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GAUSS MAPS OF CUSPIDAL EDGES IN HYPERBOLIC

3-SPACE, WITH APPLICATION TO FLAT FRONTS

Yuta Ogata and Keisuke Teramoto

Abstract. We study singularities of de Sitter Gauss map images of

cuspidal edges in hyperbolic 3-space. We show relations between singu-

larities of de Sitter Gauss map images and differential geometric prop-

erties of cuspidal edges. Moreover, we apply this result to flat fronts in

hyperbolic 3-space.

1. Introduction

The hyperbolic 3-space H3 is a 3-dimensional Riemannian spaceform

with constant sectional curvature −1 and the de Sitter 3-space S2,1 is a

3-dimensional Lorentzian spaceform with constant sectional curvature 1 in

Lorentz-Minkowski 4-space R3,1. There are several articles on the study of

surfaces in H3 and S2,1 (for example, [4, 5, 6, 7, 10, 12, 13, 14, 15, 16]).

Gálvez, Mart́ınez and Milán [7] showed the representation formula for flat

surfaces in H3. For flat fronts in H3, Kokubu, Rossman, Saji, Umehara

and Yamada [14] showed that generic singularities on flat fronts are cuspi-

dal edges and swallowtails (see also [8]). Moreover, the criteria for cuspidal

edges and swallowtails were obtained. Recently differential geometric prop-

erties of fronts are studied (cf. [17, 18, 20, 24, 25]). In particular, normal

form and isometric deformation of cuspidal edges are obtained in [17, 20].

On the other hand, the Gauss map plays important roles to investigate

differential geometry of surfaces in the Euclidean 3-space R3. Singulari-

ties and stabilities of Gauss maps for surfaces in R3 were studied by [3, 2].

Bleecker and Wilson [3] showed that generic singularities of the Gauss map

are fold and cusp singularities. Banchoff, Gaffney and McCrory [2] studied

geometric meaning of cusp singularities of Gauss maps. The differential of

Gauss map, that is, the Weingarten map, gives the Gaussian curvature, the

mean curvature and the principal curvatures for the surface. Therefore, for

surfaces in H3, such maps also play important roles. In [7, 15, 16], flat fronts

in H3 and their hyperbolic Gauss maps were studied. Izumiya, Pei and Sano
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[10] studied singularities of hyperbolic Gauss maps and hyperbolic Gauss in-

dicatrices for surfaces in H3. They regard hyperbolic Gauss indicatrices as

wave fronts and show that generic singularities of hyperbolic Gauss map

images are cuspidal edges and swallowtails to apply the Legendrian singu-

larity theory. Moreover, Izumiya [9] introduced Legendrian duality theorem

for pseudo-spheres in the Lorentz-Minkowski space. Using this duality the-

orem, the de Sitter Gauss map image and the lightcone Gauss map image of

surfaces in H3 can be constructed. Thus one can study extrinsic differential

geometry of surfaces in H3.

In this paper, we clarify relations between differential geometric properties

called ridge points of cuspidal edges in H3 and singularities of de Sitter Gauss

map images in S2,1. In Section 2, we consider local differential geometric

properties of cuspidal edges in H3. We shall define the principal curvature,

the principal direction and ridge points for cuspidal edges. In Section 3, we

show relations between differential geometric properties of cuspidal edges

and singularities of de Sitter Gauss map images (Theorem 3.3). In Section

4, we consider the normal form of cuspidal edges in H3. The normal form

of cuspidal edges in R3 was introduced in [17]. We give condition that the

origin is a ridge point in context of the coefficients of the normal form. In the

last section, we apply results obtained previous sections to flat fronts in H3

and S2,1. We show conditions of singularities of de Sitter Gauss map images

for flat fronts in the context of the data which appear in the representation

theorem for flat fronts in H3 given by [7] (Theorem 5.4). Furthermore, we

consider the Enneper-type flat fronts as global examples. We give the duality

between of Enneper-type flat fronts and their de Sitter Gauss map images

(Theorem 5.8).

2. Local differential geometry of cuspidal edges in H3

Let R4 = {(x0, x1, x2, x3)|xi ∈ R, i = 0, 1, 2, 3} be a 4-dimensional vector

space. For x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4, the pseudo scalar

product 〈, 〉 of x and y is defined by 〈x,y〉 = −x0y0 + x1y1 + x2y2 + x3y3.

