Math. J. Okayama Univ. 59 (2017), 141-147

ON THE ($1-C_{2}$) CONDITION

Le Van An, Nguyen Thi Hai Anh and Ngo Sy Tung

Abstract. In this paper, we give some results on $\left(1-C_{2}\right)$-modules and 1 -continuous modules.

1. Introduction

All rings are associated with identity, and all modules are unital right modules. By $M_{R},\left({ }_{R} M\right)$ we indicate that M is a right (left) module over a ring R. The Jacobson radical, the uniform dimension and the endomorphism ring of M are denoted by $J(M), u-\operatorname{dim}(M)$ and $\operatorname{End}(M)$, respectively. For a module M (over a ring R), we consider the following conditions:
$\left(1-C_{1}\right)$ Every uniform submodule of M is essential in a direct summand of M.
$\left(C_{1}\right)$ Every submodule of M is essential in a direct summand of M.
$\left(C_{2}\right)$ Every submodule isomorphic to a direct summand of M is itself a direct summand of M.
$\left(C_{3}\right)$ For any direct summands A, B of M with $A \cap B=0, A \oplus B$ is also a direct summand of M.

A module M is defined to be a $\left(1-C_{1}\right)$-module if it satisfies the condition $\left(1-C_{1}\right)$. If M satisfies $\left(C_{1}\right)$, then M is said to be a $C S$-module (or an extending module). M is defined to be a continuous module if it satisfies the conditions $\left(C_{1}\right)$ and $\left(C_{2}\right)$. If M satisfies $\left(C_{1}\right)$ and $\left(C_{3}\right)$, then M is said to be a quasi - continuous module. We call a module M a $\left(C_{2}\right)$ - module if it satisfies the condition $\left(C_{2}\right)$. We have the following implications:

Injective \Rightarrow quasi -injective \Rightarrow continuous \Rightarrow quasi - continuous $\Rightarrow \mathrm{CS}$ $\Rightarrow\left(1-C_{1}\right)$,

$$
\text { and }\left(C_{2}\right) \Rightarrow\left(C_{3}\right)
$$

For a set A and a module $M, M^{(A)}$ denotes the direct sum of $|A|$ copies of M. A module M is called a (countably) \sum-quasi - injective if $M^{(A)}$ (resp. $M^{(\mathbb{N})}$) is a quasi - injective - module for every set A (note that \mathbb{N} denotes the set of all natural numbers). Similarly, a module M is called a (countably) $\sum-\left(1-C_{1}\right)$ if $M^{(A)}$ (resp. $M^{(\mathbb{N})}$) is a $\left(1-C_{1}\right)$-module for every set A.

[^0]In Section 2, we give several properties on the ($1-C_{2}$)-modules, (strongly) 1 -continuous modules, and discuss the question of when a 1 -continuous module is continuous $\left(\left(1-C_{2}\right)\right.$ - module is $\left(C_{2}\right)$-module)?

2. $\left(1-C_{2}\right)$ CONDITION

In this section, we consider the following condition for a module M.
$\left(1-C_{2}\right)$ Every uniform submodule isomorphic to a direct summand of M is itself a direct summand of M.

A module M is defined to be a $\left(1-C_{2}\right)$-module if it satisfies the condition $\left(1-C_{2}\right)$. If M satisfies $\left(1-C_{1}\right)$ and $\left(1-C_{2}\right)$ conditions, then M is said to be a 1 -continuouis module. M is defined to be a strongly 1 -continuous module if it satisfies the conditions $\left(C_{1}\right)$ and $\left(1-C_{2}\right)$. A ring R is called a right (left) 1 -continuous ring if R_{R} (resp. ${ }_{R} R$) is a 1 -continuous module. We have the following implications:

$$
\begin{aligned}
\text { Continuous } \Rightarrow & \text { strongly } 1-\text { continuous } \Rightarrow 1 \text {-continuous, } \\
& \text { and }\left(C_{2}\right) \Rightarrow\left(1-C_{2}\right) .
\end{aligned}
$$

