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Abstract

In this paper, by using the method of separation of variables, we obtain eigenfunctions and fundamental

solutions for the three parameter fractional Laplace operator defined via fractional Caputo derivatives. The

solutions are expressed using the Mittag-Leffler function and we show some graphical representations for

some parameters. A family of fundamental solutions of the corresponding fractional Dirac operator is also

obtained. Particular cases are considered in both cases.
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1 Introduction

In the last decades the interest in fractional calculus increased substantially. Among all the subjects there

is a considerable interest in the study of ordinary and partial fractional differential equations regarding the

mathematical aspects and methods of their solutions, and their applications in diverse areas such as physics,

chemistry, engineering, optics or quantum mechanics (see, for example [7–12,14, 16]).

Here we consider a fractional Laplace operator in 3-dimensional space using Caputo derivatives with different

order of differentiation for each direction. Previous approaches for this type of operators where considered

in [15], [3], and [4]. In [15] the author studied eigenfunctions and fundamental solutions for the two-parameter

fractional Laplace operator defined with Riemann-Liouville fractional derivatives. In [3] the authors extended

the results for three dimensions and derived also fundamental solutions for the fractional Dirac operator which

factorizes the fractional Laplace operator. Since there is a duality relation between Caputo and Riemann-

Liouville fractional derivatives presented in the formula of fractional integration by parts, there is need to study

also fractional Laplace and Dirac operators with fractional derivatives defined in the Caputo sense. The aim of

this paper is to use the method of separation of variables to present a formula for the family of eigenfunctions

and fundamental solutions of the three-parameter fractional Laplace operator defined by Caputo fractional

derivatives, as well as a family of fundamental solutions of the associated fractional Dirac operator. For the

∗The final version is published in Modern trends in Hypercomplex Analysis, Modern Trends in Hypercomplex Analysis, Trends

in Mathematics Series, S. Bernstein, U. Khler, I. Sabadini, F.Sommen (Eds.), Birkhäuser, Basel, (2016), 191-202. It as available

via the website http://www.springer.com/us/book/9783319425283
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sake of simplicity we restrict ourselves to the three dimensional case, however the results can be generalized

for an arbitrary dimension. We observe that these operators were considered in [4] where the authors applied

an operational approach via Laplace transform to construct general families of eigenfunctions and fundamental

solutions.

The structure of the paper reads as follows: in the Preliminaries we recall some basic facts about fractional

calculus, special functions and Clifford analysis, which are necessary for the development of this work. In

Subsection 3.1 we use the method of separation of variables to describe a complete family of eigenfunctions and

fundamental solutions of the fractional Laplace operator. In Subsection 3.2 we compute a family of fundamental

solutions for the fractional Dirac operator. Finally, we point out that for the particular case of α = β = γ = 1

the obtained formulas coincide with the correspondents classical formulas.

2 Preliminaries

2.1 Fractional calculus and special functions

Let
(

CDα
a+f

)

(x) denote the Caputo fractional derivative of order α > 0 (see [10])

(

CDα
a+f

)

(x) =
1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α+1−n
dt, n = [α] + 1, x > a, (1)

where [α] means the integer part of α. When 0 < α < 1 then (1) takes the form

(

CDα
a+f

)

(x) =
1

Γ(1− α)

∫ x

a

f ′(t)

(x− t)α
dt. (2)

The Riemann-Liouville fractional integral of order α > 0 is given by (see [10])

(Iαa+f) (x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt, x > a. (3)

We denote by Iα
a+(L1) the class of functions f represented by the fractional integral (3) of a summable function,

that is f = Iα
a+ϕ, ϕ ∈ L1(a, b). A description of this class of functions was given in [13].

Theorem 2.1 A function f ∈ Iα
a+(L1), α > 0 if and only if In−α

a+ f ∈ ACn([a, b]), n = [α]+1 and (In−α
a+ f)(k)(a) =

0, k = 0, . . . , n− 1.

In Theorem 2.1 ACn([a, b]) denotes the class of functions f , which are continuously differentiable on the segment

[a, b] up to order n − 1 and f (n−1) is absolutely continuous on [a, b]. Removing the last condition in Theorem

2.1 we obtain the class of functions that admits a summable fractional derivative.

Definition 2.2 ( [13]) A function f ∈ L1(a, b) has a summable fractional derivative
(

Dα
a+f

)

(x) if
(

In−α
a+ f

)

(x) ∈
ACn([a, b]), where n = [α] + 1.

