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ABSTRACT

Airborne Wind Energy (AWE) is an emerging field of technology that investi-
gates wind power devices capable of remaining airborne either through aero-
static or aerodynamic forces. Consequently, the heavy and expensive tower of
conventional horizontal-axis wind turbines is no longer needed, allowing the
AWE device to operate at higher altitudes, where the wind tends to be steadier
and stronger and, therefore, more power is available. Another claimed advan-
tage is the reduction on overall costs, especially regarding transportation and
installation, due to the absence of the tower to withstand the torque caused
by the rotating turbine, thus also requiring a simpler foundation. Several
AWE concepts have been proposed, among which the pumping kite stands
out as one of the simplest and cheapest, essentially comprising a ground
winch where energy is generated, and a tethered wing that can be either flex-
ible or rigid. This dissertation contributes to the field of AWE by addressing
the pumping kite in four different aspects. The goal is to serve both as a
manuscript for the lay reader with some background on physics, aerodynam-
ics, dynamic systems, classic control and optimization techniques, as well
as by specialists in either of these areas who intend to carry out deeper in-
vestigations. The first contribution is to revisit in detail important models in
the literature used to simulate the flight dynamics, to design and to validate
control laws. Namely, the 3D two-tether point-mass wing (to which modifi-
cations are proposed), the massless wing in dynamic equilibrium, the course
angle dynamics and the logarithmic wind shear model are addressed. The sec-
ond contribution is a comparative study of flight controllers whose references
are computed separately from the ground winch control, in a decentralized
topology. A two-loop approach is considered, where the outer loop defines a
reference trajectory and generates a reference for the course angle, which is
then tracked in the inner loop by manipulating the steering input of the teth-
ered wing. A third contribution is the formulation of an optimization problem
to choose the operating parameters of the traction and retraction phases that
yield the maximum cycle power. One of the main findings is that, by reeling
out at a lower speed than the value that maximizes the traction power, the
duty cycle increases and, thereby, also the cycle power. The last major contri-
bution is to reinterpret Loyd’s lift (the pumping kite traction phase) and drag
modes as particular cases of the actuator disc considered in the derivation of
the Betz limit for power extraction from the wind. The expression for the lift
mode power coefficient is formulated using blade element momentum theory.

Keywords: Airborne wind energy. Modeling. Flight control.





RESUMO ESTENDIDO

Energia eólica aérea (Airborne Wind Energy (AWE), em inglês) é uma tecno-
logia de energia renovável que trata de dispositivos que aproveitam a energia
cinética do vento e são capazes de se manter no ar através de forças aerostá-
ticas ou forças aerodinâmicas. Este campo de estudos vem atraindo cada vez
mais pesquisas devido a duas grandes vantagens previstas sobre a tecnologia
convencional de turbinas de eixo horizontal. A primeira vantagem é que a
substituição da torre por cabos de comprimento variável permite ao disposi-
tivo operar em altitudes mais elevadas, onde os ventos tendem a soprar mais
consistentemente e a uma velocidade maior, caracterizando, portanto, um po-
tencial energético maior. A segunda vantagem é uma redução substancial nos
custos do empreendimento, especialmente nos quesitos de transporte e ins-
talação, devido à ausência de uma torre que deva suportar o torque causado
pela operação da turbina. Assim, acredita-se que a fundação para o ponto de
ancoragem do sistema também se torna mais simples e barata. Os disposi-
tivos de AWE que mantêm-se em voo através de forças aerodinâmicas são
denominados de “aerofólios cabeados”. Várias estruturas com aerofólios ca-
beados já foram propostas, dentre as quais destaca-se o pumping kite por ser
uma das mais simples e de menor custo. O pumping kite consiste, essenci-
almente, de duas unidades – uma de solo e a outra, de voo – com possíveis
variações quanto ao tipo de aerofólio (rígido ou flexível), número e função
dos cabos, atuadores para controle de voo no solo ou junto ao aerofólio, etc.
Em uma das configurações mais usuais, tem-se uma máquina elétrica no solo
acoplada a um carretel através de uma redução mecânica. À medida em que
o aerofólio descreve uma trajetória que visa maximizar a força de tração no
cabo, este desenrola-se do carretel, fornecendo potência mecânica à máquina
elétrica que, nessa fase, opera como gerador. Quando o comprimento de cabo
atinge um valor pré-determinado, encerra-se a fase de tração e inicia-se a
fase de recolhimento, durante a qual a máquina elétrica opera como motor
para enrolar o cabo até seu comprimento inicial. Para isto o aerofólio é re-
configurado para uma condição de baixa força aerodinâmica, permitindo o
recolhimento com um pequeno gasto energético e, assim, aumentando a po-
tência média entregue à rede (potência de ciclo) ao final deste ciclo com duas
fases. A unidade de voo é composta essencialmente pelo aerofólio, por um
microcomputador embarcado e pelos atuadores de controle de voo. Esta tese
visa contribuir à área de AWE em quatro diferentes aspectos. O objetivo é
servir tanto como um documento para o leitor leigo interessado no assunto e
que tenha conhecimentos em física, aerodinâmica, sistemas dinâmicos, con-



