Math. J. Okayama Univ. 59 (2017), 141-147

ON THE $(1 - C_2)$ **CONDITION**

LE VAN AN, NGUYEN THI HAI ANH AND NGO SY TUNG

ABSTRACT. In this paper, we give some results on $(1 - C_2)$ -modules and 1-continuous modules.

1. INTRODUCTION

All rings are associated with identity, and all modules are unital right modules. By M_R , $(_RM)$ we indicate that M is a right (left) module over a ring R. The Jacobson radical, the uniform dimension and the endomorphism ring of M are denoted by J(M), u - dim(M) and End(M), respectively. For a module M (over a ring R), we consider the following conditions:

 $(1-C_1)$ Every uniform submodule of M is essential in a direct summand of M.

 (C_1) Every submodule of M is essential in a direct summand of M.

 (C_2) Every submodule isomorphic to a direct summand of M is itself a direct summand of M.

 (C_3) For any direct summands A, B of M with $A \cap B = 0, A \oplus B$ is also a direct summand of M.

A module M is defined to be a $(1 - C_1)$ -module if it satisfies the condition $(1 - C_1)$. If M satisfies (C_1) , then M is said to be a CS-module (or an extending module). M is defined to be a continuous module if it satisfies the conditions (C_1) and (C_2) . If M satisfies (C_1) and (C_3) , then M is said to be a quasi - continuous module. We call a module M a (C_2) -module if it satisfies the condition (C_2) . We have the following implications:

Injective \Rightarrow quasi --injective \Rightarrow continuous \Rightarrow quasi --continuous \Rightarrow CS \Rightarrow $(1 - C_1),$

and
$$(C_2) \Rightarrow (C_3)$$
.

For a set A and a module M, $M^{(A)}$ denotes the direct sum of |A| copies of M. A module M is called a (*countably*) $\sum -quasi - injective$ if $M^{(A)}$ (resp. $M^{(\mathbb{N})}$) is a quasi - injective -module for every set A (note that \mathbb{N} denotes the set of all natural numbers). Similarly, a module M is called a (*countably*) $\sum -(1 - C_1)$ if $M^{(A)}$ (resp. $M^{(\mathbb{N})}$) is a $(1 - C_1)$ -module for every set A.

Mathematics Subject Classification. Primary 16D50; Secondary 16P20.

Key words and phrases. injective module, continuous module, uniform module, UC module, distributive module.

In Section 2, we give several properties on the $(1 - C_2)$ -modules, (strongly) 1-continuous modules, and discuss the question of when a 1-continuous module is continuous $((1 - C_2)$ -module is (C_2) -module)?

2. $(1 - C_2)$ condition

In this section, we consider the following condition for a module M.

 $(1-C_2)$ Every uniform submodule isomorphic to a direct summand of M is itself a direct summand of M.

A module M is defined to be a $(1-C_2)$ -module if it satisfies the condition $(1-C_2)$. If M satisfies $(1-C_1)$ and $(1-C_2)$ conditions, then M is said to be a 1-continuous module. M is defined to be a strongly 1-continuous module if it satisfies the conditions (C_1) and $(1-C_2)$. A ring R is called a right (left) 1-continuous ring if R_R (resp. $_RR$) is a 1-continuous module. We have the following implications:

Continuous \Rightarrow strongly 1-continuous \Rightarrow 1-continuous,

and
$$(C_2) \Rightarrow (1 - C_2)$$
.

Remark 2.1. By [4, Corollary 7.8], let M be a right R-module with finite uniform dimension, M is a $(1 - C_1)$ - module if and only if M is CS. Therefore, M has finite uniform dimension then M is a 1-continuous module if and only if M is strongly 1-continuous. In general, if M satisfies the condition $(1 - C_2)$, M may not satisfy the condition (C_2) . By the definitions $(1 - C_2)$ -module, 1-continuous module and strongly 1-continuous module, we have:

Lemma 2.2. Let M be a right R-module and N is a direct summand of M. If M is a $(1-C_2)$ -module (1-continuous, strongly 1-continuous) then N is also $(1-C_2)$ -module (resp. 1-continuous, strongly 1-continuous).

