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A NOTE ON BALANCE EQUATIONS FOR DOUBLY

PERIODIC MINIMAL SURFACES

Peter Connor

Abstract. Most known examples of doubly periodic minimal surfaces
in R3 with parallel ends limit as a foliation of R3 by horizontal noded
planes, with the location of the nodes satisfying a set of balance equa-
tions. Conversely, for each set of points providing a balanced configu-
ration, there is a corresponding three-parameter family of doubly pe-
riodic minimal surfaces. In this note we derive a differential equation
that is equivalent to the balance equations for doubly periodic minimal
surfaces. This allows for the generation of many more solutions to the
balance equations, enabling the construction of increasingly complicated
surfaces.

1. Introduction

Many doubly periodic minimal surfaces in R3 with parallel ends limit as
a foliation of parallel planes connected by tiny catenoid necks that shrink to
nodes at the limit. This was the case with the first examples of genus one
constructed by Karcher [3] and Meeks and Rosenberg [4], and of genus two
constructed by Wei [7]. It was also the case with the surfaces constructed in
[2], in which the author and Weber proved that for any genus g ≥ 1 and any
even number N ≥ 2 there are three-parameter families of embedded doubly
periodic minimal surfaces of genus g and 2N parallel ends. Each family of
surfaces is constructed in a neighborhood of a noded limit. Given a set of
points in the complex plane that satisfy a set of balance equations, theorem
2.1 in [2] provides a three-parameter family of surfaces that geometrically
look like parallel planes connected by periodically placed catenoid necks,
with the location of the necks given by the solutions to the balance equations.
See figure 1.1.

Solving the balance equations proved difficult due to the fact that there
are many equivalent solutions by permuting the locations of the nodes at a
given level. Employing techniques used by Traizet in [5, 6] to find balance
configurations for minimal surfaces with finite total curvature, the balance
equations can be combined into a differential equation that mitigates this
difficulty. This note demonstrates how to do so with the doubly periodic
balance equations.
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Figure 1.1. Two views of a genus 8 doubly periodic mini-
mal surface

In section 2, we discuss forces, balance equations, and the known balanced
configurations for doubly periodic minimal surfaces. In section 3, we prove
that the balance equations are equivalent to a second order differential equa-
tion. In section 4, we examine configurations of type (2, n). In section 5,
we examine configurations of type (3, 4), which is the smallest configuration
with no non-trivial symmetries.

2. Forces and Balance Equations

A doubly periodic minimal surface M in R3 is invariant under two lin-
early independent translations given by a two dimensional lattice Λ. There
is a corresponding minimal surface M̃ in the quotient space R3/Λ, from
which one can recover M . Assume that the generators of Λ are the vec-
tor (0, 2π, 0) and a non-horizontal vector and that the ends of the surface
have vertical limiting normal. Then, each level of the quotient surface has
domain C/(2πiZ). For convenience of calculations, this is identified with
C∗ = C− {0} via the exponential map.

Consider N copies of C∗, labeled C∗k for k = 1, . . . , N , which correspond
to the different levels of the surface. The ends of the surface are placed at
0k = 0 and ∞k = ∞ in Ck. On each C∗k, place nk points pk,1, . . . , pk,nk

.
Extend this definition of pk,i for any integer k by making it periodic in the
sense that pk+N,i = pk,i for k = 1, . . . , N and i = 1, . . . , nk, with nk+N = nk.
Each point p̃k,i = log pk,i corresponds to the location of a catenoid shaped
neck between the k − 1 an k levels of the surface.

Given a family of doubly periodic minimal surfaces that limits as a fo-
liation of noded planes, the location of the nodes must satisfy a balancing
condition given in terms of the following force equations.
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Definition 2.1. The force exerted on pk,i by the other points in {pk,i} is
defined by

Fk,i :=
∑

j 6=i

pk,i + pk,j
n2k(pk,i − pk,j)

−
nk+1∑

j=1

pk,i + pk+1,j

2nknk+1 (pk,i − pk+1,j)

−
nk−1∑

j=1

pk,i + pk−1,j
2nknk−1 (pk,i − pk−1,j)

.