trole clássico e otimização, bem como uma referência para especialistas que
estejam buscando avançar em qualquer uma destas frentes. A primeira con-
tribuição é a discussão em detalhes de alguns modelos importantes usados
para a simulação, análise e projeto de controladores de voo para aerofólios
cabeados. Dentre estes modelos está o aerofólio ponto de massa com dois
cabos, cuja construção é explicada passo-a-passo, incluindo a proposição de
pequenas modificações relativas ao efeito da massa dos cabos nas equações
de movimento. Em seguida também é feita a derivação do modelo que repre-
senta a dinâmica do ângulo de curso (“ângulo de giro”) do aerofólio, que é
uma variável frequentemente utilizada para o controle de voo. Um terceiro
modelo discutido é o modelo logarítmico que descreve a variação da intensi-
dade média do vento de acordo com o coeficiente de rugosidade do solo. Para
fins ilustrativos, o modelo foi interpolado para algumas localidades com base
em um banco de dados norte-americano aberto ao público. A segunda contri-
buição desta tese é um estudo comparativo sobre abordagens para controle de
voo em uma topologia decentralizada, na qual as leis de controle da unidade
de solo e de voo são computadas separadamente. O controle de voo utiliza
uma estratégia com duas malhas em cascata. Durante a fase de tração, uma
opção é a malha externa utilizar a lemniscata de Bernoulli como referência
para a trajetória de “oito deitado” desejada para o voo do aerofólio. Com base
no erro de seguimento da lemniscata, é gerada uma referência para o ângulo
de curso, que é repassada à malha interna. Já para a fase de retração, a referên-
cia do ângulo de curso é mantida apontando para o zênite, fazendo com que
o aerofólio saia da zona de potência (condição de vento cruzado, crosswind)
e possa ser recolhido com baixo gasto energético. Uma outra possibilidade
discutida, mais simples, é o uso de apenas dois pontos de atração (atrato-
res) como referência de posição do aerofólio na malha externa, com apenas
um dos atratores ativo. Assim que o aerofólio cruza a coordenada azimute
de um atrator, o outro torna-se o ativo, levando o aerofólio a executar uma
curva e, dessa forma, realizar a trajetória desejada de oito deitado. Devido à
descontinuidade no erro de seguimento quando chavea-se entre os atratores,
ocorre uma descontinuidade no sinal de controle, razão pela qual esta estra-
tégia é conhecida como “bang-bang”. É discutido como o bang-bang pode
ser vantajoso no caso de aerofólios cabeados com um curto perímetro (com-
primento de arco) da trajetória, situação em que o período de amostragem do
controle torna-se relativamente grande, o que dificulta a estabilização do con-
trole. Por outro lado, no caso de trajetórias com perímetro maior, a ausência
de um percurso bem definido entre os dois atratores pode resultar em uma tra-
jetória aproximadamente geodésica (“reta” angular), afastando-se, assim, das
trajetórias ótimas de oito deitado sugeridas na literatura. Neste caso, a opção
com a lemniscata de Bernoulli pode tornar-se vantajosa. Para a malha interna



