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Discrete-Time Positive Periodic Systems with State and Control
Constraints

Mustapha Ait Rami and Diego Napp

Resumo—The aim of this paper is to provide an efficient
control design technique for discrete-time positive periodic sys-
tems. In particular, stability, positivity and periodic invariance
of such systems are studied. Moreover, the concept of periodic
invariance with respect to a collection of boxes is introduced and
investigated with connection to stability. It is shown how such
concept can be used for deriving a stabilizing state-feedback
control that maintains the positivity of the closed-loop system
and respects states and control signals constraints. In addition,
all the proposed results can be efficiently solved in terms of linear
programming.

I. INTRODUCTION

The purpose of this paper is to study a special class
of switched systems, namely discrete-time positive periodic
systems that are subject to periodic switching. Historical roots
of periodic systems can be traced back to the early works
of Floquet [29] and Lyapunov [32] respectively in 1883 and
1896. There has been an increasing interest in such systems
for which many flourishing results have been reported during
the last three decades. The well established analysis and
synthesis framework for LTI systems has been extended to this
particular class of switched systems. Monographs [9] and [14]
provide a wide scope on existing results. We mention, among
others, a fundamental stability result in [15] using a periodic
Lyapunov equation. Later, a periodic Riccati equation has been
introduced and studied in [6], [7]. Stabilization techniques
based on periodic Lyapunov and Riccati equations have been
considered in [25], [40], [41]. Robustness and dissipativity
issues have also been addressed, see for instance, [26], [34]
and [39]. Important works about techniques that transform a
discrete-time periodic system into a time-invariant one can be
found in [9], [28], [31], [37], [38]. Surprisingly, few results
exist that extend the framework of LTI positive systems to
positive periodic systems. By definition, a positive periodic
system keeps invariant the positive orthant, that is, its trajec-
tory evolves in the positive orthant whenever it starts from
it. For general references on positive systems one can consult
[27], [30], [33]. Reachability, controllability, realizability and
other fundamental properties of the peculiar class of positive
periodic systems have been investigated in [17]–[22], [36].
However, the derived results for such systems are still modest
in comparison to general periodic systems for which there
exists an extensive literature. Positivity conditions for such
systems under a periodic feedback have been studied in [24].
Agriculture applications of positive periodic systems can be
found in [19], [22]. In [23] an extension to the class of
descriptor positive periodic systems has been considered.
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On the one hand, this paper shows the intrinsic interplay
between positivity, stability and periodic invariance of a dis-
crete positive periodic system. On the other hand, the stabiliza-
tion issue for such systems with states and control constraints
is addressed. This paper completes previous stability and
stabilization results in [11] since our conditions are neces-
sary and sufficient. In addition, we study periodic-invariance
concept for discrete positive periodic systems and establish a
connection between their stability and periodic invariance with
respect to a collection of boxes. Specifically, we show that a
positive T -periodic system is asymptotically stable if and only
if it has a periodically invariant and contractive collection of
T boxes. Based on this relationship we show how one can
tackle the synthesis problem with respect to states and control
component-wise constraints. Moreover, it is shown how to
compute a larger inner estimate box of the region of attraction
by using an adequate LP formulation. Indeed, LMI approach
that has been used in [12], cannot handle state and control
component-wise constraints. The proposed LP approach seems
to be suitable in other contexts of control and estimation of
LTI positive systems [1]–[5], [16], [35].

The reminder of the paper is organized as follows. The
second section shows the interconnection between stability
and periodic-invariance. In Section 3, an efficient numerical
treatment is provided for stabilization. Section 4 considers
the synthesis problem with constrained states and controls.
In Section 5, it is shown how one can enlarge the domain of
attraction based on LP optimization. Finally, Section 6 gives
some concluding remarks.

Notation. Z+ is the set of nonnegative integer numbers.
Rn

+ denotes the nonnegative orthant of the n-dimensional
real space Rn. 11n denotes the vector with all unitary entries
[1 1 · · · 1]T ∈ Rn. For a real matrix (or a vector) M , M > 0
means that its components are positive and M ≥ 0 means that
its components are nonnegative. Let M1, . . . ,Mp be square
matrices, then diag(M1, . . . ,Mp) is the block diagonal matrix
whose ith block is Mi. Also, for a vector v, diag(v) denotes

the diagonal matrix whose ith diagonal entry is v(i).
l∏

i=k

Mi

denotes the matrix product Ml · · ·Mk in the decreasing sense
for integers l and k such that l > k. I stands for the identity
matrix of appropriate dimension.

