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ON THE (1 — C;) CONDITION

LE VAN AN, NGUYEN THI HA1 ANH AND NGO Sy TUNG

ABSTRACT. In this paper, we give some results on (1 — C2)—modules
and 1—continuous modules.

1. INTRODUCTION

All rings are associated with identity, and all modules are unital right
modules. By Mg, (rRM) we indicate that M is a right (left) module over a
ring R. The Jacobson radical, the uniform dimension and the endomorphism
ring of M are denoted by J(M ), u—dim(M) and End(M ), respectively. For
a module M (over a ring R), we consider the following conditions:

(1 —C4) Every uniform submodule of M is essential in a direct summand
of M.

(C1) Every submodule of M is essential in a direct summand of M.

(C2) Every submodule isomorphic to a direct summand of M is itself a
direct summand of M.

(C3) For any direct summands A, B of M with AN B =0, A® B is also
a direct summand of M.

A module M is defined to be a (1 — C1)—module if it satisfies the
condition(1 — C7). If M satisfies (C7), then M is said to be a CS—module
(or an extending module). M is defined to be a continuous module if it sat-
isfies the conditions (C4) and (C2) . If M satisfies (C7) and (C3), then M is
said to be a quasi —continuous module. We call a module M a (Cy)—module
if it satisfies the condition (C2). We have the following implications:

Injective = quasi —injective = continuous = quasi —continuous = CS
= (1 - C 1),

and (02) = (Cg)

For a set A and a module M, M) denotes the direct sum of | A | copies
of M. A module M is called a (countably) 3" —quasi — injective if M)
(resp. MM) is a quasi — injective —module for every set A (note that N
denotes the set of all natural numbers). Similarly, a module M is called a
(countably) S —(1 — Cy) if MW (resp. M) is a (1 — C})—module for
every set A.
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In Section 2, we give several properties on the (1 — Cs)—modules,
(strongly) 1—continuous modules, and discuss the question of when a
1—continuous module is continuous ((1 — Cy)— module is (Cy)—module)?

2. (1 —C3) CONDITION

In this section, we consider the following condition for a module M.

(1 —C%) Every uniform submodule isomorphic to a direct summand of M
is itself a direct summand of M.

A module M is defined to be a (1 —C4)—module if it satisfies the condition
(1 — Cy). If M satisfies (1 — C1) and (1 — C3) conditions, then M is said
to be a 1—-continuouis module. M is defined to be a strongly 1—continuous
module if it satisfies the conditions (C7) and (1 — C3) . A ring R is called a
right (left) 1—continuous ring if Rr (resp. rR) is a 1—continuous module.
We have the following implications:

Continuous = strongly 1—continuous = 1—continuous,

and (C2) = (1 — Cy).

Remark 2.1. By [4, Corollary 7.8|, let M be a right R—module with
finite uniform dimension, M is a (1 — C7)— module if and only if M is CS.
Therefore, M has finite uniform dimension then M is a 1—continuous module
if and only if M is strongly 1—continuous. In general, if M satisfies the
condition (1—C3), M may not satisfy the condition (C2). By the definitions
(1—C%)—module, 1—continuous module and strongly 1—continuous module,
we have:
Lemma 2.2. Let M be a right R—module and N is a direct summand of
M. If M is a (1—Cy)—module (1—continuous, strongly 1—continuous) then
N is also (1 — Cy)—module (resp. 1—-continuous, strongly 1—continuous).
Theorem 2.3. Let U = ®'U; where each U; is a uniform module, then
the following conditions are equivalent:

(i) U is a (Ca)—module;

(ii) U is a (1 — Co)—module and U satisfies the condition (C3).

Proof. (i) = (ii). It is obvious

(i) = (i). We show that U is a (C2)—module, i.e., for two submodules
X, Y of U, with X 2Y and Y is a direct summand of U, X is also a direct
summand of U. Note that Y is a closed submodule of M, there is a subset
F of {1,..,n} such that Y & (®;crU;) is an essential submodule of U. But
Y, ®;crU; are direct summands of U and U satisfies the condition (C3), we
imply Y & (@ierlU;) =U. If F ={1,..,n} then X =Y =0, as desired.