We call this space (R4, 〈, 〉) the Lorentz–Minkowski 4-space or briefly the

Minkowski 4-space. We write R3,1 instead of (R4, 〈, 〉). For x ∈ R3,1 \ {0},
there are three kinds of vectors called spacelike, lightlike or timelike and

defined by 〈x,x〉 > 0, = 0 or < 0 respectively. The norm of x ∈ R3,1 is

defined by ‖x‖ =
√
|〈x,x〉|. Especially, for a spacelike vector x, the norm

of x is ‖x‖ =
√
〈x,x〉. We now define the pseudo wedge product x1∧x2∧x3
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as follows:

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣

−e0 e1 e2 e3
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

∣∣∣∣∣∣∣∣
,

where {e0, e1, e2, e3} is the canonical basis of R3,1 and vectors xi =

(xi0, x
i
1, x

i
2, x

i
3) ∈ R3,1 (i = 1, 2, 3). One can easily check that 〈x,x1 ∧

x2∧x3〉 = det(x,x1,x2,x3) holds. Hence x1∧x2∧x3 is pseudo orthogonal

to any xi (i = 1, 2, 3).

There are three kinds of pseudo-spheres in R3,1: the hyperbolic 3-space

H3 is defined by

H3 =
{
x ∈ R3,1

∣∣ 〈x,x〉 = −1, x0 > 0
}
,

the de Sitter 3-space S2,1 is defined by

S2,1 =
{
x ∈ R3,1

∣∣ 〈x,x〉 = 1
}

and open lightcone LC∗ is defined by

LC∗ =
{
x ∈ R3,1 \ {0}

∣∣ 〈x,x〉 = 0
}
.

We recall that wave fronts in H3. Let f : U → H3 ⊂ R3,1 be a C∞-map,

where U ⊂ R2 is a simply-connected domain with local coordinates u, v. We

call f a wave front (or front, for short) if there exists a unit vector field

ν : U → S2,1 along f such that the following conditions hold:

(1) 〈df(Xp), ν(p)〉 = 0, for any Xp ∈ TpU, p ∈ U , and

(2) the pair Lf = (f, ν) : U → T1H3 is an immersion, where T1H3 ={
(v,w) ∈ H3 × S2,1

∣∣ 〈v,w〉 = 0
}

is the unit tangent bundle over H3

equipped with the canonical contact structure.

Here, we call this vector ν a unit pseudo normal vector of f and Lf a

Legendrian lift (see [1, 13, 14, 24]). A map f is called a frontal if f satisfies

(1) of the above condition. A front f might have singularities. Arnold and

Zakalyukin showed that the generic singularities of fronts in R3 are cuspidal

edges and swallowtails (for example, see [1, 27]). A cuspidal edge is a map-

germ f : (R2,0) → (R3,0) A-equivalent to the germ (u, v) 7→ (u, v2, v3)

and a swallowtail is a map-germ f : (R2,0) → (R3,0) A-equivalent to the

germ (u, v) 7→ (u, 4v3 + 2uv, 3v4 + uv2) at the origin, where two map-germs

f, g : (R2,0)→ (R3,0) are A-equivalent if there exist diffeomorphism-germs

Ξs : (R2,0)→ (R2,0) on the source and Ξt : (R3,0)→ (R3,0) on the target

such that f ◦ Ξs = Ξt ◦ g holds (see Fig. 1).
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Fig. 1: Cuspidal edge (left) and swallowtail (right).

For a front f , we define a function called the signed area density func-

tion λ as follows: λ = det(f, fu, fv, ν), where fu = ∂f/∂u and fv = ∂f/∂v

respectively. We denote by S(f) the singular set of f . By definition of

the signed area density function, the relation S(f) = λ−1(0) holds. For

a singular point p ∈ S(f), we say that p is non-degenerate if the condi-

tion dλ(p) 6= 0 holds. Let p ∈ S(f) be a non-degenerate singular point

of f . Then, by the implicit function theorem, there exists a regular curve

γ : (−ε, ε) 3 t 7→ γ(t) ∈ U (ε > 0) with γ(0) = p such that γ locally

parametrizes S(f). Since non-degenerate singular points are corank one sin-

gular points, there exists a vector field η on S(f) such that df(η) = 0 holds.

We call such a vector field the null vector field. Under the above situation,

the following criteria are known.

Theorem 2.1 ([14, Propositin 1.3]). Let f : (U, p) → H3 be a front-germ

and p ∈ U be a non-degenerate singular point of f . Then

(1) f at p is A-equivalent to a cuspidal edge if and only if ηλ(p) 6= 0

holds.

(2) f at p is A-equivalent to a swallowtail if and only if ηλ(p) = 0 and

ηηλ(p) 6= 0 hold.