If a function f admits a summable fractional derivative, then the composition of (1) and (3) can be written in

the form (see e.g. [12])

(

Iαa+
CDα

a+f
)

(x) = f(x)−
n−1
∑

k=0

f (k)(a)

k!
(x− a)k, n = [α] + 1. (4)

If f ∈ Iα
a+(L1) then (4) reduces to

(

Iα
a+

CDα
a+f

)

(x) = f(x). Nevertheless we note that
(

CDα
a+ Iα

a+f
)

(x) = f(x)

in both cases. We observe that, in general, the semigroup property for the composition of Caputo fractional

does not hold. We present three sufficient conditions under which the law of exponents hold. They can be

applied in different situations accordingly with the conditions assumed to the function f .

Theorem 2.3 ( [2, p.56]) Let f ∈ Ck[a, b], a > 0 and k ∈ N. Moreover, let α, β > 0 be such that there exists

l ∈ N with l ≤ k and α, α+ β ∈ [l − 1, l]. Then

CDα
a+

CD
β

a+f(x) =
CD

α+β

a+ f(x). (5)
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This theorem highlights a constraint on the applicability of the semigroup both with respect to the request

of smoothness of the function and with respect to the ranges of the real orders of differentiation α and β.

This means, for example, that, if α ∈ (0, 1], then the law of exponents is applicable if β ∈ [0, 1 − α) and

f ∈ Ck, with k = 1. Here we notice that in most cases the law of exponents is not applicable for fractional

Caputo derivatives, but anyhow there are different techniques to handle sequential fractional derivatives (see

for example [12]). Since for f ∈ C [α]+1([a, b]) the Caputo derivative is a special case of the Grünwald-Letnikov

fractional derivative (see [12, § 2.2.3]) then we have the following theorem:

Theorem 2.4 ( [12, § 2.2.6]) Let α, β > 0 and f ∈ Cn([a, b]), a > 0, n = [α] + 1. Then

CDα
a+

CD
β

a+f(x) =
CD

α+β

a+ f(x) (6)

holds for arbitrary β if the function f satisfies the conditions

f (k)(a) = 0, for k = 0, 1, . . . , n− 2. (7)

For functions f(x) that have a locally integrable singularity at x = a we have the following result.

Theorem 2.5 ( [5]) Suppose that f(x) = (x−a)λg(x), where a, λ > 0 and g(x) has the generalized power series

expansion g(x) =
∞
∑

n=0

an(x− a)nγ with radius of convergence R > 0, 0 < γ ≤ 1. Then

CDα
a+

CD
β

a+f(x) =
CD

α+β

a+ f(x) (8)

for all (x− a) ∈ (0, R), the coefficients an = 0 for n given by nγ + λ− β = 0 and either

(a) λ > µ, µ = max (β + [α], [β + α])

or

(b) λ ≤ µ, ak = 0, for k = 0, 1, . . . ,
[

µ−λ
γ

]

, here [x] denotes the greatest integer less than or equal to x.

One important function used in this paper is the two-parameter Mittag-Leffler function Eµ,ν(z) [6], which

is defined in terms of the power series by

Eµ,ν(z) =

∞
∑

n=0

zn

Γ(µn+ ν)
, µ > 0, ν ∈ R, z ∈ C. (9)

In particular, the function Eµ,ν(z) is entire of order ρ = 1
µ
and type σ = 1. The exponential, trigonometric and

hyperbolic functions are expressed through (9) as follows (see [6]):

E1,1 (z) = ez, E2,1

(

−z2
)

= cos(z), E2,1(z
2) = cosh(z),

zE2,2

(

−z2
)

= sin(z), zE2,2

(

z2
)

= sinh(z).

Two important fractional integral and differential formulae involving the two-parametric Mittag-Leffler function

are the following

Iαa+

(

(x− a)ν−1Eµ,ν (k(x− a)µ)
)

= (x− a)α+ν−1Eµ,ν+α (k(x− a)µ) (10)

CDα
a+

(

(x− a)ν−1Eµ,ν (k(x− a)µ)
)

= (x − a)ν−α−1Eµ,ν−α (k(x− a)µ) (11)

for all α > 0, µ > 0, ν ∈ R, k ∈ C, a > 0, x > a.

Our approach leads to the resolution of a linear Abel integral equation of the second kind, which solution is

given using the Mittag-Leffler function, accordingly with the next Theorem.

