabEmulator evaluation impact of the refreshment periodicity during the rush
hour period - E2E delay statistics

227

7 8 9 10
0

160

320

480

640

800

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

([15,30],22)
([30,50],40)
([50,60],55)

7 8 9 10
0

200

400

600

800

1000

Time (h)

N
um

be
r

of
 p

ac
ke

ts
 (

x1
03)

([15,30],22)
([30,50],40)
([50,60],55)

(a) - October 2014 (b) - February 2015

Figure 6.81: HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Number of listened packets by the network (only OBUs) throughout the exper-
iment

7 8 9 10
0

6

12

18

24

30

Time(h)

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

 (
x
1
0

3
)

([15,30],22)

([30,50],40)

([50,60],55)

7 8 9 10
0

8

16

24

32

40

Time(h)

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

 (
x
1
0

3
)

([15,30],22)

([30,50],40)

([50,60],55)

(a) - October 2014 (b) - February 2015

Figure 6.82: HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Number of transmitted advertisement packets in network throughout the ex-
periment

Periodicity
CPU Load Memory
[%] [%]

Avg Std Avg Std Avg Std

O
c
t

2
0
1
4 [15,30] 14.2 12.0 2.0 2.4 28.1 1.9

[30,50] 14.3 13.2 1.9 2.2 44.0 1.3
[50,60] 15.6 13.7 2.0 2.1 44.2 1.3

F
e
b

2
0
1
5 [15,30] 9.1 11.9 1.3 1.8 23.6 5.6

[30,50] 9.4 12.1 1.3 1.8 46.2 1.8
[50,60] 9.7 12.3 1.3 1.8 46.9 1.9

Table 6.27: HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Computational performance statistics

228

7 8 9 10
0

12

24

36

48

60

Time (h)

S
iz

e
in

 M
B

yt
es

([15,30],22)
([30,50],40)
([50,60],55)

7 8 9 10
0

14

28

42

56

70

Time (h)

S
iz

e
in

 M
B

yt
es

([15,30],22)
([30,50],40)
([50,60],55)

(a) - October 2014 (b) - February 2015

Figure 6.83: HelixEmulator evaluation impact of the refreshment periodicity during the rush
hour period - Size of transmitted advertisement packets in network throughout the experiment

229

6.9 Laboratory Evaluation

Since until this moment all the evaluation procedures were performed in an emulation
environment, a real testbed was developed in order to evaluate the behavior of the best
content distribution strategy - LRBF. As described in section 6.4, this testbed is composed
by a small set of nodes and aims to prove that this strategy correctly runs on a real network.

6.9.1 Considerations

Before the analysis of the results it is important to list a set of considerations and defini-
tions taken into consideration in the deployment of this scenario.

Before starting to run the Helix software, the IEEE 802.11p channel is configured in or-
der to provide inter-communication among nodes. The characteristics of this channel are
described in Table 6.28. As claimed by [151] the NetRider boards use an application called
Universal WAVE Management Entity (UWME) that uses a multi-channel approach for trans-
mission. Two types of channels are specified in the WAVE standard: CCH and SCH. In this
experiment the CCH is continuously operating and a request is sent to access the SCH when
the Helix needs to perform a communication task.

Number 176
Provider Service ID 80-10
Mode Continuous
Tx Power 23 dBm
Max Bit Rate 27 Mbps

Table 6.28: IEEE 802.11p channel characteristics used in laboratory tests

The Helix configuration file was configured as described in Table 6.29. This table only
represents the most relevant parameters like the number of the socket port, the storage
capacity, and the wireless interface used. In the experiment the communication was always
performed using the IEEE 802.11p interface since the nodes were only of two types (OBUs
and RSU) who tend to use this kind of technology.

Socket Port 4556
Storage Capacity 20 MB
11p Interface wlan1

Table 6.29: Helix configuration in OBUs and RSU

Regarding the content advertisement strategy configuration, a set of internal macros were
defined as described in Table 6.30. Thus, an advertisement period of 5 seconds was configured,
the information of internal structures was valid for a period of 30 seconds and these were
updated with a periodicity of 30 seconds. Moreover, the Logging module was configured to
record logs with a periodicity of 10 seconds.

Contrarily to the emulation, in the laboratory experiment the bandwidth limitation of
1 Mbps was not imposed, but the transmission remains opportunistic whereby a node only
sends packets when there is at least one neighbor in its vicinity. However, the transmission of
information has a limitation imposed by the Routing module of Helix. To decrease the CPU
usage, a sender node sleeps a specific time between sent packets. The value for that sleep was

230

Advertisement Periodicity (CONT_ADV_PERIOD) 5 s
Refreshment Periodicity (REFRESH_PERIOD) 30 s
Information Valid Time (ELEMENT_VALID_TIME) 30 s
Logging Periodicity (TIME_STEP_LOG) 10 s

Table 6.30: LRBF configuration for laboratory evaluation

defined as 100 ms whereby a node can send a maximum of 10 packets per second which gives
a maximum transmission rate of 2.6 Mbps (considering packets of 32 KB).

Regarding a correct time synchronization among nodes, all of them were running NTP
in background in a client-server model. At the beginning of the experiment the clock of the
RSU number 172 is forced and the board starts running NTP as a server. All the other nodes
of the network run the NTP as clients and define the server with the IP of IEEE 802.11p
interface of the RSU. Using this approach it is guaranteed that all nodes are synchronized
before the start of the experiment.

6.9.2 Results

In this section the most relevant metrics registered during the laboratory evaluation are
presented and discussed. These outputs result from a set of 9 repetitions of the experiment
described in subsection 6.4.2. The file under dissemination is divided in 320 pieces of 32 KB
each, which represents a total size of approximately 10 MB. For the evaluation of the results,
a 95% confidence interval was considered.

Figure 6.84 presents the percentage of nodes which received the complete content along
the experiment. It is clear that in all the iterations of the experiment all the nodes received
the file and took a maximum time of 200 seconds to do so.

In Figure 6.84 there are two periods where the evolution of the delivery rate has a more
abrupt slope. The first one is between the seconds 120 and 150, and it results from the
delivery of the file to the mobile OBU since in this period it is stopped in a region covered by
the RSU. Thus, in the majority of the iteration at least two nodes had the content (mobile
OBU and fixed OBU number 132). The second period is defined in the range between 150 and
210 seconds. In this period the other two fixed OBUs downloaded the file since the mobile
node already had the complete file and was able to deliver it during its traveling.

Figure 6.85 confirms the previous analysis, since it describes the percentage of file down-
loaded by each node during the experiment. Thus, the first node to receive the file is the fixed
OBU number 132 since it has direct access to the source of information. Due to the periods
of direct contact with the RSU, the mobile node is the second node that downloads the file.
After the 150 seconds, the other two fixed OBUs download the file through the mobile node.
The mean E2E delay regarding the delivery of the content to all the receiver nodes is shown
in Figure 6.86. Thus, this is another evidence of the previously described network behavior
in terms of the time to deliver the complete content throughout the network.

The number of listened packets is approximately uniform across all the nodes as Figure 6.87
illustrates. The OBU 132 has the lower number of listened packets, since it only listens to
packets from the RSU and OBU number 107, and the RSU only broadcasts information until
the mobile node and the OBU number 132 do not have all the content. On the other hand,
OBU number 109 has the highest number of listened packets, since it listens information from
OBUs 107, 237 and sometimes (with some reflections) from 132.

231

0 30 60 90 120 150 180 210 240 270 300 330 360
0

25

50

75

100

125

Time (s)

D
el

iv
er

y
ra

tio
 (

%
)

Figure 6.84: Laboratory evaluation - Percentage of nodes with complete file per Ts - Delivery
rate

0 30 60 90 120 150 180 210 240 270 300 330 360
0

25

50

75

100

125

Time (s)

P
er

ce
nt

ag
e

(%
)

107

0 30 60 90 120 150 180 210 240 270 300 330 360
0

25

50

75

100

125

Time (s)

P
er

ce
nt

ag
e

(%
)

109

0 30 60 90 120 150 180 210 240 270 300 330 360
0

25

50

75

100

125

Time (s)

P
er

ce
nt

ag
e

(%
)

132

0 30 60 90 120 150 180 210 240 270 300 330 360
0

25

50

75

100

125

Time (s)

P
er

ce
nt

ag
e

(%
)

217

Figure 6.85: Laboratory evaluation - Percentage of file distributed per node throughout the
experiment

232

107 109 132 217
0

44

88

132

176

220

Node ID

M
ea

n
tim

e
(s

)

Figure 6.86: Laboratory evaluation - Mean time to receive the complete file per node - E2E
delay

107 109 132 217
0

680

1360

2040

2720

3400

Node ID

N
um

be
r

of
 p

ac
ke

ts

Figure 6.87: Laboratory evaluation - Total number of listened packets per node throughout
the experiment

Figure 6.88 shows the total number of packets transmitted by the nodes along the ex-
periment. The implemented strategy was based on an assumption that, when a node has an
RSU as neighbor, the probability that its vicinity also has the same RSU as neighbor is high,
whereby this node does not send any packet in this situation. Thus, the fixed OBU with direct
contact with the source of information does not send any packets during this experiment.

On the other hand, the RSU sends information until all the nodes within its vicinity
have the content, whereby it has a significant number of packets transmitted to the network.
Moreover, the number of transmitted packets from the RSU is also limited by the fact that
it only sends data packets while its vicinity does not have all the content (this decision is
imposed by a set of advertisement messages). Due to a high end-to-end delay of delivery in
the fixed OBUs further away from the source of the information, they send more packets since
they are transmitting during a longer time period.