Remark 2.1. By [4, Corollary 7.8], let M be a right R-module with finite uniform dimension, M is a $\left(1-C_{1}\right)$ - module if and only if M is CS. Therefore, M has finite uniform dimension then M is a 1 -continuous module if and only if M is strongly 1 -continuous. In general, if M satisfies the condition $\left(1-C_{2}\right), M$ may not satisfy the condition $\left(C_{2}\right)$. By the definitions ($1-C_{2}$)-module, 1 -continuous module and strongly 1 -continuous module, we have:
Lemma 2.2. Let M be a right R-module and N is a direct summand of M. If M is a $\left(1-C_{2}\right)$-module ($1-$ continuous, strongly 1 -continuous) then N is also ($1-C_{2}$)-module (resp. 1 -continuous, strongly 1 -continuous).
Theorem 2.3. Let $U=\oplus_{i=1}^{n} U_{i}$ where each U_{i} is a uniform module, then the following conditions are equivalent:
(i) U is a $\left(C_{2}\right)$-module;
(ii) U is a $\left(1-C_{2}\right)$-module and U satisfies the condition $\left(C_{3}\right)$.

Proof. (i) \Longrightarrow (ii). It is obvious
(ii) \Longrightarrow (i). We show that U is a $\left(C_{2}\right)$-module, i.e., for two submodules X, Y of U, with $X \cong Y$ and Y is a direct summand of U, X is also a direct summand of U. Note that Y is a closed submodule of M, there is a subset F of $\{1, . ., n\}$ such that $Y \oplus\left(\oplus_{i \in F} U_{i}\right)$ is an essential submodule of U. But $Y, \oplus_{i \in F} U_{i}$ are direct summands of U and U satisfies the condition $\left(C_{3}\right)$, we imply $Y \oplus\left(\oplus_{i \in F} U_{i}\right)=U$. If $F=\{1, . ., n\}$ then $X=Y=0$, as desired.

If $F \neq\{1, . ., n\}$ and set $J=\{1, . ., n\} \backslash F$, then $U=Y \oplus\left(\oplus_{i \in F} U_{i}\right)=$ $\left(\oplus_{i \in J} U_{i}\right) \oplus\left(\oplus_{i \in F} U_{i}\right)$. Hence, $X \cong Y \cong U / \oplus_{i \in F} U_{i} \cong \oplus_{i \in J} U_{i}=Z$. Suppose that $J=\{1, . ., k\}$ with $1 \leq k \leq n$, i.e., $Z=U_{1} \oplus . . \oplus U_{k}$. Let $\varphi: Z \longrightarrow X$, and set $X_{i}=\varphi\left(U_{i}\right)$ then $X_{i} \cong U_{i}$ for any $i=1, . ., k$. We imply $X=\varphi(Z)=$
$\varphi\left(U_{1} \oplus . . \oplus U_{k}\right)=\varphi\left(U_{1}\right) \oplus . . \oplus \varphi\left(U_{k}\right)=X_{1} \oplus . . \oplus X_{k}$. By X_{i} is a uniform submodule of $U, X_{i} \cong U_{i}$ with U_{i} is a direct summand of U and U is a $\left(1-C_{2}\right)$-module, X_{i} is also a direct summand of U for any $i=1, . ., k$. But U satisfies the condition $\left(C_{3}\right), X=X_{1} \oplus . . \oplus X_{k}$ is a direct summand of U. Hence U is a $\left(C_{2}\right)$-module, proving (i).

Theorem 2.4. Let $U=\oplus_{i=1}^{n} U_{i}$ where each U_{i} is a uniform module, then the following conditions are equivalent:
(i) U is a continuous module;
(ii) U is a 1-continuous module.

Proof. (i) \Longrightarrow (ii). It is obvious.
(ii) \Longrightarrow (i). We show that $S=\operatorname{End}\left(U_{i}\right)$ is a local ring for any $i=1, . ., n$. We first prove a claim that U_{i} does not embed in a proper submodule of U_{i}. Let $f: U_{i} \longrightarrow U_{i}$ be a monomorphism with $f\left(U_{i}\right)$ is a proper submodule of U_{i}. Set $f\left(U_{i}\right)=V$, then $V \neq 0$, proper submodule of U_{i} and $V \cong U_{i}$. By hypothesis, U_{i} is a $\left(1-C_{2}\right)$-module, and hence V is a direct summand of U_{i}, i.e., U_{i} is not uniform module, a contradiction. Therefore, U_{i} does not embed in a proper submodule of U_{i}.