Theorem 2.6 ( [6, Thm. 4.2]) Let f ∈ L1[a, b], α > 0 and λ ∈ C. Then the integral equation

u(x) = f(x) +
λ

Γ(α)

∫ x

a

(x− t)α−1u(t) dt, x ∈ [a, b]

has a unique solution

u(x) = f(x) + λ

∫ x

a

(x− t)α−1Eα,α(λ(x − t)α)f(t) dt. (12)
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2.2 Clifford analysis

Let {e1, · · · , ed} be the standard basis of the Euclidean vector space in Rd. The associated Clifford algebra

R0,d is the free algebra generated by Rd modulo x2 = −||x||2 e0, where x ∈ Rd and e0 is the neutral element

with respect to the multiplication operation in the Clifford algebra R0,d. The defining relation induces the

multiplication rules

eiej + ejei = −2δij , (13)

where δij denotes the Kronecker’s delta. In particular, e2i = −1 for all i = 1, . . . , d. The standard basis vectors

thus operate as imaginary units. A vector space basis for R0,d is given by the set {eA : A ⊆ {1, . . . , d}} with

eA = el1el2 . . . elr , where 1 ≤ l1 < . . . < lr ≤ d, 0 ≤ r ≤ d, e∅ := e0 := 1. Each a ∈ R0,d can be written in the

form a =
∑

A aA eA, with aA ∈ R. The conjugation in the Clifford algebra R0,d is defined by a =
∑

A aA eA,

where eA = elr elr−1
. . . el1 , and ej = −ej for j = 1, . . . , d, e0 = e0 = 1. An important subspace of the real

Clifford algebra R0,d is the so-called space of paravectors Rd
1 = R

⊕

Rd, being the sum of scalars and vectors.

Each non-zero vector a ∈ Rd
1 has a multiplicative inverse given by a

||a||2 .

A R0,d−valued function f over Ω ⊆ Rd
1 has the representation f =

∑

A eAfA, with components fA : Ω →
R0,d. Properties such as continuity or differentiability have to be understood componentwise. Next, we recall

the Euclidean Dirac operator D =
∑d

j=1 ej∂xj
, which factorizes the d-dimensional Euclidean Laplace, i.e.,

D2 = −∆. A R0,d-valued function f is called left-monogenic if it satisfies Du = 0 on Ω (resp. right-monogenic

if it satisfies uD = 0 on Ω).

For more details about Clifford algebras and basic concepts of its associated function theory we refer the

interested reader for example to [1].

3 Method of separation of variables

3.1 Eigenfunctions and fundamental solution of the fractional Laplace operator

We consider the eigenfunction problem for the fractional Laplace operator C∆α
+ u(x) = λu(x), i.e.,

(

CD1+α

x
+

0

u
)

(x, y, z) +
(

CD
1+β

y
+

0

u
)

(x, y, z) +
(

CD
1+γ

z
+

0

u
)

(x, y, z) = λ u(x, y, z), (14)

where λ ∈ C, (α, β, γ) ∈]0, 1]3, (x, y, z) ∈ Ω = [x0, X0] × [y0, Y0] × [z0, Z0], x0, y0, z0 > 0, X0, Y0, Z0 < ∞, and

u(x, y, z) admits summable fractional derivatives CD1+α

x
+

0

, CD
1+β

y
+

0

and CD
1+γ

z
+

0

. Taking the integral operator I1+α

x
+

0

from both sides of (14) and taking into account (4) we get

u(x, y, z)− u(x0, y, z)− (x− x0)u
′
x(x0, y, z) +

(

I1+α

x
+

0

CD
1+β

y
+

0

u
)

(x, y, z) +
(

I1+α

x
+

0

CD
1+γ

z
+

0

u
)

(x, y, z)

= λ
(

I1+α

x
+

0

u
)

(x, y, z). (15)

Now, applying the operator I1+β

y
+

0

to both sides of the previous expression and using Fubini’s Theorem we get

(

I
1+β

y
+

0

u
)

(x, y, z)−
(

I
1+β

y
+

0

f0

)

(y, z)− (x− x0)
(

I
1+β

y
+

0

f1

)

(y, z) +
(

I1+α

x
+

0

u
)

(x, y, z)

−
(

I1+α

x
+

0

u
)

(x, y0, z)− (y − y0)
(

I1+α

x
+

0

u′
y

)

(x, y0, z) +
(

I1+α

x
+

0

I
1+β

y
+

0

CD
1+γ

z
+

0

u
)