As shown in Figure 6.89, it is clear that the number of transmitted advertisement packets
is similar among all network nodes. This was expected since the sending of advertisements
is periodic and triggered by the reception of an advertisement packet with information about

233

107 109 132 217 172
0

720

1440

2160

2880

3600

Node ID

N
um

be
r

of
 p

ac
ke

ts

Figure 6.88: Laboratory evaluation - Total number of transmitted packets per node through-
out the experiment

a new content to be downloaded. Thus, the fixed OBU number 217 sends less advertisement
packets, since it is the last node to received the information about a new file to be downloaded.

107 109 132 217 172
0

20

40

60

80

100

Node ID

N
um

be
r

of
 p

ac
ke

ts

Figure 6.89: Laboratory evaluation - Total number of transmitted advertisement packets per
node throughout the experiment

Figure 6.90 illustrates the mean size of all the advertisement packets transmitted during
a sample period throughout the experiment. As it is clear in the figure, this metric presents
higher values in the period between 60 and 90 seconds, since this is the period where the
majority of the nodes do not have the content and broadcast advertisement packets signaling
its storage content. Once all the nodes have the content, the size of the advertisement packets
is the same across the network and is lower than in the beginning, since it only advertises the
profile of the content under dissemination.

Figure 6.91 represents the total size of the transmitted advertisement packets per node
throughout the experiment, and it is relevant to analyze the impact of the advertisement
packets in the network overhead. Table 6.31 combines this information with the number of
data packets transmitted by each node (considering each one of them has a 32 KB packet).

234

0 30 60 90 120 150 180 210 240 270 300 330 360
0

2486

4972

7458

9944

12430

Time (s)

S
iz

e
(B

yt
es

)

Figure 6.90: Laboratory evaluation - Mean size of all transmitted advertisement packets in
the network throughout the experiment

Thus, it is possible to conclude that the advertisement adds a small overhead to the network
since the great majority of the disseminated packets are data packets.

107 109 132 217 172
0

6160

12320

18480

24640

30800

Node ID

S
iz

e
(B

yt
es

)

Figure 6.91: Laboratory evaluation - Total size of transmitted advertisement packets per node
throughout the experiment

Node Transmitted Packets Data Packets ADVs Packets
ID (Data+ADVs)

[KB] [KB] [%] [KB] [%]

107 62075.96 62051.52 99.96 24.44 0.04

109 87880.32 87854.08 99.97 26.24 0.03

132 16.49 0 0 16.49 100

217 90695.52 90670.08 99.97 25.44 0.03

Table 6.31: Laboratory evaluation - weight of the advertisement packets in the dissemination
process

235

The last three figures (Figure 6.92, Figure 6.93 and Figure 6.94) are related to the network
resource usage. Three metrics are analyzed: CPU usage, load, and used memory RAM. All
the parameters present normal values which proves that the strategy implemented does not
overload the board resources.

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

C
P

U
 U

sa
ge

 (
%

)

107

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

C
P

U
 U

sa
ge

 (
%

)

109

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

C
P

U
 U

sa
ge

 (
%

)

132

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

C
P

U
 U

sa
ge

 (
%

)

217

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

C
P

U
 U

sa
ge

 (
%

)

172

Figure 6.92: Laboratory evaluation - CPU usage per node throughout the experiment

236

0 30 60 90 120 150 180 210 240 270 300 330 360
0

0.2

0.4

0.6

0.8

1

Time (s)

Lo
ad

107

0 30 60 90 120 150 180 210 240 270 300 330 360
0

0.2

0.4

0.6

0.8

1

Time (s)

Lo
ad

109

0 30 60 90 120 150 180 210 240 270 300 330 360
0

0.2

0.4

0.6

0.8

1

Time (s)

Lo
ad

132

0 30 60 90 120 150 180 210 240 270 300 330 360
0

0.2

0.4

0.6

0.8

1

Time (s)

Lo
ad

217

0 30 60 90 120 150 180 210 240 270 300 330 360
0

0.2

0.4

0.6

0.8

1

Time (s)

Lo
ad

172

Figure 6.93: Laboratory evaluation - Load per node throughout the experiment

237

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

M
em

or
y

U
sa

ge
 (

%
)

107

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

M
em

or
y

U
sa

ge
 (

%
)

109

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

M
em

or
y

U
sa

ge
 (

%
)

132

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

M
em

or
y

U
sa

ge
 (

%
)

217

0 30 60 90 120 150 180 210 240 270 300 330 360
0

20

40

60

80

100

Time (s)

M
em

or
y

U
sa

ge
 (

%
)

172

Figure 6.94: Laboratory evaluation - Memory usage per node throughout the experiment

238

6.10 Chapter Considerations

This Chapter focused on the evaluation of the content distribution schemes proposed in
Chapter 4, along with an initial study of the vehicular network under the scope of this work.
A large set of platforms was used to evaluate those strategies and perform this study. The
main considerations of this Chapter are described as follows.

Initial Study of the Network

In the beginning of this Chapter the scenarios under evaluation were presented and de-
scribed. In this description, several aspects related with the network infrastructure (number
and location of the RSUs) and network vehicles (number of OBUs) were described. This
initial description allowed for a better understanding of the potential of the network in the
different evaluation periods.

Once the potential of the network’s infrastructure was explored, a detailed statistical
analysis was performed in order to trace a profile of the two datasets used as input mobility
models in the used emulation platforms. Three metrics were evaluated: active time of OBUs,
number of contacts of OBUs and the mobility trends of OBUs. Through this evaluation it was
possible to trace common profiles between the different datasets. Thus, the vehicles (OBUs)
tend to be more active in the rush-hour periods (early morning and afternoon), along with
the periods that they are parked (midday and evening). During the parking periods the most
common type of neighbors are STAs; during the rest of the day these are OBUs and RSUs,
since the vehicles travel along the city center where the fixed-infrastructure is more present.

These considerations were very relevant in order to define the evaluation periods. Thus,
a set of experiments where defined, taking into account the time of day and the geographical
area.

Content Distribution Schemes Evauation in Emulation Platforms

Two emulators were created with the main goal to evaluate content distribution schemes
using delay tolerant mechanisms. Thus, these two platforms (MatlabEmulator and HelixEm-
ulator) were used to evaluate the proposed schemes.

Even though these emulators are different, it was possible to obtain similar results on
both. Thus, the evaluation procedure concludes that the LRBF strategy presented a higher
delivery rate and lower delay. The second best strategy was the LRGF, which most of the
time presented a final delivery rate equal to the LRBF, but with a higher delay. The other
two strategies, Random and LNHF, are clearly weaker than the previous two. The LRBF
strategy presented a drawback when compared to the LRGF strategy, since it introduced a
higher network overhead due to the larger advertisement packets.

Several parameters related with the content distribution strategies were also evaluated.
After this evaluation, the following parameters can be identified as critical in the configuration
of the proposed content distribution strategies. Evidently, the size of the content under
dissemination is a major factor since the bigger it is, the lower the delivery will be and the
higher the delay will be. The periodicity of the advertisement packet also has a major impact
on content dissemination, since if these packets are sent more often, the probability of an
accurate forwarding decision (it forwards the most lacking packet) is higher than with a lower
frequency of advertisement broadcasting.

The strategies to disseminate information presented in Chapter 4 were also evaluated. The
proposed strategy to optimize the delivery was only effective in the parking period where the

239

density of nodes is higher and enables a higher delivery rate. On the other hand, the strat-
egy proposed to minimize the network congestion produced the expected results, decreasing
network congestion along with enhancing the delivery rate. The proposed hybrid approach
also enhances the applied content distribution strategy (LRBF). Thus, the proposed strate-
gies to disseminate information proved their advantages and should be considered in future
experiments.

LRBF Strategy Evauation in a Laboratorial Platform
Finally, the strategy with the best overall performance was evaluated in a real scenario.

The selected strategy was the LRBF and the main goal of this experiment was to confirm
the correct behavior of this strategy in a real scenario. The experiment was performed in
the laboratory using the same OBUs that are used in the Oporto vehicular network. The
evaluation confirmed the correct development and deployment of the proposed strategy, and
also confirms that the content distribution service is ready to be deployed and evaluated in
the Oporto city vehicular network.

240

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main goal of this dissertation was the study, design, implementation and evaluation
of several strategies for content distribution in a vehicular network. As such, four strategies
were implemented: Random, LNHF, LRBF, and LRGF. Additionally, this dissertation also
comprised the study of several techniques to minimize network congestion and maximize
content delivery.

The following strategies were defined based on existing literature. The Random strat-
egy was proposed with the goal of understanding the efficiency of a purely random decision
strategy and that does not add any overhead to the network in order to make routing deci-
sions. The second strategy (LNHF) focuses on a metric that introduces a low overhead to
the network, but that also allows the sender node to make a more intelligent routing decision.
Therefore, it was defined that, for the RSUss this metric would be the number of transmis-
sions, and for the OBUss it would be the number of nodes through which a certain packet
has already passed. This approach leads to the RSUs having a propensity to send the least
disseminated packet, since it is the least emitted packet, and the probability that it has trav-
eled through a large number of nodes is lower. The thought process for the OBUs is similar,
since a packet that has a larger number of hops has probably been dowloaded less times. The
last two strategies were based on increasing the status of nodes, but improving the delivery.
The first strategy focuses on the implementation of a P2P dissemination in which the sender
node knows which is the most lacking packet in its vicinity and proceeds to send it. This
knowledge is obtained through the dissemination of control messages from each node, which
adds overhead to the network. The last implemented strategy uses the concept of network
coding to disseminate content. This concept introduces redundancy to the network, increas-
ing the possibility of various network elements receiving the same content. Given that the
communication between network elements occurs through broadcast dissemination, there are
many challenges to face. Therefore, several techniques were suggested in order to minimize
these effects. These techniques focus on using network knowledge (number of neighbors) and
packet-specific information (number of hops) in order to minimize network congestion and
maximize delivery.