Theorem 2.3. Let $U = \bigoplus_{i=1}^{n} U_i$ where each U_i is a uniform module, then the following conditions are equivalent:

(i) U is a (C_2) -module;

(ii) U is a $(1 - C_2)$ -module and U satisfies the condition (C₃). Proof. (i) \Longrightarrow (ii). It is obvious

(ii) \implies (i). We show that U is a (C_2) -module, i.e., for two submodules X, Y of U, with $X \cong Y$ and Y is a direct summand of U, X is also a direct summand of U. Note that Y is a closed submodule of M, there is a subset F of $\{1, ..., n\}$ such that $Y \oplus (\bigoplus_{i \in F} U_i)$ is an essential submodule of U. But $Y, \bigoplus_{i \in F} U_i$ are direct summands of U and U satisfies the condition (C_3) , we imply $Y \oplus (\bigoplus_{i \in F} U_i) = U$. If $F = \{1, ..., n\}$ then X = Y = 0, as desired.

If $F \neq \{1, ..., n\}$ and set $J = \{1, ..., n\} \setminus F$, then $U = Y \oplus (\bigoplus_{i \in F} U_i) = (\bigoplus_{i \in J} U_i) \oplus (\bigoplus_{i \in F} U_i)$. Hence, $X \cong Y \cong U / \bigoplus_{i \in F} U_i \cong \bigoplus_{i \in J} U_i = Z$. Suppose that $J = \{1, ..., k\}$ with $1 \leq k \leq n$, i.e., $Z = U_1 \oplus ... \oplus U_k$. Let $\varphi : Z \longrightarrow X$, and set $X_i = \varphi(U_i)$ then $X_i \cong U_i$ for any i = 1, ..., k. We imply $X = \varphi(Z) = \varphi(Z)$

 $\varphi(U_1 \oplus ... \oplus U_k) = \varphi(U_1) \oplus ... \oplus \varphi(U_k) = X_1 \oplus ... \oplus X_k$. By X_i is a uniform submodule of $U, X_i \cong U_i$ with U_i is a direct summand of U and U is a $(1 - C_2)$ -module, X_i is also a direct summand of U for any i = 1, ..., k. But U satisfies the condition $(C_3), X = X_1 \oplus ... \oplus X_k$ is a direct summand of U. Hence U is a (C_2) -module, proving (i). \Box

Theorem 2.4. Let $U = \bigoplus_{i=1}^{n} U_i$ where each U_i is a uniform module, then the following conditions are equivalent:

(i) U is a continuous module;

(*ii*) U is a 1-continuous module.

Proof. (i) \implies (ii). It is obvious.

(ii) \implies (i). We show that $S = End(U_i)$ is a local ring for any i = 1, ..., n. We first prove a claim that U_i does not embed in a proper submodule of U_i . Let $f: U_i \longrightarrow U_i$ be a monomorphism with $f(U_i)$ is a proper submodule of U_i . Set $f(U_i) = V$, then $V \neq 0$, proper submodule of U_i and $V \cong U_i$. By hypothesis, U_i is a $(1 - C_2)$ -module, and hence V is a direct summand of U_i , i.e., U_i is not uniform module, a contradiction. Therefore, U_i does not embed in a proper submodule of U_i .

Let $g \in S$ and suppose that g is not an isomorphism. It suffices to show that 1-g is an isomorphism. Note that, g is not a monomorphism. Then, since Keg(g) is a nonzero submodule, it is essential in the uniform module U_i . We always have $Keg(g) \cap Keg(1-g) = 0$, it follows that Ker(1-g) = 0, i.e. 1-g is a monomorphism. But U_i does not embed in a proper submodule of U_i , 1-g must be onto, and so 1-g is an isomorphism, as required.