II. STABILITY AND PERIODIC INVARIANCE

The purpose of this section is to show the interplay between
stability and periodic invariance for the following discrete-time
T-periodic system

x(t+ 1) = A(t)x(t), (1)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/78556133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

where A(t) ∈ Rn×n, t ∈ Z+. The matrix A(t) is supposed
to be periodic, that is for all t ∈ Z+, A(t + T ) = A(t) with
T ∈ Z+ its period.

It is well-known that system (1) is asymptotically stable,
i.e., x(t) goes to zero when t goes to infinity if and only if
its monodromy matrix A(T −1) · · ·A(1)A(0) is Schur, i.e. its
eigenvalues have modulus less than one. The following result
provides other equivalent conditions for stability of system (1),
see for instance [8], [9], [14].

Lemma 2.1: For a discrete-time T-periodic system the fol-
lowing statements are equivalent.
(i) System (1) is asymptotically stable.

(ii) A(T − 1) · · ·A(1)A(0) is Schur.
(iii)

AT :=

(
0 A(0)

diag(A(1), . . . , A(T − 1)) 0

)
(2)

is Schur.
iv) There exists a cyclic permutation σ of {0, . . . , T − 1}

such that

A(σ(T − 1))A(σ(T − 2)) . . . A(σ(0)) is Schur.

v) All cyclic permutations of {A(0), A(1), · · · , A(T − 1)}
are Schur, that is

ρ(A(i)A(i+ 1) · · ·A(i+ T − 1)) < 1, 0 ≤ i ≤ T − 1.

The matrix AT defined previously in Lemma 2.1 charac-
terizes a shift-invariant representation for a periodic linear
discrete-time system. Other lifting techniques have been con-
sidered extensively in the literature, see for instance [9], [28],
[31], [38].

In what follows we define the positivity notion.
Definition 2.2: System (1) is said to be positive if for any

nonnegative initial condition x(t0) at any initial time t0 ≥ 0
the corresponding trajectory remains in the positive orthant.

Remark 2.3: Indeed, if system (1) is positive for any non-
negative initial condition x(t0) at any initial time t0 ≥ 0, then
the modes of system (1) are necessarily nonnegative: A(i) ≥ 0
for all i. This is also a trivial sufficient condition for positivity.

Throughout this paper we make extensive use of the fol-
lowing stability result for discrete positive systems, see for
instance [27].

Lemma 2.4: The system z(t+ 1) = Mz(t) with M ≥ 0 is
asymptotically stable if and only if there exists a vector λ > 0
such that Mλ < λ.

Remark 2.5: From the previous Lemma we can deduce that
if the monodromy matrix is positive then T-periodic system (1)
is asymptotically stable if and only if there exists λ > 0 such
that A(T − 1) · · ·A(1)A(0)λ < λ. Note that the following
stability condition reported in [11] is only sufficient:

There exist vectors λ0 > 0, . . . , λT−1 > 0 such that

λ0−A(T−1)λT−1 > 0, and A(i)λi = λi+1, i = 0, . . . , T−2.
(3)

This fact can be shown by the following counterexample

with the following modes A(0) =

(
0.5 1
0 0

)
and A(1) =(

1 1
0 1

)
. The associated periodic system is stable since its

monodromy matrix A(1)A(0) =

(
0.5 1
0 0

)
has 0 and 0.5 as

eigenvalues. However, the equality A(0)λ0 = λ1 in condition
(3) can never be satisfied for any λ1 > 0, since the second
component of A(0)λ0 is always zero. Indeed, the true neces-
sary and sufficient condition involves λ1 ≥ 0, . . . , λT−1 ≥ 0
with possibly zeros components and reads:

There exist λ0 > 0 and λ1 ≥ 0, . . . , λT−1 ≥ 0 such that

λ0−A(T−1)λT−1 > 0 and A(i)λi = λi+1, i = 0, . . . , T−2.
(4)

As a matter of fact the above condition is equivalent to the
existence of λ > 0 such that A(T − 1) · · ·A(1)A(0)λ < λ.
This can be easily seen by defining λ0 = λ and λi =
i−1∏
j=0

A(j)λ for i = 1, . . . , T − 1. Hence, the stability condition

given by (4) is necessary and sufficient. Unfortunately, due to
technical reasons condition (4) cannot be used for the synthesis
problem because it involves λi that are not all strictly positive.
Later, we shall provide necessary and sufficient conditions for
stability synthesis that are easily checkable.