A number of challenges appeared during the development of this work, sometimes delaying
implementation and evaluation of the proposed strategies. However, these challenges were
overcome and all the four proposed strategies are considered stable. Several challenges were

241

identified that related to the design and rapid tests of the dissemination strategies to be
implemented on the real testbed’s software. A MATLAB emulator was created in order to
facilitate the process of strategy design thinking. This emulator recreates (in an extremely
similar way) the target vehicular network – the Future Cities project’s vehicular network – as
well as the content distribution process for each of the aforementioned strategies. This initial
analysis allowed for the identification of the strategies and techniques that displayed the most
potential for real network implementation. Another challenge was related to the difficulty in
testing the behavior of the different strategies (that were already implemented in the target
vehicular network’s software) on a scale that was large enough to produce valid results. As
such, and in order to ensure the aforementioned premise, it was developed the strategies
based on a network emulator – the HelixEmulator. An initial version of this emulator was
concluded over the course of the development of this Dissertation. Even though this emulator
performed all basic functionalities, it was necessary to introduce several modifications in
order to implement the new features required to evaluate the proposed content distribution
strategies. Therefore, the emulator was equipped with additional capabilities, such as packet
sending in broadcast, a bandwidth control module, a log file generating module (for subsequent
statistical analysis), limitation in terms of emulating nodes, among others.

The HelixEmulator is responsible for launching a set of processes in equal number to the
number of emulation nodes. Each one of these processes represents a network node that is
running the Helix software. As such, this emulator also allows to directly generate Helix source
code for the NetRider boards. Considering this, all of the necessary modifications needed for
the implementation and integration of the four strategies were tested on the HelixEmulator.
The routing module – responsible for the decision to send packets – was not sufficiently
developed. As such, the core of this work focused on the development of the routing module
in order to provide new features that would allow for the implementation of a set of content
distribution strategies in delay-tolerant vehicular networks.

Several platforms were used to evaluate the different proposed content distribution strate-
gies. The MatlabEmulator was used for the design and easy and quick testing of the several
strategies. After the initial design, the implementation and integration of the routing strate-
gies and techniques on the Helix software were done. In this evaluation process, several
scenarios were assessed. The evaluated process used data that was collected during a 24-hour
period in the FutureCities project vehicular network to emulate node mobility in an approx-
imate way. Two scenarios were tested on the different platform and on the different time
periods. The behavior of the proposed strategies was evaluated when the dissemination was
focused on the city center and when the vehicles were concentrated on a single site (the park-
ing lot of the public transportation company of Oporto city). Three separate time periods
were tested in order to evaluate the impact of different mobility patterns of the vehicles on
content distribution.

After analyzing the behavior of the proposed content distribution strategies in the multiple
scenarios it was possible to draw several conclusions. There are two strategies that clearly set
themselves apart from the others due to their superior performance: LRBF e LRGF. These
strategies have delivery rates that are much higher than the ones from the Random and LNHF
strategies, and lead to less network congestion. However, these strategies require additional
control information to perform their routing decision, which increases the network overhead.
Considering this aspect, the LRGF had the best results since it requires less information
to be disseminated when compared to LRBF. In terms of delivery rate and delay of the
aforementioned overall best strategies, the LRBF displayed higher delivery rates and less

242

delay. The evaluation on the MatlabEmulator and HelixEmulator allowed for the conclusion
that the strategy that provided higher assurance in terms of delivery and delay was the LRBF.
Therefore, this was the strategy that was chosen to be implemented on a laboratory testbed
composed of NetRider boards. The laboratory assessment proved the correct implementation
of the LRBF strategy and that this strategy is suited for content distribution on a vehicular
network. The scalability of the several strategies was also tested and evaluated during the
experiments on the MatlabEmulator and the HelixEmulator.

With all the results gathered, it was then possible to draw some conclusions about the
proposed content distribution strategies’ performance. All summed up, it is safe to assume
that good results were achieved with the developed implementation of the LRBF strategy
given that the content dissemination is ensured with good delivery rate and delay time. This
fact makes it possible to consider LRBF strategy as a safe choice for the content distribution
in a vehicular environment.

7.2 Future Work

This Dissertation was the first one performed in our group regarding this study: devel-
opment and implementation of a content distribution strategy. Thus, not all topics were
analyzed and evaluated whereby several improvements and future topics of research and de-
velopment should be addressed. Some of these topics can be summarized as follows:

• Real network testing and evaluation: even though all of the strategies were tested and
evaluated, most of them were only tested in an emulation context. The LRBF strategy
was tested on the boards that are used in the FutureCities network in laboratorial
context. Therefore, in the future the other strategies should be tested on the real testbed
in order to assess the behavior of the LRBF e LRGF in a real vehicular environment
with a high number of nodes.

• Improvement of HelixEmulator performance: given the problems that were identified
when the HelixEmulator attempts to emulate a high number of nodes in a highly con-
gested network, the emulation process should be revised in order to assess the reason
why CPU usage increases uncontrollably, eventually leading to the collapse of the ma-
chine that is running the emulator. Once the reason is identified, improvements should
be made in order to mitigate this issue.

• Design and integration of a codification module: in the LRGF strategy the codification
module was approximated by the introduction of redundant packets in the network. In
a real context, this process should be implemented through a codification module that
has not yet been developed.

• Additional and improved network congestion control strategies: in this work several
strategies to optimize the delivery and minimize the network congestion were proposed.
However, most of them relied on parameters related with highly variable metrics such
as the number of hops and neighbors. Thus, in the future these parameters should be
defined using fitness functions or machine learning algorithms in order to define the
most satisfying value for them.

243

• Strategies for content dissemination: other strategies that limit the network overhead
shall be identified and assessed, for example, considering DHTs (Dynamic Hash Tables)
and content reconciliation.

• Deployment of a coding module: in this work the concept of network coding was dis-
cussed, concluding that this brings advantages for content dissemination. However, this
work was only focused on the decision of which coded packets should be sent, assuming
that the coding module was running and coded packets were available to send. Thus,
in order to evaluate the LRGF more accurately, the introduction of a coding module
that works in Helix software is highly recommended.

• APIs for content distribution: the content that was distributed through the course of
this Dissertation was created directly in the source code. However, this process should
be improved by creating APIs that are dedicated to the creation and sending of contents
in order to facilitate the implementation of this service on a real network.

• Interoperability of multiple services: over the course of this Dissertation all of the tests
were performed considering the exclusiveness of services on the network, i.e., only the
content distribution service was activated. As such, broader tests that promote the
coexistence of several services simultaneously should be performed.

244

Bibliography

[1] Veniam. (2015, August) An internet of moving things. [Online]. Available:
https://veniam.com/

[2] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and
H. Weiss, “Delay-Tolerant Networking Architecture,” RFC 4838 (Informational),
Internet Engineering Task Force, Apr. 2007. [Online]. Available: http://www.ietf.org/
rfc/rfc4838.txt

[3] G. W. Euler, “Intelligent vehicle/highway systems: Definitions and applications,” ITE
journal, vol. 60, no. 11, pp. 17–22, 1990.

[4] R. Uzcategui and G. Acosta-Marum, “Wave: a tutorial,” Communications Magazine,
IEEE, vol. 47, no. 5, pp. 126–133, 2009.

[5] “Ieee standard for information technology– local and metropolitan area networks– spe-
cific requirements– part 11: Wireless lan medium access control (mac) and physical
layer (phy) specifications amendment 6: Wireless access in vehicular environments,”
IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as amended by IEEE
Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-
2009, and IEEE Std 802.11w-2009), pp. 1–51, July 2010.

[6] “Ieee standard for wireless access in vehicular environments (wave)–multi-channel op-
eration,” IEEE Std 1609.4-2010 (Revision of IEEE Std 1609.4-2006), pp. 1–89, Feb
2011.

[7] Carnegie Melloon Portugal. (2015, July) Drive-in – distributed routing and
infotainment through vehicular inter-networking. [Online]. Available: http://www.
cmuportugal.org/tiercontent.aspx?id=1552

[8] FutureCities Project. (2015, July) Living lab : Vehicular ad-hoc networking. [Online].
Available: http://futurecities.up.pt/site/vehicular-ad-hoc-networking-testbed/

[9] SAFESPOT. (2015, July) Safespot. [Online]. Available: http://www.safespot-eu.org/

[10] NEC. (2015, July) Fleetnet - internet on the road. [Online]. Available: http:
//uk.nec.com/en GB/emea/about/neclab eu/projects/fleetnet.html

[11] ERTICO. (2015, July) Cvis. [Online]. Available: http://www.cvisproject.org/

[12] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, “A comprehensive survey
on vehicular ad hoc network,” Journal of network and computer applications, vol. 37,
pp. 380–392, 2014.

245

https://veniam.com/
http://www.ietf.org/rfc/rfc4838.txt
http://www.ietf.org/rfc/rfc4838.txt
http://www.cmuportugal.org/tiercontent.aspx?id=1552
http://www.cmuportugal.org/tiercontent.aspx?id=1552
http://futurecities.up.pt/site/vehicular-ad-hoc-networking-testbed/
http://www.safespot-eu.org/
http://uk.nec.com/en_GB/emea/about/neclab_eu/projects/fleetnet.html
http://uk.nec.com/en_GB/emea/about/neclab_eu/projects/fleetnet.html
http://www.cvisproject.org/

[13] C2C-CC et al., “Car 2 car communication consortium manifesto, overview of the c2c-cc
system,” 2007.