(x, y, z)

= λ
(

I1+α

x
+

0

I
1+β

y
+

0

u
)

(x, y, z), (16)

where we denote the Cauchy’s fractional integral conditions by

f0(y, z) = u(x0, y, z), f1(y, z) = u′
x(x0, y, z). (17)

Finally, applying the operator I1+γ

z
+

0

to both sides of equation (16) and using Fubini’s Theorem we get

(

I
1+β

y
+

0

I
1+γ

z
+

0

u
)

(x, y, z)−
(

I
1+β

y
+

0

I
1+γ

z
+

0

f0

)

(y, z)− (x− x0)
(

I
1+β

y
+

0

I
1+γ

z
+

0

f1

)

(y, z)

+
(

I1+α

x
+

0

I
1+γ

z
+

0

u
)

(x, y, z)−
(

I1+α

x
+

0

I
1+γ

z
+

0

h0

)

(x, z)− (y − y0)
(

I1+α

x
+

0

I
1+γ

z
+

0

h1

)

(x, z)

+
(

I1+α

x
+

0

I
1+β

y
+

0

u
)

(x, y, z)−
(

I1+α

x
+

0

I
1+β

y
+

0

u
)

(x, y, z0)− (z − z0)
(

I1+α

x
+

0

I
1+β

y
+

0

u′
z

)

(x, y, z0)

= λ
(

I1+α

x
+

0

I
1+β

y
+

0

I
1+γ

z
+

0

u
)

(x, y, z),
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which is equivalent to
(

I
1+β

y
+

0

I
1+γ

z
+

0

u
)

(x, y, z) +
(

I1+α

x
+

0

I
1+γ

z
+

0

u
)

(x, y, z) +
(

I1+α

x
+

0

I
1+β

y
+

0

u
)

(x, y, z)− λ
(

I1+α

x
+

0

I
1+β

y
+

0

I
1+γ

z
+

0

u
)

(x, y, z)

=
(

I
1+β

y
+

0

I
1+γ

z
+

0

f0

)

(y, z) + (x− x0)
(

I
1+β

y
+

0

I
1+γ

z
+

0

f1

)

(y, z)

+
(

I1+α

x
+

0

I
1+γ

z
+

0

h0

)

(x, z) + (y − y0)
(

I1+α

x
+

0

I
1+γ

z
+

0

h1

)

(x, z)

+
(

I1+α

x
+

0

I
1+β

y
+

0

g0

)

(x, y) + (z − z0)
(

I1+α

x
+

0

I
1+β

y
+

0

g1

)

(x, y), (18)

where we denote the Cauchy’s fractional integral conditions by

h0(x, z) = u(x, y0, z), h1(x, z) = u′
y(x, y0, z), (19)

g0(x, y) = u(x, y, z0), g1(x, y) = u′
z(x, y, z0). (20)

Assume that the eigenfunctions are such that u(x, y, z) = u1(x)u2(y)u3(z). Substituting in (18) and taking

into account the initial conditions (17), (19), and (20) we obtain

u1(x)
(

I
1+β

y
+

0

u2(y) I
1+γ

z
+

0

u3(z)
)

+ u2(y)
(

I1+α

x
+

0

u1(x) I
1+γ

z
+

0

u3(z)
)

+ u3(z)
(

I1+α

x
+

0

u1(x) I
1+β

y
+

0

u2(y)
)

− λ
(

I1+α

x
+

0

u1

)

(x)
(

I
1+β

y
+

0

u2

)

(y)
(

I
1+γ

z
+

0

u3

)

(z)

= a1

(

I
1+β

y
+

0

u2(y) I
1+γ

z
+

0

u3(z)
)

+ a2(x− x0)
(

I
1+β

y
+

0

u2(y) I
1+γ

z
+

0

u3(z)
)

+ b1

(

I1+α

x
+

0

u1(x) I
1+γ

z
+

0

u3(z)
)

+ b2(y − y0)
(

I1+α

x
+

0

u1(x) I
1+γ

z
+

0

u3(z)
)

+ c1

(

I1+α

x+

0

u1(x) I
1+β

y+

0

u2(y)
)

+ c2(z − z0)
(

I1+α

x+

0

u1(x) I
1+β

y+

0

u2(y)
)