do controle de voo também foram investigadas algumas alternativas, entre as
quais um controlador proporcional. Usando o modelo da dinâmica do ângulo
de curso linearizado em alguns pontos principais, é computado o intervalo
do ganho proporcional que garante estabilidade em malha fechada, supondo
conhecidos os parâmetros do modelo. Também com base no mesmo modelo
do ângulo de curso, projetou-se um controlador de realimentação linearizante
que impõe uma dinâmica estável de primeira ordem ao erro de rastreamento
da malha interna. Tal controlador linearizante requer, em sua lei de controle,
o conhecimento da derivada da referência do ângulo de curso. Dado que esta
derivada pode ser difícil de se obter, na prática, com baixo ruído, é investigada
uma variante do controlador linearizante sem a mencionada derivada. Con-
siderando, para os três controladores, aproximadamente a mesma constante
de tempo do sistema em malha fechada, o controlador linearizante completo
obteve o melhor desempenho, seguido pelo proporcional, enquanto o lineari-
zante sem derivada da referência do ângulo de curso ficou com o pior desem-
penho. Uma terceira contribuição ao estudo do pumping kite é a formulação
de um problema de otimização para um ciclo de operação, considerando-se a
topologia de controle decentralizado. Já que a lei de controle de voo é com-
putada separadamente da unidade de solo, é necessário determinar os valores
de alguns parâmetros de operação cuja escolha pode ter um impacto significa-
tivo na potência de ciclo. Mostra-se como a potência média durante a fase de
tração varia em função do ângulo de ataque médio, e como o ângulo de ata-
que base pode ser determinado para operar-se no ponto de máxima potência.
A fase de tração é parametrizada em termos de um ângulo de ataque base,
uma velocidade de desenrolamento, um ângulo polar médio da trajetória, e
um comprimento médio do cabo. Já a fase de retração é parametrizada por
meio de dois coeficientes que definem a inclinação das rampas de força de
tração e ângulo de ataque base, e dois patamares ao final destas rampas. São
consideradas restrições no mínimo ângulo de ataque – importante no caso de
aerofólios flexíveis – e na máxima velocidade de enrolamento alcançada pela
máquina elétrica. A ideia é reduzir a força de tração e o ângulo de ataque
do aerofólio enquanto a velocidade de enrolamento aumenta e, dessa forma,
obter-se uma fase de retração eficiente. Para fins ilustrativos, o problema de
otimização é resolvido para os valores de patamar através de uma busca em
grid, enquanto os coeficientes de inclinação de rampa são definidos de ma-
neira ad hoc. Entre as principais conclusões está que, para o aerofólio do tipo
foil (ram-air) kite com 12m2 de área projetada sujeito a um vento nominal
de aproximadamente 10m/s, ao desenrolar-se o cabo a 2.3m/s, o que corres-
ponde a uma redução de 25.8% com relação à velocidade que maximiza a
potência na fase de tração, obtém-se um acréscimo de 9.3% na potência de
ciclo. Com base em um método simplificado para cálculo da potência de ci-



clo, também é obtida a curva de potência do pumping kite, discutindo-se as
suas distintas regiões de operação. A última contribuição desta tese refere-se
à interpretação dos aerofólios cabeados como um caso específico do “disco
atuador” considerado na derivação do limite de Betz para extração de potên-
cia do vento. No caso do disco atuador, a potência extraída é abstraída como
o produto entre o empuxo sofrido pelo disco e a velocidade do vento atraves-
sando o disco. No caso da turbina eólica de eixo horizontal, a potência dá-se
pelo produto entre o torque no disco e a sua velocidade angular. Já no caso do
modo de sustentação de Loyd (a fase de tração do pumping kite), a potência
decorre do produto entre o empuxo no disco e a velocidade de translação do
disco no sentido do vento (velocidade de “desenrolamento”). Finalmente, no
caso do modo de arrasto de Loyd (turbina acoplada ao aerofólio cabeado), a
potência aproveitada surge do produto entre a velocidade tangencial do disco
e a força de arrasto (empuxo) sofrida pela turbina. A tese é concluída com a
formulação da expressão do coeficiente de potência para o modo de sustenta-
ção de Loyd, evidenciando-se o problema do cálculo dos fatores de indução
axial, radial, e o ângulo de ataque parcial para cada anel do disco.