Next, we define the periodic invariance concept with res-
pect to a collection of T sets. We shall introduce a slightly
different definition of the concept of periodically invariant set
introduced in [10]. Further, we shall show that our extended
concept of invariance is naturally and inherently connected to
the stability of system (1).

Definition 2.6: A collection of T sets S0,S1, . . . ,ST−1 is
called periodically invariant for system (1) if x(0) ∈ S0 im-
plies that for all N ∈ Z+, x(i+NT ) ∈ Si for i = 0, . . . , T−1.

For a set S, define by Ṡ its interior and by S̄ its closure.
Then a collection of T sets S0,S1, . . . ,ST−1 is called periodi-
cally invariant and contractive for system (1) if x(0) ∈ S̄0 im-
plies that for all N ∈ Z+, x(i+NT ) ∈ Ṡi for i = 0, . . . , T−1.

For a given vector v > 0, define an open box as B(v) :=
{x ∈ Rn

+ | x < v} and note that its closure is given by
B̄(v) := {x ∈ Rn

+ | x ≤ v}. With connection to such
box, the following result provides necessary and sufficient
conditions for a collection of boxes to be periodically invariant
and contractive for system (1).

Theorem 2.7: Let x̄0 > 0, x̄1 > 0, . . . , x̄T−1 > 0 be given.
Assume that system (1) is positive. Then, for any arbitrary
initial condition of system (1) such that x(0) ∈ B̄(x̄0), we have
that its resulting trajectory satisfies x(NT ) ∈ B(x̄0), x(1 +
NT ) ∈ B(x̄1), . . . , x(T − 1 + NT ) ∈ B(x̄T−1), ∀N ∈ Z+.
if and only if the following conditions hold

A(0)x̄0 < x̄1
A(1)A(0)x̄0 < x̄2

...
A(T − 1) · · ·A(1)A(0)x̄0 < x̄0

(5)

Proof: Necessity: Take x(0) = x̄0. Since x(1) ∈ B(x̄1)
then x(1) < x̄1 and therefore we have x(1) = A(0)x(0) =
A(0)x̄0 < x̄1. Further, by positivity assumption on the system
the inequality x(2) < x̄2 implies that x(2) = A(1)A(0)x(0) =
A(1)A(0)x̄0 < x̄2. Same reasoning proves that the rest of the
inequalities given by conditions (5) holds true.
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Sufficiency: Let x(0) be any initial condition such that 0 ≤
x(0) ≤ x̄0. By using the inequalities in (5) and the fact the
modes of system (1) are positive, we have that the trajectory
corresponding to x(0) satisfies for r = 0, . . . , T − 1

x(r +NT ) = (

r∏
j=0

A(j))(

T−1∏
j=0

A(j))Nx(0)

≤ (

r∏
j=0

A(j))(

T−1∏
j=0

A(j))N x̄0

≤
r∏

j=0

A(j)x̄0 < x̄r,

i.e., x(r +NT ) ∈ B(x̄r).
More important is the following result which characterizes

asymptotic stability in terms of periodic invariance and con-
tractivity.

Theorem 2.8: A positive periodic system is asymptotically
stable if and only if it has a periodically invariant and
contractive collection of boxes associated to x̄0 > 0, x̄1 >
0, . . . , x̄T−1 > 0, that is, if x(0) ∈ B̄(x̄0), the resulting trajec-
tory satisfies x(NT ) ∈ B(x̄0), x(1+NT ) ∈ B(x̄1), . . . , x(T−
1 +NT ) ∈ B(x̄T−1), ∀N ∈ Z+

Proof: Assume that a positive periodic system has a
periodically invariant and contractive collection of boxes
B(x̄0), . . . ,B(x̄T−1). Since x(T ) ∈ B(x̄0) we have that
A(T−1) · · ·A(1)A(0)x̄0 < x̄0. Also, by positivity assumption
we have A(T − 1) · · ·A(1)A(0) ≥ 0 which together with
A(T − 1) · · ·A(1)A(0)x̄0 < x̄0 guarantee stability by means
of Lemma 2.1 and Lemma 2.4.