We consider (extrinsic) differential geometric properties of cuspidal edges

in H3. Let f : U → H3 be a front and p ∈ U a cuspidal edge. In this case,

we can take a special local coordinate system called the adapted coordinate

system (see [17, 18], for example).

Definition 2.2. A coordinate system (U ;u, v) centered at p is called adapted

if the following conditions hold:

1) the u-axis is the singular curve,

2) η = ∂v gives a null vector field along the u-axis, and
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3) there are no singular points other than the u-axis.

We use this coordinate system in Sections 2, 3 and 4. With this coordi-

nate, df(η) = fv = 0 and fvv 6= 0 hold along the u-axis. Thus there exists a

smooth map ϕ : U → R3,1 \ {0} such that fv = vϕ holds. We define a map

ν =
f ∧ fu ∧ ϕ
‖f ∧ fu ∧ ϕ‖

: U → S2,1.

From the definition of ν, we have

〈fu, ν〉 = 〈ϕ, ν〉 = 〈f, ν〉 = 0, 〈ν, ν〉 = 1.

We call this map ν the de Sitter Gauss map image or the de Sitter Gauss

image of f .

The signed area density of f is given by

λ = det(f, fu, fv, ν) = vλ̃ (λ̃ = det(f, fu, ϕ, ν)).

Since η = ∂v, a point p is a cuspidal edge of f if and only if ηλ = λ̃ 6= 0

holds along the u-axis. Thus f, fu, ϕ and ν are linearly independent.

We define the following functions:

Ê = 〈fu, fu〉, F̂ = 〈fu, ϕ〉, Ĝ = 〈ϕ,ϕ〉,(2.1)

L̂ = −〈fu, νu〉, M̂ = −〈ϕ, νu〉, N̂ = −〈ϕ, νv〉.(2.2)

We note that ÊĜ − F̂ 2 6= 0 near p and −〈fu, νv〉 = vM̂ holds. Using these

functions, we have the following (cf. [26]).

Lemma 2.3. The differentials νu and νv can be written as

νu =
F̂ M̂ − ĜL̂
ÊĜ− F̂ 2

fu +
F̂ L̂− ÊM̂
ÊĜ− F̂ 2

ϕ,

νv =
F̂ N̂ − vĜM̂
ÊĜ− F̂ 2

fu +
vF̂ M̂ − ÊN̂
ÊĜ− F̂ 2

ϕ.

We set

ψ(t) = det(γ̂, γ̂′, Df
η (ν ◦ γ), ν ◦ γ)(t),

where γ̂ = f ◦ γ, Df is the canonical covariant derivative along a map f

induced from the Levi-Civita connection on H3 and ′ = d/dt. We note that

ψ(0) 6= 0 if and only if (f, ν) is a Legendre immersion at p, that is, f is a
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front at p when γ̂′(0) 6= 0 (see [6, 13]). Taking an adapted coordinate system

(U ;u, v) around p, Df
ην = νv holds. Thus we have

ψ(u) = det(f(u, 0), fu(u, 0), νv(u, 0), ν(u, 0))

= − ÊN̂

ÊĜ− F̂ 2
det(f(u, 0), fu(u, 0), ϕ(u, 0), ν(u, 0))

by Lemma 2.3, and we see that N̂ does not vanish along the u-axis.

Remark 2.4. Let f : U → (M3, g) be a front with non-degenerate singular

points, where (M3, g) is an oriented 3-dimensional Riemannian manifold.

We set

fη = df(η), fηη = ∇ηfη, fηηη = ∇ηfηη,
where ∇ is the Levi-Civita connection of (M3, g). In [18], a differential

geometric invariant κc called the cuspidal curvature is defined by

κc(t) =
‖γ̂′(t)‖3/2 detg(γ̂

′(t), fηη(γ(t)), fηηη(γ(t)))

‖γ̂′(t)×g fηη(γ(t))‖5/2

along the singular curve γ, where γ̂ = f ◦ γ, detg is the Riemannian volume

element of (M3, g) and 〈a×gb, c〉 = detg(a, b, c) for each a, b, c ∈ TqM3 (q ∈
M3). If M = R3, then detg can be identified with the usual determinant. By

[24, Corollary 3.5], f at p ∈ S(f) is a cuspidal edge if and only if κc(p) 6= 0

holds. For details about the cuspidal curvature κc, see [18].

Here the Gauss-Kronecker curvature function Kext and the mean curva-

ture function H of f are given by

(2.3) Kext =
L̂N̂ − vM̂2

v(ÊĜ− F̂ 2)
, H =

ÊN̂ − 2vF̂ M̂ + vĜL̂

2v(ÊĜ− F̂ 2)
.

