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ON A NON-ABELIAN GENERALIZATION OF THE

BLOCH–KATO EXPONENTIAL MAP

Kenji Sakugawa

Abstract. The present paper establishes a non-abelian generalization
of the Bloch–Kato exponential map. Then, we relate p-adic polyloga-
rithms introduced by Coleman to `-adic polylogarithms introduced by
Wojtkowiak. This formula is another analog of the Coleman–Ihara for-
mula obtained by Nakamura, Wojtkowiak, and the author.

1. Introduction

Let p be a rational prime and let F be a finite extension of Qp with the

absolute Galois group GF := Gal(F/F ). Let B+
dR, BdR, Bcrys be the period

rings attached to F (cf. [8]).
For each de Rham representation V of GF , Spencer Bloch and Kazuya

Kato constructed a natural isomorphism called the Bloch–Kato exponential
map

expV : D0
dR(V )\DdR(V )

∼−→ H1
e (F, V ) ⊂ H1(F, V ),

where H1
e (F, V ) is the exponential part of the continuous Galois cohomol-

ogy H1(F, V ) and D0
dR(V ), DdR(V ) are defined to be (V ⊗Qp B

+
dR)GF and

(V ⊗Qp BdR)GF , respectively (cf. [2, Definition 3.10]). The map expV , which
generalizes the p-adic exponential map for abelian varieties over F , is one of
powerful tools for studying cohomologies of algebraic varieties over F . Bloch
and Kato related de Rham cohomology to étale cohomology of “motives” by
using expV and formulated their Tamagawa number conjecture. The Bloch–
Kato logarithmic map, denoted by logV , is defined to be the inverse of expV .
The aim of the present paper is to give non-abelian generalizations of expV
and logV .

Let Repcrys
Qp (GF ) be the category of crystalline representations of GF and

let G be an affine group scheme in Repcrys
Qp (GF ) in the sense of Deligne (cf.

[6, Paragraphe 5]). The ring of regular functions O(G) of G is a Hopf
algebra object in the ind-category of Repcrys

Qp (GF ) by definition and the set

of Qp-valued points G(Qp) of G has a natural continuous action of GF . In

Definition 12, we will define the finite part H1
f (F,G(Qp)) of the continuous

Galois cohomology H1(F,G(Qp)) which generalizes the finite part H1
f (F, V )
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of H1(F, V ). We say that G is an algebraic group in Repcrys
Qp (GF ) if O(G)

is of finite type as a Qp-algebra. Let MFad
F (ϕ) be the category of weakly

admissible filtered ϕ-modules over F . Then, the Fontaine functor

Vcrys : MFad
F (ϕ) −→ Repcrys

Qp
(GF );D 7→ Vcrys(D) := (D ⊗F0 Bcrys)

ϕ=1 ∩ Fil0(D ⊗F0 BdR)

defines an equivalence of Tannakian categories over Qp (cf. [4, Thèoréme
A]). Here, F0 is the maximal subfield of F unramified over Qp. Therefore,

Vcrys induces an equivalence of the category of group schemes in MFad
F (ϕ)

and the category of group schemes in Repcrys
Qp (GF ). We also denote by Vcrys

this equivalence by abuse of notation. The following theorem is our main
result.

Theorem 1.1 (Theorem 3.9). Let H be an algebraic group in MFad
F (ϕ)

and let G be the algebraic group Vcrys(H) in Repcrys
Qp (GF ). Suppose that

H satisfies the conditions (Non-neg) and (Bij) (see Definition 8 for the
definitions of (Non-neg) and (Bij)). Then, there exists a canonical closed
algebraic subgroup F 0HF of HF := H×Spec(F0) Spec(F ) where F0 = F ∩Qur

p .
Furthermore, we suppose the following two conditions:

(a) For any right G-torsor X in RepQp(GF ), the set of Qp-rational points

X(Qp) is non-empty.
(b) The algebraic group H is either a unipotent algebraic group over F0

in the usual sense or an algebraic group in the category of ordinary
filtered ϕ-modules in the sense of Perrin-Riou (cf. [18]).

Then, there exists a canonical injection

expG : F 0HF (F )\H(F ) ↪→ H1
f (F,G(Qp))

satisfying the following properties:

(i) If H is ωF -trivial (cf. Definition 5 and Subsection 3.1), then expG
is a bijection.

(ii) If G is a vector group scheme attached to V ∈ Obj(Repcrys
Qp (GF )),

then expG coincides with expV under the canonical identifications

H1
f (F,G(Qp))=H1

f (F, V )=H1
e (F, V ), F 0HF (F )\H(F )=D0

dR(V )\DdR(V ).

We call expG the generalized Bloch–Kato exponential map and define
the generalized Bloch–Kato logarithmic map logG to be its inverse when it
exists.

As an application of Theorem 1.1, we give an analog of the Coleman–
Ihara formula which is another version of [17, Theorem 1.1]. For each z ∈
P1 \{0, 1,∞}(OF ) and for each positive integer N greater than 1, we will

define an extension F̃ (z,N) of F to be the kernel field of a certain 1-cocycle
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associated with z in Definition 18 (2). Our analog of the Coleman–Ihara
formula is then:

Theorem 1.2 (Corollary 2). Let N be a positive integer greater than 1.
Suppose that p is odd and that F is unramified over Qp. Let σF be the arith-
metic Frobenius automorphism of F . Then, we have the following formula
for all σ ∈ G

F̃ (z,N)
:

(1.1) `iN (z)(σ) =
−1

(N − 1)!
TrF/Qp

({(
1− σF

pN

)
Lip-adic
N (z)

}
φCWF,N (σ)

)
.

Here, `iN (z) : GF → Qp is the `-adic polylogarithm (cf. [16]), φCWF,N is the

Coates–Wiles homomorphism (cf. [2, Section 2]), and Lip-adic
N (z) is Cole-

man’s p-adic polylogarithm (cf. [3]).

Our study is motivated by the construction of the fundamental commu-
tative diagram of Minhyong Kim (the diagram (1.3) below). We recall his
work briefly. Let K be a number field, v a finite place of K dividing p, and
Kv the v-adic completion of K with the ring OKv of integers. Let C be a
smooth curve over OK with a good compactification over OKv . Let x be
a K-valued point of C with good reduction at v and let x̄ be a geometric
point of C over x. We denote by πun-ét

1 (CK , x̄) the unipotent completion

over Qp of the étale fundamental group of CK := C ×Spec(OK) Spec(K) with

the base point x̄1. Kim studied a Qp-scheme H1
f (K,πun-ét

1 (CK , x̄)) whose set

of R-valued points is defined to be the finite part H1
f (K,πun-ét

1 (CK , x̄)(R))

of H1(K,πun-ét
1 (CK , x̄)(R)) for each Qp-algebra R (cf. [13], [14]). The Qp-

scheme H1
f (K,πun-ét

1 (CK , x̄)) is called the Selmer variety attached to C. A

key ingredient in [14] is the morphism of Qp-schemes

(1.2) logC,v : H1
f (Kv, π

un-ét
1 (CK , x̄))→ RKv/Qp

(
F 0πdR

1 (CKv
, x)\πdR

1 (CKv
, x)
)
,

where RKv/Qp is the Weil restriction functor, πdR
1 (CKv , x) is the de Rham

fundamental group of CKv := C×Spec(OK)Spec(Kv), and F 0 = F 0πdR
1 (CKv , x)

is the “Hodge subgroup” of πdR
1 (CKv , x). He constructed logC,v by rewriting

both sides of (1.2) as (subspaces of) classifying spaces of torsors of funda-
mental groups. The morphism logC,v fits into a commutative diagram
(1.3)

C(OK) //

��

C(OKv ) //

��

F 0\πdR
1 (CKv , x)(Kv)

H1
f (K,πun-ét

1 (CK , x̄))(Qp) // H1
f (Kv , πun-ét

1 (CK , x̄))(Qp)

logC,v

44

1This group is referred as the unipotent fundamental group of CK in [14].
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which plays a central role in his study of the finiteness of C(OK) which
is a non-abelian generalization of the Coleman–Chabauty method (cf. [14,
Introduction]). The proof of Theorem 1.1 is executed in a similar way as
Kim’s construction of logC,v, namely, we show that the classifying spaces of

torsors of G and H in Repcrys
Qp (GF ) and MFad

F (ϕ) satisfying certain conditions

are isomorphic to H1
f (F,G(Qp)) and F 0HF (F )\H(F ), respectively.

The outline of this article is as follows. In Section 2, we introduce concepts
of algebraic group and its torsor in a neutral rigid exact ⊗-category. In Sub-
section 3.1 and Subsection 3.2, we consider five rigid exact ⊗-categories and
study classifying spaces of torsors in those categories. We define the gen-
eralized Bloch–Kato exponential map assuming Proposition 3.3 and define
the generalized Bloch–Kato logarithmic map in Subsection 3.3. In Section
4, we recall the exponential map introduced in [15], [20] and study a rela-
tion between this exponential map and the logarithmic map introduced in
Subsection 3.3. Then, we give a proof of Proposition 3.3. In Section 5, we
prove Theorem 1.2.