Palavras-chave: Energia eólica aérea. Modelagem. Controle de voo.
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1 INTRODUCTION

Energy is a primary resource for any living being, including us, hu-
mans. The energy needed to keep our bodies working comes from the food
we digest, but our energy needs are far from stopping there. As Harari (2015)
puts it, the history of humankind is the history of energy. Since primordial
times, our societies have always relied on energy sources which, until three
centuries ago, were mainly wood, the flow of water and the wind. Mechan-
ical power, mostly for agriculture, transportation and building, was obtained
essentially through human and animal labor. However, after the Industrial
Revolution was consolidated in continental Europe around the year 1840, en-
ergy consumption levels rapidly increased all over the world. This was only
possible because new and more abundant sources started to be tapped: the
fossil fuels, namely coal, oil and gas.

Nowadays, the energy demand of our industrialized modern societies
are orders of magnitude greater than prior to the Industrial Revolution, and
energy is needed in the most various sectors. For instance, mechanized agri-
culture allows the production of food to sustain a world population of nearly
7.5 billion people at the end of 2015. All kinds of heavy-duty machines,
mostly oil-powered, are used for the construction of buildings and roads. The
expansion of human population also increases the need for a wider and more
complex transportation network; not only for people, but also for goods. A
growing fleet of commercial ships and airplanes, again mostly oil-powered,
daily crosses our oceans and skies. Every now and then new roads and rail-
ways are being built, or their capacity is being expanded. Gas is usually
burned to produce heat for our homes and buildings in high-latitude areas,
whereas in low latitudes, air-conditioning (cooling) devices run on electric-
ity. This energy type is actually converted from other types, depending on
the location and availability of resources, as e.g. from the hydraulic power
of dams, nuclear power plants through the fission of atoms, the burning of
coal and gas, as well as from on- and off-shore wind turbines. Electricity, for
being an energy type easily transportable in high quantities, lightens up our
expanding metropolitan areas, powers our communication networks, hospi-
tals, industries, schools and so on.

It is hard to think of any aspect of our modern lives in which energy is
not fundamental. In fact, we usually only come to realize how dependent we
are on the constant and widespread availability of energy, especially electric-
ity, when a blackout occurs, for instance. It is precisely the acknowledgment
of how dependent our modern lives are on energy that lays out one of the
bases on which our governmental policies are formulated, since less energy
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means more costs and therefore less consumption, comfort, production, in-
vestments, innovation and jobs – not necessarily in this sequence. Ultimately,
our socio-economical de-facto system of nowadays, based on capitalism, re-
lies on a continuously expanding energy offer to keep working. Nonetheless,
a growing number of evidences suggests we have reached a point beyond
which keeping the same energy paradigm based on fossil fuels will in fact
turn the tide and work against us, our expansion and welfare. Simply put,
our activities since the Industrial Revolution appear to have triggered, or at
least significantly contributed to a process of global warming and, in turn, cli-
mate change. This threatens human populations and biodiversity, in general,
all over the planet. If so, how to fight this trend while ensuring the needed
energy to power the world?

Although nowadays the usual opinion is that the rapidly changing cli-
mate is due to human interference in the natural processes, there is still debate
about it. For being a non-renewable energy source, fossil fuels have supplies
which are limited, and therefore it is a matter of time until we will have to
make a transition into an energy grid based on other sources in any case.

1.1 MOTIVATION

Considering that the world population and economy are expected to
continue growing in the near future, there is an evident need to further expand
the energy offer. This should incorporate sources which are not only eco-
nomically attractive, but also environmentally sustainable, if possible. The
answer lies in fostering the use of renewable energies (“renewables”). This
term refers to a heterogeneous class of technologies, each with its distinct
characteristics, among which we can mention the

• source type – wind or water flow, heat from the Earth (geothermal) or
directly from the Sun, burning of hydrocarbons from biomass, etc;

• deployment concentration – decentralized topology in small plants, cen-
tralized topology in large plants;

• energy output flow – variable and unpredictable, variable but predictable,
constant, uncontrollable, etc;

• environmental impact – visual, audible, land or water pollution;

• social impact – for instance, by depreciation of neighboring inhabited
areas, or even by displacement of local populations.