We define the matrix

Sd = −
(
Ê F̂

F̂ Ĝ

)−1(
L̂ vM̂

M̂ N̂

)
,

and we call Sd the modified shape operator of f . Then the relation

detSd = vKext = K̂ext

holds. By definition of Kext given by (2.3), K̂ext is C∞-function of u, v. See

[18, 24] for behavior of Kext and H near non-degenerate singular points on

fronts.
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We consider the principal curvatures for cuspidal edges. We now define

two functions as follows:

(2.4) κ1 =
A+B

2v(ÊĜ− F̂ 2)
, κ2 =

A−B
2v(ÊĜ− F̂ 2)

.

Here A = ÊN̂ − 2vF̂ M̂ + vĜL̂, B =

√
A2 − 4v(ÊĜ− F̂ 2)(L̂N̂ − vM̂2). By

definitions of κ1 and κ2, we have Kext = κ1κ2 and 2H = κ1 + κ2. Thus we

may regard κ1 and κ2 as principal curvatures of f . However, we note that

one of κi (i = 1, 2) may not be well-defined along the singular curve. Two

functions κ1 and κ2 in (2.4) can be rewritten as

(2.5) κ1 =
2(L̂N̂ − vM̂2)

A−B , κ2 =
2(L̂N̂ − vM̂2)

A+B
.

Here, A = ÊN̂ and B = Ê|N̂ | hold on the singular set {v = 0}. Thus

A + B 6= 0 (resp. A − B 6= 0) holds on {v = 0} if N̂ > 0 (resp. N̂ < 0).

By the above arguments, if N̂ is positive (resp. negative) along the singular

curve, κ2 (resp. κ1) is well-defined along the singular curve. So we can

regard κ2 as the principal curvature for the cuspidal edge if and only if

N̂(u, 0) is a non-zero positive C∞-function of u along the u-axis. We note

that Murata and Umehara [19] introduced the notion of principal curvature

maps for fronts in R3.

Let us consider the principal direction v = (ξ, ζ) with respect to the

principal curvature κ2. In this case, v satisfies the following equation:
(
L̂ vM̂

vM̂ vN̂

)(
ξ

ζ

)
= κ2

(
Ê vF̂

vF̂ v2Ĝ

)(
ξ

ζ

)
.

Thus the principal direction v = (ξ, ζ) can be taken as

(2.6) v = (N̂ − vκ2Ĝ,−M̂ + κ2F̂ ).

Since N̂ 6= 0 holds on {v = 0}, the principal direction v is also well-defined

along the u-axis.

Using the principal curvature κ2 and the principal direction v correspond-

ing to κ2, we define a notion of ridge point.

Definition 2.5. Let f : U → H3 be a cuspidal edge, κ2 the principal

curvatures of f and v the principal directions with respect to κ2. The

point f(p) is called a ridge point relative to v if vκ2(p) = 0, where vκ2
is the directional derivative of κ2 in direction v. Moreover, f(p) is called

a k-th order ridge point relative to v if v(m)κ2(p) = 0 (1 ≤ m ≤ k) and



100 Y. OGATA AND K. TERAMOTO

v(k+1)κ2(p) 6= 0, where v(m)κ2 is the directional derivative of κ2 with respect

to v applied m times.

Properties of ridge points for regular surfaces in R3 were first studied by

Porteous to investigate caustics of them. For details, see [21, 22].

3. Singularities of the de Sitter Gauss map image

In this section, we consider the de Sitter Gauss image ν : U → S2,1 of

f . From arguments in Section 2, the pair Lf = (f, ν) gives a Legendrian

immersion. Thus ν can be regarded as a front in S2,1 with unit normal

vector f . We assume that the principal curvature κ2 is well-defined on the

source, namely, N̂ is positive on the u-axis.

We consider the signed area density function λν of ν. Using ν, νu, νv and

f , λν is given by

(3.1) λν = det(f, νu, νv, ν).

By Lemma 2.3 and (2.3), it can be written as

(3.2) λν = vKext det(f, fu, ϕ, ν).

We note that det(f, fu, ϕ, ν) is a non-zero function. By definitions of the

Gauss-Kronecker curvature Kext, κ1 and κ2, we have

(3.3) vKext = (vκ1)κ2.

In this case, vκ1 is a non-zero function on U . From (3.1), (3.2) and (3.3),

we can consider the signed area density as

(3.4) λ̂ν = κ2.

Thus we have the following:

Proposition 3.1. Under the above conditions, a point p ∈ U is a singular

point of the de Sitter Gauss image ν if and only if κ2(p) = 0 holds.