[14] A. Cardote, “Plataforma de comunicações veiculares com infraestrutura de suporte,”
Ph.D. dissertation, Instituto de Telecomunicações, Universidade Aveiro, 2014.

[15] Y. Zang, L. Stibor, B. Walke, H.-J. Reumerman, and A. Barroso, “Towards broadband
vehicular ad-hoc networks-the vehicular mesh network (vmesh) mac protocol,” in Wire-
less Communications and Networking Conference, 2007. WCNC 2007. IEEE. IEEE,
2007, pp. 417–422.

[16] D. Jiang and L. Delgrossi, “Ieee 802.11 p: Towards an international standard for wireless
access in vehicular environments,” in Vehicular Technology Conference, 2008. VTC
Spring 2008. IEEE. IEEE, 2008, pp. 2036–2040.

[17] B. S. Gukhool and S. Cherkaoui, “Ieee 802.11 p modeling in ns-2,” in Local Computer
Networks, 2008. LCN 2008. 33rd IEEE Conference on. IEEE, 2008, pp. 622–626.

[18] “Trial-use standard for wireless access in vehicular environments (wave) - resource man-
ager,” IEEE Std 1609.1-2006, pp. 1–71, Oct 2006.

[19] “Ieee trial-use standard for wireless access in vehicular environments - security services
for applications and management messages,” IEEE Std 1609.2-2006, pp. 0 1–105, 2006.

[20] “Ieee standard for wireless access in vehicular environments (wave) - networking ser-
vices,” IEEE Std 1609.3-2010 (Revision of IEEE Std 1609.3-2007), pp. 1–144, Dec
2010.

[21] “Ieee trial-use standard for wireless access in vehicular environments (wave) - multi-
channel operation,” IEEE Std 1609.4-2006, pp. 1–82, Nov 2006.

[22] M. Nekovee, “Sensor networks on the road: the promises and challenges of vehicular
adhoc networks and vehicular grids,” in Proceedings of the Workshop on Ubiquitous
Computing and e-Research, 2005.

[23] H. Moustafa and Y. Zhang, Vehicular networks: techniques, standards, and applications.
Auerbach publications, 2009.

[24] W. Kremer, “Realistic simulation of a broadcast protocol for an inter vehicle communi-
cation system (ivcs),” in Vehicular Technology Conference, 1991. Gateway to the Future
Technology in Motion., 41st IEEE. IEEE, 1991, pp. 624–629.

[25] M. Ma, C. Lu, and H. Li, “Delay tolerant networking,” in Delay tolerant networks:
Protocols and applications. CRC press, 2011, pp. 1–29.

[26] F. Warthman et al., “Delay-and disruption-tolerant networks (dtns),” A Tutorial. V..
0, Interplanetary Internet Special Interest Group, 2012.

[27] K. Fall and S. Farrell, “Dtn: an architectural retrospective,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 26, no. 5, pp. 828–836, 2008.

246

[28] K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC 5050 (Experimental),
Internet Engineering Task Force, Nov. 2007. [Online]. Available: http://www.ietf.org/
rfc/rfc5050.txt

[29] F. Li and Y. Wang, “Routing in vehicular ad hoc networks: A survey,” Vehicular
Technology Magazine, IEEE, vol. 2, no. 2, pp. 12–22, 2007.

[30] P. R. Pereira, A. Casaca, J. J. Rodrigues, V. N. Soares, J. Triay, and C. Cervelló-Pastor,
“From delay-tolerant networks to vehicular delay-tolerant networks,” Communications
Surveys & Tutorials, IEEE, vol. 14, no. 4, pp. 1166–1182, 2012.

[31] V. N. Soares, F. Farahmand, and J. J. Rodrigues, “Improving vehicular delay-tolerant
network performance with relay nodes,” in Next Generation Internet Networks, 2009.
NGI’09. IEEE, 2009, pp. 1–5.

[32] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling and analysis of a
three-tier architecture for sparse sensor networks,” Ad Hoc Networks, vol. 1, no. 2, pp.
215–233, 2003.

[33] T. L. Willke, P. Tientrakool, and N. F. Maxemchuk, “A survey of inter-vehicle com-
munication protocols and their applications,” Communications Surveys & Tutorials,
IEEE, vol. 11, no. 2, pp. 3–20, 2009.

[34] S. Guo, M. H. Falaki, E. A. Oliver, S. Ur Rahman, A. Seth, M. A. Zaharia, and
S. Keshav, “Very low-cost internet access using kiosknet,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 5, pp. 95–100, 2007.

[35] H. Soroush, N. Banerjee, A. Balasubramanian, M. D. Corner, B. N. Levine, and B. Lynn,
“Dome: a diverse outdoor mobile testbed,” in Proceedings of the 1st ACM International
Workshop on Hot Topics of Planet-Scale Mobility Measurements. ACM, 2009, p. 2.

[36] V. N. Soares, F. Farahmand, and J. J. Rodrigues, “A layered architecture for vehicular
delay-tolerant networks,” in Computers and Communications, 2009. ISCC 2009. IEEE
Symposium on. IEEE, 2009, pp. 122–127.

[37] N. Benamar, K. D. Singh, M. Benamar, D. El Ouadghiri, and J.-M. Bonnin, “Routing
protocols in vehicular delay tolerant networks: A comprehensive survey,” Computer
Communications, vol. 48, pp. 141–158, 2014.

[38] Y. Chen, C. Qiao, and X. Yu, “Optical burst switching: a new area in optical networking
research,” Network, IEEE, vol. 18, no. 3, pp. 16–23, 2004.

[39] A. Vahdat, D. Becker et al., “Epidemic routing for partially connected ad hoc networks,”
Technical Report CS-200006, Duke University, Tech. Rep., 2000.

[40] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “Maxprop: Routing for vehicle-
based disruption-tolerant networks.” in INFOCOM, vol. 6, 2006, pp. 1–11.

[41] A. Balasubramanian, B. Levine, and A. Venkataramani, “Dtn routing as a resource
allocation problem,” ACM SIGCOMM Computer Communication Review, vol. 37, no. 4,
pp. 373–384, 2007.

247

http://www.ietf.org/rfc/rfc5050.txt
http://www.ietf.org/rfc/rfc5050.txt

[42] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an efficient
routing scheme for intermittently connected mobile networks,” in Proceedings of the
2005 ACM SIGCOMM workshop on Delay-tolerant networking. ACM, 2005, pp. 252–
259.

[43] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Bal-
akrishnan, and S. Madden, “Cartel: a distributed mobile sensor computing system,” in
Proceedings of the 4th international conference on Embedded networked sensor systems.
ACM, 2006, pp. 125–138.

[44] S. Lahde, M. Doering, W.-B. Pöttner, G. Lammert, and L. Wolf, “A practical analysis
of communication characteristics for mobile and distributed pollution measurements
on the road,” Wireless Communications and Mobile Computing, vol. 7, no. 10, pp.
1209–1218, 2007.

[45] J. Ott and D. Kutscher, “A disconnection-tolerant transport for drive-thru internet en-
vironments,” in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings IEEE, vol. 3. IEEE, 2005, pp. 1849–1862.

[46] K. Scott, “Disruption tolerant networking proxies for on-the-move tactical networks,”
in Military Communications Conference, 2005. MILCOM 2005. IEEE. IEEE, 2005,
pp. 3226–3231.

[47] M. Gerla, C. Wu, G. Pau, and X. Zhu, “Content distribution in vanets,” Vehicular
Communications, vol. 1, no. 1, pp. 3–12, 2014.

[48] M. Gerla, C. Lindemann, and A. Rowstron, “P2p manet’s-new research issues.” in
Peer-to-Peer Mobile Ad Hoc Networks, 2005.

[49] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on Economics of
Peer-to-Peer systems, vol. 6, 2003, pp. 68–72.

[50] A. Klemm, C. Lindemann, and O. P. Waldhorst, “A special-purpose peer-to-peer file
sharing system for mobile ad hoc networks,” in Vehicular Technology Conference, 2003.
VTC 2003-Fall. 2003 IEEE 58th, vol. 4. IEEE, 2003, pp. 2758–2763.

[51] S. Das, A. Nandan, and G. Pau, “Spawn: a swarming protocol for vehicular ad-hoc
wireless networks,” in Proceedings of the 1st ACM international workshop on Vehicular
ad hoc networks. ACM, 2004, pp. 93–94.

[52] A. Nandan, S. Das, G. Pau, M. Gerla, and M. Sanadidi, “Co-operative downloading
in vehicular ad-hoc wireless networks,” in Wireless On-demand Network Systems and
Services, 2005. WONS 2005. Second Annual Conference on. IEEE, 2005, pp. 32–41.

[53] K. Lee and I. Yap, “Cartorrent: A bit-torrent system for vehicular ad-hoc networks,”
Los Angeles, 2006.

[54] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vector (aodv)
routing,” Tech. Rep., 2003.

248

[55] C. Rezende, A. Mammeri, A. Boukerche, and A. A. Loureiro, “A receiver-based video
dissemination solution for vehicular networks with content transmissions decoupled from
relay node selection,” Ad Hoc Networks, vol. 17, pp. 1–17, 2014.