Let $g \in S$ and suppose that g is not an isomorphism. It suffices to show that $1-g$ is an isomorphism. Note that, g is not a monomorphism. Then, since $\operatorname{Keg}(g)$ is a nonzero submodule, it is essential in the uniform module U_{i}. We always have $\operatorname{Keg}(g) \cap \operatorname{Keg}(1-g)=0$, it follows that $\operatorname{Ker}(1-g)=0$, i.e. $1-g$ is a monomorphism. But U_{i} does not embed in a proper submodule of $U_{i}, 1-g$ must be onto, and so $1-g$ is an isomorphism, as required.

Let $U_{i j}=U_{i} \oplus U_{j}$ with $i, j \in\{1, . ., n\}$ and $i \neq j$. We show that $U_{i j}$ satisfies the condition $\left(C_{3}\right)$, i.e., for two direct summands S_{1}, S_{2} of $U_{i j}$ with $S_{1} \cap S_{2}=0, S_{1} \oplus S_{2}$ is also a direct summand of $U_{i j}$. Note that, since $u-\operatorname{dim}\left(U_{i j}\right)=2$, the following cases are trivial:

1) Either one of the S_{i}^{\prime} has uniform dimension 2, consequently the other S_{i} is zero, or
2) One of the S_{i}^{\prime} is zero

Hence we consider the case that both S_{1}, S_{2} are uniform. We prove that U_{i} does not embed in a proper submodule of U_{j}. Let $h: U_{i} \longrightarrow U_{j}$ be a monomorphism with $h\left(U_{i}\right)$ is a proper submodule of U_{j}. Set $h\left(U_{i}\right)=L$, then $L \neq 0$, proper submodule of U_{j} and $L \cong U_{i}$. By hypothesis, U is a ($1-$ C_{2})-module and $U_{i j}$ is a direct summand of $U, U_{i j}$ is also $\left(1-C_{2}\right)$-module. Note that L is a uniform submodule of $U_{i j}$ and $L \cong U_{i}$ with U_{i} is a direct summanmd of $U_{i j}, L$ is also direct summand of $U_{i j}$. Set $U_{i j}=L \oplus L^{\prime}$, then by modularity we get $U_{j}=L \oplus L^{\prime \prime}$ with $L^{\prime \prime}=U_{j} \cap L^{\prime}$. Note that $L^{\prime \prime}$ is also proper submodule of U_{j} and $L^{\prime \prime} \neq 0$, hence U_{j} is not uniform module, a contradiction. Therefore U_{i} does not embed in a proper submodule of U_{j}.

Similary, U_{j} does not embed in a proper submodule of U_{i}. Note that, U_{i} (and U_{j}) does not embed in a proper submodule of U_{i} (resp. U_{j}).

Note that, $\operatorname{End}\left(U_{i}\right)$ and $\operatorname{End}\left(U_{j}\right)$ are local rings, by Azumaya's Lemma ($[1,12.6,12.7]$), we have $U_{i j}=S_{2} \oplus K=S_{2} \oplus U_{i}$ or $S_{2} \oplus K=S_{2} \oplus U_{j}$. Since i and j can interchange with each other, we need only consider one of the two possibilities. Let us consider the case $U_{i j}=S_{2} \oplus K=S_{2} \oplus U_{i}=U_{i} \oplus U_{j}$. Then it follows $S_{2} \cong U_{j}$. Write $U_{i j}=S_{1} \oplus H=S_{1} \oplus U_{i}$ or $S_{1} \oplus H=S_{1} \oplus U_{j}$.