Notation. In this article, p denotes a rational prime. For each field k,
we fix its separable closure k and denote by Gk the absolute Galois group
Gal(k̄/k) of k. Let A be a topological group with a continuous action of Gk.
We denote by σa the result of the action of σ ∈ Gk on a ∈ A. For i = 0, 1,
H i(k,A) denotes the i-th continuous Galois cohomology H i

cont(Gk, A).
Let X be a scheme over a field k and let R be a k-algebra. We denote

by XR or by X ⊗k R the base change X ×Spec(k) Spec(R) of X to Spec(R)
and O(X) denotes the ring of regular functions on X. Denote by Veck the
category of finite dimensional k-vector spaces.

For an object X of a category C, [X] denotes the isomorphism class of X
in C.

2. Algebraic groups in a rigid exact ⊗-category
Let us fix a field k in this section. Recall that a rigid exact ⊗-category over

k is a k-linear exact category T equipped with an associative, unitary, and
commutative k-bilinear ⊗-structure ⊗ : T × T → T satisfying the following
three conditions (cf. [7, Definition 1.1, Definition 1.7]):

(a) For each M,N ∈ Obj(T ), the internal hom Hom(M,N) exists.
(b) For all four objects M1,M2, N1, N2 ∈ Obj(T ), the canonical mor-

phism

Hom(M1, N1)⊗Hom(M2, N2)→ Hom(M1 ⊗M2, N1 ⊗N2)

is an isomorphism.
(c) Any object in T is reflexive.
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The unit object in T is denoted by 1T . We say that T is neutral if the
natural map k → EndT (1T ) is an isomorphism and if there exists a faithful
exact k-linear ⊗-functor ω : T → Veck. Such an ω is called a fiber functor
on T . We denote by Ind(T ) the ind-category of T . Now on, we fix T a rigid
exact ⊗-category over k.

Definition 1 (cf. [6, Paragraphe 5.3]).

(1) A commutative algebra in T is an object A of Ind(T ) equipped with
the unit 1T → A and the multiplication A ⊗ A → A which is asso-
ciative, unitary, and commutative. Denote by Alg(T ) the category
of commutative algebras in T .

(2) An affine scheme in T is an object in the opposite category Alg(T )op

of Alg(T ). The category of affine schemes in T is denoted by Aff(T ).
We denote by Sp(A) the image of A ∈ Obj(Alg(T )) in Aff(T ) under
the natural equivalence Alg(T ) ∼= Aff(T ).

(3) Let T ′ be a rigid exact ⊗-category over a field k′ and let D : T → T ′
be a ⊗-functor in the sense of [7, Definition 1.8]. Then, we also
denote by

D : Aff(T )→ Aff(T ′)
the functor defined by Sp(A) 7→ Sp(D(A)).

Example 1. A commutative algebra in Veck is nothing but a commutative
k-algebra in the usual sense. Hence, the category of affine schemes in Veck
can be identified with the category of affine k-schemes.

Definition 2. Suppose that T is neutral and let ω be a fiber functor on T .
Let f : X → Y be a morphism of affine schemes in T . For each property
P of morphisms of k-schemes (resp. property P of k-schemes), we say that
f is P (resp. X is P ) if ω(f) : ω(X) → ω(Y ) (resp. ω(X)) is P . Here, we
identify the category of affine schemes in Veck with the category of affine
k-schemes.

Remark 1. Recall that if T is a Tannakian category over k, then any two
fiber functors are locally isomorphic for the fpqc topology (cf. [19, Theorem
3.2.3]). Therefore, in Definition 2, if the property P is local on the base
field k in the fpqc topology (e. g. of finite type, closed immersion, open
immersion, unipotent etc.), then the concepts defined in Definition 2 does
not depend on the choice of the fiber functor ω.

For any two affine schemes X = Sp(A) and Y = Sp(B) in T , we put
X × Y := Sp(A⊗B). We define the empty scheme in T to be Sp(0). There
exists the following standard functor from T to Aff(T ).
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Definition 3. We define the functor A : T → Aff(T ) by the equality A(M)
:= Sp(Sym(M∨)). Here, Sym(M∨) is the symmetric algebra associated with
M∨. We call such A(M) an affine space in T .

Example 2. For any object V of Veck, A(V ) is the affine scheme represent-
ing the functor (k-algebras)→ (Sets); R 7→ V ⊗k R.
Lemma 2.1. Suppose that T is neutral. Let ω be a fiber functor on T and
let X = Sp(A) be an affine scheme in T . If X is of finite type, then there
exists a closed immersion X ↪→ A(V ) for some V ∈ Obj(T ).

Proof. We write A as a direct limit lim−→i
Ai with Ai ∈ Obj(T ). Since X is of

finite type, for sufficiently large i, the image of ω(Ai) in ω(A) contains a set
of generators of the k-algebra ω(A). Because the algebra homomorphism
Sym(ω(Ai)) → ω(A) is surjective, the induced morphism X ↪→ A(A∨i ) is a
closed immersion by definition. �
Definition 4. Let T be a neutral rigid exact ⊗-category over k.

(1) An affine group scheme in T is a group object in Aff(T ). Further,
we say that an affine group scheme G in T is an algebraic group in

T if G is of finite type.
(2) Let X be an affine scheme in T and let G be an affine group scheme

in T . A left action of G on X is a functorial left action of G on X. In
other words, it is a collection of actions of G(Y ) := HomAff(T )(Y,G)
on X(Y ) := HomAff(T )(Y,X) from the left for each object Y of
Aff(T ) which are functorial in Y . We define a right action of G on
X in a similar way.

(3) Let G be an affine group scheme in T . A left G-torsor in T is a non-
empty object X in Aff(T ) equipped with a left action a : G×X → X
such that a×pr2 : G×X → X×X is an isomorphism of affine schemes
in T . We define a right G-torsor in T by replacing a left action by a
right action. We denote by H1(T , G) the set of isomorphism classes
of right G-torsors in T .

(4) Let G and G′ be affine group schemes in T . A (G,G′)-bitorsor in T
is an affine scheme X in T equipped with a left (resp. right) action
of G (resp. G′) such that X is a left G-torsor and a right G′-torsor.

We regard H1(T , G) as a pointed set with the point [G] consisting of
trivial torsors. The following well-known fact is useful for later discussions.

Lemma 2.2 (cf. [22, Proposition 2.3.6 (iii)]). Let k be a field and let G
be an algebraic group over k. Let V be a k-vector space equipped with an
algebraic action of G. Then, for each finite dimensional subspace W of V ,
there exists a finite dimensional subspace W ′ of V which contains W and is
stable under the action of G.



NON-ABELIAN BLOCH–KATO EXPONENTIAL MAP 47

Proposition 2.3. Let G be an algebraic group in T and let X = Sp(A) be
an affine scheme in T equipped with a left action of G. If T is a neutral
Tannakian category over k, then for each object M in T contained in A,
there exists a G-stable object N ⊂ A in T containing M . In particular, A
is a direct limit of G-stable sub-objects of A in T .

Proof. By Tannakian duality, we may assume that T is the category Repk(π)
of algebraic representations of a pro-algebraic group π over k on finite di-
mensional k-vector spaces. Then, A (resp. M) is an object in Ind(Repk(π))
(resp. Repk(π)) and G is an algebraic group over k equipped with an al-
gebraic action of π. We define a subspace N of A to be the intersection
of subspaces of A which contain M and are stable under the action of G.
Then, according to Lemma 2.2, N is a finite dimensional k-vector space. By
definition, N contains M and is stable under the action of G. Moreover,
this space is also stable under the action of π because M is stable under the
action of π and N is characterized as the minimal k-vector subspace of A
containing M and stable under the action of G. Hence, N is an object of
Repk(π) and this completes the proof of the proposition. �

Let T ′ be a rigid exact ⊗-category over a field k′ and let D : T → T ′
be a ⊗-functor. Then, for any affine group scheme G in T , D(G) is an
affine group scheme in T ′. If D is faithful, then D sends each G-torsor to a
D(G)-torsor. We define a notion named D-trivial as follows.

Definition 5. Let Di : T → Ti, 1 ≤ i ≤ n, be faithful ⊗-functors between
rigid exact ⊗-categories and let G be an affine group scheme in T . Let X
be a right G-torsor in T . We say that X is (D1, . . . , Dn)-trivial if Di(X)
is a trivial Di(G)-torsor for each i. When n = 1, we mean D1-trivial for
(D1)-trivial. Define a subset H1

D1,...,Dn
(T , G) of H1(T , G) by

H1
D1,...,Dn(T , G) := Ker

(
H1(T , G)→

n∏

i=1

H1(Ti, Di(G))

)
.

We say that G is (D1, . . . , Dn)-trivial if H1(T , G) = H1
D1,...,Dn

(T , G).

In other words, the pointed set H1
D1,...,Dn

(T , G) is canonically identified

with the set of isomorphism classes of (D1, . . . , Dn)-trivial G-torsors.

Remark 2. Suppose that T is neutral and let ω : T → Veck be a fiber functor
on T . Then, a G-torsor X is ω-trivial if and only if ω(X) has a k-rational
point.

We recall the contraction and the pushforward of torsors.

Definition 6. ([11, Definition 1.3.1]). Let X (resp. X ′) be an affine scheme
with a right (resp. left) action of an affine group scheme G in T . Then,
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we define the contraction X ∧G X ′ to be the quotient of X × X ′ by the
natural G-action defined by (x, x′) 7→ (xg, g−1x′). If X ′ is an affine group
scheme in T and the action of G on X ′ is induced by a group homomorphism
u : G→ X ′, we denote X ∧G X ′ by u∗(X) and call it the pushforward of X
by u.