[56] H. Wu, R. Fujimoto, R. Guensler, and M. Hunter, “Mddv: a mobility-centric data
dissemination algorithm for vehicular networks,” in Proceedings of the 1st ACM inter-
national workshop on Vehicular ad hoc networks. ACM, 2004, pp. 47–56.

[57] Y. Zhang, J. Zhao, and G. Cao, “Roadcast: a popularity aware content sharing scheme
in vanets,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 13,
no. 4, pp. 1–14, 2010.

[58] B. Yu and F. Bai, “Pyramid: Informed content reconciliation for vehicular peer-to-peer
systems,” 2015.

[59] R. H. Frenkiel, B. Badrinath, J. Borras, and R. D. Yates, “The infostations challenge:
Balancing cost and ubiquity in delivering wireless data,” IEEE Personal Communica-
tions, vol. 7, no. 2, pp. 66–71, 2000.

[60] W. H. Yuen, R. D. Yates, and S.-C. Mau, “Exploiting data diversity and multiuser
diversity in noncooperative mobile infostation networks,” in INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications. IEEE
Societies, vol. 3. IEEE, 2003, pp. 2218–2228.

[61] A. Nandan, S. Tewari, S. Das, M. Gerla, and L. Kleinrock, “Adtorrent: Delivering
location cognizant advertisements to car networks,” in WONS 2006: Third Annual
Conference on Wireless On-demand Network Systems and Services, 2006, pp. 203–212.

[62] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale content distribu-
tion,” in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, vol. 4. IEEE, 2005, pp. 2235–2245.

[63] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,”
Information Theory, IEEE Transactions on, vol. 46, no. 4, pp. 1204–1216, 2000.

[64] M. Gerla and L. Kleinrock, “Vehicular networks and the future of the mobile internet,”
Computer Networks, vol. 55, no. 2, pp. 457–469, 2011.

[65] S. Ahmed and S. S. Kanhere, “Vanetcode: network coding to enhance cooperative
downloading in vehicular ad-hoc networks,” in Proceedings of the 2006 international
conference on Wireless communications and mobile computing. ACM, 2006, pp. 527–
532.

[66] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla, “Code torrent: content distribution
using network coding in vanet,” in Proceedings of the 1st international workshop on
Decentralized resource sharing in mobile computing and networking. ACM, 2006, pp.
1–5.

[67] F. Bai and A. Helmy, “Impact of mobility on mobility-assisted information diffusion
(maid) protocols,” Department Of Computer Science, USC,” Technical Report, 2005.

249

[68] J.-S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Médard, “Codecast: a network-coding-
based ad hoc multicast protocol,” Wireless Communications, IEEE, vol. 13, no. 5, pp.
76–81, 2006.

[69] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free riding in bittorrent is cheap,”
in Proc. Workshop on Hot Topics in Networks (HotNets). Citeseer, 2006, pp. 85–90.

[70] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad-hoc wireless net-
works,” in INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, vol. 3. IEEE, 2001, pp. 1360–1369.

[71] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a
mobile ad hoc network,” Wireless networks, vol. 8, no. 2-3, pp. 153–167, 2002.

[72] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke algorithms are
enough,” in Proceedings of the 6th ACM SIGCOMM conference on Internet measure-
ment. ACM, 2006, pp. 203–216.

[73] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and improving bit-
torrent performance,” Microsoft Research, Microsoft Corporation One Microsoft Way
Redmond, WA, vol. 98052, pp. 2005–03, 2005.

[74] P. Felber and E. W. Biersack, “Self-scaling networks for content distribution,” in Proc.
International Workshop on Self-* Properties in Complex Information Systems. Cite-
seer, 2004, pp. 1–14.

[75] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network
research,” Wireless communications and mobile computing, vol. 2, no. 5, pp. 483–502,
2002.

[76] C. Sommer and F. Dressler, “Progressing toward realistic mobility models in vanet
simulations,” Communications Magazine, IEEE, vol. 46, no. 11, pp. 132–137, 2008.

[77] F. J. Martinez, C. K. Toh, J.-C. Cano, C. T. Calafate, and P. Manzoni, “A survey
and comparative study of simulators for vehicular ad hoc networks (vanets),” Wireless
Communications and Mobile Computing, vol. 11, no. 7, pp. 813–828, 2011.

[78] J. Härri, F. Filali, and C. Bonnet, “Mobility models for vehicular ad hoc networks: a
survey and taxonomy,” Communications Surveys & Tutorials, IEEE, vol. 11, no. 4, pp.
19–41, 2009.

[79] D. Helbing, “Traffic and related self-driven many-particle systems,” Reviews of modern
physics, vol. 73, no. 4, p. 1067, 2001.

[80] T. Toledo, “Driving behaviour: models and challenges,” Transport Reviews, vol. 27,
no. 1, pp. 65–84, 2007.

[81] Institute of Transportation Systems. (2015, August) Sumo – simulation of
urban mobility. [Online]. Available: http://www.dlr.de/ts/en/desktopdefault.aspx/
tabid-9883/16931 read-41000/

250

http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/

[82] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–simulation of urban
mobility,” in The Third International Conference on Advances in System Simulation
(SIMUL 2011), Barcelona, Spain, 2011.

[83] H. Conceição, L. Damas, M. Ferreira, and J. Barros, “Large-scale simulation of v2v en-
vironments,” in Proceedings of the 2008 ACM symposium on Applied computing. ACM,
2008, pp. 28–33.

[84] PTV Group. (2015, August) Ptv vissim. [Online]. Available: http://vision-traffic.
ptvgroup.com/en-us/products/ptv-vissim/

[85] G. D. Cameron and G. I. Duncan, “Paramics—parallel microscopic simulation of road
traffic,” The Journal of Supercomputing, vol. 10, no. 1, pp. 25–53, 1996.

[86] J. Härri, M. Fiore, F. Filali, and C. Bonnet. (2015, August) Vanetmobisim. [Online].
Available: http://vanet.eurecom.fr/

[87] University of Stuttgart. (2015, August) Canu mobility simulation environment
(canumobisim). [Online]. Available: http://canu.informatik.uni-stuttgart.de/mobisim/
index.html

[88] Scalable Network Technologies. (2015, August) Qualnet. [Online]. Available:
http://web.scalable-networks.com/content/qualnet

[89] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: a library for parallel simulation of
large-scale wireless networks,” in Parallel and Distributed Simulation, 1998. PADS 98.
Proceedings. Twelfth Workshop on. IEEE, 1998, pp. 154–161.

[90] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla, “Glomosim: A scal-
able network simulation environment,” UCLA Computer Science Department Technical
Report, vol. 990027, p. 213, 1999.

[91] E. Giordano, R. Frank, G. Pau, and M. Gerla, “Corner: a realistic urban propagation
model for vanet,” in Wireless On-demand Network Systems and Services (WONS), 2010
Seventh International Conference on. IEEE, 2010, pp. 57–60.

[92] OpenSim Ltd. (2015, August) Omnet++. [Online]. Available: https://omnetpp.org/

[93] V. Andreas. (2015, August) Mixim. [Online]. Available: http://mixim.sourceforge.net/

[94] Information Sciences Institute of University of Southern California. (2015, August)
The network simulator - ns-2. [Online]. Available: http://www.isi.edu/nsnam/ns/

[95] NSNAM. (2015, August) What is ns-3. [Online]. Available: https://www.nsnam.org/
overview/what-is-ns-3/

[96] E. Weingärtner, H. Vom Lehn, and K. Wehrle, “A performance comparison of recent
network simulators,” in Communications, 2009. ICC’09. IEEE International Confer-
ence on. IEEE, 2009, pp. 1–5.

[97] Laboratory for Communications and Applications of École Polytechique Fédérale
de Lausanne. (2015, August) Traffic and network simulation environment. [Online].
Available: http://lca.epfl.ch/projects/trans/

251

http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/
http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/
http://vanet.eurecom.fr/
http://canu.informatik.uni-stuttgart.de/mobisim/index.html
http://canu.informatik.uni-stuttgart.de/mobisim/index.html
http://web.scalable-networks.com/content/qualnet
https://omnetpp.org/
http://mixim.sourceforge.net/
http://www.isi.edu/nsnam/ns/
https://www.nsnam.org/overview/what-is-ns-3/
https://www.nsnam.org/overview/what-is-ns-3/
http://lca.epfl.ch/projects/trans/

[98] M. Piorkowski, M. Raya, A. L. Lugo, P. Papadimitratos, M. Grossglauser, and J.-
P. Hubaux, “Trans: realistic joint traffic and network simulator for vanets,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 12, no. 1, pp. 31–
33, 2008.

[99] C. Sommer. (2015, August) Veins - the open source vehicular network simulation
framework. [Online]. Available: http://veins.car2x.org/

[100] I. Framework. (2015, August) An open-source omnet++ model suite for wired, wireless
and mobile networks. [Online]. Available: https://inet.omnetpp.org/

[101] MediaWiki. (2015, August) Traci. [Online]. Available: http://www.sumo.dlr.de/wiki/
TraCI

[102] iTetris Project Consortium. (2015, August) itetris, the open simulation platform for
intelligent transport system services. [Online]. Available: http://www.ict-itetris.eu/

[103] S.-Y. Wang and C.-C. Lin, “Nctuns 6.0: a simulator for advanced wireless vehicular
network research,” in Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE
71st. IEEE, 2010, pp. 1–2.

[104] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn protocol evaluation,”
in Proceedings of the 2nd international conference on simulation tools and techniques.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications En-
gineering), 2009, p. 55.