If $U_{i j}=S_{1} \oplus H=S_{1} \oplus U_{i}$, then by modularity we get $S_{1} \oplus S_{2}=S_{1} \oplus W$ where $W=\left(S_{1} \oplus S_{2}\right) \cap U_{i}$. From here we get $W \cong S_{2}$, this means U_{i} contains a copy of $S_{2} \cong U_{j}$. By U_{j} does not embed in a proper submodule of U_{i}, we must have $W=U_{i}$, and hence $S_{1} \oplus S_{2}=U_{i} \oplus U_{j}=U_{i j}$.

If $U_{i j}=S_{1} \oplus H=S_{1} \oplus U_{j}$, then by modularity we get $S_{1} \oplus S_{2}=S_{1} \oplus W^{\prime}$ where $W^{\prime}=\left(S_{1} \oplus S_{2}\right) \cap U_{j}$. From here we get $W^{\prime} \cong S_{2}$, this means U_{j} contains a copy of $S_{2} \cong U_{j}$. By U_{j} does not embed in a proper submodule of U_{j}, we must have $W^{\prime}=U_{j}$, and hence $S_{1} \oplus S_{2}=U_{i j}$.

Thus $U_{i j}$ satisfies $\left(C_{3}\right)$. Note that, $U_{i j}$ is a direct summand of U and U is a CS -module (by U has finite dimension and U is a ($1-C_{1}$)-module, thus U is CS -module), $U_{i j}$ is also CS -module, and hence $U_{i j}$ is a quasi -continuous module for any $i, j \in\{1, . ., n\}$ and $i \neq j$.

Now, by [6, Corollary 11], thus U is a quasi -continuous module. By Theorem 2.3, U is a continuous module, proving (i).

Corollary 2.5. Let $U=\oplus_{i=1}^{n} U_{i}$ where each U_{i} is a uniform module, then the following conditions are equivalent:
(i) U is a \sum-quasi - injective module;
(ii) U is a 1-continuous module, countably $\sum-\left(1-C_{1}\right)$-module. Proof. (i) \Longrightarrow (ii). It is obvious.
(ii) \Longrightarrow (i). By Theorem 2.4, U is a continuous module. By [7, Proposition 2.5], U is a \sum-quasi -injective module, proving (i).

A right R-module M is called distributive if for any submodule A, B, C of M then $A \cap(B+C)=A \cap B+A \cap C$. We say that, M is a $U C$ - module if each of its submodule has a unique closure in M.
Theorem 2.6. Let $U=\oplus_{i=1}^{n} U_{i}$ where each U_{i} is a uniform module. Assume that U is a distributive module, then the following conditions are equivalent:
(i) U is a $\left(C_{2}\right)$-module;
(ii) U is a $\left(1-C_{2}\right)$-module.

Proof. (i) \Longrightarrow (ii). It is obvious.
(ii) \Longrightarrow (i). Similar proof of Theorem $2.4, U_{i}$ does not embed in a proper submodule of U_{j} for any $i, j \in\{1, . ., n\}$ and $S=\operatorname{End}\left(U_{i}\right)$ is a uniform module for any $i \in\{1, . ., n\}$. We first prove a claim that, if S_{1} and S_{2} are direct summands of U with $u-\operatorname{dim}\left(S_{1}\right)=1, u-\operatorname{dim}\left(S_{2}\right)=n-1$
and $S_{1} \cap S_{2}=0$, then $S_{1} \oplus S_{2}=U$. By Azumaya's Lemma, we have $U=S_{2} \oplus K=S_{2} \oplus U_{i}$. Suppose that $i=1$, i.e., $U=S_{2} \oplus U_{1}=\left(\oplus_{i=2}^{n} U_{i}\right) \oplus U_{1}$.