The equations Fk,i = 0 are referred to as balance equations.

Definition 2.2. The configuration {pk,i} is called a balanced configuration
if Fk,i = 0 for k = 1, . . . , N and i = 1, . . . , nk. It is a balanced configuration
of type (n1, n2, . . . , nN ).

Definition 2.3. A configuration {pk,i} is said to be non-degenerate if the

Jacobian matrix ∂Fk,i/∂pj,h has complex rank m− 1, where m =

N∑

k=1

nk.

The Jacobian matrix can’t have full rank 2m because
N∑

k=1

nk∑

i=1

Fk,i = 0.

This holds whether or not the configuration {pk,i} is balanced.
Theorem 2.1 from [2] states that, given a non-degenerate balanced con-

figuration {pk,i}, there exists a three-parameter family of embedded doubly
periodic minimal surfaces that limit as a foliation of R3 by horizontal noded
planes. Each quotient surface has genus

g = 1 +
N∑

k=1

(nk − 1)

and 2N ends asymptotic to flat cylinders, two at each of the N levels. There
are nk catenoid necks joining the k − 1 and k levels, with the horizontal
position of the necks given by the terms p̃k,i = log pk,i, i = 1, 2, . . . , nk.

When the surfaces are viewed in R3, there are infinitely many levels, with
the height of level N + k equal to the sum of the heights of level N and
level k. Also, there are infinitely many periodically placed necks between
successive levels, with the horizontal locations p̃k,i of the necks periodic with
respect to the translation vector (0, 2π, 0).

Theorem 2.1 was proven by constructing the Weierstrass representation
for the desired surfaces in a neighborhood of a noded limit and solving the
period problem on the noded limit. Part of solving the period problem is
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having a balanced configuration. The configuration being non-degenerate
allows the use of the implicit function theorem to solve the period problem
in an open neighborhood of the noded limit.

In [2], non-degenerate balanced configurations were shown to exist when
N = 2, n1 = 1, and n2 = n for any n ∈ N. On each quotient surface, this
data corresponds to two levels, each with two Scherk ends. Between the
levels, there are catenoid necks. From level one to level two, there are n
necks. From level two to level three (level one in the quotient), there is one
neck. We refer to these as (1, n) configurations, designating two levels with 1
and n necks between successive levels. The surface in figure 1.1 corresponds
to a (1, 8) balanced configuration.

For each n ∈ N there is only one (1, n) balanced configuration. The
location of the nodes are p1,1 and p2,k, k = 1, 2, . . . , n, with p1,1 = 1 and the
p2,k corresponding to roots of the polynomial

pn(z) =

n∑

k=0

(
n

k

)2

zk.

It was also proven that sequences of this type of configuration can be
concatenated to produce a new non-degenerate balanced configuration. If
there exist non-degenerate balanced configurations of type (1, nj) for j =
1, 2, . . . ,m then they can be combined to create a non-degenerate balanced
configuration of type (1, n1, 1, n2, . . . , 1, nm), with corresponding embedded,
doubly periodic minimal surface with 2m levels and the number of necks
between successive levels alternating between 1 and the integers nj .

Two (2, 3) balanced configurations were discovered, which led to the ques-
tion of whether there are always balanced configurations of the form (m,n)
with 1 ≤ m ≤ n. Numerical evidence indicates that the number of balanced
configurations of a fixed type (m,n) increases as m increases. The locations
of the necks of the surface in figure 2.1 are given by one of the seven balanced
configurations of type (2, 13).