Conversely, consider any positive x̄0 such that A(T −
1) · · ·A(1)A(0)x̄0 < x̄0 which is guaranteed by positivity and
stability of a T-periodic system. Note that it is possible to select
x̄1 > 0, . . . , x̄T−1 > 0 such that A(0)x̄0 < x̄1, A(1)A(0)x̄0 <
x̄2, . . . , A(T − 2) · · ·A(0)x̄0 < x̄T−1. Thus, from the invari-
ance and contractivity result given by Theorem 2.7, we can
deduce that if x(0) ∈ B̄(x̄0), the resulting trajectory satisfies
x(NT ) ∈ B(x̄0), x(1 +NT ) ∈ B(x̄1), . . . , x(T − 1 +NT ) ∈
B(x̄T−1), ∀N ∈ Z+.

III. STABILIZATION

In this section, we address stability synthesis with positivity
constraint for the following periodic system given by

ẋ(t) = A(t)x(t) +B(t)u(t) (6)

with A(t) ∈ Rn×n, B(t) ∈ Rn×p, such that A(t+ T ) = A(t)
and B(t+ T ) = B(t) for all t ∈ Z+.

Here, the main problem under investigation is to find a
periodic state-feedback u(t) = K(t)x(t) such that the resul-
ting closed-loop system x(t+ 1) = [A(t) +B(t)K(t)]x(t) is
positive and asymptotically stable.

In the rest of the paper, the two conditions given by the
following linear inequalities will play a fundamental role in
our development:
There exist Y0, . . . , YT−1 ∈ Rp×n and λ0, . . . , λT−1 ∈ Rn

satisfying

A(i)diag(λi) +B(i)Yi ≥ 0 for i = 0, 1, . . . , T − 1, (7)



λ0 > 0, λ1 > 0, . . . , λT−2 > 0, λT−1 > 0
A(0)λ0 +B(0)Y011n < λ1
A(1)λ1 +B(1)Y111n < λ2

...
A(T − 2)λT−2 +B(T − 2)YT−211n < λT−1

A(T − 1)λT−1 +B(T − 1)YT−111n < λ0.

(8)

The following result shows how one can look for a periodic
gain K(t) such that the closed-loop system is positive and
asymptotially stable.

Theorem 3.1: There exists a stabilizing state-feedback law
u(t) = K(t)x(t) for system (6) with a periodic gain K(t +
T ) = K(t) that maintains the positivity of the closed-loop
system if and only if there exist Y0, . . . , YT−1 ∈ Rp×n and
λ0, . . . , λT−1 ∈ Rn such that the linear inequalities (7) and
(8) are feasible. Moreover, the resulting closed-loop system
is positive and asymptotically stable under the control law
u(t) = K(t)x(t) such that

K(t+NT ) = Ytdiag(λt)
−1, t ∈ {0, . . . , T − 1}, N ∈ Z+.

Proof: Let us show the sufficiency of the proposed con-
dition. Define K(i) = Yidiag(λi)

−1 for i ∈ {0, . . . , T − 1}.
Since λ0, . . . , λT−1 are positive it holds that A(i)diag(λi) +
B(i)Yi ≥ 0 if and only if

[A(i)diag(λi) +B(i)Yi]diag(λi)
−1 = A(i) +B(i)K(i) ≥ 0

which proves the equivalence between the positivity of the
closed-loop system and condition (7).

As Yi = K(i)diag(λi), Yi11n = K(i)λi then conditions
(8) can be arranged as λ0 > 0, . . . , λT−1 > 0 and

((A+ BK)T − I)
(
λT1 λT2 . . . λTT−1 λ0

)T
< 0, (9)

where I stands for the identity matrix of appropriate size and
(A+ BK)T is defined to be

(A+ BK)T :=
(

0 F(0)
diag(F(1), . . . ,F(T − 1)) 0

)
with F(i) = A(i) +B(i)K(i). As the modes are nonnegative
so that (A+ BK)T ≥ 0 and thus we can apply Lemma 2.4 to
conclude that (A+ BK)T is Schur. Hence, due to Lemma 2.1
one can conclude that the closed-loop system resulting from
a periodic gain of the form K(t + NT ) = Ytdiag(λt)

−1, is
asymptotically stable.

The necessity of conditions (7) and (8) can be shown using
the same arguments as above.

The following corollary shows how one can design stabi-
lizing positive gains, or equivalently, stabilizing nonnegative
control signals.