[105] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot, “Pocket switched
networks and human mobility in conference environments,” in Proceedings of the 2005
ACM SIGCOMM workshop on Delay-tolerant networking. ACM, 2005, pp. 244–251.

[106] N. Eagle and A. Pentland, “Reality mining: sensing complex social systems,” Personal
and ubiquitous computing, vol. 10, no. 4, pp. 255–268, 2006.

[107] Dartmouth.

[108] S. Jain, K. Fall, and R. Patra, Routing in a delay tolerant network. ACM, 2004, vol. 34,
no. 4.

[109] Delay-Tolerant Networking Research Group. (2015, August) Code. [Online]. Available:
https://sites.google.com/site/dtnresgroup/home/code

[110] A. Keränen and J. Ott, “Opportunistic network environment simulator - special assign-
ment report, helsinki university of technology,” Department of Communications and
Networking, 2008.

[111] Netlab. (2015, August) The one, the opportunistic network environment simulator.
[Online]. Available: http://www.netlab.tkk.fi/tutkimus/dtn/theone/

[112] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in intermittently
connected networks,” in Service Assurance with Partial and Intermittent Resources.
Springer, 2004, pp. 239–254.

252

http://veins.car2x.org/
https://inet.omnetpp.org/
http://www.sumo.dlr.de/wiki/TraCI
http://www.sumo.dlr.de/wiki/TraCI
http://www.ict-itetris.eu/
https://sites.google.com/site/dtnresgroup/home/code
http://www.netlab.tkk.fi/tutkimus/dtn/theone/

[113] A. Lindgren, A. Doria, E. Davies, and S. Grasic, “Probabilistic Routing Protocol for
Intermittently Connected Networks,” RFC 6693 (Experimental), Internet Engineering
Task Force, Aug. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6693.txt

[114] M. Demmer, E. Brewer, K. Fall, M. Ho, R. Patra, M. Demmer, E. Brewer, K. Fall,
S. Jain, M. Ho, and R. Patra, “Implementing delay tolerant networking,” Tech. Rep.,
2003.

[115] Delay-Tolerant Networking Research Group (DTNRG). (2015, July) Prophet router.
[Online]. Available: http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/
ro prophet.html

[116] M. Demmer and K. Fall, “Dtlsr: delay tolerant routing for developing regions,” in
Proceedings of the 2007 workshop on Networked systems for developing regions. ACM,
2007, p. 5.

[117] Delay-Tolerant Networking Research Group (DTNRG). (2015, July) Dtlsr router.
[Online]. Available: http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/
ro dtlsr.html

[118] ——. (2015, July) Flood router. [Online]. Available: http://info.n4c.eu/code/DTN2/
file/0aaf7724519d/doc/manual/ro flood.html

[119] ——. (2015, July) tca-router routing algorithm. [Online]. Available: http:
//info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro tca-router.html

[120] ——. (2015, July) External router. [Online]. Available: http://info.n4c.eu/code/
DTN2/file/0aaf7724519d/doc/manual/ro external.html

[121] ——. (2015, July) Static router. [Online]. Available: http://info.n4c.eu/code/DTN2/
file/0aaf7724519d/doc/manual/ro static.html

[122] S. Burleigh, “Interplanetary overlay network: An implementation of the dtn bundle
protocol,” in Consumer Communications and Networking Conference, 2007. CCNC
2007. 4th IEEE, 2007, pp. 222–226.

[123] ——, “Compressed Bundle Header Encoding (CBHE),” RFC 6260 (Experimental),
Internet Engineering Task Force, May 2011. [Online]. Available: http://www.ietf.org/
rfc/rfc6260.txt

[124] M. Ramadas, S. Burleigh, and S. Farrell, “Licklider Transmission Protocol -
Specification,” RFC 5326 (Experimental), Internet Engineering Task Force, Sep. 2008.
[Online]. Available: http://www.ietf.org/rfc/rfc5326.txt

[125] S.-A. Lenas, S. C. Burleigh, and V. Tsaoussidis, “Bundle streaming service: design,
implementation and performance evaluation,” Transactions on Emerging Telecommu-
nications Technologies, 2013.

[126] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf, “Ibrdtn: A lightweight, modular
and highly portable bundle protocol implementation,” in Electronic Communications
of the EASST. Citeseer, 2011.

253

http://www.ietf.org/rfc/rfc6693.txt
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_prophet.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_prophet.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_dtlsr.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_dtlsr.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_flood.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_flood.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_tca-router.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_tca-router.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_external.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_external.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_static.html
http://info.n4c.eu/code/DTN2/file/0aaf7724519d/doc/manual/ro_static.html
http://www.ietf.org/rfc/rfc6260.txt
http://www.ietf.org/rfc/rfc6260.txt
http://www.ietf.org/rfc/rfc5326.txt

[127] OpenWRT. (2015, July) Openwrt - wireless freedom. [Online]. Available: https:
//www.openwrt.org/

[128] D. Ellard, R. Altmann, A. Gladd, and D. Brown, “Dtn ip neighbor discovery
(ipnd),” Working Draft, IETF Secretariat, Internet-Draft draft-irtf-dtnrg-ipnd-
02, November 2012, https://tools.ietf.org/id/draft-irtf-dtnrg-ipnd-02.txt. [Online].
Available: https://tools.ietf.org/id/draft-irtf-dtnrg-ipnd-02.txt

[129] M. Demmer, J. Ott, and S. Perreault, “Delay-Tolerant Networking TCP Convergence-
Layer Protocol,” RFC 7242 (Experimental), Internet Engineering Task Force, Jun.
2014. [Online]. Available: http://www.ietf.org/rfc/rfc7242.txt

[130] H. Kruse and S. Ostermann, “Udp convergence layers for the dtn bun-
dle and ltp protocols,” Working Draft, IETF Secretariat, Internet-Draft
draft-irtf-dtnrg-udp-clayer-00, November 2008, http://www.ietf.org/internet-drafts/
draft-irtf-dtnrg-udp-clayer-00.txt. [Online]. Available: http://www.ietf.org/
internet-drafts/draft-irtf-dtnrg-udp-clayer-00.txt

[131] Haxx. (2015, August) libcurl - the multiprotocol file transfer library. [Online].
Available: http://curl.haxx.se/libcurl/

[132] “Ieee standard for information technology - telecommunications and information ex-
change between systems - local and metropolitan area networks - specific requirement
part 15.4: Wireless medium access control (mac) and physical layer (phy) specifica-
tions for low-rate wireless personal area networks (wpans),” IEEE Std 802.15.4a-2007
(Amendment to IEEE Std 802.15.4-2006), pp. 1–203, 2007.

[133] SQLite Consortium. (2015, August) Sqlite. [Online]. Available: https://www.sqlite.org/

[134] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,”
Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[135] Viagénie. (2015, July) Postellation project. [Online]. Available: http://postellation.
viagenie.ca/

[136] M. Blanchet, S. Perreault, and J.-P. Dionne, “Postellation: an enhanced delay-tolerant
network (dtn) implementation with video streaming and automated network attach-
ment.” SpaceOps, 2012.

[137] B. Moon, J. Miner, and Jan. (2015, July) Jdtn. [Online]. Available: http:
//sourceforge.net/projects/jdtn/

[138] M. B. S. Prasad, M. W. Arshad, S. A. Shahzad, S. Z. Sajjad, H. Eriksson, B. Aminian,
A. Doria, B. Pehrson, and M. Zennaro, “Bytewalla 3.”

[139] Department of Communications and Networking, Helsinki University of Technology.
(2015, July) Dt-talkie. [Online]. Available: http://www.netlab.tkk.fi/tutkimus/dtn/
dttalkie/

[140] Delay-Tolerant Networking Research Group (DTNRG). (2015, July) Dtn2. [Online].
Available: https://sites.google.com/site/dtnresgroup/home/code/dtn2documentation

254

https://www.openwrt.org/
https://www.openwrt.org/
https://tools.ietf.org/id/draft-irtf-dtnrg-ipnd-02.txt
https://tools.ietf.org/id/draft-irtf-dtnrg-ipnd-02.txt
http://www.ietf.org/rfc/rfc7242.txt
http://www.ietf.org/internet-drafts/draft-irtf-dtnrg-udp-clayer-00.txt
http://www.ietf.org/internet-drafts/draft-irtf-dtnrg-udp-clayer-00.txt
http://www.ietf.org/internet-drafts/draft-irtf-dtnrg-udp-clayer-00.txt
http://www.ietf.org/internet-drafts/draft-irtf-dtnrg-udp-clayer-00.txt
http://curl.haxx.se/libcurl/
https://www.sqlite.org/
http://postellation.viagenie.ca/
http://postellation.viagenie.ca/
http://sourceforge.net/projects/jdtn/
http://sourceforge.net/projects/jdtn/
http://www.netlab.tkk.fi/tutkimus/dtn/dttalkie/
http://www.netlab.tkk.fi/tutkimus/dtn/dttalkie/
https://sites.google.com/site/dtnresgroup/home/code/dtn2documentation

[141] Networking for Communications Challenged Communities, “D2.2: Functional specifi-
cation for dtn infrastructure software comprising rfc 5050 bundle agent and associated
components,” Tech. Rep. 1.2.

[142] S. Symington, S. Farrell, H. Weiss, and P. Lovell, “Bundle Security Protocol
Specification,” RFC 6257 (Experimental), Internet Engineering Task Force, May 2011.
[Online]. Available: http://www.ietf.org/rfc/rfc6257.txt

[143] A. Seth, P. Darragh, S. Liang, Y. Lin, and S. Keshav, “An architecture for tetherless
communication,” Disruption Tolerant Networking, vol. 5142, 2005.