3. An alternative to the balance equations

The balance equations corresponding to more complicated configurations
such as those of type (n1, n2) with 1 < n1 < n2 are very difficult to solve
algebraically. In [5, 6], Traizet combined a set of balance equations for min-
imal surfaces in R3 with finite total curvature into one differential equation.
One solution of the differential equation corresponds to many equivalent
balanced configurations by permutation of the nodes at each level, and so it
is much easier to find balanced configurations by solving the corresponding
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Figure 2.1. Surface corresponding to a (2, 13) balanced
configuration

differential equation. We use Traizet’s method to find a differential equa-
tion corresponding to the balance equations for doubly periodic minimal
surfaces.

Theorem 3.1. Let N be an even positive integer, n1, n2, . . . , nN ∈ N, and
suppose {pk,i} is a configuration such that the pk,i are distinct. Let

Pk(z) =

nk∏

i=1

(z − pk,i), P (z) =
N∏

k=1

Pk(z)

and

Q(z) =
N∑

k=1

(
zP ′′k (z)P (z)

n2kPk(z)
− zP ′k(z)P ′k+1(z)P (z)

nknk+1Pk(z)Pk+1(z)
+
P ′k(z)P (z)

n2kPk(z)

)
.

Then the configuration {pk,i} is balanced if and only if Q(z) ≡ 0.

Proof. An equivalent expression for the force Fk,i is given by

Fk,i =
2pk,i
n2k

∑

j 6=i

1

pk,i − pk,j
− pk,i
nknk+1

nk+1∑

j=1

1

pk,i − pk+1,j

− pk,i
nk−1nk

nk−1∑

j=1

1

pk,i − pk−1,j
+

1

n2k
.

Since the pk,i are distinct for each k,

P ′′k (pk,i)

P ′k(pk,i)
=
∑

j 6=i

2

pk,i − pk,j
,
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P ′k+1(pk,i)

Pk+1(pk,i)
=

nk+1∑

j=1

1

pk,i − pk+1,j
,

P ′k−1(pk,i)

Pk−1(pk,i)
=

nk−1∑

j=1

1

pk,i − pk−1,j
,

and the force equations can be rewritten in terms of the polynomials Pk:

Fk,i =
pk,iP

′′
k (pk,i)

n2kP
′
k(pk,i)

− pk,iP
′
k+1(pk,i)

nknk+1Pk+1(pk,i)
− pk,iP

′
k−1(pk,i)

nknk−1Pk−1(pk,i)
+

1

n2k

Substituting z for pk,i and multiplying by

P ′k(z)P (z)

Pk(z)

we get the polynomial

Qk(z) =
zP ′′k (z)P (z)

n2kPk(z)
− zP ′k(z)P ′k+1(z)P (z)

nknk+1Pk(z)Pk+1(z)

− zP ′k−1(z)P
′
k(z)P (z)

nknk−1Pk−1(z)Pk(z)
+
P ′k(z)P (z)

n2kPk(z)
,

and for each i = 1, 2, . . . , nk, Fk,i = 0 if and only if Qk(pk,i) = 0.
Then,

Q(z) =
N∑

k=1

(
zP ′′k (z)P (z)

n2kPk(z)
− zP ′k(z)P ′k+1(z)P (z)

nknk+1Pk(z)Pk+1(z)
+
P ′k(z)P (z)

n2kPk(z)

)

is a polynomial with degree less than m =
∑
nk, and Q(pk,i) = Qk(pk,i) for

i = 1, 2, . . . , nk and k = 1, 2, . . . , N .
If Q(z) ≡ 0 then Qk(pk,i) = 0 and Fk,i = 0 for i = 1, 2, . . . , nk and k =

1, 2, . . . , N , and so the configuration {pk,i} is balanced. If the configuration
{pk,i} is balanced then Q(pk,i) = Qk(pk,i) = Fk,i = 0. Thus, Q(z) has degree
less than m and at least m distinct roots, and so Q(z) ≡ 0. �

Note that if we re-express

Pk(z) =

nk∑

i=0

ak,iz
i

then the Q(z) ≡ 0 is a system of at most m− 1 equations with m variables
ak,i.
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3.1. Configurations of type (n1, n2). If N =2 then, after multiplying by
n21n

2
2,

Q(z) =n22zP
′′
1 (z)P2(z) + n21zP

′′
2 (z)P1(z)− 2n1n2zP

′
1(z)P

′
2(z)

+ n22P
′
1(z)P2(z) + n21P

′
2(z)P1(z).