Let $U_{ij} = U_i \oplus U_j$ with $i, j \in \{1, ..., n\}$ and $i \neq j$. We show that U_{ij} satisfies the condition (C_3) , i.e., for two direct summands S_1, S_2 of U_{ij} with $S_1 \cap S_2 = 0, S_1 \oplus S_2$ is also a direct summand of U_{ij} . Note that, since $u - dim(U_{ij}) = 2$, the following cases are trivial:

1) Either one of the S'_i has uniform dimension 2, consequently the other S_i is zero, or

2) One of the S'_i is zero

Hence we consider the case that both S_1, S_2 are uniform. We prove that U_i does not embed in a proper submodule of U_j . Let $h: U_i \longrightarrow U_j$ be a monomorphism with $h(U_i)$ is a proper submodule of U_j . Set $h(U_i) = L$, then $L \neq 0$, proper submodule of U_j and $L \cong U_i$. By hypothesis, U is a $(1 - C_2)$ -module and U_{ij} is a direct summand of U, U_{ij} is also $(1 - C_2)$ -module. Note that L is a uniform submodule of U_{ij} and $L \cong U_i$ with U_i is a direct summand of U_{ij} . Set $U_{ij} = L \oplus L'$, then by modularity we get $U_j = L \oplus L''$ with $L'' = U_j \cap L'$. Note that L'' is also proper submodule of U_j and $L'' \neq 0$, hence U_j is not uniform module, a contradiction. Therefore U_i does not embed in a proper submodule of U_j .

Similary, U_j does not embed in a proper submodule of U_i . Note that, U_i (and U_j) does not embed in a proper submodule of U_i (resp. U_j).

Note that, $End(U_i)$ and $End(U_j)$ are local rings, by Azumaya's Lemma ([1, 12.6, 12.7]), we have $U_{ij} = S_2 \oplus K = S_2 \oplus U_i$ or $S_2 \oplus K = S_2 \oplus U_j$. Since i and j can interchange with each other, we need only consider one of the two possibilities. Let us consider the case $U_{ij} = S_2 \oplus K = S_2 \oplus U_i = U_i \oplus U_j$. Then it follows $S_2 \cong U_j$. Write $U_{ij} = S_1 \oplus H = S_1 \oplus U_i$ or $S_1 \oplus H = S_1 \oplus U_j$.

If $U_{ij} = S_1 \oplus H = S_1 \oplus U_i$, then by modularity we get $S_1 \oplus S_2 = S_1 \oplus W$ where $W = (S_1 \oplus S_2) \cap U_i$. From here we get $W \cong S_2$, this means U_i contains a copy of $S_2 \cong U_j$. By U_j does not embed in a proper submodule of U_i , we must have $W = U_i$, and hence $S_1 \oplus S_2 = U_i \oplus U_j = U_{ij}$.

If $U_{ij} = S_1 \oplus H = S_1 \oplus U_j$, then by modularity we get $S_1 \oplus S_2 = S_1 \oplus W'$ where $W' = (S_1 \oplus S_2) \cap U_j$. From here we get $W' \cong S_2$, this means U_j contains a copy of $S_2 \cong U_j$. By U_j does not embed in a proper submodule of U_j , we must have $W' = U_j$, and hence $S_1 \oplus S_2 = U_{ij}$.

Thus U_{ij} satisfies (C_3) . Note that, U_{ij} is a direct summand of U and U is a CS -module (by U has finite dimension and U is a $(1 - C_1)$ -module, thus U is CS -module), U_{ij} is also CS -module, and hence U_{ij} is a quasi -continuous module for any $i, j \in \{1, ..., n\}$ and $i \neq j$.

Now, by [6, Corollary 11], thus U is a quasi –continuous module. By Theorem 2.3, U is a continuous module, proving (i). \Box

Corollary 2.5. Let $U = \bigoplus_{i=1}^{n} U_i$ where each U_i is a uniform module, then the following conditions are equivalent:

(i) U is a $\sum -quasi - injective module;$

(ii) U is a 1-continuous module, countably $\sum -(1-C_1)$ -module. Proof. (i) \implies (ii). It is obvious.

(ii) \implies (i). By Theorem 2.4, U is a continuous module. By [7, Proposition 2.5], U is a \sum -quasi -injective module, proving (i).

A right R-module M is called *distributive* if for any submodule A, B, Cof M then $A \cap (B+C) = A \cap B + A \cap C$. We say that, M is a UC-module if each of its submodule has a unique closure in M.