Remark 3. Let X (resp X ′) be a right G-torsor (resp. (G,G′)-bitorsor).

(1) The contraction X ∧G X ′ is a right G′-torsor. We call such a con-
traction the composition of torsors and call X ∧G X ′ the composite
X and X ′.

(2) The composition is functorial in the following sense. Let D : T → T ′
be a faithful ⊗-functor between rigid exact ⊗-categories. Then, the
quotient morphism X × X ′ → X ∧G X ′ induces D(G′)-equivariant
morphism

c : D(X) ∧D(G) D(X ′)→ D(X ∧G X ′).
Since both hand sides are right D(G′)-torsors, c is an isomorphism.

Finally, we introduce the condition (Unip).

Definition 7. Suppose that T is neutral and let ω be a fiber functor on T .
For each algebraic group G in T , we say that G satisfies (Unip) if G satisfies
the following condition: (Unip) ω(G) is a unipotent algebraic group over k.

3. Generalized Bloch–Kato exponential map and logarithmic
map

In this section, we define the generalized Bloch–Kato exponential map
and logarithmic map as maps between two classifying spaces of torsors in
certain rigid exact ⊗-categories. We fix the following system of notation for
the rest of this paper. Let F be a finite extension of Qp and let F0 be the
maximal subfield of F unramified over Qp. Let f := [F0,Qp] be the residual
degree of F over Qp.

3.1. Classifying spaces of torsors in MFF (ϕ) and in MFad
F (ϕ). In this

and the next subsections, we give examples of classifying spaces of torsors
in rigid exact ⊗-categories. Let MFF (ϕ) be the category of finite dimen-
sional filtered ϕ-modules over F . Recall that a filtered ϕ-module is an F0-
vector space M equipped with a Frobenius semi-linear endomorphism ϕM
and a separated and exhaustive decreasing filtration F i(M ⊗F0 F ) of the F -
vector space M ⊗F0 F . A Hodge-Tate weight of M is an integer n satisfying
Fn(M ⊗F0 F ) 6= Fn+1(M ⊗F0 F ). This category has a natural ⊗-structure
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and internal hom (cf. [9, 4.3.4]) and one can check that MFF (ϕ) is a neutral
rigid exact ⊗-category over Qp. We let

ωF0 : MFF (ϕ) −→ VecF0 ;M 7→M

be the forgetful functor. Note that ωF0 is a ⊗-functor. We denote by
MFF the category of finite dimensional filtered F -vector spaces. Then, this
category also has a natural ⊗-structure and internal hom (cf. loc. cit.) and is
a neutral rigid exact ⊗-category over F . We also define a Hodge-Tate weight
of M for each object of MFF as we did. The correspondence M 7→M ⊗F0 F
defines a faithful exact ⊗-functor of rigid exact ⊗-categories

ωF : MFF (ϕ) −→ MFF .

We fix an algebraic group H in MFF (ϕ). We denote by ϕH : H → H
the Qp-scheme endomorphism induced by the Frobenius endomorphism of

the filtered ϕ-module O(H). Note that ϕfH is an endomorphism of an F0-
scheme H because f is the residual degree of F0 over Qp. Let HF :=
H ×Spec(F0) Spec(F ). By definition, the following two inclusion relations are
satisfied for all integers i and j:

F iO(HF )F jO(HF ) ⊂ F i+jO(HF ),(3.1)

cmH(F iO(HF )) ⊂
∑

j+k=i

F jO(HF )⊗F F kO(HF ).(3.2)

Here, cmH is the comultiplication of O(H). We sometimes identify ωF (H)
with HF .

Definition 8. Let Y be an affine scheme in MFF (ϕ).

(1) We say that Y satisfies the condition (Non-neg) if the following holds:
(Non-neg) All Hodge-Tate weights of O(Y ) are non-negative, that
is, we have F 0(O(YF )) = O(YF ).

(2) Suppose that Y is an affine group scheme in MFF (ϕ). Then, we
define the condition (Bij) as follows:
(Bij) The morphism of F0-schemes ϕf − 1: Y → Y ;x 7→ ϕf (y)y−1

is an isomorphism.

Remark 4. Let Y be an affine scheme in MFF (ϕ) and let YF := Y ×Spec(F0)

Spec(F ). If Y satisfies the condition (Non-neg), then F iO(YF ) is an ideal
of O(YF ).

Suppose that H satisfies the condition (Non-neg). Then, F 1O(HF ) is
a Hopf-ideal of O(HF ) by the inclusion relation (3.1) in the beginning of
this subsection. We define a closed subgroup scheme F 0HF of HF to be
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Spec(O(HF )/F 1O(HF )). We say that an H-torsor Y in MFF (ϕ) is non-
negative if Y satisfies the condition (Non-neg). For each non-negative H-
torsor Y , we put F 0YF := Spec(O(YF )/F 1O(YF )). It can be checked that
F 0YF is a torsor under F 0HF in the usual sense. By definition, any ωF -
trivial torsor satisfies the condition (Non-neg).

Lemma 3.1. Let Y be a right H-torsor in MFF (ϕ) and let YF := Y ×Spec(F0)

Spec(F ). If the underlying algebraic group of H is unipotent, then Y satisfies
the condition (Non-neg).

Proof. Let UN be the closed subgroup scheme of GLN,F0 consisting of upper
triangle unipotent matrices and suppose that H is a closed subgroup scheme
of UN . Then, there exists xi,j ∈ O(H), 1 ≤ i < j ≤ N such that F0[xi,j |1 ≤
i < j ≤ N ] = O(H) and

cmH(xi,j) = xi,j ⊗ 1 + 1⊗ xi,j +
∑

i<l<j

xi,l ⊗ xl,j

for all 1 ≤ i < j ≤ N . Since the algebraic group H over F0 is unipotent,
there exists a trivialization H ∼= Y of an H-torsor in VecF0 . We fix a

trivialization t : Y
∼−→ H and denote by yi,j ∈ O(Y ) the image of xi,j under

t] : O(H)
∼−→ O(Y ). Then, we have the equality

(3.3) caH,Y (yi,j) = yi,j ⊗ 1 + 1⊗ xi,j +
∑

i<l<j

yi,l ⊗ xl,j ,

where caH,Y is the coaction of O(H) on O(Y ). Let us denote by ca′H,Y
the isomorphism of filtered ϕ-modules O(Y )⊗F0 O(Y )

∼−→ O(Y )⊗F0 O(H)
defined by y ⊗ y′ 7→ (y ⊗ 1)caH,Y (y′). We show that yi,j ∈ F 0O(YF ) by
induction on d := j − i.

First, we suppose that d = 1. Then, by the equality (3.3), we have
ca′H,Y (1⊗yi,j−yi,j⊗1) = 1⊗xi,j . Since 1⊗xi,j ∈ F 0(O(YF )⊗F O(HF )) by

the condition (Non-neg), 1⊗ yi,j − yi,j ⊗1 is also contained in F 0(O(YF )⊗F
O(YF )). This implies that yi,j ∈ F 0O(YF ).

Next, we suppose that d > 1 and that yi′,j′ ∈ F 0O(YF ) if i′ − j′ < d.
Then, by the induction hypothesis, ca′H,Y (1 ⊗ yi,j − yi,j ⊗ 1) = 1 ⊗ xi,j +∑

i<l<j yi,l ⊗ xl,j is contained in F 0(O(YF ) ⊗F O(HF )). Hence, we have

yi,j ∈ F 0O(YF ) and this completes the proof of the lemma. �

Remark 5. In general, an H-torsor Y is not always to be non-negative. Let
F = Qp and let H = Gm,Qp = Spec(Qp[t, t

−1]) equipped with the trivial

Frobenius action and the filtration defined by F iO(H) = O(H) if i ≤ 0 and
by F iO(H) = 0 if i > 0. Let Y = Gm,Qp equipped with the trivial Frobenius

action, the filtration defined by F iO(Y ) = tiQp[t], and the right action of
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H defined by the group structure of H. Then, Y is an H-torsor in MFQp(ϕ)
which is not non-negative.

Definition 9. Let M be a filtered ϕ-module over F and let f : M ⊗F0

F → M ⊗F0 F be an F -linear automorphism. Then, we define the fil-
tered ϕ-module Mf to be M equipped with the filtration F i(Mf ⊗F0 F ) :=
f(F i(M ⊗F0 F )) and with the same Frobenius endomorphism.

Proposition 3.2. Let H be an algebraic group in MFF (ϕ) satisfying the
conditions (Non-neg) and (Bij). Then, there exists a canonical isomorphism
of pointed sets

Ψ: H1
ωF ,ωF0

(MFF (ϕ), H)
∼−→ F 0HF (F )\H(F ).

Proof. We repeat the same argument as in [14, Section 1]. First, we con-
struct a map

Ψ: {(ωF0 , ωF )-trivial H-torsors in MFad
F (ϕ)} → F 0HF (F )\H(F ).