If F #{1,..,n} and set J = {1,..,n}\F, then U = Y & (PiecrlU;) =
(®icsUi) ® (®ierU;). Hence, X 2 Y =2 U/ jer U; = i sU; = Z. Suppose
that J ={1,.,k} with 1 <k <n,ie, Z=U1 .. ®Uy. Let p: Z — X,
and set X; = o(U;) then X; 2 U, for any i = 1,.., k. We imply X = p(Z) =
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(Ui ®..0Uk) = pU1) ®..0¢U) = X1 &..8 Xk By X; is a uniform
submodule of U, X; = U; with U; is a direct summand of U and U is a
(1 — C9)—module, X; is also a direct summand of U for any ¢ = 1, .., k. But
U satisfies the condition (C3), X = X1 @ .. ® X} is a direct summand of U.
Hence U is a (C2)—module, proving (i). O

Theorem 2.4. Let U = @' U; where each U; is a uniform module, then
the following conditions are equivalent:

(i) U is a continuous module;

(i) U is a 1—continuous module.

Proof. (i) = (ii). It is obvious.

(iil) = (i). We show that S = End(U;) is a local ring for any i = 1, .., n.
We first prove a claim that U; does not embed in a proper submodule of U;.
Let f : U; — U; be a monomorphism with f(U;) is a proper submodule of
U;. Set f(U;) =V, then V # 0, proper submodule of U; and V = U;. By
hypothesis, U; is a (1 — Cy)—module, and hence V is a direct summand of
Ui, i.e., U; is not uniform module, a contradiction. Therefore, U; does not
embed in a proper submodule of U;.

Let g € S and suppose that g is not an isomorphism. It suffices to show
that 1 — g is an isomorphism. Note that, g is not a monomorphism. Then,
since Keg(g) is a nonzero submodule, it is essential in the uniform module
U;. We always have Keg(g)NKeg(1—g) = 0, it follows that Ker(1—g) =0,
i.e. 1—gis a monomorphism. But U; does not embed in a proper submodule
of U;, 1 — g must be onto, and so 1 — g is an isomorphism, as required.

Let Uj; = U; ® U; with 4,5 € {1,..,n} and i # j. We show that Uj;
satisfies the condition (Cs), i.e., for two direct summands Sy, Sz of U;; with
S1 NSy = 0, S ® 52 is also a direct summand of U;;. Note that, since
u — dim(U;j) = 2, the following cases are trivial:

1) Either one of the S has uniform dimension 2, consequently the other
S; is zero, or

2) One of the S is zero

Hence we consider the case that both 57,55 are uniform. We prove that
U; does not embed in a proper submodule of U;. Let h : U; — U; be a
monomorphism with h(U;) is a proper submodule of U;. Set h(U;) = L,
then L # 0, proper submodule of U; and L = U;. By hypothesis, U is a (1 —
Cy)—module and Uj; is a direct summand of U, Uy; is also (1 —Cy)—module.
Note that L is a uniform submodule of U;; and L = U; with U; is a direct
summanmd of Ujj, L is also direct summand of U;;. Set U;; = L & L', then
by modularity we get U; = L @ L” with L” = U; N L. Note that L” is
also proper submodule of U; and L” # 0, hence Uj is not uniform module,
a contradiction. Therefore U; does not embed in a proper submodule of Uj.



144 L. AN, N. ANH AND N. TUNG

Similary, U; does not embed in a proper submodule of U;. Note that, U;
(and Uj) does not embed in a proper submodule of U; (resp. Uj).

Note that, End(U;) and End(U;) are local rings, by Azumaya’s Lemma
([1, 12.6, 12.7]), we have U;j = So @ K = So @ U; or So® K = S, @ U;. Since
¢ and j can interchange with each other, we need only consider one of the
two possibilities. Let us consider the case U;; = So @ K = So@U; = U; D U;.
Then it follows Sy = Uj. Write Uij =S19oH=5®U;or S H =5; @Uj.

If Uj; = S1@ H = 51 @ U;, then by modularity we get S1 ® Sy =S1 & W
where W = (S1®52)NU;. From here we get W =2 Sy, this means U; contains
a copy of So = U;. By U, does not embed in a proper submodule of U;, we
must have W = U;, and hence S © S = U; ®© U; = Uy;.