With some extra assumptions, the non-degeneracy of configurations of
type (n1, n2) is guaranteed.

Proposition 3.2. If pk,i ∈ R with p1,i > 0 for i = 1, 2, . . . , n1 and p2,i < 0
for i = 1, 2, . . . , n2 then the configuration {pk,i} is non-degenerate.

Proof. If pk,i ∈ R with p1,i > 0 for i = 1, 2, . . . , n1 and p2,i < 0 for i =
1, 2, . . . , n2 then the Jacobian matrix ∂Fk,i/∂pj,h is a (n1 + n2)× (n1 + n2)
matrix, and it is easy to see that the submatrix obtained by removing the
last row and column is strongly diagonally dominant. Hence, the Jacobian
matrix has rank n1+n2−1, and the configuration pk,i is non-degenerate. �

Otherwise, the non-degeneracy of a given balanced configuration can be
checked on a case by case basis.

4. Configurations of type (2, n)

Consider the case when N = 2, n1 = 2, and n2 = n ≥ 2. After rescaling
and translating, we can assume that p1,2 = 1/p1,1. Then

P1(z) = (z − p1,1)(z − p1,2) = z2 − αz + 1,

P2(z) =

n∏

i=1

(z − p2,i) =

n∑

i=0

aiz
i,

and

Q(z) =4(z3 − αz2 + z)P ′′2 (z) + 4
(
(1− 2n)z2 + (αn− α)z + 1

)
P ′2(z)

+ n2(4z − α)P2(z).

Finding balanced (2, n) configurations corresponds to finding a α ∈ R
and polynomial P2(z) such that Q(z) ≡ 0 and the roots of P1(z)P2(z) are
distinct.

In this case, Q(z) is a polynomial of degree at most n+1. If we re-express

Q(z) =
n+1∑

i=0

biz
i

then
bk = 4ak−1 (k − n− 1)2 − αak(2k − n)2 + 4ak+1(k + 1)2

with ak = 0 for k > n.
We want Q(z) ≡ 0, which is the same as bk = 0 for 0 ≤ k ≤ n+ 1, and
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bn+1 = 0⇔ 4an(n+ 1− n− 1)2 = 0

and

bk = 0⇔ ak−1 =
αak(2k − n)2 − 4ak+1(k + 1)2

4(k − n− 1)2

for k = 1, 2, . . . , n. Starting with an = 1 and an−1 =
αn2

4
, we can recursively

define an−k for k = 1, 2, . . . , n. Each ak is a polynomial with respect to α of
degree at most n− k, call them ak = Ak(α).

Thus, {pk,i} provides a balanced (2, n) configuration if

P1P2(z) =
(
z2 − αz + 1

)
(

n∑

i=0

Ai(α)zi

)

has distinct roots. This can be checked on a case by case basis. Numerical
evidence suggests that for each n ∈ N there is one balanced configuration
of type (2, 2n + 1) with p1,1, p1,2 > 0 and p2,i < 0 for i = 1, 2, . . . , n. By
proposition 3.2, this configuration is non-degenerate. The non-degeneracy
of other examples can be checked on a case by case basis.

Note that the ODE
Q(z)

4(z3 − αz2 + z)
= 0

has 4 regular singularities at z = 0, p1,1, 1/p1,1, and∞. Therefore, this ODE
is the Heun equation.

Example 3.2 in [2] shows that the only non-degenerate (2, 2) balanced
configuration is equivalent to the non-degenerate (1, 1) balanced configura-
tion. The first examples of (2, n) balanced configurations are of type (2, 3),
which were discussed in example 3.3 in [2]. The remainder of this section
examines balanced configurations of type (2, n) for n = 4, 5, 6, 7.