Corollary 3.2: There exists a stabilizing nonnegative feed-
back law for system (6) with a periodic gain K(t+T ) = K(t)
such that the closed-loop system is positive if and only if
there exist Y0, . . . , YT−1 ∈ Rp×n and λ0, . . . , λT−1 ∈ Rn

satisfying conditions (7), (8) and the additional condition:
Y0 ≥ 0, . . . , YT−1 ≥ 0.

If so, the closed-loop system is positive and asymptotically
stable under the nonnegative control law u(t) = K(t)x(t) with

K(t+NT ) = Ytdiag(λt)
−1, for t ∈ {0, . . . , T−1}, N ∈ Z+.
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IV. STATE AND CONTROL CONSTRAINTS

In general, the problem of designing stabilizing state-
feedback controllers with structured or bounded gains is an
NP-hard problem to solve [13]. In contrast, this problem can
be efficiently solved for positive LTI systems and in particular
for positive periodic systems.

In what follows, we consider the stabilization problem for
system (6) with constrained states and control signals. In
practice, we have to respect some prescribed upper and lower
bounds:

0 ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax, ∀t ∈ Z+

such that (xmax, umin, umax) ∈ Rn×Rp×Rp and xmax > 0,
umin ≤ 0 and umax ≥ 0.

For this purpose, we define the set of desirable constraints
as C(xmax, umin, umax) :=

{(x, u) ∈ Rn × Rp |0 ≤ x ≤ xmax, umin ≤ u ≤ umax}.

The domain of attraction of nonnegative initial conditions
x(0) = x0 associated to a given stabilizing control law u(t)
is defined to be D(u) :=

{x0 ∈ Rn
+ |(x(t+NT ), u(t+NT )) ∈ C(xtmax, u

t
min, u

t
max),

∀t ∈ {0, . . . , T − 1}, ∀ N ∈ Z+}.

Also, we define a set S to be an inner approximation of
the domain of attraction D(u) if S is a subset: S ⊂ D(u).
For the control design, we shall use a specific family of inner
approximation sets formed by boxes.

Next, we address the problem of designing a stabilizing
state-feedback law with an associated inner approximation for
its domain of attraction. We first, treat the case when the states
and the inputs are constrained to be nonnegative and bounded.
The following result shows how to handle this task.

Theorem 4.1: Let xtmax,utmin(= 0), utmax, t ∈ {0, . . . , T −
1} be periodically prescribed bounds. Then for a stabilizing
nonnegative state-feedback law u(t) = K(t)x(t) such that the
closed-loop system is positive, one can determine an inner
approximation box B(λ0) ⊂ D(u) if and only if there exist
Y0, . . . , YT−1 ∈ Rp×n and λ0, . . . , λT−1 ∈ Rn satisfying
conditions (7), (8) and the following inequalities

Yt ≥ 0, Yt11n ≤ utmax, λt ≤ xtmax, t = 0, 1, . . . , T−1. (10)

If so, a nonnegative control law u(t) = K(t)x(t) associ-
ated to the inner approximation box B(λ0) ⊂ D(u) can be
determined as

K(t+NT ) = Ytdiag(λt)
−1 for t ∈ {0, . . . , T−1}, N ∈ Z+.

Proof: Sufficiency: Assume that inequalities (7)-(8)-
(10) are feasible and select any solution Y0, . . . , YT−1 and
λ0, . . . , λT−1. Define u(t + NT ) = Ytdiag(λt)

−1x(t +
NT ) for t ∈ {0, . . . , T −1}. With regards to previous results,
it has been shown that conditions (7) and (8) are equivalent to
the modes positivity of the closed-loop system and its stability.
Also, as Yt ≥ 0 then K(t + NT ) = Ytdiag(λt)

−1 ≥ 0
and consequently the nonnegativity of the feedback control is
guaranteed u(t) = K(t)x(t) ≥ 0.

It remains to show that for λ0 the box B(λ0) represents
an inner approximation of the domain of attraction D(u). For
this, note that condition (8) is equivalent to

(A(0) +B(0)K(0))λ0 < λ1
(A(1) +B(1)K(1))(A(0) +B(0)K(0))λ0 < λ2

...
(A(T− 1)+B(T− 1)K(T− 1))...(A(0)+B(0)K(0))λ0<λT−1

(11)

then as a result of Theorem 2.7 we can conclude that the
closed-loop system is periodically invariant for the collection
formed by the boxes B(λ0) . . .B(λT−1). That is whenever
x(0) < λ0 we have that x(t + NT ) < λt, t = 0, . . . , T − 1,
N ∈ Z+. Thus, it holds that x(t + NT ) < λt ≤ xtmax and
also it follows

u(t+NT ) = K(t+NT )x(t+NT )

≤ K(t+NT )λt = Yt11n ≤ utmax.