We remark that relationships between singular points of the de Sitter

Gauss image ν of a front f in H3 and the limiting normal curvature of f are

shown in [18]. We denote by S(ν) = {q ∈ U |κ2(q) = 0} the set of singular

points of ν and we call a point p ∈ S(ν) a parabolic point for cuspidal edges.

For p ∈ S(ν), a point p is a non-degenerate singular point of ν if and only if

(κ2)u(p) 6= 0 or (κ2)v(p) 6= 0 hold, that is, p is not a critical point of κ2.
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We consider the case that p ∈ S(ν) is non-degenarate. In this case, there

exists a vector field ην on S(ν) such that dν(ην) = 0. We will find a concrete

form for ην . Let us take ην = ην1∂u + ην2∂v. Then

(3.5) dν(ην) =

(
F̂ M̂ − ĜL̂
ÊĜ− F̂ 2

fu +
F̂ L̂− ÊM̂
ÊĜ− F̂ 2

ϕ

)
ην1

+

(
F̂ N̂ − vĜM̂
ÊĜ− F̂ 2

fu +
vF̂ M̂ − ÊN̂
ÊĜ− F̂ 2

ϕ

)
ην2 = 0

holds on S(ν) by Lemma 2.3. Since fu and ϕ are linearly independent, this

equation is equivalent to the following:

(3.6)

(
Ê F̂

F̂ Ĝ

)−1(
L̂ vM̂

M̂ N̂

)(
ην1
ην2

)
=

(
0

0

)

holds on S(ν). Now N̂ 6= 0 along the u-axis, so we can take ην as

(3.7) ην = N̂∂u − M̂∂v

on S(ν). Moreover, ην can be extended on U by the form

ην = (N̂ − vκ2Ĝ)∂u + (−M̂ + κ2F̂ )∂v = v,

where v is the principal direction with respect to κ2. Thus we can regard

the principal direction v as a null vector field ην .

Using Theorem 2.1, the signed area density λ̂ν and null vector field ην ,

we obtain conditions for singularities of ν.

Proposition 3.2. Let f : U → H3 be a front, p ∈ U a cuspidal edge and

ν : U → S2,1 the de Sitter Gauss image of f . Suppose that p ∈ S(ν) is a

non-degenerate singular point of ν. Then the following assertions hold.

(1) ν at p is a cuspidal edge if and only if vκ2(p) 6= 0 holds.

(2) ν at p is a swallowtail if and only if vκ2(p) = 0 and v(2)κ2(p) 6= 0

hold.

Combining the results obtained in Sections 2 and 3, we have relations

between singularities of ν and the differential geometric properties of f .

Theorem 3.3. Let f : U → H3 be a front, p ∈ U a cuspidal edge and

ν : U → S2,1 the de Sitter Gauss image of f . Then the following properties

hold.

(1) A point p ∈ U is a singular point of ν if and only if κ2(p) = 0 holds.
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(2) A point p ∈ S(ν) is non-degenerate if and only if p is not a critical

point of κ2.

(3) For a non-degenerate singular point p ∈ S(ν), ν at p is a cuspidal

edge if and only if p is not a ridge point of f .

(4) For a non-degenerate singular point p ∈ S(ν), ν at p is a swallowtail

if and only if p is a first order ridge point of f .

In [25], duality between Ak+1-inflection point (k ≤ n) of immersed C∞-

hypersurfaces f : Mn → P (Rn+2) and Ak-singularity of dual front g : Mn →
P ((Rn+2)∗) were shown, where Mn is an n-dimensional C∞-manifold and

A2-singularity and A3-singularity correspond to a cuspidal edge and a swal-

lowtail for fronts respectively. We also remark that cusp singularities of

Gauss maps of regular surfaces in R3 are related to parabolic points and

ridge points for surfaces (see [2, Theorem 3.1]).

4. Normal form of cuspidal edges in H3

In this section, we consider the normal form of cuspidal edges in H3. For

cuspidal edges in R3, the following normal form obtained by Martins and

Saji in [17] is known.

Proposition 4.1 ([17, Theorem 3.1]). Let f : (R2,0)→ (R3,0) be a smooth

map-germ and 0 a cuspidal edge. Then there exist a diffeomorphism-germ

ψ : (R2,0) → (R2,0) on the source and an isometry-germ Ψ : (R3,0) →
(R3,0) on the target such that

(4.1) Ψ ◦ f ◦ ψ(u, v)

=

(
u,
a20
2
u2 +

a30
6
u3 +

v2

2
,
b20
2
u2 +

b30
6
u3 +

b12
2
uv2 +

b03
6
v3
)

+ h(u, v)

with b20 ≥ 0 and b03 6= 0, where

h(u, v) = (0, u4h1(u), u4h2(u) + u2v2h3(u) + uv3h4(u) + v4h5(u, v)),

with hi(u) (1 ≤ i ≤ 4), h5(u, v) smooth functions.