Theorem 2.6. Let $U = \bigoplus_{i=1}^{n} U_i$ where each U_i is a uniform module. Assume that U is a distributive module, then the following conditions are equivalent:

(i) U is a (C_2) -module;

(ii) U is a $(1 - C_2)$ -module.

Proof. (i) \implies (ii). It is obvious.

(ii) \implies (i). Similar proof of Theorem 2.4, U_i does not embed in a proper submodule of U_j for any $i, j \in \{1, ..., n\}$ and $S = End(U_i)$ is a uniform module for any $i \in \{1, ..., n\}$. We first prove a claim that, if S_1 and S_2 are direct summands of U with $u - dim(S_1) = 1$, $u - dim(S_2) = n - 1$ and $S_1 \cap S_2 = 0$, then $S_1 \oplus S_2 = U$. By Azumaya's Lemma, we have $U = S_2 \oplus K = S_2 \oplus U_i$. Suppose that i = 1, i.e., $U = S_2 \oplus U_1 = (\bigoplus_{i=2}^n U_i) \oplus U_1$. Write $U = S_1 \oplus H = S_1 \oplus (\bigoplus_{i \in I} U_i)$ with I being a subset of $\{1, ..., n\}$ and card(I) = n - 1. There are cases:

Case 1. If $1 \notin I$, $U = S_1 \oplus (U_2 \oplus .. \oplus U_n) = U_1 \oplus (U_2 \oplus .. \oplus U_n)$. Then it follows from $S_1 \cong U_1$. By modularity we get $S_1 \oplus S_2 = S_2 \oplus V$ where $V = (S_1 \oplus S_2) \cap U_1$. From here we get $V \cong S_1$, this means U_1 contains a copy of $S_1 \cong U_1$. By U_1 does not embed in a proper submodule of U_1 , we must have $V = U_1$, and hence $S_1 \oplus S_2 = S_2 \oplus U_1 = U$.

Case 2. If $1 \in I$, there exist $k \neq 1$ such that $k = \{1, ..., n\} \setminus I$, $U = S_1 \oplus (\bigoplus_{i \in I} U_i) = U_k \oplus (\bigoplus_{i \in I} U_i)$. Then it follows $S_1 \cong U_k$. By modularity we get $S_1 \oplus S_2 = S_2 \oplus V'$ where $V' = (S_1 \oplus S_2) \cap U_1$. From here we get $V' \cong S_1$, this means U_1 contains a copy of $S_1 \cong U_k$. By U_k does not embed in a proper submodule of U_1 , we must have $V' = U_1$, and hence $S_1 \oplus S_2 = U$, as required.

We aim show next that U satisfies the condition (C_3) , i.e., for two direct summands of X_1, X_2 of U with $X_1 \cap X_2 = 0, X_1 \oplus X_2$ is also direct summand of U. By Azumaya's Lemma, we have $U = X_1 \oplus K = X_1 \oplus (\bigoplus_{i \in J} U_i) =$ $(\bigoplus_{i \in F} U_i) \oplus (\bigoplus_{i \in J} U_i)$ (where $F = \{1, ..., n\} \setminus J$) and $U = X_2 \oplus L = X_2 \oplus$ $(\bigoplus_{j \in D} U_j) = (\bigoplus_{j \in E} U_j) \oplus (\bigoplus_{j \in D} U_j)$ (where $E = \{1, ..., n\} \setminus D$). We imply $X_1 \cong \bigoplus_{i \in F} U_i$ and $X_2 \cong \bigoplus_{j \in E} U_j$. Suppose that $E = \{1, ..., t\}$ and let φ : $\bigoplus_{j=1}^t U_j \longrightarrow X_2$ be an isomorphism and set $Y_j = \varphi(U_j)$, we have $Y_j \cong U_j$ and $X_2 = \bigoplus_{j=1}^t Y_j$. By hypothesis X_2 is a direct summand of U, thus Y_j is also direct summand of U for any $j \in \{1, ..., t\}$. We show that $X_1 \oplus X_2 =$ $X_1 \oplus (Y_1 \oplus ... \oplus Y_t)$ is a direct summand of U.