33

So far, the main types of renewable energy technologies commercially
deployed in large scale can be classified as biomass, direct solar, geothermal,
hydropower, ocean, and the wind energy. An innovative approach to harvest
the wind energy is the subject of the contributions in this dissertation.

1.1.1 Climate change mitigation

According to the Intergovernmental Panel on Climate Change (IPCC,
2014), one of the main worldwide organizations to investigate the topic, “hu-
man influence on the climate system is clear, and recent anthropogenic emis-
sions of Greenhouse Gases (GHGs) are the highest in history. Recent climate
changes have had widespread impacts on human and natural systems.” Some
of the direct impacts are the increase in the global average surface temperature
and in the sea level, whose trends are shown in Fig. 1.

Figure 1 – Climate change effects relative to the average over the period be-
tween 1986 and 2005. Colors indicate different data sets.

Source: IPCC (2014)
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Climate change can be verified in many more aspects of the global
weather and biosphere. As an example, some of the CO2 emissions are ab-
sorbed by the ocean, resulting in acidification. Estimates are that the ocean
surface water pH has decreased by 0.1, corresponding to a 26% increase in
acidity. The arctic ice sheet has been retreating with a rate between 3.5% to
4.1% per year since 1979. Many terrestrial, freshwater and marine species
have shifted their habitats and migration patterns. Citing again IPCC (2014),
“changes in many extreme weather and climate events have been observed
since about 1950. Some of these changes have been linked to human influ-
ences, including a decrease in cold temperature extremes, an increase in warm
temperature extremes, an increase in extreme high sea levels and an increase
in the number of heavy precipitation events in a number of regions.”

Supported by studies as the one previously mentioned, a growing num-
ber of nations has been joining a collective effort to reduce the emissions of
GHGs in an attempt to alleviate some aspects of climate change. Halting
this process is often already considered unattainable: even if GHG emissions
were completely eliminated today, the associated impacts would continue for
centuries. For instance, the surface temperature and the sea level are expected
to continue rising, although at different rates, in various emission scenarios.
However, if the emissions continue at the current pace, the negative impacts
could be even higher, since the risks of abrupt or irreversible changes increase
with the average global temperature. Therefore actions still can be taken to
avoid further damage, which brings us to the question: where to cut off GHG
emissions? To answer this let us take a look at Fig. 2, where the contributions
of the different gases to the total emissions are shown.

The fluorinated gases covered under the Kyoto protocol (F-gases) cor-
responded, in 2010, to only 2% of the total emissions, while 6.2% were ni-
trous oxide (N2O), 16% were methane (CH4), 11% were carbon dioxide
from forestry and other land uses (CO2 FOLU), and 65% were CO2 from
fossil fuel combustion and industrial processes. Observe the increasing trend
of emissions throughout the latest four decades, with a slight acceleration be-
tween the years 2000 and 2010, despite a growing number of climate change
mitigation policies. Moreover, almost two thirds of the emissions come from
the burning of fossil fuels. We can observe a high correlation between the rise
in the average global temperature and sea level (Fig. 1), and the emissions of
GHGs (Fig. 2). The atmospheric concentrations of these gases are currently
the highest in at least the latest 800 thousand years. Not coincidently, anthro-
pogenic emissions of GHGs are considered to be extremely likely, as stated
by the IPCC (2014), the main driving cause for the observed global warming
since the mid-20th century.

Mitigation policies and actions must take into consideration that the
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Figure 2 – Total annual anthropogenic emissions of GHGs, in gigatonnes of
CO2-equivalent per year and type of gas.