Let Y be an (ωF0 , ωF )-trivial right H-torsor in MFad
F (ϕ). Then, we can

take an F -rational point pY,d of F 0YF because Y is ωF -trivial. Further, by
the same argument of [1, Corollary 3.2], we see that there exists a unique
F0-valued point pY,c of Y invariant under ϕf . Here, for applying Besser’s
argument, we need the conditions that Y is ωF0-trivial and that H satisfies
(Bij). We define Ψ(Y ) to be the class of h ∈ H(F ) in F 0HF (F )\H(F )
satisfying pY,c = pY,dh. One can check that the class of h in F 0HF (F )\H(F )
depends only on the isomorphism class of Y and that Ψ induces a well-
defined injective map H1

ωF ,ωF0
(MFF (ϕ), H) ↪→ F 0HF (F )\H(F ). By abuse

of notation, we also denote this injection by Ψ.
Finally, we show the surjectivity of Ψ. Let h be an element of H(F )

and denote by h] the ring automorphism of O(HF ) induced by the left
multiplication of h. Then, the filtered ϕ-module O(H)h] is a commutative
algebra in MFF (ϕ). We define Hh to be Sp(O(H)h]). The affine scheme Hh

is ωF0-trivial and the unit of H is the unique Frobenius invariant point of
Hh. On the other hand, the closed subscheme F 0Hh,F of Hh,F coincides with
h−1F 0HF by construction. Therefore, we may take pHh,d as h−1. Hence,
Ψ(Hh) = h modulo F 0HF (F ) and this implies the surjectivity of Ψ. �

Now, we assume that H is an algebraic group in the category MFad
F (ϕ)

of weakly admissible filtered ϕ-modules (cf. [9]). According to [4, Théorème
A], the category MFad

F (ϕ) is a neutral Tannakian category over Qp. Let

MFord
F (ϕ) be the category of ordinary filtered ϕ-modules in the sense of

Perrin-Riou (cf. [18]). Recall that M ∈ Obj(MFF (ϕ)) is said to be or-
dinary if its Hodge numbers coincide with Newton numbers counted with
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multiplicity and that each ordinary filtered ϕ-module is weakly admissible.
Perrin-Riou proved that MFord

F (ϕ) is a neutral Tannakian category over Qp

(cf. loc. cit. Théorème 1.5). The following proposition is a key of this paper.

Proposition 3.3. Let H be an algebraic group in MFad
F (ϕ) satisfying the

conditions (Non-neg) and (Bij). Furthermore, we suppose one of the follow-
ing conditions:

(a) The algebraic group H is an algebraic group in MFord
F (ϕ).

(b) The algebraic group H satisfies the condition (Unip).

Then, the canonical injection

H1
ωF0

,ωF
(MFad

F (ϕ), H) ↪→ H1
ωF0

,ωF
(MFF (ϕ), H)

is a bijection.

Remark 6. If an algebraic groupH in MFad
F (ϕ) satisfies the condition (Unip),

then H is ωF -trivial by Lemma 3.1. Furthermore, it is clear that H is ωF0-
trivial in this case (cf. Remark 2). Hence, Proposition 3.3 states that we
have

H1(MFad
F (ϕ), H)

∼−→ H1(MFF (ϕ), H) ∼= F 0HF (F )\H(F )(3.4)

if H satisfies three conditions (Non-neg), (Bij), and (Unip).

The proofs of Proposition 3.3 for the ordinary case (a) and the unipotent
case (b) are given separately. The proof of the former case is simper than
the latter case and we give a proof of that case in the last of this subsection.
The proof of the latter case will be given in Subsection 4.3 depending on a
totally different idea.

Before starting the proof of the ordinary case of Proposition 3.3, we recall
the slope filtration of ϕ-modules. Let σ be the arithmetic Frobenius auto-
morphism of F0. Let M be a dualizable finite dimensional ϕ-module over
F0, that is, the F0-linear homomorphism M → σ∗M induced by ϕM is an
isomorphism. Then, by the Dieudonné–Manin classification, there exists a
unique decomposition M = ⊕αM [α] such that M [α] is pure of slope α (cf.
[12, Corollary 14.6.4], [18, Subsection 1.2]). We define the slope filtration

{Mα}α∈R of M by Mα := ⊕β≤αM [β]. By definition, this filtration is an
increasing, separated, and saturated filtration of M . If M is ordinary, then
M is dualizable and each slope of M is an integer. Thus, we regard the
slope filtration of M as a filtration indexed by integers when M is ordinary.

Lemma 3.4. Let C be a sub-Tannakian category of MFord
F (ϕ) closed under

subquotients and extensions. Let M be an object in C and let f : M ⊗F0

F → M ⊗F0 F be an F -linear automorphism. If f stabilizes the filtration
{Mα ⊗F0 F}α∈Z, then the filtered ϕ-module Mf is also an object in C. In
particular, Mf is weakly admissible.
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Proof. We prove this lemma by induction on n := ]{Hodge numbers of M}.
If n = 1, then M is pure of slope α for some integer α. The Hodge filtration
of M is give by the following equalities:

F i(M ⊗F0 F ) =

{
M ⊗F0 F if i ≤ α,
0 if i > α.

Hence, we have Mf = M and the assertion holds for M .
Next, we show the general case. We assume that the assertion of the

lemma holds for each N ∈ Obj(C) such that ]{Hodge numbers of N} < n.
Let α be the maximum integer such that

Fα(M ⊗F0 F ) = M ⊗F0 F.

Then, according to [18, Lemma 2.5], Mα is pure of slope α and Mα is a
sub-object of M in C. By the assumption of the induction, the assertion of
the lemma for M ′ := (M/Mα) ∈ Obj(C) holds. Consider the following exact
sequence of filtered ϕ-modules:

0→Mα,f = Mα →Mf →M ′f̄ → 0

where f̄ : M ′ ⊗F0 F → M ′ ⊗F0 F is the F -linear automorphism induced by
f . Since Mα and M ′

f̄
are ordinary, Mf is also ordinary (cf. [18, Proposition

2.4]). Furthermore, since Mα and M ′
f̄

are objects in C, we see that Mf is

also an object in C. �
Proof of Proposition 3.3 when H satisfies the condition (b). By the proof of
Proposition 3.2, it is sufficient to show that O(H)h] is admissible for any
h ∈ H(F ). According to Lemma 3.4, it is sufficient to show that h] pre-
serves the slope filtration of O(HF ). Let α be a slope of O(H). Since the
comultiplication cmH of O(H) is compatible with its slope filtration, h] is
factored as follows:

O(HF )α := O(H)α ⊗F0
F

cmH−−−→
∑

β+γ=α

O(HF )β ⊗F O(HF )γ
1⊗h−−−→

∑

β+γ=α

O(HF )γ .

Note that each slope of O(H) is non-negative by the condition (Non-neg). Hence,
we have

∑
β+γ=αO(HF )γ =

∑α
γ=0O(HF )γ = O(HF )α. Thus, h] preserves the

filtration {O(HF )α}α∈Z≥0
and this completes the proof of Proposition 3.3 when

the condition (a) holds. �

By Lemma 3.4 and the above proof, we obtain the following corollary.

Corollary 1. Let C be a sub-Tannakian category of MFord
F (ϕ) stable under

subquotients and extensions. Let H be an algebraic group in C satisfying
the conditions (Non-neg) and (Bij). Then, the canonical injections

H1
ωF0

,ωF
(C, H) ↪→ H1

ωF0
,ωF

(MFad
F (ϕ), H) ↪→ H1

ωF0
,ωF

(MFF (ϕ), H)
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are bijections.

3.2. Classifying spaces of torsors in RepQp(GF ) and in Repcrys
Qp (GF ).

The next example of a rigid exact ⊗-category is the category RepQp(GF )

of continuous representations of GF on finite dimensional Qp-vector spaces.
We study fundamental properties of affine schemes and classifying spaces of
torsors in this category.

Definition 10. Let X be an affine scheme in RepQp(GF ) of finite type.

Choose V ∈ Obj(RepQp(GF )) and a closed immersion X ↪→ A(V ) (cf.

Lemma 2.1). Then, for any topological Qp-algebra R, we define the topol-
ogy on X(R) to be the relative topology defined by the inclusion X(R) ↪→
A(V )(R) = V ⊗Qp R. Here, we equip V ⊗Qp R with the product topology
on R.

Lemma 3.5. The topology on X(R) does not depend on the choice of a
closed immersion i : X ↪→ A(V ).

Proof. First, we consider the case when X is an affine space A(W ) with W ∈
Obj(RepQp(GF )) and i is induced by an injective Qp[GF ]-homomorphism

W ↪→ V . In this case, the product topology on W ⊗Qp R coincides with
the topology induced by W ⊗Qp R ↪→ V ⊗Qp R because W ⊗Qp R is a direct
factor of V ⊗Qp R as an R-module.

Next, we consider the general case. Take another object V ′ of RepQp(GF )

and a closed immersion i : X ↪→ A(V ′). By replacing V ′ by V ⊕ V ′, we
may assume that V is contained in V ′ and that there exists a commutative
diagram of closed immersions

X
i //

i′ ""

A(V )

f{{

A(V ′)

such that f is induced by the inclusion V ↪→ V ′. Since the topology on A(V )
coincides with the relative topology defined by f , the relative topology on
X(R) induced by i coincides with its relative topology defined by i′. �

Definition 11. Let X be an affine scheme in RepQp(GF ) of finite type.