Write $U=S_{1} \oplus H=S_{1} \oplus\left(\oplus_{i \in I} U_{i}\right)$ with I being a subset of $\{1, . ., n\}$ and $\operatorname{card}(I)=n-1$. There are cases:

Case 1. If $1 \notin I, U=S_{1} \oplus\left(U_{2} \oplus . . \oplus U_{n}\right)=U_{1} \oplus\left(U_{2} \oplus . . \oplus U_{n}\right)$. Then it follows from $S_{1} \cong U_{1}$. By modularity we get $S_{1} \oplus S_{2}=S_{2} \oplus V$ where $V=\left(S_{1} \oplus S_{2}\right) \cap U_{1}$. From here we get $V \cong S_{1}$, this means U_{1} contains a copy of $S_{1} \cong U_{1}$. By U_{1} does not embed in a proper submodule of U_{1}, we must have $V=U_{1}$, and hence $S_{1} \oplus S_{2}=S_{2} \oplus U_{1}=U$.

Case 2. If $1 \in I$, there exist $k \neq 1$ such that $k=\{1, . ., n\} \backslash I, U=$ $S_{1} \oplus\left(\oplus_{i \in I} U_{i}\right)=U_{k} \oplus\left(\oplus_{i \in I} U_{i}\right)$. Then it follows $S_{1} \cong U_{k}$. By modularity we get $S_{1} \oplus S_{2}=S_{2} \oplus V^{\prime}$ where $V^{\prime}=\left(S_{1} \oplus S_{2}\right) \cap U_{1}$. From here we get $V^{\prime} \cong S_{1}$, this means U_{1} contains a copy of $S_{1} \cong U_{k}$. By U_{k} does not embed in a proper submodule of U_{1}, we must have $V^{\prime}=U_{1}$, and hence $S_{1} \oplus S_{2}=U$, as required.

We aim show next that U satisfies the condition $\left(C_{3}\right)$, i.e., for two direct summands of X_{1}, X_{2} of U with $X_{1} \cap X_{2}=0, X_{1} \oplus X_{2}$ is also direct summand of U. By Azumaya's Lemma, we have $U=X_{1} \oplus K=X_{1} \oplus\left(\oplus_{i \in J} U_{i}\right)=$ $\left(\oplus_{i \in F} U_{i}\right) \oplus\left(\oplus_{i \in J} U_{i}\right)$ (where $\left.F=\{1, . ., n\} \backslash J\right)$ and $U=X_{2} \oplus L=X_{2} \oplus$ $\left(\oplus_{j \in D} U_{j}\right)=\left(\oplus_{j \in E} U_{j}\right) \oplus\left(\oplus_{j \in D} U_{j}\right)$ (where $\left.E=\{1, . ., n\} \backslash D\right)$. We imply $X_{1} \cong \oplus_{i \in F} U_{i}$ and $X_{2} \cong \oplus_{j \in E} U_{j}$. Suppose that $E=\{1, . ., t\}$ and let φ : $\oplus_{j=1}^{t} U_{j} \longrightarrow X_{2}$ be an isomorphism and set $Y_{j}=\varphi\left(U_{j}\right)$, we have $Y_{j} \cong U_{j}$ and $X_{2}=\oplus_{j=1}^{t} Y_{j}$. By hypothesis X_{2} is a direct summand of U, thus Y_{j} is also direct summand of U for any $j \in\{1, . ., t\}$. We show that $X_{1} \oplus X_{2}=$ $X_{1} \oplus\left(Y_{1} \oplus . . \oplus Y_{t}\right)$ is a direct summand of U.