Necessity: Let u(t) = K(t)x(t) ≥ 0 be any stabilizing non-
negative control (K(t) ≥ 0) such that the closed-loop system
is positive. Then by Theorem 2.8 the closed-loop system has a
periodic invariant collection of open boxes B(γ0) . . .B(γT−1)
associated to γ0 > 0, . . . , γT−1 > 0. Note that for any scalar
α > 0 it holds that B(αγ0) . . .B(αγT−1) is also a periodic
invariant collection for the closed-loop system. Since there
exists always α > 0 sufficiently small such that αγt ≤ xtmax

and αK(t)γt ≤ utmax, for t = 1, . . . , T − 1 one can define
with such α: λ0 := αγ0, . . . , λT−1 := αγT−1 and Y0 :=
K(0)diag(λ0), . . . , Y (T − 1) := K(T − 1)diag(λT−1).
Thus, by construction and by making use of the fact that
B(λ0) . . .B(λT−1) is also a periodic invariant collection for
the closed-loop system, we can see that for any x(0) ∈ B(λ0)
it holds x(t) < λt ≤ xtmax. Since K(t) ≥ 0 we also have for
t = 0, . . . , T − 1, N ∈ Z+

0 ≤ u(t) = K(t)x(t) ≤ K(t)λt = Yt11n ≤ utmax.

Consequently, we have got an inner approximation box
B(λ0) ⊂ D(u) and we have seen that it holds Yt ≥ 0, Yt11n ≤
utmax, λt ≤ xtmax, t = 0, 1, . . . , T − 1. In addition, due to
modes positivity and stability consideration, one can deduce
that conditions (7), (8) are also satisfied.

Now, we present a numerical design for stabilizing controls
with non symmetrical lower and upper bounds.

Corollary 4.2: Let xtmax, utmin, utmax, t ∈ {0, . . . , T − 1}
be periodically desirable bounds. Then for a stabilizing state-
feedback law u(t) = K(t)x(t) such that the closed-loop sys-
tem is positive, one can determine an inner approximation box
B(λ0) ⊂ D(u) if and only if there exist Y0, . . . , YT−1 ∈ Rp×n,
Z0, . . . , ZT−1 ∈ Rp×n and λ0, . . . , λT−1 ∈ Rn such that

A(i)diag(λi) +B(i)(Yi − Zi) ≥ 0, 0 ≤ i ≤ T − 1 (12)

λ0 > 0, λ1 > 0, . . . , λT−1 > 0
A(0)λ0 +B(0)(Y0 − Z0)11n < λ1
A(1)λ1 +B(1)(Y1 − Z1)11n < λ2

...
A(T − 2)λT−2 +B(T − 2)(YT−2 − ZT−2)11n < λT−1

A(T − 1)λT−1 +B(T − 1)(YT−1 − ZT−1)11n < λ0

(13)
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{
Yt ≥ 0, Zt ≥ 0,
Yt11n ≤ utmax, Zt11n ≤ −utmin, λt ≤ xtmax,

(14)

for t = 0, 1, . . . , T − 1. If so, a stabilizing control law u(t) =
K(t)x(t) associated to the inner approximation box B(λ0) :=
{x ∈ Rn

+ | x < λ0} ⊂ D(u) can be characterized as K(t +
NT ) = (Yt − Zt)diag(λt)

−1, for t ∈ {0, . . . , T − 1}, N ∈
Z+.

Proof: The proof is similar to the one of Theorem 4.1.
It suffices to take into account the following facts. For the
sufficiency part one can use the gains form K(t) = (Yt −
Zt)diag(λt)

−1 for t ∈ {0, . . . , T − 1} by considering the
following inequalities x(t+NT ) < λt ≤ xtmax. Since u(t) =
K(t+NT )x(t+NT ) = (Yt−Zt)diag(λt)

−1x(t+NT ) with
Yt ≥ 0, Zt ≥ 0, λt > 0 and x(t + NT ) ≥ 0, we can deduce
that u(t) = K(t + NT )x(t + NT ) ≥ −Ztdiag(λt)

−1x(t +
NT ). As x(t+NT ) < λt and Zt ≥ 0 we have that

u(t) = K(t+NT )x(t+NT ) ≥ −Ztdiag(λt)
−1λt = −Zt11n

In summary, by using this kind of argument, we can establish
the bounds utmin ≤ −Zt11n ≤ u(t) = K(t+NT )x(t+NT ) ≤
Yt11n ≤ utmax.