Then, for each topological Qp-algebra R equipped with a continuous action
of GF , we define the action of σ ∈ GF on x ∈ X(R) = Hom(O(X), R) by the

equality σx(a) := σ
(
x(σ

−1
a)
)

for each a ∈ O(X).

Remark 7. We use the same notation as in Definition 11.



NON-ABELIAN BLOCH–KATO EXPONENTIAL MAP 55

(1) The action of GF on X(R) is functorial in X. In other words, for
any morphism X → Y between affine schemes in RepQp(GF ), the

map X(R)→ Y (R) is GF -equivariant.
(2) If X = A(V ) with V ∈ Obj(RepQp(GF )), then the action of GF on

X(R) = V ⊗Qp R coincides with the diagonal action. In particular,
this action is continuous.

Lemma 3.6. Let X and R be the same as in Definition 11. Then, the
action of GF on X(R) is continuous.

Proof. Choose V ∈ Obj(RepQp(GF )) and a closed immersion X ↪→ A(V ).

Recall that the inclusion X(R) ↪→ A(V )(R) is GF -equivariant (cf. Remark 7
(1)). Furthermore, the action of GF on A(V )(R) is continuous by Remark 7
(2). Since the topology on X(R) is defined by this inclusion, we obtain the
conclusion of the lemma. �

Let ωQp : RepQp(GF ) → VecQp be the forgetful functor. Then, we can

describe the classifying space of ωQp-trivial torsors as follows:

Proposition 3.7. Let G be an algebraic group in RepQp(GF ). Then, there

exists a natural isomorphism of pointed sets

Φ: H1
ωQp

(RepQp(GF ), G)
∼−→ H1(F,G(Qp)).

Proof. Let X be an ωQp-trivial right G-torsor in RepQp(GF ). Since X is ωQp-

trivial, X(Qp) is non-empty (cf. Remark 2) and is a right torsor under G(Qp)
in the usual sense. We fix an element x of the non-empty set X(Qp). Then,
for each σ ∈ GF , there exists a unique element cx(σ) ∈ G(Qp) satisfying σx =
xcx(σ). By construction, cx is a continuous 1-cocycle of GF with coefficients
in G(Qp). By the standard argument, one can prove that the cohomology

class [cx] ∈ H1(F,G(Qp)) of cx depends only on the isomorphism class of
X and [cx] determines the isomorphism class of X. We put Φ([X]) :=
[cx]. Then, Φ is injective because the isomorphism class of X is uniquely
determined by the cohomology class Φ([X]).

We shall check the surjectivity of Φ. Let c : GF → G(Qp) be a continuous
1-cocycle. For each σ ∈ GF , we define ac(σ) : G→ G by ac(σ)(g) := σg c(σ).
Since c is a 1-cocycle, ac defines a left action of GF on G. We define Gc to
be G equipped with the action of GF defined by ac. Further, we equip Gc
with the natural right action of G defined by translations. We shall show
that Gc is a right torsor under G in RepQp(GF ). It is sufficient to show that

Gc is an affine scheme in RepQp(GF ). According to Proposition 2.3, there

exists a collection of finite dimensional sub-Qp-vector spaces {Vλ}λ of O(G)
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stable under the actions of GF and G such that O(G) = ∪λVλ. Then, Vλ is
also stable under the new action of GF defined by ac. Therefore, Gc is an
affine scheme in RepQp(GF ). By the construction of Gc and the definition

of Φ, we have Φ([Gc]) = [c]. Thus, Φ is surjective. �
For the rest of this subsection, we consider torsors under algebraic groups

in the category Repcrys
Qp (GF ) of crystalline representations of GF .

Definition 12. We define the finite part H1
f (F,G(Qp)) of H1(F,G(Qp)) by

H1
f (F,G(Qp)) := Ker

(
H1(F,G(Qp))→ H1(F,G(Bcrys))

)
.

Recall that there exists an equivalence of Tannakian categories

Dcrys : Repcrys
Qp (GF )

∼−→ MFad
F (ϕ);V 7→ Dcrys(V ) := H0(GF , V ⊗Qp Bcrys)

which is a quasi-inverse of the functor Vcrys (cf. [4]).

Proposition 3.8. Let G be an algebraic group in Repcrys
Qp (GF ). Then, the

map Φ in Proposition 3.7 induces the canonical bijection

Φ: H1
ωQp ,D

′
crys

(Repcrys
Qp (GF ), G)

∼−→ H1
f (F,G(Qp)),

where D′crys is the composite ωF0 ◦Dcrys : Repcrys
Qp (GF )→ VecF0.

Proof. Let X be a right G-torsor in RepQp(GF ) which is ωQp-trivial. Note

that Φ([X]) is contained in the kernel of H1(F,G(Qp)) → H1(F,G(Bcrys))
if and only if the GF -invariant part of X(Bcrys) is non-empty. In particular,
we have O(X) ⊗Qp Bcrys

∼= O(G) ⊗Qp Bcrys as GF -modules if Φ([X]) ∈
H1
f (F,G(Qp)). This implies that O(X) is ind-crystalline, namely, X is an

affine scheme in Repcrys
Qp (GF ).

Now, we suppose that X is a G-torsor in Repcrys
Qp (GF ). By definition, we

have the following equalities:

X(Bcrys)
GF = HomQp-alg.(O(X), Bcrys)

GF

= HomBcrys -alg.(O(X)⊗Qp Bcrys, Bcrys)
GF

= HomBcrys -alg.(Dcrys(O(X))⊗F0 Bcrys, Bcrys)
GF

= HomF0-alg.(Dcrys(O(X)), Bcrys)
GF

= HomF0-alg.(Dcrys(O(X)), F0)

= Dcrys(X)(F0).

Therefore, Φ(X) is contained in H1
f (F,G(Qp)) if and only if X is D′crys-

trivial. This completes the proof of the proposition. �
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3.3. Generalized exponential map and logarithmic map. In this sub-
section, we define the generalized Bloch–Kato exponential map and loga-
rithmic map assuming Proposition 3.3. We fix an algebraic group G in
Repcrys

Qp (GF ) and denote Dcrys(G) by H.

Theorem 3.9. We suppose that G is ωQp-trivial and that H satisfies the

conditions (Non-neg) and (Bij).

(1) If H satisfies one of the conditions (a) and (b) of Proposition 3.3,

then the equivalence Vcrys : MFad
F (ϕ)

∼−→ Repcrys
Qp (GF ) of Tannakian

categories induces a natural injection

F 0HF (F )\H(F ) ↪→ H1
f (F,G(Qp)).

(2) If H is ωF -trivial, then the equivalence of Tannakian categories

Dcrys : Repcrys
Qp (GF )

∼−→ MFad
F (ϕ) induces an injection between pointed

sets

H1
f (F,G(Qp)) ↪→ F 0HF (F )\H(F ).

(3) If H satisfies both conditions of (1) and (2), then the injections in
(1) and (2) are bijections and one of them is the inverse of the other
one.

Proof. By the assumption of the triviality, we have

(3.5) H1
D′crys

(Repcrys
Qp (GF ), G) = H1

ωQp ,D
′
crys

(Repcrys
Qp (GF ), G).

Then, by Proposition 3.8, we have the following morphisms of pointed sets:
(3.6)

H1
ωF0

,ωF
(MFad

F (ϕ), H)
Vcrys−−−→
∼

H1
D′crys,ωF ◦Dcrys

(Repcrys
Qp

(GF ), G) ↪→ H1
f (F,G(Qp)).

First, we show the assertion (1). IfH satisfies one of the conditions (a) and
(b) of Proposition 3.3, then the natural injection H1

ωF0
,ωF

(MFad
F (ϕ), H) ↪→

F 0HF (F )\H(F ) is bijective by Proposition 3.3. By composing the inverse
of that bijection and the injection (3.6), we have the desired injection.

Next, we show the assertion (2). If H is ωF -trivial, then G is ωF ◦Dcrys-
trivial. Therefore, the injection (3.6) is bijective by Proposition 3.8 and the
equality (3.5). Since Dcrys is a quasi-inverse of Vcrys, the inverse of the bijec-
tion (3.6) is induced by the functor Vcrys. Then, by composing the inverse of

(3.6) and the natural injection H1
ωF0

,ωF
(MFad

F (ϕ), H) ↪→ F 0HF (F )\H(F ),

we obtain the second inclusion.
The assertion (3) is easily proved by the constructions of two injections.

�
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Definition 13. We call the injection in Theorem 3.9 (1) the generalized
Bloch–Kato exponential map for G and denote it by expG. We also define the
generalized Bloch–Kato logarithmic map logG to be the injection in Theorem
3.9 (2).

The following theorem is deduced from the definition of the exponential
maps and Remark 3.

Theorem 3.10. Let 1 → G′ → G → G′′ → 1 be an exact sequence of
algebraic groups in Repcrys

Qp (GF ) and set H ′ := Dcrys(G
′), H ′′ := Dcrys(G

′′).
We assume that whole the groups satisfy whole the conditions in Theorem
3.9 (1), (2). Then, we have the following commutative diagram of pointed
sets with exact rows:

(3.7) F 0H ′F (F )\H ′(F ) //

expG′∼=
��

F 0HF (F )\H(F ) //

∼= expG
��

F 0H ′′F (F )\H ′′(F )

∼= expG′′
��

H1
f (F,G′(Qp)) // H1

f (F,G(Qp)) // H1
f (F,G′′(Qp)).