We prove that $X_{1} \oplus Y_{1}$ is a direct summand of U. By Azumaya's Lemma, we have $U=Y_{1} \oplus W=Y_{1} \oplus\left(\oplus_{p \in P} U_{p}\right)=U_{\alpha} \oplus\left(\oplus_{p \in P} U_{p}\right)$, with P is a subset of $\{1, . ., n\}$ such that $\operatorname{card}(P)=n-1$ and $\alpha=\{1, . ., n\} \backslash P$. Note that, $\operatorname{card}(P \cap J) \geq \operatorname{card}(J)-1=m$. Suppose that $\{1, . ., m\} \subseteq(P \cap J)$, i.e., $U=\left(X_{1} \oplus\left(U_{1} \oplus . . \oplus U_{m}\right)\right) \oplus U_{\beta}=Z \oplus U_{\beta}$ with $\beta=J \backslash\{1, . ., m\}$ and $Z=X_{1} \oplus\left(U_{1} \oplus . . \oplus U_{m}\right)$. By U is a distributive module, we have $Z \cap Y_{1}=\left(X_{1} \oplus\left(U_{1} \oplus . . \oplus U_{m}\right)\right) \cap Y_{1}=\left(X_{1} \cap Y_{1}\right) \oplus\left(\left(U_{1} \oplus . . \oplus U_{m}\right) \cap Y_{1}\right)=0$. Note that, Z, Y_{1} are direct summands of U with $u-\operatorname{dim}(Z)=n-1$ and $u-\operatorname{dim}\left(Y_{1}\right)=1, U=Z \oplus Y_{1}=\left(X_{1} \oplus\left(U_{1} \oplus . . \oplus U_{m}\right)\right) \oplus Y_{1}=\left(X_{1} \oplus Y_{1}\right) \oplus$ $\left(U_{1} \oplus . . \oplus U_{m}\right)$. Therefore, $X_{1} \oplus Y_{1}$ is a direct summand of U. By induction, we have $X_{1} \oplus X_{2}=X_{1} \oplus\left(Y_{1} \oplus . . \oplus Y_{t}\right)=\left(X_{1} \oplus Y_{1} \oplus . . \oplus Y_{t-1}\right) \oplus Y_{t}$ is a direct summand of U. Thus U satisfies the condition $\left(C_{3}\right)$.

Finally, we show that U satisfies the condition $\left(C_{2}\right)$. By hypothesis (ii) and U satisfies $\left(C_{3}\right)$, thus U is a ($1-C_{2}$) -module (see Theorem 2.3), proving (i).

Theorem 2.7. Let $U_{1}, . ., U_{n}$ be uniform local modules such that U_{i} does not embed in $J\left(U_{j}\right)$ for any $i, j=1, . ., n$. If $U=\oplus_{i=1}^{n} U_{i}$ is a $U C$ distributive module then it is a continuous module.
Proof. We first prove a claim that U is a CS module. Let A be a uniform closed submodule of U. Let the $X_{i}=A \cap U_{i}$ for any $i \in\{1, . ., n\}$. Suppose that $X_{i}=0$ for every $i \in\{1, . ., n\}$. By hypothesis, U is a distributive module, we have $A=A \cap\left(U_{1} \oplus . . \oplus U_{n}\right)=X_{1} \oplus . . \oplus X_{n}=0$, a contradiction. Therefore, there exists a $X_{t} \neq 0$, i.e., $A \cap U_{t} \neq 0$. By property A and U_{t} are closed uniform submodules of U, thus X_{t} is an essential submodule of A and X_{t} is also essential submodule of U_{t}. Hence A and U_{t} are closure of X_{t} in U, U is an UC module we get $A=U_{t}$. This implies that A is a direct summand of U, i.e., U is a $\left(1-C_{1}\right)-$ module. By U has finite dimension, U is CS module (see [4, Corollary 7.8]), as required.

We aim to show next that $S=\operatorname{End}\left(U_{l}\right)$ is a local ring for any $l \in\{1, . ., n\}$. Let $f \in S$ and suppose that f is not an isomorphism. It suffices to show that $1-f$ is an isomorphism.

Suppose that, f is a monomorphism. Then f is not onto, and $f: U_{l} \longrightarrow$ $J\left(U_{l}\right)$ is an embedding, a contradiction. Thus f is not a monomorphism. Then, since $\operatorname{Ker}(f)$ is a nonzero submodule, it is essential in the uniform local module U_{l}. Thus, since we always have $\operatorname{Ker}(f) \cap \operatorname{Ker}(1-f)=0$, it follows that $\operatorname{Ker}(1-f)=0$, i.e., $1-f$ is a monomorphism. But, since U_{l} does not embed in $J\left(U_{l}\right), 1-f$ must be onto, and so $1-f$ is an isomorphism. Thus, S is a local ring.