Note that these inequalities cannot be strict since the matri-
ces Zt or Yt may possess some line with zero entries.

Also, for the necessity part one can decompose the gain
K(t) into the difference of two positive matrices, its negative
and positive parts, i.e., K(t) = K+(t) − K−(t) such that
K+(t) ≥ 0 and K−(t) ≥ 0. Thus, one can construct

Yt = K+(t)diag(λt) ≥ 0, Zt = K−(t)diag(λt) ≥ 0,

t ∈ {0, . . . , T − 1}, and follow the same line of argument
previously used for Theorem 4.1.

V. ENLARGING THE DOMAIN OF ATTRACTION

It is of great importance to design a large set of initial
conditions that guarantee stability in the presence of states
and/or control constraints. The task here is to address the issue
of enlargement of the domain of attraction by computing a
larger inner approximation of it. For this purpose we have seen
that a natural inner estimate set of the domain of attraction
consists of a simple box B(v) := {x ∈ Rn

+ | x < v}. For this
box it is possible to maximize easily different measures of its
shape. For instance, this can be done by maximizing the length
of its contours or equivalently by maximizing p(B(v)) = 11Tnv.

In the case of nonnegative control one can compute such
inner approximation based on the result of Theorem 4.1.
Hence, this can be achieved by solving the following LP
problem:

min−11Tnλ0 subject to: (7), (8) and (10) (15)

Also, the other case with asymmetrical bounds on the control
can be similarly treated based on Corollary 4.2 and can be
treated by solving

min−11Tnλ0 subject to: (12), (13) and (14). (16)

Example 5.1: Consider system (6) described by the fol-
lowing modes

A(0) =

(
0.3178 0.1302
0.5877 0.2544

)
, B(0) =

(
−0.0063
0.5245

)
,

A(1) =

(
−0.7508 0.5173
−0.5002 0.5592

)
, B(1) =

(
0.3692
0.1792

)
.

Suppose that its states and control signals are constrai-
ned to respect the following prescribed bounds x0max =
(1 1)T , x1max = (0.5 0.5)T , (u0min, u

0
max) =

(−1 1)T , (u1min, u
1
max) = (−0.5 2)T ; that is 0 ≤ x(2t) ≤

(1 1)T , −1 ≤ u(2t) ≤ 1 and 0 ≤ x(1 + 2t) ≤
(0.5 0.5)T , −0.5 ≤ u(1 + 2t) ≤ 2.

As a result, we have solved the LP problem (16)
by using linprog Matlab function. We have obtained the
following optimal solution λ0 = (0.7112 1.0000)T ,
λ1 = (0.3583 0.5000)T , Y0 = (0.2605 0.2827),
Y1 = (1.000 0.0000), Z0 = (0.4994 0.3723), Z1 =
(0.0000 0.1954).

The gains K(0) and K(1) of the designed state-feedback
control law are computed according to the established formula
K(t + NT ) = (Yt − Zt)diag(λt)

−1 according to Corollary
4.2 and LP problem (16). We have got the following gains

K(0) = (−0.3360 − 0.0896),K(1) = (2.7912 − 0.3907).

Note that these gains ensure the positivity of each mode and
leads to a quite good inner approximation B([0.7112 1]T ) ⊂
D(u) ⊂ B([1 1]T ). Hence, the resulting state-feedback control
stabilizes the closed-loop system, maintains it positive and
fulfills the imposed state and control constraints for all initial
conditions in the box B([0.7112 1.0000]T ). These desired
properties can be noticed from the evolution of the closed-
loop system and its control signals which are depicted in
figure 1 for randomly generated initial conditions in the box
B([0.7112 1.0000]T ).

VI. CONCLUSIONS

An efficient treatment has been proposed in order to address
the problem of stabilizing a periodic discrete-time positive sys-
tem and maintaining its positivity. Also, we have established a
relationship between stability of a positive periodic system and
its periodic invariance with respect to a collection of boxes.
Based on this connection, we have demonstrated how one can
tackle the synthesis problem with respect to state and control
constraints.
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Figura 1. Evolution of the states and control signals from randomly generated
initial conditions in the box B([0.7112 1.0000]T ).