, (21)

where

a1 = u1(x0), a2 = u′
1,x(x0), b1 = u2(y0), b2 = u′

2,y(y0), c1 = u3(z0), c2 = u′
3,z(z0),

are constants defined by the initial conditions (17), (19), and (20). Supposing that

(

I1+α

x
+

0

u1

)

(x)
(

I
1+β

y
+

0

u2

)

(y)
(

I
1+γ

z
+

0

u3

)

(z) 6= 0,

for (x, y, z) ∈ Ω, we can divide (21) by this factor. Separating the variables we get the following three Abel’s

type second kind integral equations:

u1(x)− µ
(

I1+α

x
+

0

u1

)

(x) = a1 + a2(x− x0), (22)

u2(y) + ν
(

I
1+β

y
+

0

u2

)

(y) = b1 + b2(y − y0), (23)

u3(z) + (µ− λ− ν)
(

I
1+γ

z
+

0

u3

)

(z) = c1 + c2(z − z0), (24)

where λ, µ, ν ∈ C are constants. We observe that the equality
(

I1+α

x
+

0

u1

)

(x)
(

I
1+β

y
+

0

u2

)

(y)
(

I
1+γ

z
+

0

u3

)

(z) = 0,

for at least one point (x∗, y∗, z∗) agrees with (21), (22), (23), and (24). Solving the latter equations using

(12) in Theorem 2.6 and after straightforward computations we obtain the following family of eigenfunctions

uλ,µ,ν(x, y, z) = u1(x) u2(y) u3(z), with

u1(x) = a1 E1+α,1

(

µ(x − x0)
1+α

)

+ a2(x− x0) E1+α,2

(

µ(x− x0)
1+α

)

, (25)

u2(y) = b1 E1+β,1

(

−ν(y − y0)
1+β

)

+ b2(y − y0) E1+β,2

(

−ν(y − y0)
1+β

)

, (26)

u3(z) = c1 E1+γ,1

(

(µ− λ− ν)(z − z0)
1+γ

)

+ c2(z − z0) E1+γ,2

(

(µ− λ− ν)(z − z0)
1+γ

)

. (27)

For the particular case of λ = 0 (fundamental solution), µ = 2, ν = 1, x0 = y0 = z0 = 0, X0 = Z0 = 5, Y0 = 15,

and ai = bi = ci = 1, with i = 1, 2, we show the graphical representation of the components u1, u2, u3 for α, β,

γ equal to 1
4 ,

1
2 ,

3
4 , 1. The plots were obtained using the software Mathematica 9 since this software is able to

evaluate and to graphically represent functions involving the Mittag-Leffler functions.
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Figure 1: Plots of the components u1, u2 and u3, when λ = 0, µ = 2, ν = 1, x0 = y0 = z0 = 0, X0 = Z0 = 5,

Y0 = 15, and ai = bi = ci = 1, and different values of α, β, and γ.

From the plots we observe that the components u1 and u3 are of exponential type and the increasing of the

curve coincides with the decreasing of the parameters. For the component u2 the sinusoidal behavior observed

in the classical case β = 1 suffers a relaxation with the decreasing of the parameter β.

Remark 3.1 In the special case of α = β = γ = 1 the functions u1, u2 and u3 take the form

u1(x) = a1 cosh (
√
µ (x− x0)) +

a2√
µ

sinh (
√
µ (x− x0)) , (28)

u2(y) = b1 cos
(√

ν (y − y0)
)

+
b2√
ν

sin
(√

ν (y − y0)
)

, (29)

u3(z) = c1 cosh
(

√

µ− λ− ν (z − z0)
)

+
c2√

µ− λ− ν
sinh

(

√

µ− λ− ν (z − z0)
)

, (30)

which are the components of the eigenfunctions of the Laplace operator in R3 obtained by the method of separation

of variables.

3.2 Fundamental solution of the fractional Dirac operator

In this section we compute the fundamental solution for the three dimensional fractional left Dirac operator

defined via Caputo derivatives

CD
(α,β,γ)
+ := e1

CD
1+γ
2

x+

0

+ e2
CD

1+β
2

y+

0

+ e3
CD

1+γ
2

z+

0

, (α, β, γ) ∈ ]0, 1]3. (31)

This operator factorizes the fractional Laplace operator C∆
(α,β,γ)
+ for Clifford valued functions f given by

f(x, y, z) =
∑

A eAfA(x, y, z), where eA ∈ {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}, and each real valued function

fA satisfies one of the sufficient conditions presented in Theorems 2.3, 2.4 or 2.5. In fact, for such functions we

can apply the semigroup property (5) to obtain

CD
1+γ
2

x
+

0

(

CD
1+γ
2

x
+

0

fA

)