Source: IPCC (2014)

different gas types have distinct lifetimes and heat trapping capacities. For in-
stance, methane, even though having a relatively shorter lifetime of 12 years,
is much more efficient in trapping heat than carbon dioxide. The result is a
greenhouse impact 25 times greater than CO2, for the same amount of gas, in
a timespan of 100 years. Nonetheless, given the very high share relative to the
other gases, the reduction of CO2 emissions, especially for the purpose of en-
ergy generation, must be one of the priorities in the sector policies for the near
future. According to the International Energy Agency (IEA, 2013b), “. . . the
energy sector will be pivotal in determining whether or not climate change
goals are achieved”. It goes on to admit that “. . . taking into account the im-
pact of measures already announced by governments to improve energy effi-
ciency, support renewables, reduce fossil-fuels subsidies and, in some cases,
to put a price on carbon, energy related CO2 emissions still rise by 20% to
2035. This leaves the world on a trajectory consistent with a long-term aver-
age temperature increase of 3.6◦C, far above the internationally agreed 2◦C
target”. This means more effort is necessary, both in technological innovation
and policies for the energy sector, in order to make the 2◦C target feasible.

Let us now check the outlook for the expansion of the energy grid in a
global scale, and the role that renewable sources are expected to play.
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1.1.2 Expansion of the energy offer

The IEA is an autonomous organization that seeks to promote energy
security to its member states through detailed research and analyses. It pub-
lishes on an annual basis the World Energy Outlook, a report intended to shed
some light on how the energy sector is expected to evolve in the coming
decades. We will now refer to the report (IEA, 2013b), in which three sce-
narios are considered. The Current Policies Scenario takes into account only
those policies and measures formally adopted as of mid-2013. It basically as-
sumes that the governments do not implement any recent commitments that
have yet to be backed-up by legislation, nor introduce any significant changes
in the policies applied so far. The New Policies Scenario incorporates the
policies and measures that affect energy markets and that had been adopted
as of mid-2013, including initiatives and commitments announced to support
renewable energy and improve energy efficiency, promote alternative fuels
and vehicles, carbon pricing, reform fossil-fuel subsidies, etc. At last, the
450 Scenario represents the actions needed to set the global energy sector
on a course compatible with a near 50% chance of limiting the long-term
increase in the average global temperature to 2◦C.

A very common term in the energy sector is the World Energy Pri-
mary Demand (WEPD), also known as the total primary energy supply: it
refers to the amount of energy extracted by all of human civilization to ful-
fill its needs. It differs from the energy actually spent (consumed) because
of the losses caused by transformation of energy from one type to another
until its end use. The evolution of the WEPD and related CO2 emissions for
each of the IEA mentioned scenarios is shown in Fig. 3. Observe that, in
all cases, the demand increases by the year 2035, pushed by a growing pop-
ulation and expanding economies, but governmental policies have a crucial
rule in determining the pace. In the Current Policies Scenario, the WEPD
increases more, to a level about 45% higher than in 2011. This is equivalent
to adding the combined energy demand, as of 2013, of China, the USA and
India – the world’s largest energy consumers. In the New Policies Scenario,
the WEPD grows to 33% by 2035, with a faster rate of 1.6% per year until
2020, and 1% per year thereafter. Such deceleration is expected to happen
because of a gradual slowdown in economic growth, especially in the devel-
oping economies that are under rapid industrialization, as well as a reaction
to the introduction of more climate-friendly energy policies and the increase
in the overall energy efficiency. In the ideal case of the 450 Scenario, the
increase in the WEPD is only of 14% by the year 2035.

In all three scenarios the energy demand will increase, and it will have
to be met by an increase in the energy offer as well. The question is: how
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Figure 3 – Projected evolution of the WEPD (left) and corresponding CO2
emissions (right).
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will the different sources contribute to the total expected demand? The pro-
jections of the IEA in this regard are shown in Fig. 4. Observe that the use
of coal may suffer a strong variation by 2035, depending on the considered
scenario: the coal share in the WEPD will lie in the interval between 17%
and 30%. Coal and oil are the two sources which may actually have a reduc-
tion in the usage; all other sources are expected to be more exploited. As of
2011, the share of renewable sources in the energy mix was relatively small,
about 13%. By 2035, in the Current Policies Scenario this share remains
more or less the same, at 14.6%, while increasing to 17.6% in the New Poli-
cies Scenario, and practically doubling, at 26.3%, in the 450 Scenario. Note
that the extraction of hydropower will not vary much, nor will its share in the
WEPD. One of the reasons for this is that the potential for power generation
of the main river basins, mostly concentrated in a few countries as China and
Brazil, are already almost fully exploited. More than with nuclear power,
the biggest uptake is to occur with bioenergy (biomass) and other renewable
sources, including solar and wind energy. Their attractiveness, however, will
depend on governmental policies and incentives, higher fossil fuel prices, and
technological advances to reduce costs.