We prove that $X_1 \oplus Y_1$ is a direct summand of U. By Azumaya's Lemma, we have $U = Y_1 \oplus W = Y_1 \oplus (\bigoplus_{p \in P} U_p) = U_\alpha \oplus (\bigoplus_{p \in P} U_p)$, with P is a subset of $\{1, ..., n\}$ such that card(P) = n - 1 and $\alpha = \{1, ..., n\} \setminus P$. Note that, $card(P \cap J) \ge card(J) - 1 = m$. Suppose that $\{1, ..., m\} \subseteq (P \cap J)$, i.e., $U = (X_1 \oplus (U_1 \oplus ... \oplus U_m)) \oplus U_\beta = Z \oplus U_\beta$ with $\beta = J \setminus \{1, ..., m\}$ and $Z = X_1 \oplus (U_1 \oplus ... \oplus U_m)$. By U is a distributive module, we have $Z \cap Y_1 = (X_1 \oplus (U_1 \oplus ... \oplus U_m)) \cap Y_1 = (X_1 \cap Y_1) \oplus ((U_1 \oplus ... \oplus U_m) \cap Y_1) = 0$. Note that, Z, Y_1 are direct summands of U with u - dim(Z) = n - 1 and $u - dim(Y_1) = 1$, $U = Z \oplus Y_1 = (X_1 \oplus (U_1 \oplus ... \oplus U_m)) \oplus Y_1 = (X_1 \oplus Y_1) \oplus$ $(U_1 \oplus ... \oplus U_m)$. Therefore, $X_1 \oplus Y_1$ is a direct summand of U. By induction, we have $X_1 \oplus X_2 = X_1 \oplus (Y_1 \oplus ... \oplus Y_t) = (X_1 \oplus Y_1 \oplus ... \oplus Y_{t-1}) \oplus Y_t$ is a direct summand of U. Thus U satisfies the condition (C_3) .

Finally, we show that U satisfies the condition (C_2) . By hypothesis (ii) and U satisfies (C_3) , thus U is a $(1-C_2)$ -module (see Theorem 2.3), proving (i). \Box

Theorem 2.7. Let $U_1, ..., U_n$ be uniform local modules such that U_i does not embed in $J(U_j)$ for any i, j = 1, ..., n. If $U = \bigoplus_{i=1}^n U_i$ is a UC distributive module then it is a continuous module.

Proof. We first prove a claim that U is a CS module. Let A be a uniform closed submodule of U. Let the $X_i = A \cap U_i$ for any $i \in \{1, ..., n\}$. Suppose that $X_i = 0$ for every $i \in \{1, ..., n\}$. By hypothesis, U is a distributive module, we have $A = A \cap (U_1 \oplus ... \oplus U_n) = X_1 \oplus ... \oplus X_n = 0$, a contradiction. Therefore, there exists a $X_t \neq 0$, i.e., $A \cap U_t \neq 0$. By property A and U_t are closed uniform submodules of U, thus X_t is an essential submodule of A and X_t is also essential submodule of U_t . Hence A and U_t are closure of X_t in U, U is an UC module we get $A = U_t$. This implies that A is a direct summand of U, i.e., U is a $(1 - C_1)$ -module. By U has finite dimension, Uis CS module (see [4, Corollary 7.8]), as required.

We aim to show next that $S = End(U_l)$ is a local ring for any $l \in \{1, .., n\}$. Let $f \in S$ and suppose that f is not an isomorphism. It suffices to show that 1 - f is an isomorphism.

Suppose that, f is a monomorphism. Then f is not onto, and $f: U_l \longrightarrow J(U_l)$ is an embedding, a contradiction. Thus f is not a monomorphism. Then, since Ker(f) is a nonzero submodule, it is essential in the uniform local module U_l . Thus, since we always have $Ker(f) \cap Ker(1-f) = 0$, it follows that Ker(1-f) = 0, i.e., 1-f is a monomorphism. But, since U_l does not embed in $J(U_l)$, 1-f must be onto, and so 1-f is an isomorphism. Thus, S is a local ring.