Note that the Weierstrass data can be recovered from a balanced config-
uration using the techniques discussed in chapter 4 of [1] and section 3 of
[6]. These methods were used to produce the images in figures 1.1, 2.1, 4.3,
4.6, and 5.2.

4.1. (2,4) Balanced Configurations. If n = 4 then Q(z) ≡ 0 when

b4 = 0 ⇔ a3 = 4α

b3 = 0 ⇔ a2 = α2 − 4

b2 = 0 ⇔ a1 = −4α

b1 = 0 ⇔ a0 = −1

2
(α2 − 2)



BALANCE EQUATIONS FOR DOUBLY PERIODIC MINIMAL SURFACES 125

b0 = 0 ⇔ 1

8
α(α2 − 4) = 0,

and 1
8α(α2 − 4) = 0 has roots 0 and ±2. However, ±2 don’t work because

then P1(z) has repeated root z = 1 or z = −1. If α = 0 then

P1(z) = z2 + 1, P2(z) = z4 − 4z2 + 1.

Then P1(z) has roots ±i and P2(z) has roots ±
√

2−
√

3,±
√

2 +
√

3. Hence,
the nodes are located at

±π
2
i,

1

2
log(2 +

√
3),

1

2
log(2−

√
3),

1

2
log(2 +

√
3) + πi,

1

2
log(2−

√
3) + πi.

However, the (1, 2) configuration has p1,1 = 1, p2,1 = −2 +
√

3, and

p2,2 = −2−
√

3, with the location of the nodes

0, log(2 +
√

3) + πi, log(2−
√

3) + πi.

Thus, if we rescale the (2, 4) configuration by 2 and translate by πi, we get
the (1, 2) configuration. See figure 4.1.

(a) (2, 4) balanced configuration (b) (1, 2) balanced configuration

Figure 4.1. The circles and squares represent the nodes at
levels one and two, respectively.

4.2. (2,5) Balanced Configurations. If n = 5 then Q(z) ≡ 0 when

b5 = 0 ⇔ a4 =
25α

4

b4 = 0 ⇔ a3 =
25(9α2 − 16)

64

b3 = 0 ⇔ a2 =
25α(9α2 − 1040)

2304

b2 = 0 ⇔ a1 =
25(9α4 − 12704α2 + 20736)

147456

b1 = 0 ⇔ a0 =
α(81α4 − 123552α2 + 1251584)

589824



126 PETER CONNOR

b0 = 0 ⇔ 9α3 − 324α2 − 1040α+ 576 = 0 or

9α3 + 324α2 − 1040α− 576 = 0.

Because of the symmetries of the solutions, there are three balanced con-
figurations corresponding to the positive solutions to the b0 = 0 equation:
α ≈ 0.48233788, α ≈ 3.40867116, or α ≈ 38.92633327. See figures 4.2 and
4.3.

(a) α ≈ 0.48233788 (b) α ≈ 3.40867116 (c) α ≈ 38.92633327

Figure 4.2. (2, 5) balanced configurations

Figure 4.3. Surface corresponding to the (2, 5) balanced
configuration in figure 4.2c

4.3. (2,6) Balanced Configurations. If n = 6 then Q(z) ≡ 0 when

b6 = 0 ⇔ a5 = 9α

b5 = 0 ⇔ a4 = 9(α2 − 1)

b4 = 0 ⇔ a3 = α(α2 − 26)

b3 = 0 ⇔ a2 = −9(α2 − 1)

b2 = 0 ⇔ a1 = − 9

25
(2α3 − 27α)
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b1 = 0 ⇔ a0 =
1

25
(−2α4 + 52α2 − 25)

b0 = 0 ⇔ 1

50
α(α2 − 26)(α2 − 1) = 0.

So, α can be 0, ±1, or ±
√

26. There are only two new configurations. See
figure 4.4. The α = 0 configuration is equivalent to the (1, 3) configuration,
by a factor of 2, the α = −

√
26 configuration is equivalent to the α =√

26 configuration, by a translation of πi, and the α = −1 configuration is
equivalent to the α = 1 configuration, by a translation of πi.