= CD1+α

x
+

0

fA,
CD

1+β
2

y
+

0

(

CD
1+β
2

y
+

0

fA

)

= CD
1+β

y
+

0

fA,
CD

1+γ
2

z
+

0

(

CD
1+γ
2

z
+

0

fA

)

= CD
1+γ

z
+

0

fA. (32)
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Moreover, for the mixed fractional derivatives CD
1+γ
2

x
+

0

(

CD
1+β
2

y
+

0

fA

)

, due to the Leibniz’s rule for the differentia-

tion under integral sign, Fubini’s Theorem and Schwarz’s Theorem, we have

CD
1+γ
2

x
+

0

(

CD
1+β
2

y
+

0

fA

)

= CD
1+β
2

y
+

0

(

CD
1+γ
2

x
+

0

fA

)

, (33)

CD
1+γ
2

x
+

0

(

CD
1+γ
2

z
+

0

fA

)

= CD
1+γ
2

z
+

0

(

CD
1+γ
2

x
+

0

fA

)

, (34)

CD
1+β
2

y+

0

(

CD
1+γ
2

z+

0

fA

)

= CD
1+γ
2

z+

0

(

CD
1+β
2

y+

0

fA

)

. (35)

From (32), (33), (34), (35) and the multiplication rules (13) of the Clifford algebra, we finally get

CD
(α,β,γ)
+

(

CD
(α,β,γ)
+ f

)

= − C∆
(α,β,γ)
+ f, (36)

i.e., the fractional Dirac operator factorizes the fractional Laplace operator.

In order to get the fundamental solution of CD
(α,β,γ)
+ we apply this operator to the fundamental solution

u(x, y, z) = u1(x)u2(y)u3(z), where ui are given by (25), (26) and (27), respectively . To make the calculations

we make use of the derivation rule (11) and the fractional analogous formula for differentiation of integrals

depending on a parameter where the upper limit also depends on the same parameter (see [12, Section 2.7.4]).

Hence,

U(x, y, z) =
(

CD
(α,β,γ)
+ u

)

(x, y, z)

= e1 u2(y) u3(z)
(

CD
1+γ
2

x
+

0

u1

)

(x) + e2 u1(x) u3(z)

(

CD
1+β
2

y
+

0

u2

)

(y) + e3 u1(x) u2(y)
(

CD
1+γ
2

z
+

0

u3

)

(z),

(37)

where u1, u2, u3 are given respectively by (25), (26), (27) and

(

CD
1+γ
2

x
+

0

u1

)

(x) = a1 (x− x0)
− 1+α

2 E1+α, 1−α
2

(

µ(x− x0)
1+α

)

+ a2 (x− x0)
1−α
2 E1+α, 3−α

2

(

µ(x− x0)
1+α

)

,

(38)
(

CD
1+β
2

y
+

0

u2

)

(y) = b1 (y − y0)
− 1−β

2 E1+β,
1−β
2

(

−ν(y − y0)
1+β

)

+ b2 (y − y0)
1−β
2 E1+β,

3−β
2

(

−ν(y − y0)
1+β

)

,

(39)
(

CD
1+γ
2

z
+

0

u3

)

(z) = c1 (z − z0)
1−γ
2 E1+γ, 1−γ

2

(

(−µ+ λ+ ν)(z − z0)
1+γ

)

+c2 (z − z0)
1−γ
2 E1+γ,

3−γ
2

(

(−µ+ λ+ ν)(z − z0)
1+γ

)

. (40)

Remark 3.2 In the special case of α = β = γ = 1, u1, u2 and u3 take the form (28), (29) and (30), respectively,

and expressions (38), (39), and (40) take the form

(Dxu1) (x) = a1
√
µ sinh (

√
µ (x− x0)) + a2 sinh (

√
µ (x− x0)) ,

(Dyu2) (y) = b1
√
ν sin

(√
ν (y − y0)

)

+ b2 cos
(√

ν (y − y0)
)

,

(Dzu3) (z) = c1
√

−µ+ λ+ ν sinh
(

√

µ− λ− ν (z − z0)
)

+ c2 sinh
(

√

µ− λ− ν (z − z0)
)

,

which are the components of the fundamental solution of the Dirac operator in R
3 obtained by the method of

separation of variables.
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