Here, the horizontal maps are defined by the pushforward of torsors. Fur-
ther, if G′ is contained in the center of G, then H1

f (F,G′(Qp)) (resp.

F 0H ′F (F )\H ′(F )) acts on H1
f (F,G(Qp)) (resp. F 0HF (F )\H(F )) and the

diagram (3.7) is compatible with those actions.

The last assertion of Theorem 3.10 follows from well-known facts about
long exact sequence of non-abelian group cohomology for central extensions
and from the construction of expG.

4. Unipotent case

In this section, we recall an exponential map exp′G defined in the previous
works [15] and [20] when G satisfies (Unip). The main result Proposition 4.9
of this section states that exp′G is the inverse map of the generalized Bloch–
Kato logarithm logG defined in Subsection 3.3. Then, we complete the proof
of Proposition 3.3 when H satisfies the condition (b) of Proposition 3.3 as
a consequence of Proposition 4.9.

4.1. Remarks on nilpotent Lie algebras and unipotent algebraic
groups. Let k be a field of characteristic 0 and g a finite dimensional nilpo-
tent Lie algebra over k. Then, for any k-algebra R, the Campbell–Hausdorff
product (cf. Campbell–Hausdorff’s formula [21, Chapter IV, Section 8, p.
27 line 30]) defines a canonical group structure on g ⊗k R. We denote this
group by (g⊗k R)CH and can regard the functor

gCH : (k-algebras)→ (groups);R 7→ (g⊗k R)CH
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as a unipotent algebraic group over k because this functor is represented by
the scheme Spec(Sym(g∨)) where g∨ is the dual k-vector space of g. Let
NilLiek (resp. Unipk) be the category of finite dimensional nilpotent Lie
algebras over k (resp. unipotent algebraic groups over k). Then, according
to [5, Chapter IV, Section 2, Proposition 4.1, Corollaire 4.5 (b)], the functor

NilLiek → Unipk; g 7→ gCH

is an equivalence of categories with a quasi-inverse

Lie : Unipk → NilLiek;G 7→ Lie(G).

The following proposition is easily checked by gCH = Spec(Sym(g∨)).

Proposition 4.1. The functor Lie induces an equivalence between the cat-
egory of algebraic groups in Repcrys

Qp (GF ) satisfying (Unip) and the category

of nilpotent Lie algebra objects in Repcrys
Qp (GF ). In particular, for an alge-

braic group G in RepQp(GF ) satisfying (Unip), G is an algebraic group in

Repcrys
Qp (GF ) if and only if Lie(G) is a crystalline representation of GF .

Let g be a nilpotent Lie algebra object in Repcrys
Qp (GF ) and let h :=

Dcrys(g).

Lemma 4.2. The algebraic group hCH in MFad
F (ϕ) satisfies the condition

(Non-neg) if and only if any Hodge-Tate weight of h∨ is non-negative.

Proof. Since hCH = Spec(Sym(h∨)), h∨ is a sub-admissible filtered ϕ-module
of O(hCH). Thus, if hCH satisfies (Non-neg), then any Hodge-Tate weight
of h∨ is non-negative. On the other hand, if any Hodge-Tate weight of
h∨ is non-negative, then any Hodge-Tate weight of Symn(h∨) is also non-
negative for each n ∈ Z≥0. Hence hCH satisfies (Non-neg) and we have the
conclusion. �

We define the central descending series Γig by Γ1g := g and Γi+1g :=
[Γig, g].

Lemma 4.3. We put Vi := Γig/Γi+1g. If ϕf -invariant parts of Dcrys(Vi)

are zero for all i, then the algebraic group hCH in MFad
F (ϕ) satisfies the

condition (Bij).

Proof. We prove this lemma by induction on the nilpotency n of g. If n = 1,
then the assertion is easily checked. We assume that n > 1 and the assertion
holds when we replace n by n − 1. Let H be hCH, Z the center of H, and
H ′ = H/Z. Then, we obtain the following commutative diagram with exact
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rows:

1 // Z //

ϕfZ−1∼=
��

H //

ϕfH−1
��

H ′ //

ϕf
H′−1∼=
��

1

1 // Z // H // H ′ // 1.

We note that ϕfH − 1 is not a group homomorphism except the case n =
1. However, the diagram above is compatible with the action of Z on H
defined by multiplications. Indeed, for any z ∈ Z and h ∈ H, the equality

(ϕfZ(z)z−1)(ϕfH(h)h−1) = ϕfH(zh)(zh)−1 holds. Hence, by the snake lemma,
we have the conclusion of the lemma. �

4.2. The fundamental exact sequence. Let us fix an algebraic group
G in RepQp(GF ) satisfying the condition (Unip). We denote by g the Lie

algebra of G. The key of the construction of the exponential map in [15]
and [20] is the following lemma:

Lemma 4.4 (The fundamental exact sequence, [20, Lemma 2.1], [15, Proof
of Proposition 1.4]). There exists the following GF -equivariant exact se-
quence of topological pointed sets:

(4.1) 1→ G(Qp)
α−→ G(Be)

β−→ G(B+
dR)\G(BdR)→ 1.

Here, Be is the ϕ-invariant part Bϕ=1
crys of Bcrys. Moreover, the map β has a

set theoretical continuous section.

Recall that g is the Lie algebra of G. Then, DdR(g) := H0(F, g⊗Qp BdR)

and D0
dR(g) := H0(F, g ⊗Qp B

+
dR) have natural structures of nilpotent Lie

algebras over F . We define the unipotent algebraic group DdR(G) (resp.
D0

dR(G)) over F to be DdR(g)CH (resp. D0
dR(g)CH).

Lemma 4.5 ([20, Lemma 5.3]). Assume that g is a de Rham representation
of GF . Then, we have a canonical isomorphism of pointed sets

D0
dR(G)(F )\DdR(G)(F )

∼−→ H0(F,G(B+
dR)\G(BdR)).

Definition 14.

(1) We define the exponential part H1
e (F,G(Qp)) of H1(F,G(Qp)) to be

the kernel of the canonical map of pointed sets H1(F,G(Qp)) →
H1(F,G(Be)) induced by the homomorphism α in (4.1).

(2) Assume that Lie(G) = g is a de Rham representation of GF . Then,
we define the exponential map exp′g : D0

dR(G)(F )\DdR(G)(F ) →
H1
e (F,G(Qp)) to be the composite of the isomorphism of Lemma
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4.5 and the connecting homomorphism of the fundamental exact se-
quence (4.1) in Lemma 4.4. We also denote exp′g by exp′G.

We can prove the following proposition by the induction on the nilpotency
of g.

Proposition 4.6 (cf. [20, Proposition 5.7]). Assume that g satisfies the
following conditions:

(a) The GF -representation g = Lie(G) is a de Rham representation.
(b) The algebraic group Dcrys(G) := Dcrys(g)CH in MFad

F (ϕ) satisfies the
condition (Bij)1.

Then, the following assertions hold.

(1) The exponential map exp′G is bijective.
(2) If g is crystalline, then H1

e (F,G(Qp)) coincides with H1
f (F,G(Qp)).

Now, we fix a Zp-basis ζp∞ = (ζpn)n≥0 of Zp(1) := lim←−n µpn and let

Qp(r) := Zp(1)⊗r ⊗Zp Qp. We regard Qp(r) as an abelian Lie algebra object

in Repcrys
Qp (GF ). Although it is hard to calculate exp′G in general, there

exists an explicit formula for exp′Qp(r) due to Bloch and Kato. Recall that

the one-dimensional F0-vector space Dcrys(Qp(r)) is generated by ζ⊗rp∞/t
r

where t ∈ Bcrys is the p-adic analog of “2π
√
−1” attached to ζp∞ (cf. [8]).

Theorem 4.7 (The explicit reciprocity law, [2, Theorem 2.1 (4.8.2)]). As-
sume that F is unramified over Qp. Then, for each a ∈ F and for each
positive integer r greater than 1, the following formula holds:

exp′Qp(r)

(
a
ζ⊗rp∞

tr

)
=

1

(r − 1)!
TrF/Qp

({(
1− σF

pr

)
a

}
φCWF,r

)
.

Here, σF ∈ Gal(F/Qp) is the arithmetic Frobenius automorphism of F

and φCWF,r ∈ HomGal(F (µp∞ )/F )(Gal(F/F (µp∞)), F (r)) ∼= H1(F, F (r)) is the
Coates–Wiles homomorphism.

We will use this theorem in Subsection 5.2.

4.3. End of the proof of Proposition 3.3. In this subsection, we assume
that G is an algebraic group in Repcrys

Qp (GF ) satisfying (Unip) and that H :=

Dcrys(G) satisfies the conditions (Non-neg) and (Bij). We denote Dcrys(g)
by h. Note that H is ωF -trivial by Lemma 3.1. Therefore, the generalized
Bloch–Kato logarithm logG for G is defined by Theorem 3.9 (2).

1This condition is slightly different from the condition used in [20]. However, the same
proof works.
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Lemma 4.8. The unipotent algebraic group D0
dR(G) over F is canonically

isomorphic to F 0HF .

Proof. We have the following canonical isomorphism:

H = Dcrys(G) ∼= Spec
(
Sym(h∨)

)
.