[144] Jet Propulsion Laboratory, California Institute of Technology. (2015, July) Ion,
interplanetary overlay network. [Online]. Available: https://ion.ocp.ohiou.edu/

[145] S. Burleigh, “Interplanetary overlay network (ion) design and operation,” Jet Propulsion
Laboratory, California Institute of Technology, v1, vol. 8.

[146] ——, “Contact graph routing,” 2010.

[147] Institut für Betriebssysteme und Rechnerverbund der TU Braunschweig. (2015, July)
Ibr-dtn - a modular and lightweight implementation of the bundle protocol. [Online].
Available: https://trac.ibr.cs.tu-bs.de/project-cm-2012-ibrdtn

[148] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf, “Ibr-dtn: an efficient implementa-
tion for embedded systems,” in Proceedings of the third ACM workshop on Challenged
networks. ACM, 2008, pp. 117–120.

[149] Network Architectures and Protocols. (2015, August) Network architectures and
protocols. [Online]. Available: http://nap.av.it.pt/

[150] B. Tavares, “Transmissão oportuńıstica de informação em redes veiculares,” Master’s
thesis, Departamento de Engenharia Eletrónica Telecomunicações e Informática, Uni-
versidade de Aveiro, 2013.

[151] L. Guedes, “Transmissão oportuńıstica de informação em redes veiculares,” Master’s
thesis, Departamento de Engenharia Eletrónica Telecomunicações e Informática, Uni-
versidade de Aveiro, 2014.

[152] JSON. (2015, August) Introducing json. [Online]. Available: http://json.org/

[153] M. Perillo, “Network coding overview.”

[154] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random
linear network coding approach to multicast,” Information Theory, IEEE Transactions
on, vol. 52, no. 10, pp. 4413–4430, 2006.

[155] MathWorks. (2015, August) Matlab. [Online]. Available: http://www.mathworks.com/
products/matlab/

[156] C. Carlson and D. Clay, “The earth model–calculating field size and distances between
points using gps coordinates,” Site Specific Management Guidelines, p. 4, 1999.

255

http://www.ietf.org/rfc/rfc6257.txt
https://ion.ocp.ohiou.edu/
https://trac.ibr.cs.tu-bs.de/project-cm-2012-ibrdtn
http://nap.av.it.pt/
http://json.org/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

[157] Python. (2015, September) Python. [Online]. Available: https://www.python.org/

[158] iMatix Corporation. (2015, October) Zmq. [Online]. Available: http://zeromq.org/

[159] Wikipedia. (2015, September) Memory-mapped file. [Online]. Available: https:
//en.wikipedia.org/wiki/Memory-mapped file

[160] OpenWRT. (2015, October) Openwrt build system – usage. [Online]. Available:
http://wiki.openwrt.org/doc/howto/build

[161] SOURCEFORGE.NET. (2015, November) Ptpd. [Online]. Available: http://ptpd.
sourceforge.net/

[162] Network Time Foundation. (2015, November) Ntp: The network time protocol.
[Online]. Available: http://www.ntp.org/

[163] Aldum. (2015, October) Opkg package manager. [Online]. Available: http:
//wiki.openwrt.org/doc/techref/opkg

[164] Porto Digital. (2015, October) Porto digital - o projecto. [Online]. Available:
http://www.portodigital.pt/

[165] How-To Geek. (2015, September) Understanding the load average on linux and
other unix-like systems. [Online]. Available: http://www.howtogeek.com/194642/
understanding-the-load-average-on-linux-and-other-unix-like-systems/

[166] Scout. (2015, September) Understanding linux cpu load - when should you
be worried? [Online]. Available: http://blog.scoutapp.com/articles/2009/07/31/
understanding-load-averages

256

https://www.python.org/
http://zeromq.org/
https://en.wikipedia.org/wiki/Memory-mapped_file
https://en.wikipedia.org/wiki/Memory-mapped_file
http://wiki.openwrt.org/doc/howto/build
http://ptpd.sourceforge.net/
http://ptpd.sourceforge.net/
http://www.ntp.org/
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://www.portodigital.pt/
http://www.howtogeek.com/194642/understanding-the-load-average-on-linux-and-other-unix-like-systems/
http://www.howtogeek.com/194642/understanding-the-load-average-on-linux-and-other-unix-like-systems/
http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages
http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages

Appendix A

How-Tos

257

How-To compile from HelixEmu to Netrider

boards

Gonçalo Pessoa

October 13, 2015

Abstract

Instructions to compile the source code from the HelixEmu project to
the Netrider boards.

There are also described some specific characteristics of the source code
that were implement in order to deploy the content distribution schemes
in the boards.

This document is a continuation of the emulator101 written by Ricardo
Dias where a brief description of the HelixEmulator is given.

1 Compiling

The HelixEmulator source code can be compiled in two ways:

1. To run has an emulator in a machine (with linux-based operating system);

2. To run directly the Helix in a laptop (with linux-based operating system).

Both approaches are described in emulator101. However, to compile to the
Netrider boards a set of modifications and considerations has to be done.

These modifications can be divided as follows:

• Modification of the CMakeLists.txt file (if new files were added to the
HelixEmu project).

• Modification of the Helix original Makefile.

• Modification of the Helix original Makefile of OpenWRT.

The CMakeList.txt file located in dev/Helix/src/ has to be modified in
order to add new modules. For example, if a new module called Logging
has to be added to the HelixEmu source code this information must be in-
troduced in the CMakeList.txt file. This should be done inside of the scope
SET(helixcore SRC...). Without this adding the cmake will not be able to
generate a correct Makefile to compile these new modules.

The Helix makefile located in dev/Helix/src/ must be modified in order to
handle the new modules added to implement the content distribution strategies.

1

Thus, the macros LIBS, CPPFLAGS, SRCS C, and SRCS CPP must be modified in
order to add additional libraries, compilation flags, and new file to the com-
pilation process. To compile the HelixEmu source code with the new content
distribution schemes the following CPPFLAGS were added:

• -std=c++0x since libraries of a newer C++ standard are used.

• -D GLIBCXX USE NANOSLEEP to use sleep functions with a precision of nanosec-
onds.

Likewise in the CMakeList.txt file the new files must be added to the compile
process whereby the SRCS CPP (and, if new C files were added, the SRCS C) must
be modified.

The working Helix Makefile is in Appendix A and the CMakeLists.txt in
Appendix B.

Once modified the CMakeLists.txt and Makefile the HelixEmu must be com-
piled. This can be done following the next steps:

1. Change the user location to the Helix/build/ directory;

2. Clean the folder’s content;

3. Generate the Makefile using the cmake with the non-emulator option se-
lected.

cmake -DEMULATOR=off ../src

4. Compile

make clean all

Now the Helix is ready to run in a laptop (the binary file is located in the
Helix/bin/ folder), but not in the Netrider boards. The next procedure in the
cross-compiling of the code to the Netrider architecture and operating system.

To cross-compile the code is used the build-root of the VeniamOS (operating
system based in the OpenWRT which was modified by Veniam and is the one
used in the Netrider boards). The process of cross-compilation in done using a
Makefile located in VeniamOS/openwrt/package/Helix/ (if this folder does not
exists it must to be created). A working version of this Makefile is provided in
Appendix C. This Makefile is responsible to cross-compile a package provided
by the user that must be located in the VeniamOS/openwrt/dl/ folder as a
tar.bz2 file. The name and the extension of it must be in compliance with
the information of the OpenWRT Helix Makefile. This tar.bz2 must be a
compression of the dev/Helix/ folder which is the folder where the source code
(Helix/src/), the binary files (Helix/bin/), etc, are located.

Before compiling the Helix the support library must be also compiled and
integrated in the VeniamOS build-root. The procedure is the same, a tar.bz2 of
the dev/libhelix/ must be created and transfer to the VeniamOS/openwrt/dl/
folder. The process of cross-compilation in done using a Makefile located in

2

VeniamOS/openwrt/package/libhelix/ (if this folder does not exists it must
to be created). A working version of this Makefile is provided in Appendix D.

Once created and transfered all the files and Makefiles the compilation can
be performed following the next steps:

1. Change to the source directory of VeniamOS (VeniamOS/openwrt/);

2. Select the linhelix and Helix packages in the configuration menu of Veni-
amOS

make menuconfig

The libhelix package is located in Libraries/

The Helix package is located in Network/

3. Compile the libhelix (if it is already compiled and none modification was
performed there is no need to compile it again)

make package/libhelix/{clean,compile} V=99

4. Compile the Helix

make package/Helix/{clean,compile} V=99

These procedures result in two ipk files that can be installed in the Netrider
boards. These are generated during the compiling process and saved in the
following folder: VeniamOS/openwrt/bin/ar71xx/packages/.

Once transfered the ipk files to the board the libhelix and Helix programs
can be installed as follows:

• opkg install libhelix***.ipk

• opkg install Helix***.ipk

If there is errors related, for example, with a downgrading of the libhelix or
Helix versions the already installed packages must be removed.

• opkg list

• opkg remove libhelix***

• opkg remove Helix***

3

A Makefile of dev/Helix/src/

B CMakeList.txt of dev/Helix/src/

C Makefile of Helix to be used by the VeniamOS

D Makefile of libhelix to be used by the Veni-
amOS

4

Run content distribution experiments in the

netrider boards

Gonçalo Pessoa

October 13, 2015

Abstract

Concerns and warnings regarding the running of a content distribution
experiment in the netrider boards.