(a) α = 1 (b) α =
√

26

Figure 4.4. (2, 6) balanced configurations

4.4. (2,7) Balanced Configurations. If n = 7 then Q(z) ≡ 0 when

b7 = 0 ⇔ a6 =
49α

4

b6 = 0 ⇔ a5 =
49α(25α2 − 16)

64

b5 = 0 ⇔ a4 =
49α(25α2 − 272)

256

b4 = 0 ⇔ a3 =
49(25α4 − 10272α2 + 6400)

16384

b3 = 0 ⇔ a2 =
49α(25α4 − 112672α2 + 1120512)

1638400

b2 = 0 ⇔ a1 =
49(25α6 − 122672α4 + 5229312α2 − 2560000)

26214400

b1 = 0 ⇔ a0 =
α(625α6 − 3073200α4 + 159576832α2 − 350851072)

104857600

b0 = 0 ⇔ 25α4 − 1600α3 − 10272α2 + 17408α+ 6400 = 0 or

25α4 + 1600α3 − 10272α2 − 17408α+ 6400 = 0.

Because of the symmetries of the solutions, there are four balanced con-
figurations corresponding to the positive solutions to the b0 = 0 equation:
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α ≈ 0.312754, α ≈ 1.65533, α ≈ 7.08968, or α ≈ 69.7471. See figures 4.5
and 4.6.

(a) α ≈ 0.312754 (b) α ≈ 1.65533

(c) α ≈ 7.08968 (d) α ≈ 69.7471

Figure 4.5. (2, 7) balanced configurations

Figure 4.6. Surface corresponding to the (2, 7) balanced
configuration in figure 4.5d
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5. (3,4) Configurations

The (3, 4) balance equations are the smallest for which there is a bal-
anced configuration such that the location of the nodes has no nontrivial
symmetries. Here,

p1(z) = z3 + (a1−1)z2− (a1 +a0)z+a0, p2(z) = z4 + b3z
3 + b2z

2 + b1z+ b0,

where we assume that p1(1) = 0. Q(z) is a polynomial of degree six with
coefficients ck such that

c0 = 0⇔ −16a0b0 − 16a1b0 + 9a0b1 = 0

c1 = 0⇔ −64b0 + 64a1b0 − a0b1 − a1b1 + 36a0b2 = 0

c2 = 0⇔ 144b0 − 25b1 + 25a1b1 − 4a0b2 − 4a1b2 + 81a0b3 = 0

c3 = 0⇔ 144a0 + 81b1 − 4b2 + 4a1b2 − 25a0b3 − 25a1b3 = 0

c4 = 0⇔ −64a0 − 64a1 + 36b2 − b3 + a1b3 = 0

c5 = 0⇔ −16 + 16a1 + 9b3 = 0.

As with the (2, n) balance equations, we can solve iteratively, starting with
c5 = 0 down to c0 = 0:

c5 =0⇔ b3 =
16(1− a1)

9

c4 =0⇔ b2 =
4
(
1 + 36a0 + 34a1 + a21

)

81

c3 =0⇔ b1 =
16
(
1− 468a0 + 258a1 − 261a0a1 − 258a21 − a31

)

6561

c2 =0⇔ b0 =
25− 70668a0 + 2916a20 + 6506a1 + 69894a0a1 − 10146a21

59049

+
6606a0a

2
1 + 6506a31 + 25a41

59049
.

This reduces the coefficients c1 and c0 of Q(z) to fifth degree polynomials in
a0 and a1. Solving c0 = c1 = 0 numerically, there are four distinct balanced
configurations. See figures 5.1 and 5.2. The smallest balanced configuration
with no non-trivial symmetries is shown in figure 5.1a.

(a) (b) (c) (d)

Figure 5.1. (3, 4) balanced configurations
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Figure 5.2. Surface corresponding to the (3, 4) balanced
configuration in figure 5.1d
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