If Ujj = S1 @ H = 51 @ Uj, then by modularity we get S; @ Sy = S1 & W’
where W/ = (S; @ S2) N U;. From here we get W/ = Sy, this means U;
contains a copy of So = U;. By U; does not embed in a proper submodule
of Uj, we must have W’ = Uj, and hence S; & Sy = Uj;.

Thus Uj;; satisfies (C3). Note that, U;; is a direct summand of U and U
is a CS —module (by U has finite dimension and U is a (1 — C1)—module,
thus U is CS —module), U;; is also CS —module, and hence U;; is a quasi
—continuous module for any 4, € {1,..,n} and i # j.

Now, by [6, Corollary 11], thus U is a quasi —continuous module. By
Theorem 2.3, U is a continuous module, proving (i). 0

Corollary 2.5. Let U = @' U; where each U; is a uniform module, then
the following conditions are equivalent:

(i) U is a >, —quasi —injective module;

(ii) U is a 1—continuous module, countably > —(1 — Cy)—module.
Proof. (i) = (ii). It is obvious.

(i) = (i). By Theorem 2.4, U is a continuous module. By [7, Proposition
2.5], U is a Y —quasi —injective module, proving (i). O

A right R—module M is called distributive if for any submodule A, B,C
of M then AN(B+C)=ANB+ ANC. We say that, M is a UC —module
if each of its submodule has a unique closure in M.

Theorem 2.6. Let U = @}, U; where each U; is a uniform module. Assume
that U s a distributive module, then the following conditions are equivalent:

(i) U is a (Co)—module;

(ii) U is a (1 — Co)—module.

Proof. (i) = (ii). It is obvious.

(i) = (i). Similar proof of Theorem 2.4, U; does not embed in a proper
submodule of U; for any i,j € {1,..,n} and S = End(U;) is a uniform
module for any i € {1,..,n}. We first prove a claim that, if S; and S
are direct summands of U with u — dim(S1) = 1, u — dim(S2) = n — 1
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and S1 NSy = 0, then S; & Sy = U. By Azumaya’s Lemma, we have
U= S2@K = So@U;. Suppose thati =1, 1e., U = So@®U; = (BI,U;)®U;.

Write U = S1 & H = S1 @ (DierU;) with I being a subset of {1,..,n} and
card(l) =n — 1. There are cases:

Case 1. 1 ¢ I, U=510Us®.0U,) =U; & Uz ®..® Up,). Then
it follows from S; = U;. By modularity we get S; & So = So & V' where
V = (51 @ S3) NU;. From here we get V =2 Sp, this means U; contains a
copy of S1 = U;. By U; does not embed in a proper submodule of Uy, we
must have V = Uy, and hence S;1 & So = So @ Uy = U.

Case 2. If 1 € I, there exist k # 1 such that &k = {1,..,n}\I, U =
S1® (PicrUi) = U @ (®ierU;). Then it follows S; = Uy. By modularity we
get S1® 59 = Sy @V’ where V! = (51 @ 52) NU;. From here we get V! = Sy,
this means U; contains a copy of S; = Uy. By Ui does not embed in a
proper submodule of Uy, we must have V/ = Uy, and hence S1 © Sy = U, as
required.

We aim show next that U satisfies the condition (C3), i.e., for two direct
summands of X1, Xo of U with X;NXs =0, X;® X5 is also direct summand
of U. By Azumaya’s Lemma, we have U = X; & K = X; ® (®icsU;) =
(@iEFUi) D (@ieJUi) (Where F = {1,..,n}\J) and U = Xo @ L = Xo &
(@jeplj) = (®jerl;) & (®jepU;) (where B = {1,..,n}\D). We imply
X1 = @®ierU; and Xo = @cgU;. Suppose that £ = {1,..,t} and let ¢ :
@§:1Uj — X be an isomorphism and set Y; = ¢(U;), we have Y; = U;
and Xo = EB;:IYJ-. By hypothesis X5 is a direct summand of U, thus Yj is
also direct summand of U for any j € {1,..,t}. We show that X; & Xy =
X1®(Y1®..8Y,) is a direct summand of U.