Now, we show that U is a $\left(1-C_{2}\right)-$ module, i.e., for two uniform submodules V, W of U, with $V \cong W$ and W is a direct summand of U, V is also a direct summand of U. By Azumaya's Lemma, we have $U=W \oplus W^{\prime}=$ $W \oplus\left(\oplus_{j \in J} U_{j}\right)=U_{k} \oplus\left(\oplus_{j \in J} U_{j}\right)$ where J is a subset of $\{1, . ., n\}$ with $\operatorname{card}(J)=n-1$ and $k=\{1, . ., n\} \backslash J$. Hence $V \cong W \cong U_{k}$. Let V^{*} be a closure of V in U. By U is a CS module, thus V^{*} is a direct summand of U. Similarly, there exists $s \in\{1, . ., n\}$ such that $V^{*}=U_{s}$, this means U_{s} contains a copy of $W \cong U_{k}$. If V is a proper submodule of U_{s}, then U_{k} embed in $J\left(U_{s}\right)$, a contradiction. We must have $V=U_{s}$, and hence V is a direct summand of U. Thus, U is a $\left(1-C_{2}\right)$-module, i.e., U is a 1 -continuous module (by U is a CS module).

Finally, by Theorem 2.4 thus U is a continuous module.
Corollary 2.8. Let $U_{1}, . ., U_{n}$ be uniform local modules such that U_{i} does not embed in $J\left(U_{j}\right)$ for any $i, j=1, . . n$. If $U=\oplus_{i=1}^{n} U_{i}$ is a $U C$, distributive module then the following conditions are equivalent:
(i) U is a \sum-quasi-injective module;
(ii) U is a countably $\sum-\left(1-C_{1}\right)$-module.

Proof. (i) \Longrightarrow (ii). It is obvious.
(ii) \Longrightarrow (i). By Theorem 2.7, U is a continuous module. By [7, Proposition 2.5], U is a \sum-quasi -injective module, proving (i).

Acknowledgement

We would like thank the referee for carefully reading this note and for many useful comments

References

[1] F. W. Anderson and K. R. Fuller, Ring and Categories of Modules, Springer - Verlag, New York - Heidelberg - Berlin, 1974.
[2] V. Camilo, Distributive modules, J. Algebra, 36 (1975) 16-25.
[3] H. Q. Dinh and D. V. Huynh, Some results on self - injective rings and $\sum-C S$ rings, Comm. Algebra, 31 (2003), 6063-6077.
[4] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman, London, 1994.
[5] C. Faith, Algebra II, Springer - Verlag, 1976.
[6] A. Harmanci and P. F. Smith,Finite direct sum of CS - module, Houston J. Math., 19 (1993), 523-532.
[7] D. V. Huynh and S. T. Rizvi, On countably sigma -CS rings, Algebra and its applications, Narosa publishing house, New Delhi, Chennai, Mumbai, Kolkata, (2001), 119-128.
[8] D. V. Huynh, D. D. Tai and L. V. An, On the CS condition and rings with chain conditions, AMS. Contem. Math. Series, 480 (2009), 241-248.
[9] M. A. Kamal, On the decomposition and direct sums of modules, Osaka J. Math., 32 (1995), 125-133.
[10] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series 147, Cambridge Univ. Press, 1990.
[11] P. F. Smith, Modules for which ever submodule has a unique closure, in Ring Theory (Editors, S. K. Jain, S. T. Rizvi, World Scientific, Singapore, 1993), 303-313.

Le Van An
Department of Natural Education, Ha Tinh University, Ha Tinh, Vietnam
e-mail address: an.levan@htu.edu.vn, levanan_na@yahoo.com
Nguyen Thi Hai Anh
Department of Natural Education, Ha Tinh University, Ha Tinh, Vietnam
e-mail address: anh.nguyenthihai@htu.edu.vn
Ngo Sy Tung
Department of Mathematics, Vinh University, Nghe An, Vietnam
e-mail address: ngositung@yahoo.com
(Received June 20, 2013)
(Accepted June 18, 2015)

[^0]: Mathematics Subject Classification. Primary 16D50; Secondary 16P20.
 Key words and phrases. injective module, continuous module, uniform module, UC module, distributive module.