1 Compiling

The compilation procedure is explained in a document called “compileFromHe-
lixEmuToNetrider”.

To compile to the boards the Makefile must be generated with the DEMULATOR
flag off. Thus, only the source code that are outside of the EMULATOR define
scope will be compiled.

2 Concerns

2.1 Set log folder, log file name, and generate packets

As is described in the thesis document, all the packets that will be disseminated
must be generated before the initiating of the Helix program (which is done in
the src/helix.cpp file).

Thus, the first thing to be done is the setting of the Log folder where the
Logging module writes the log data of the experiment. In the Logging class
there are two variables to define the log folder path and the log file name.
When the program is running in the boards the log path is always the same as
defined in the configuration file of Helix (helix.conf). On the other hand, the
log file name can be defined at will.

Never forget that all the paths (api, storage, and log) defined in the helix.conf
must exist in the board, otherwise an error will occur at the starting of Helix.

After that, the packets must be generated and the structures associated with
the content distribution strategies must be also initiated and filled as follows.

// Generate packets in RSUs (before start process)

unsigned NumberOfPackets = 320; // Very dependent of

MAX_PAGES macro in storageDisk.c

1

uint8_t fileID = 1;

// If node is an RSU (NODE_TYPE =2)

if(get_node_type () == 2) {

dbg(INFO ,"[MAIN] Generating packets in RSUs ...\n");

for (int i=0; i<NumberOfPackets; i++) {

// Inite HelixHeader of the packet

HelixHeader helix_header=HelixHeader ();

helix_header_init (& helix_header);

helix_header.expiryDate = time(NULL) + 3600*4;

helix_header.srcEID = get_endpoint_id ();

helix_header.dstEID = DTN_EID_ALL_NODES;

helix_header.serviceID =

DTN_CONTENT_DIST_3_SERVICE_ID;

helix_header.numNeigh = 1;

helix_header.fileID = fileID;

helix_header.totalPacketsOfFile =

NumberOfPackets;

helix_header.optionsLength = 0;

// Generate payload of ~32KB

uint32_t maxSize = DTN_MAX_BUF_SIZE - sizeof(

HelixHeader);

char * buf = new char[maxSize];

memset(buf ,’z’,maxSize);

helix_header.dataLength = maxSize;

// Create packet

Packet* p = Packet ::make(helix_header , buf);

// Brute -force hash (this is not neeeded)

p->header.hash = i+1;

// Push it to storage (expiry table)

storage ->push(p);

// Initiate content dist structures

switch (get_routing_version ()) {

case 2: {

// Init linkListLNHF

NodeLNHF node_tmp;

2

node_tmp.hash = p->header.hash;

node_tmp.nHops = helix_header.numNeigh;

node_tmp.nTx = 0;

node_tmp.isOnHold = false;

// Add node to LNHF structures

pthread_mutex_lock (& Routing ::

link_list_LNHF_mutex);

routing ->linkListLNHF.push_front(node_tmp);

pthread_mutex_unlock (& Routing ::

link_list_LNHF_mutex);

// Sort LNHF structures

pthread_mutex_lock (& Routing ::

link_list_LNHF_mutex);

routing ->linkListLNHF.sort(listCompRSU);

pthread_mutex_unlock (& Routing ::

link_list_LNHF_mutex);

break;

}

case 3: {

// Evaluate if it is the last element (if yes ,

sort main list)

// This is done to decrease the number of sort

of main list structure

bool sortMainList = false;

if (i+1 == NumberOfPackets)

sortMainList = true;

// Insert empty node into structures

dbg(INFO ,"[MAIN] Inserting empty node into

structures (%u,%u,%u)...\n",p->header.

fileID , p->header.totalPacketsOfFile , p->

header.hash);

int retInsert = Routing :: handlerLRBF.

insertEmptyNode(p->header.fileID , p->header

.totalPacketsOfFile , p->header.hash ,

sortMainList);

// Update MapFiles table (because the node

pushed a new packet)

dbg(INFO ,"[MAIN] Updating MapFiles table (

because the node pushed a new packet)...\n"

);

3

int retInc = Routing :: handlerLRBF.

incnPacketsStored(p->header.fileID);

break;

}

case 4: {

// Not implemented to the boards but the

source code can be found in the

correponding emulator scope

break;

case 5: {

// Do nothing

break;

}

default: {

break;

}

}

delete p;

delete buf;

// Logging

Routing ::log.inc_packets_stored_total ();

Routing ::log.inc_packets_stored_per_timestamp

();

Routing ::log.

inc_packets_recv_good_per_timestamp ();

}

2.2 Setting macros related with the content dissemination
process

There are a set of macros that must be taken into account when the content
distribution process is running in the boards:

• MIN CONT ADV PERIOD and MAX CONT ADV PERIOD - these macros define the
advertisement periodicity in seconds and are located in src/Routing/Routing.h;

• TIME STEP LOG - this macro defines the logging periodicity in nanoseconds
and is located in src/Routing/Logging.h;

• ELEMENT VALID TIME - this macro defines the time in seconds that a certain
element is valid in the listPairs (or listRankNeighs) and is located in
src/Routing/HandlerLRBF.h (and in src/Routing/HandlerLRGF.h);

4

• MIN REFRESH PERIOD and MAX REFRESH PERIOD - these macros define the
refreshment periodicity in seconds and are located in src/Routing/HandlerLRBF.h

and src/Routing/HandlerLRGF.h;

The values specified by the laboratory experiment were the following:

• MIN CONT ADV PERIOD = 4

• MAX CONT ADV PERIOD = 5

• TIME STEP LOG = 10000000

• ELEMENT VALID TIME = 30

• MIN REFRESH PERIOD = 29

• MAX REFRESH PERIOD = 31

2.3 Logging of performance metrics

The support bash script used to lagging information related with the perfor-
mance metrics (load, cpu usage and memory) is provided in appendix. This
script must be executed as follows:

bash ***/performance/metrics/board.sh "PERFORMANCE LOGFILE NAME"

2.4 Running

To run the helix in boards for a content distribution experiment the following
command should be executed:

/usr/sbin/helix -c -f ***/helix.conf

The helix.conf used in the laboratory tests was the following:

{
"EID": "***"

"socket_port": "4556",

"storage_path": "/root/GP/DTN/Storage /",

"storage_cap": "20",

"api_path": "/root/GP/DTN/api/",

"log_path": "/root/GP/DTN/Log",

"log_output": "2",

"log_level": "2",

"rt_version": "3",

"11p_iface": ["wlan1"]

}
Another important parameter is the board type which is defined in the

/root/type file. This information will be used along the source code of He-
lix to identify the type of the node.

5

3 Statistical analysis

It is also provided a MATLAB script which performs a statistical analysis of the
collected log data. Be careful using it since it works based on a specific format
of log folder and file names, nodes number.

6

268

	Contents
	List of Figures
	List of Tables
	List of Equations
	List of Algorithms
	Acronyms
	Introduction
	Context and Motivation
	Objectives and Contributions
	Document Structure

	Fundamental Concepts
	Chapter Description
	Vehicular Ad-hoc NETworks
	Introduction
	Architecture
	Dedicated Short Range Communications
	IEEE Standards
	Special Characteristics
	Challenges
	Data Dissemination

	Delay Tolerant Networks
	Introduction
	Architecture
	Bundle Protocol

	Chapter Considerations

	Related Work
	Chapter Description
	Vehicular Delay Tolerant Networks
	Evolving from DTNs and VANETs to VDTNs
	Applications and Services
	Vehicular Delay Tolerant Network Projects
	Summary

	Content Distribution
	Introduction
	Content Distribution Schemes
	Critical Factors for Dissemination
	Summary

	Simulation
	Mobility Models
	Network Simulators
	Summary

	Delay Tolerant Networks' Implementations
	Widespread Solutions
	Helix
	Summary

	Chapter Considerations

	Content Distribution Schemes
	Chapter Description
	Problem Statement
	Strategies to Stateless Choose Information
	Random
	Least Number of Hops First (LNHF)
	Local Rarest Bundle First (LRBF)
	Local Rarest Generation First (LRGF)

	Strategies to Disseminate Information
	Optimize Delivery
	Minimize Congestion
	Hybrid Technique

	Chapter Considerations

	Integration and Development
	Chapter Description
	MatlabEmulator Development and Integration
	Introduction
	Architecture and Operation Overview
	Collected Log Data
	Working Variables
	Phase 0 - Configuration
	Phase 1 - Collection of Log Data
	Phase 2 - Emulation
	Phase 3 - Statistical Analysis
	Auxiliary Functions and Modules

	HelixEmulator
	Introduction
	Modifications and Improvements
	Architecture and Operation Overview
	Collection of Log Data from MySQL Database
	Bandwidth Limiter Module

	Helix Integration
	Introduction
	Global Modifications
	Routing Module Description
	Content Distribution Schemes Implementation

	NetRider Boards Integration
	Chapter Considerations

	Evaluation
	Chapter Description
	Equipment and Software
	Support Scripting
	Scenarios and Experiment Description
	OPorto Testbed
	Laboratory Testbed

	Evaluated Metrics
	Network Overview Metrics
	Content Distribution Metrics
	Performance Metrics

	Initial Study of the Network
	Active Time of OBUs
	Number of Contacts
	Mobility of OBUs

	MatlabEmulator Evaluation
	Strategies to Stateless Choose Information
	Strategies to Disseminate Information

	HelixEmulator Evaluation
	Strategies to Stateless Choose Information

	Laboratory Evaluation
	Considerations
	Results

	Chapter Considerations

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	How-Tos