We prove that X; @ Y] is a direct summand of U. By Azumaya’s Lemma,
we have U = Y1 @ W = Y1 & (@pepUpy) = Uy ® (BpepU,), with P is a
subset of {1,..,n} such that card(P) = n —1 and a = {1,..,n}\P. Note
that, card(P N J) > card(J) — 1 = m. Suppose that {1,..,m} C (PN J),
e, U= (X100 U1 ®..0Uy) ®Us = Z®Ug with 3 = J\{1,..,m}
and Z = X1 & (U & .. ® Uy,). By U is a distributive module, we have
ZNYi=Xieo(Uh&.eUn)NY1=X1nY)e (Ui s..0U,)NY1) =0.
Note that, Z,Y; are direct summands of U with v — dim(Z) = n — 1 and
u—dz’m(Yl) =1, U=2Z¢&Y, = (Xl@(Ul@..@Um»@Yi = (Xl@Yl)@
(U1 @ .. ®Up,). Therefore, X1 @ Y] is a direct summand of U. By induction,
wehave X168 Xo=X10(V1®..0Y) = (X10Y19..0Y;_1) DY, is a direct
summand of U. Thus U satisfies the condition (C3).

Finally, we show that U satisfies the condition (C2). By hypothesis (ii)
and U satisfies (C3), thus U is a (1—C3)—module (see Theorem 2.3), proving

(i). 0
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Theorem 2.7. Let Uy, .., U, be uniform local modules such that U; does not
embed in J(U;) for any i,j = 1,..,n. If U = & ,U; is a UC distributive
module then it is a continuous module.

Proof. We first prove a claim that U is a CS module. Let A be a uniform
closed submodule of U. Let the X; = ANU; for any i € {1,..,n}. Suppose
that X; = 0 for every ¢ € {1,..,n}. By hypothesis, U is a distributive
module, we have A = AN(U1®..aU,) = X1®..® X,, =0, a contradiction.
Therefore, there exists a X; # 0, i.e., ANU; # 0. By property A and Uy
are closed uniform submodules of U, thus X; is an essential submodule of
A and X; is also essential submodule of U;. Hence A and U; are closure of
X¢in U, U is an UC module we get A = U;. This implies that A is a direct
summand of U, i.e., U is a (1 — C1)—module. By U has finite dimension, U
is CS module (see [4, Corollary 7.8]), as required.

We aim to show next that S = End(U;) is a local ring for any [ € {1, ..,n}.
Let f € S and suppose that f is not an isomorphism. It suffices to show
that 1 — f is an isomorphism.

Suppose that, f is a monomorphism. Then f is not onto, and f : Uy —
J(U;) is an embedding, a contradiction. Thus f is not a monomorphism.
Then, since Ker(f) is a nonzero submodule, it is essential in the uniform
local module U;. Thus, since we always have Ker(f) N Ker(1 — f) =0, it
follows that Ker(1 — f) =0, i.e., 1 — f is a monomorphism. But, since Uj
does not embed in J(U;), 1 — f must be onto, and so 1 — f is an isomorphism.
Thus, S is a local ring.

Now, we show that U is a (1 —C3)—module, i.e., for two uniform submod-
ules VW of U, with V= W and W is a direct summand of U, V is also a
direct summand of U. By Azumaya’s Lemma, we have U = W & W' =
W @ (®esU;) = Up ® (®jesU;) where J is a subset of {1,..,n} with
card(J) = n—1and k = {1,..,n}\J. Hence V= W = Ug. Let V* be
a closure of V in U. By U is a CS module, thus V* is a direct summand
of U. Similarly, there exists s € {1,..,n} such that V* = Ug, this means
Us contains a copy of W = U,. If V is a proper submodule of Uy, then
U embed in J(Us), a contradiction. We must have V = U, and hence
V is a direct summand of U. Thus, U is a (1 — Cy)—module, i.e., U is a
1—continuous module (by U is a CS module).

Finally, by Theorem 2.4 thus U is a continuous module. 0

Corollary 2.8. Let Uy, ..,U, be uniform local modules such that U; does not
embed in J(U;) for any i,j = 1,..,n. If U = &} ,U; is a UC, distributive
module then the following conditions are equivalent:

(1) U is a Y, —quasi —injective module;

(11) U is a countably > —(1 — C1)—module.
Proof. (i) = (ii). It is obvious.
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(ii) = (i). By Theorem 2.7, U is a continuous module. By [7, Proposition
2.5], U is a > —quasi —injective module, proving (i). 0
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