See [17] for detailed descriptions and geometric properties of the coef-

ficients in (4.1). We extend (4.1) to the case of H3 by analogy to the

hyperbolic-Monge form (or the H-Monge form, for short) for regular sur-

faces which is introduced by Izumiya, Pei and Sano (see [10, Section 8]).

Let f : U → H3 be a cuspidal edge. Then we have H-Monge form f =
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(f0, f1, f2, f3) for surfaces with cuspidal edge as follows:

f0 =
√

1 + f21 + f22 + f23 ,

f1 =
b20
2
u2 +

b30
6
u3 +

b12
2
uv2 +

b03
6
v3

+ u4h2(u) + u2v2h3(u) + uv3h4(u) + v4h5(u, v),

f2 = u,

f3 =
a20
2
u2 +

a30
6
u3 +

v2

2
+ u4h1(u).

Using H-Monge form of cuspidal edge, we consider the conditions of ridge

for cuspidal edge in terms of the coefficients. Let us assume that b03 > 0

holds, that is, κ2 is well-defined. Here f, fu and ϕ are

f = (1, 0, 0, 0), fu = (0, 0, 1, 0) and ϕ = (0, 0, 0, 1)

at the origin. We can take the de Sitter Gauss image ν of f with ν =

(0, 1, 0, 0) at the origin. In this case, the coefficients of the first and the

second fundamental forms are Ê = 1, F̂ = 0, G̃ = 1, L̂ = b20, M̂ = b12, N̂ =

b03/2 at the origin. Moreover, the principal curvature satisfies κ2 = L̂/Ê =

b20, (κ2)u = b30 − a20b12 and (κ2)v = −(4b212 + a20b
2
03)/2b03 at the origin.

Thus we have the following lemma.

Lemma 4.2. Let f : U → H3 be a H-Monge form of cuspidal edge. Then

κ2(0) = 0 if and only if b20 = 0. Moreover, the origin 0 is not critical point

of κ2 if and only if b30 − a20b12 6= 0 or 4b212 + a20b
2
03 6= 0 hold.

We assume that b20 = 0 holds in what follows.

Lemma 4.3. Let f : U → H3 be the H-Monge form of a cuspidal edge, κ2
the principal curvature and v the principal direction corresponding to κ2.

Then the following assertions hold.

(1) The origin is not a ridge point if and only if 4b312 + b30b
2
03 6= 0 holds.

(2) The origin is a first order ridge point if and only if 4b312 + b30b
2
03 = 0

and

b403h2(0) + 4b212b
2
03h3(0)− 8b312b03h4(0) + 16b412h5(0, 0) 6= 0.

hold.

Proof. First we show the condition (1) of Lemma 4.3. By defunitions of

the principal curvature and the principal direction, we have (κ2)u = b30 −
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a20b12, (κ2)v = −(4b212 + a20b
2
03)/2b03, ξ = b03/2, ζ = −b12 at the origin.

Using these conditions,

vκ2(0) = ξ(0)(κ2)u(0) + ζ(0)(κ2)v(0) =
4b312 + b30b

2
03

2b03

holds. On the other hand, the condition that the origin 0 is not a ridge

point is vκ2(0) 6= 0. Thus it follows that the first assertion holds.

Next we show (2) of Lemma 4.3. Let us assume that

vκ2(0) =
4b312 + b30b

2
03

2b03
= 0

holds, that is, the origin is a ridge point. By direct computations, we have

ξu(0) = 3h4(0), ξv(0) = 8h5(0, 0), ζu(0) = −4h3(0), ζv(0) = −3h4(0) and

(κ2)uu(0) = −2a30b12 + 24h2(0)− 4a20h3(0)),

(κ2)uv(0) =
1

2b203
(−a30b303 − 32b12b03h3(0) + 6(4b212 − a20b203)h4(0)),

(κ2)vv(0) =
4

b203
(b203h3(0)− 6b12b03h4(0) + 2(8b212 − a20b203)h5(0, 0)).

Thus it follows that

v(2)κ2(0) =
1

4b203
(6b03(4b

3
03h2(0) + 16b212b03h3(0)

− (28b312 − b30b203)h4(0)) + 32b12(8b
3
12 − b30b203)h5(0, 0)).