By definition, the ideal of Sym(h∨) ⊗F0 F = Sym(DdR(g∨)) corresponding
to the closed subgroup scheme F 0HF of HF is generated by F 1DdR(g∨).
Thus, the ring of regular functions on F 0HF is canonically isomorphic to
Sym

(
DdR(g∨)/F 1(DdR(g∨))

)
. Hence, for each F -algebra R, we have canon-

ical isomorphisms of sets

F 0HF (R) ∼=
(
DdR(g∨)/F 1(DdR(g∨))

)∨⊗F R ∼= D0
dR(g)⊗F R =

(
D0

dR(g)⊗F R
)CH

functorial in R. Furthermore, the group structures of both hand sides coin-
cide under the isomorphism above because they are subgroups of HF (R) =

(DdR(g)⊗F R)CH. This completes the proof of the lemma. �

Proposition 4.9. Let G be an algebraic group in Repcrys
Qp (GF ) satisfying

(Unip). Put H := Dcrys(G). If H satisfies the conditions (Non-neg) and
(Bij), then logG defined in Definition 13 is a bijection and

exp′G : D0
dR(G)(F )\DdR(G)(F ) = F 0HF (F )\H(F )→ H1

f (F,G(Qp))

is the inverse map of logG.

Proof. Since logG is injective, it is sufficient to show that the composite
logG ◦ exp′G is the identity map. Let us take h ∈ H(F ) and b ∈ G(Be) whose
image under G(Be)→ G(B+

dR)\G(BdR) coincides with the image of h. Then,
by the definition of exp′G, the continuous 1-cocycle cb : GF → G(Qp);σ 7→
b σ(b−1) represents the cohomology class exp′G(h mod F 0HF (F )). We put
X := Gcb (cf. Proof of Proposition 3.7). By definition, the action of GF on
X = Gcb is defined by g 7→ cb(σ) σg = b σ(b−1g). Therefore, the left multi-
plication b−1 on G×Spec(Qp) Spec(Be) defines a GF -equivariant isomorphism

X×Spec(Qp) Spec(Be)
∼−→ G×Spec(Qp) Spec(Be) of right G×Spec(Qp) Spec(Be)-

torsors. In other words, the left multiplication by b−1 induces the following
GF -equivariant Bcrys-algebra isomorphism:

b−1,] : O(G)⊗Qp Bcrys
∼−→ O(X)⊗Qp Bcrys .(4.2)

Since b is Frobenius invariant, the isomorphism (4.2) is compatible with
Frobenius endomorphisms of both hand sides. Furthermore, because b co-
incides with h modulo G(B+

dR), the ring homomorphism b−1,] induces the
natural isomorphism

F i(O(Hh)⊗F BdR) = h]F i(O(G)⊗Qp BdR)
∼−→ F i(O(X)⊗Qp BdR)
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for each i. Therefore, by taking GF -invariant parts of (4.2), we have an
isomorphism

O(Hh)
∼−→ O(Dcrys(X))

in Ind(MFF (ϕ)). Hence, logG is the left inverse of exp′G that we want to
prove. �
Proof of Proposition 3.3 when H satisfies the condition (b). Let us suppose
that H is an algebraic group in MFad

F (ϕ) satisfying (Non-neg), (Bij), and
(Unip). Let Y be a right torsor under H in MFF (ϕ) which is (ωF0 , ωF )-
trivial. We will show that Y is an H-torsor in MFad

F (ϕ).
LetG be an algebraic group in Repcrys

Qp (GF ) such thatDcrys(G) = H. Since

G also satisfies (Unip), logG is a bijection (cf. Proposition 4.9). Therefore, by
Proposition 3.8 and the definition of logG, there exists an (ωQp , D

′
crys)-trivial

right torsor X under G in Repcrys
Qp (GF ) such that Dcrys(X) ∼= Y as right H-

torsors in MFF (ϕ). Since Dcrys is an equivalence between Repcrys
Qp (GF ) and

MFad
F (ϕ), Dcrys(X) is an affine scheme in MFad

F (ϕ). This implies that Y

is also an affine scheme in MFad
F (ϕ) and this completes the proof of the

proposition. �
Proposition 4.9 states that expG defined in Definition 13 coincides with

exp′G when G satisfies (Unip). Hence we always identify these two exponen-
tial maps expG and exp′G for the rest of the present paper.

5. Path torsors under fundamental groups of P1 \{0, 1,∞}
In this section, we give an analog of the Coleman–Ihara formula which is

a different version of [17, Theorem 1.1]. We fix a positive integer N greater
than 1.

5.1. Polylogarithmic quotients. We denote by π1 the maximal pro-p

quotient of the étale fundamental group πét
1 (P1

F
\{0, 1,∞},−→01) of the alge-

braic curve P1
F
\{0, 1,∞}. The topological group π1 has a natural continuous

action of GF defined by the base point
−→
01. Let x, y ∈ π1 be the standard

generators of π1 (cf. [23, Sectoion 8, Picture 4]). It is a well-known fact that

the equality σx = xχ
cyc(σ) holds for each σ ∈ GF where χcyc : GF → Z×p is

the p-adic cyclotomic character. Let p : π1 → Zp(1) be the GF -equivariant
group homomorphism defined by p(x) = ζp∞ , p(y) = 1. Then, we have a
canonical GF -equivariant section s : Zp(1)→ π1; ζp∞ 7→ x of p.
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Definition 15.

(1) We define the pro-p group πpol
1 to be the quotient π1/[Ker p,Ker p]

where [Ker p,Ker p] is the closed subgroup of π1 generated by com-

mutators of Ker p. We also denote by p the homomorphism πpol
1 →

Zp(1) induced by p by abuse of notation.

(2) We define the N -th p-adic étale polylogarithmic quotient P ét
N (
−→
01) to

be the unipotent completion of πpol
1 /ΓN+1πpol

1 over Qp, where Γnπpol
1

is the central descending series of πpol
1 defined by Γ1πpol

1 := πpol
1 and

by Γi+1πpol
1 := [Γiπpol

1 , πpol
1 ].

Remark 8. By construction, P ét
N (
−→
01) is a quotient of πun-ét

1 (P1
F
\{0, 1,∞},−→01)

and the p-adic étale realization of the motivic fundamental group U(
−→
01)(N)

in the sense of Deligne (cf. [6, (16.11.2)]).

We recall some fundamental properties of the p-adic étale polylogarithmic
quotient.

Lemma 5.1 ([6, Paragraphe 16.11, 16.12]).

(1) The section s induces a GF -equivariant isomorphism

πpol
1
∼= Zp(1) n Zp [[Zp(1) ]](1).

Here, the action of Zp(1) on Zp [[Zp(1) ]](1) is induced by translations
of Zp(1) on itself.

(2) The Lie algebra of P ét
N (
−→
01) is canonically isomorphic to the Lie alge-

bra Qp(1)n
∏N
n=1 Qp(n). Here, the abelian Lie algebra Qp(1) acts on

the abelian Lie algebra
∏N
n=1 Qp(n) via the canonical homomorphism

Qp(1) ⊗Qp Qp(n)
∼−→ Qp(n + 1) for 1 ≤ n ≤ N − 1 and annihilates

Qp(N).

According to Proposition 4.1, P ét
N (
−→
01) is an algebraic group in the cate-

gory Repcrys
Qp (GF ). We introduce the N -th crystalline polylogarithmic quo-

tient.

Definition 16. For any positive integer N and for any finite extension F

of Qp, we define the crystalline N -th polylogarithmic quotient Pcrys
N (
−→
01) to

be Dcrys(P ét
N (
−→
01)).

By definition, Pcrys
N (
−→
01) is an algebraic group in MFord

F (ϕ) satisfying
(Unip). Furthermore, by Proposition 4.1, Lemma 4.2, and Lemma 4.3, we

see that Pcrys
N (
−→
01) satisfies the conditions (Non-neg) and (Bij). Let k be

the residue field of F and let z be an element of P1 \{0, 1,∞}(OF ). We
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denote by πcrys
1 (P1

k \{0, 1,∞};
−→
01) and by πcrys

1 (P1
k \{0, 1,∞}; z,

−→
01) the crys-

talline fundamental group and the crystalline path torsor, respectively (cf.
[10, Definition 1.6]). It is well-known that there exist comparison isomor-
phisms of F -schemes

πcrys
1 (P1

k \{0, 1,∞};
−→
01)⊗F0 F

∼= πdR
1 (P1

F \{0, 1,∞};
−→
01)

and

πcrys
1 (P1

k \{0, 1,∞}; z,
−→
01)⊗F0 F

∼= πdR
1 (P1

F \{0, 1,∞}; z,
−→
01)

(cf. [10, Lemma 2.2]). Therefore, πcrys
1 (P1

k \{0, 1,∞};
−→
01) has a natural struc-

ture of an affine group scheme in MFF (ϕ) and πcrys
1 (P1

k \{0, 1,∞}; z,
−→
01)

has a natural structure of a right πcrys
1 (P1

k \{0, 1,∞};
−→
01)-torsor in MFF (ϕ).

Meanwhile, the crystalline polylogarithmic quotient Pcrys
N (
−→
01) is a quotient

of πcrys
1 (P1

k \{0, 1,∞};
−→
01) by the explicit descriptions of the Frobenius ac-

tion (cf. [10, Lemma 2.9]) and the Hodge filtration (cf. [6, Paragraphe
13.7]). For the symbol ? = un-ét or crys, we denote by u?