Now, we show that U is a $(1-C_2)$ -module, i.e., for two uniform submodules V, W of U, with $V \cong W$ and W is a direct summand of U, V is also a direct summand of U. By Azumaya's Lemma, we have $U = W \oplus W' =$ $W \oplus (\bigoplus_{j \in J} U_j) = U_k \oplus (\bigoplus_{j \in J} U_j)$ where J is a subset of $\{1, ..., n\}$ with card(J) = n - 1 and $k = \{1, ..., n\} \setminus J$. Hence $V \cong W \cong U_k$. Let V* be a closure of V in U. By U is a CS module, thus V* is a direct summand of U. Similarly, there exists $s \in \{1, ..., n\}$ such that $V^* = U_s$, this means U_s contains a copy of $W \cong U_k$. If V is a proper submodule of U_s , then U_k embed in $J(U_s)$, a contradiction. We must have $V = U_s$, and hence V is a direct summand of U. Thus, U is a $(1 - C_2)$ -module, i.e., U is a 1-continuous module (by U is a CS module).

Finally, by Theorem 2.4 thus U is a continuous module.

Corollary 2.8. Let $U_1, ..., U_n$ be uniform local modules such that U_i does not embed in $J(U_j)$ for any i, j = 1, ..., n. If $U = \bigoplus_{i=1}^n U_i$ is a UC, distributive module then the following conditions are equivalent:

(i) U is a $\sum -quasi - injective module$;

(ii) U is a countably $\sum -(1-C_1)$ -module.

Proof. (i) \implies (ii). It is obvious.

(ii) \implies (i). By Theorem 2.7, U is a continuous module. By [7, Proposition 2.5], U is a \sum -quasi -injective module, proving (i).

Acknowledgement

We would like thank the referee for carefully reading this note and for many useful comments

References

- F. W. Anderson and K. R. Fuller, *Ring and Categories of Modules*, Springer Verlag, New York - Heidelberg - Berlin, 1974.
- [2] V. Camilo, Distributive modules, J. Algebra, 36 (1975) 16 25.
- [3] H. Q. Dinh and D. V. Huynh, Some results on self injective rings and ∑ −CS rings, Comm. Algebra, **31** (2003), 6063 - 6077.
- [4] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, *Extending Modules*, Pitman, London, 1994.
- [5] C. Faith, Algebra II, Springer Verlag, 1976.
- [6] A. Harmanci and P. F. Smith, Finite direct sum of CS module, Houston J. Math., 19 (1993), 523 - 532.
- [7] D. V. Huynh and S. T. Rizvi, On countably sigma -CS rings, Algebra and its applications, Narosa publishing house, New Delhi, Chennai, Mumbai, Kolkata, (2001), 119 - 128.
- [8] D. V. Huynh, D. D. Tai and L. V. An, On the CS condition and rings with chain conditions, AMS. Contem. Math. Series, 480 (2009), 241 - 248.
- [9] M. A. Kamal, On the decomposition and direct sums of modules, Osaka J. Math., 32 (1995), 125 - 133.
- [10] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series 147, Cambridge Univ. Press, 1990.
- [11] P. F. Smith, Modules for which ever submodule has a unique closure, in Ring Theory (Editors, S. K. Jain, S. T. Rizvi, World Scientific, Singapore, 1993), 303 - 313.

LE VAN AN DEPARTMENT OF NATURAL EDUCATION, HA TINH UNIVERSITY, HA TINH, VIETNAM *e-mail address*: an.levan@htu.edu.vn, levanan_na@yahoo.com

> NGUYEN THI HAI ANH DEPARTMENT OF NATURAL EDUCATION, HA TINH UNIVERSITY, HA TINH, VIETNAM *e-mail address*: anh.nguyenthihai@htu.edu.vn

NGO SY TUNG DEPARTMENT OF MATHEMATICS, VINH UNIVERSITY, NGHE AN, VIETNAM *e-mail address*: ngositung@yahoo.com

> (Received June 20, 2013) (Accepted June 18, 2015)