Since the condition b30 = −4b312/b
2
03 holds, we have

v(2)κ2(0) =
6

b203
(b403h2(0) + 4b212b

2
03h3(0)− 8b312b03h4(0) + 16b412h5(0, 0))).

This shows that (2) of Lemma 4.3 holds. �

We show some examples of cuspidal edge in H3 and corresponding de

Sitter Gauss image in S2,1. To visualize surface in H3 and S2,1, we will use

the Poincaré model P and the hollow ball model H in what follows. For

details of the hollow ball model, see [4]. Here the Poincaré model P is given

by a map

H3 3 (x0, x1, x2, x3) 7→
(

x1
1 + x0

,
x2

1 + x0
,

x3
1 + x0

)
∈ P



GAUSS MAPS OF CUSPIDAL EDGES IN H3 105

and the hollow ball model H is given by

S2,1 3 (x0, x1, x2, x3) 7→
(
earctanx0√

1 + x20
x1,

earctanx0√
1 + x20

x2,
earctanx0√

1 + x20
x3

)
∈ H.

Then we can view the Poincaré model P as the Euclidean unit ball

B3 = {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 < 1}
in R3. Moreover the hollow ball model H can be viewed as

H = {(x1, x2, x3) ∈ R3 | e−π < x21 + x22 + x23 < eπ}.

Example 4.4. Let f = (f0, f1, f2, f3) : U → H3 be a cuspidal edge with

f0 =
√

1 + f21 + f22 + f23 , f1 = u3 +
v3

3
, f2 = u, f3 =

u2

2
+
u3

3
+
v2

2
+ u4.

This form satisfies the conditions of Lemma 4.2 and (1) of Lemma 4.3. Thus,

by Theorem 3.3, de Sitter Gauss image of f has cuspidal edge at the origin.

Fig. 2: Pictures of Example 4.4. Cuspidal edge in H3 (left) and its de Sitter

Gauss image in S2,1 (right).

Example 4.5. Let f = (f0, f1, f2, f3) : U → H3 be a cuspidal edge with

f0 =
√

1 + f21 + f22 + f23 , f1 =
v3

3
+ u4, f2 = u, f3 =

u2

2
+
u3

3
+
v2

2
.

This form satisfies the conditions of Lemma 4.2 and (2) of Lemma 4.3. Thus,

by Theorem 3.3, de Sitter Gauss image of f has swallowtail singularity at

the origin.
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Fig. 3: Pictures of Example 4.5. Cuspidal edge in H3 (left) and its de Sitter

Gauss image in S2,1 (right).

5. Application to flat fronts

In this section, we consider constant Gauss-Kronecker curvature Kext = 1

surfaces, called flat fronts in H3 and S2,1. First we introduce explicit formula

for flat fronts in H3, called the Bryant-type representation, as in [7].

Proposition 5.1 ([7]). Let U be a simply-connected domain in C with the

usual complex coordinate z = u + iv. Then, any flat front f : U → H3 is

given by

f = FF t, where dF = F
(

0 h(z)

g(z) 0

)
dz(5.1)

for some holomorphic functions g and h.

We also have the following well-known fact as in Proposition 5.2:

Proposition 5.2. For flat fronts f in H3 as given in Proposition 5.1, the

unit normal vector ν of f becomes (spacelike) flat fronts in S2,1, and ν can

be described as

ν = F
(

1 0

0 −1

)
F t.(5.2)

5.1. The singularity theory of flat fronts in H3 and S2,1. Here we

introduce criteria for singularities of flat fronts f in H3 as in [14], and we

give criteria for singularities of the de Sitter Gauss image ν (i.e. flat fronts

in S2,1) of f in the same way.
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Proposition 5.3 ([14]). Let U be a simply connected domain, and let f :

U → H3 be a flat front given as in Proposition 5.1.

(1) A point p ∈ U is a non-degenerate singular point if and only if

|g(p)| = |h(p)| and (gzh− ghz)
∣∣
p
6= 0.

(2) f has a cuspidal edge at a non-degenerate singular point p ∈ U if

and only if

Im

(
gzh− ghz

(gh)
3
2

)∣∣∣∣
p

6= 0.

(3) f has a swallowtail at a non-degenerate singular point p ∈ U if and

only if

Im

(
gzh− ghz

(gh)
3
2

)∣∣∣∣
p

= 0 and Re

{(
gzh− ghz

(gh)
3
2

)

z

(
gz
g
− hz

h

)} ∣∣∣∣∣
p

6= 0.

Here we give criteria for singularities of the de Sitter Gauss image ν. The

following theorem can be proven by the same way as in the proof of the

above proposition. Thus, we omit that proof.