N the canoni-

cal surjective homomorphism π?
1(P1 \{0, 1,∞},−→01) � P?

N (
−→
01). We define

the right P?
N (
−→
01)-torsor P?

N (z;
−→
01) to be the pushforward of the path tor-

sor π?
1(P1 \{0, 1,∞}; z,−→01) by u?

N . According to Corollary 1, we have the
following proposition.

Proposition 5.2. Let MT ad
F (ϕ) be the minimal Tannakian subcategory of

MFad
F (ϕ) containing F0〈n〉 for all n ∈ Z closed under extensions. Then, for

each point z ∈ P1 \{0, 1,∞}(OF ), Pcrys
N (z;

−→
01) is a right Pcrys

N (
−→
01)-torsor

in MT ad
F (ϕ).

In the last of this subsection, we recall two unipotent Albanese maps
defined by Minhyong Kim.

Definition 17 (cf. [14, Introduction]).

(1) We define the étale Albanese map

Albét
F,N : P1 \{0, 1,∞}(F )→ H1(RepQp

(GF ),P ét
N (
−→
01)) ∼= H1(F,P ét

N (
−→
01)(Qp))

by Albét
F,N (z) := [P ét

N (z;
−→
01)].

(2) We define the crystalline-de Rham Albanese map

Albcr-dR
F,N : P1 \{0, 1,∞}(OF )→ H1(MT ad

F (ϕ),Pcrys
N (
−→
01)) ∼= Pcrys

N (
−→
01)(F )

by Albcr-dR
F,N (z) := [Pcrys

N (z;
−→
01)].
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5.2. Computations of Galois L-functions. Let K be a subfield2 of C.
In the paper [16], Nakamura and Wojtkowiak studied a measure valued
function

κz : GK → Meas(Zp,Zp(1))(1) = Zp [[Zp(1) ]](1) ⊂ πpol
1

for each z ∈ K (cf. [24, Proposition 2.3])3. In this subsection, we calculate
integrations of this measure when K is a finite extension F of Qp. By the
construction of κz, we have the following equality:

Lemma 5.3. Let z be an element of P1 \{0, 1,∞}(OF ). Then, for each

σ ∈ GF (ζp∞ ), we have the following equation in P ét
N (
−→
01)(Qp) ∼= Qp(1) n

∏N
n=1 Qp(n) up to inner automorphisms of P ét

N (
−→
01)(Qp) :

(5.1)

Albét
F,N (z)(σ) =


κ0,z(σ);

(
1

(n− 1)!

{∫

Zp
xn−1dκz(σ)(x)

}
ζ⊗np∞

)N

n=1




where κ0,z is the Kummer character associated to z.

Next, we recall that Albcr-dR
F,N is calculated by using Coleman’s p-adic

polylogarithms Lip-adic
n (z).

Theorem 5.4 (A special case of [10, Theorem 2.3]). For each OF -valued

point z of P1 \{0, 1,∞}, we have the following equality in Pcrys
N (
−→
01)(F ) ∼=

F
ζp∞
t n

∏N
n=1 F

ζ⊗np∞
tn :

Albcr-dR
F,N (z) =


logp(z)

ζp∞

t
;

(
−Lip-adic

n (z)
ζ⊗np∞

tn

)N

n=1


 .(5.2)

Here, logp is the Iwasawa p-adic logarithm.

The following lemma is a direct consequence of Theorem 3.10.

Lemma 5.5. We have the following exact sequence of pointed sets:
(5.3)

1→ H1
f (F,Qp(N))→ H1

f (F,P ét
N (
−→
01)(Qp))

prN−−→ H1
f (F,P ét

N−1(
−→
01)(Qp))→ 1.

The abelian group H1
f (F,Qp(N)) acts on H1

f (F,P ét
N (
−→
01)(Qp)) whose action

is compatible with the generalized exponential maps. We denote the ac-

tion of c ∈ H1
f (F,Qp(N)) on c′ ∈ H1

f (F,P ét
N (
−→
01)(Qp)) by c ∗ c′. For all

2In the paper [16], they assumed that K is a number field. However, we can construct
κz for an arbitrary z ∈ K ⊂ C by exactly the same way.

3More precisely, we need to fix an étale path γ from
−→
01 to z and we should write κz,γ .
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c1, c2 ∈ H1
f (F,P ét

N (
−→
01)(Qp)) satisfying prN (c1) = prN (c2), there exists a

unique element c3 ∈ H1
f (F,Qp(N)) such that c1 = c3 ∗ c2.

Proof. Note that F 0(Pcrys
n ×Spec(F0) Spec(F )) = 1 and D0

dR(Qp(n)) = 0 for
any n ∈ Z>0. Therefore, by Theorem 3.10, we have the following commuta-
tive diagram with exact rows:
(5.4)

DdR(Qp(N)) //

expQp(N)∼=
��

Pcrys
N (
−→
01)(F ) //

∼= exp
Pét
N

(
−→
01)

��

Pcrys
N−1(

−→
01)(F )

∼= exp
Pét
N−1

(
−→
01)

��

H1
f (F,Qp(N))) // H1

f (F,P ét
N (
−→
01)(Qp)) // H1

f (F,P ét
N−1(

−→
01)(Qp)).

It is clear that the first (resp. the last) map in the upper sequence is injective
(resp. surjective). Thus, we obtain the short exact sequence (5.3). The rest
of assertions follow from the commutative diagram (5.4) and the compatibil-
ity of the actions of the abelian groups DdR(Qp(N)) and H1

f (F,Qp(N))) on

Pcrys
N (
−→
01)(F ) and H1

f (F,P ét
N (
−→
01)(Qp)), respectively (cf. Theorem 3.10). �

The following proposition is one of the key propositions of [17].

Proposition 5.6 ([17, Proposition 5.1 (2)]). For each positive integer N
and for each unramified extension F of Qp, the composite of two maps

exp
Pét

N (
−→
01)
◦Albcr-dR

F,N : P1 \{0, 1,∞}(OF )→Pcrys
N (
−→
01)(F )

∼−→ H1
f (F,P ét

N (
−→
01)(Qp))

coincides with Albét
F,N .

For describing the integrations of the measure κz, we introduce a concept

of standard lifting of an element of H1
f (F,P ét

N−1(
−→
01)(Qp)).

Definition 18.

(1) Let c be an element of the finite part H1
f (F,P ét

N−1(
−→
01)(Qp)) and

write log
P ét
N−1(

−→
01)

(c) = (d0, d1, . . . , dN−1) ∈Pcrys
N−1(

−→
01)(F ). Then, we

define the standard lifting of c to be exp
P ét
N (
−→
01)

((d0, d1, . . . , dN−1, 0))∈
H1
f (F,P ét

N (
−→
01)(Qp)) and denote it by c̃.

(2) For each z ∈ P1 \{0, 1,∞}(OF ), we define the field F̃ (z,N) ⊃ F to

be the kernel field of the standard lifting of prN
(
Albét

F,N (z)
)
.

Lemma 5.7. Let c ∈ H1
f (F,P ét

N (
−→
01)(Qp)) and we denote log

P ét
N (
−→
01)

(c) by

(d0, . . . , dN ). Then, we have c = expQp(N)(dN ) ∗ p̃rN (c).
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Proof. It follows from Lemma 5.5 and the definition of the standard lifting.
�

Theorem 5.8. Let F be a finite unramified extension of Qp and let z be

an element of P1 \{0, 1,∞}(OF ). Let N be a positive integer greater than 1.
Then, for each σ ∈ G

F̃ (z,N)
, the following formula holds:

1

(N − 1)!

∫

Zp

xN−1dκz(σ)(x) =
−1

(N − 1)!
TrF/Qp

({(
1− σF

pN

)
Lip-adic
N (z)

}
φCWF,N (σ)

)
.

Proof. According to Theorem 5.4 and Lemma 5.7, we have

Albét
F,N (z) = expQp(N)

(
−Lip-adic

N (z)
ζ⊗Np∞

tN

)
∗ ˜prN (Albét

F,N (z)).

Since F̃ (z,N) is the kernel filed of ˜prN (Albét
F,N (z)), the formula

Albét
F,N (z)(σ) = expQp(N)

(
−Lip-adic

N (z)
ζ⊗Np∞

tN

)
(σ)

holds for any σ ∈ G
F̃ (z,N)

. Therefore, we see the conclusion of Theorem 5.8

by Theorem 4.7 and Lemma 5.3. �

Corollary 2. Under the same setting as in Theorem 5.8, we have the fol-
lowing formula for each σ ∈ G

F̃ (z,N)
:

(5.5) `iN (z)(σ) =
−1

(N − 1)!
TrF/Qp

({(
1− σF

pN

)
Lip-adic
N (z)

}
φCWF,N (σ)

)
.

Here, `iN (z) is the N -th `-adic polylogarithm (cf. [16]).

Proof. In the paper [16], the following formula was proved:

(5.6) `iN (z)(σ) =
1

(N − 1)!

∫

Zp
xN−1κz(σ)(x), for any σ ∈ G

F̃ (z,N)
.

Hence, by Theorem 5.8, we obtain the formula (5.5). �
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