Theorem 5.4. Let U be a simply connected domain, and let ν : U → S2,1
be a flat front given in Proposition 5.2.

(1) A point p ∈ U is a non-degenerate singular point if and only if

|g(p)| = |h(p)| and (gzh− ghz)
∣∣
p
6= 0.

(2) ν has a cuspidal edge at a non-degenerate singular point p ∈ U if

and only if

Re

(
gzh− ghz

(gh)
3
2

)∣∣∣∣
p

6= 0.

(3) ν has a swallowtail at a non-degenerate singular point p ∈ U if and

only if

Re

(
gzh− ghz

(gh)
3
2

)∣∣∣∣
p

= 0 and Im

{(
gzh− ghz

(gh)
3
2

)

z

(
gz
g
− hz

h

)} ∣∣∣∣∣
p

6= 0.

We note that Fujimori, Noro, Saji, Sasaki and Yoshida [5] study fronts in

S2,1 from the viewpoint of the de Sitter Schwarz map and they give criteria

which correspond to Theorem 5.4 for singularities of flonts in S2,1 in terms

of de Sitter Schwarz map (for details, see [5, Proposition 6]).

By the above Proposition 5.3 and Theorem 5.4, we get the following

Corollary 5.5.
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Corollary 5.5.

(1) The singular set of f coincides with the singular set of ν, i.e. S(f) =

S(ν).

(2) We define the set of non-degenerate singular points of f as Σ(f),

which is the subset of S(f). We define Σ(ν) similarly. Then, Σ(f) =

Σ(ν).

We note that (1) of Corollary 5.5 is a special case of [18, Corollary C] (see

also [5]).

5.2. Global example: Enneper-type flat fronts and their singulari-

ties. Here we introduce Enneper-type flat fronts in H3 and S2,1, which are

flat fronts and have reflective symmetry (see Fig 4 and 5), as global appli-

cation of Theorem 3.3

Define g(z) = zk and h(z) = 1 for k ∈ N. Applying Proposition 5.1, we

get (k + 2)-legged Enneper-type flat fronts in H3. See Fig 4. We also have

(k+ 2)-legged Enneper-type flat fronts in S2,1 applying Proposition 5.2. See

Fig 5. Using polar coordinates z = reiθ and applying Proposition 5.3, we

get the following lemma:

Lemma 5.6. Let f be a (k+ 2)-legged Enneper-type flat front in H3. Then:

(1) S(f) =
{

(r0, θ)
∣∣ rk0 = 1, 0 ≤ θ < 2π

}
.

(2) f has (k + 2)-swallowtails at (r0, θ0) such that rk0 = 1 and θ0 = 2iπ
k+2

(i = 0, 1, 2, . . . , k + 1).

(3) f has cuspidal edges at (r0, θ1) such that rk0 = 1 and θ1 6= 2iπ
k+2

(i = 0, 1, 2, . . . , k + 1).

Similarly we also get the following lemma by applying Theorem 5.4.

Lemma 5.7. Let ν be a (k+2)-legged Enneper-type flat front in S2,1. Then:

(1) S(ν) = S(f) =
{

(r0, θ)
∣∣ rk0 = 1, 0 ≤ θ < 2π

}
.

(2) ν has (k+2)-swallowtails at (r0, θ2) such that rk0 = 1 and θ2 = (2i+1)π
k+2

(i = 0, 1, 2, . . . , k + 1).

(3) ν has cuspidal edges at (r0, θ3) such that rk0 = 1 and θ3 6= (2i+1)π
k+2

(i = 0, 1, 2, . . . , k + 1).

By the above two lemmas and Theorem 3.3, we get the following theorem:

Theorem 5.8 (Duality of Enneper-type flat fronts). Let f be a (k + 2)-

legged Enneper-type flat front in H3, and let ν be a de Sitter Gauss image

of f . Then:
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(1) Points (r0, θ2) such that rk0 = 1 and θ2 = (2i+1)π
k+2 are first order ridge

points of f (i = 0, 1, 2, . . . , k + 1).

(2) Points (r0, θ3) such that rk0 = 1 and θ3 6= (2i+1)π
k+2 are not ridge points

of f (i = 0, 1, 2, . . . , k + 1).

Fig. 4: The left image is a 3-legged Enneper-type flat front in H3, and the

right is one portion of it between 0 ≤ θ ≤ 2π
3 .

Fig. 5: The left image is the de Sitter Gauss image of a 3-legged Enneper-

type flat front, and the right is one portion of it between 0 ≤ θ ≤ 2π
3 .
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