According to the IEA (2013b), fossil fuel subsidies worldwide in 2012
were estimated to a total of US$544 billion, whereas subsidies to renewable
energies, aiming to improve their competitiveness, reached US$101 billion
at the same year, only about a fifth of the subsidies for fossil fuels. While
renewables such as hydropower and geothermal have long been economical in
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Figure 4 – Projections of the WEPD according to: the Current Policies Sce-
nario (CPS), the New Policies Scenario (NPS), and the 450 Scenario (450).
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many locations, solar and wind power (especially off-shore wind) still require
financial support for their dissemination in many countries. The projections
of the New Policies Scenario in Fig. 4 consider that subsidies to renewable
energies will grow to around US$220 billion in 2035.

Regarding wind energy specifically, the IEA (2013b) reports a growth
of around 25% per year over the past decade, reaching an installed capacity
of 282GW in 2012, which corresponded to 2.3% of the global power (elec-
tricity) generation at that time. China has been leading this recent expansion,
with 13GW added to the grid in 2012, followed by the USA and the European
Union, with 12GW each. Off-shore wind had the highest capacity addition in
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one year, reaching 5.4GW in 2012, mainly due to new installations in Europe,
in the North Sea. In the New Policies Scenario, wind-based electricity gen-
eration is expected to increase at an average rate of 6% per year until 2035,
when its share of the global electric power supply should reach 7.5%, with a
total capacity of 1,300GW. Around 80% of the added capacity is expected
to be on-shore, and China will overtake the European Union with the largest
share of wind power plants, as shown in Fig. 5.

Figure 5 – Installed wind power capacity, by region, in the New Policies
Scenario.
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An important aspect of a wind turbine – as any device harvesting the
wind power – is its capacity factor Cf, i.e. the average power produced over
a period of time with respect to the device rated power. Regarding on-shore
wind farms, the capacity factor in recent years has lied typically in the range
from 20% to 35%, reaching up to 45% or more in excellent sites (IEA,
2013b). For off-shore installations, the Cf is usually higher due to more
consistent sea breezes, varying between 30% and 45%. Despite these ad-
vantages, the installation of off-shore wind farms tends to be more expensive
because of the high complexity for building the underwater foundations and
establishing the grid connections.

Brazil is one of the countries with very favorable conditions for wind
power. According to a report from the Global Wind Energy Council (GWEC,
2011), considering the recent technological advances, the Brazilian wind power
potential is estimated at 350GW. The northeast region alone is responsi-
ble for more than 50% of such potential. However, in a more recent report
(GWEC, 2014) it was claimed that a potential of 240GW at 150m altitude
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for areas with wind faster than 7m/s was found in the southern state of Rio
Grande do Sul. These estimates are based on the current wind turbine tech-
nology. At the end of 2014, Brazil had a total installed capacity of 5.9GW,
responsible for 4.3% of the electricity generation in the country. The Brazil-
ian government’s Decennial Energy Plan sets a goal to produce nearly 12%
of the electric power in the grid from the wind by 2023. The New Policies
Scenario of the IEA (2013b) is more conservative, though, projecting about
9% of the country’s electricity from the wind by 2035.

1.2 EVOLUTION OF WIND ENERGY TECHNOLOGY

Wind energy has been known to humankind since ancient times and
has been used for the generation of mechanical power, for instance, in wind-
mills. However, it was only in the late 1960s that it started to draw com-
mercial attention for the generation of electricity. To understand how the
technology reached the current level of development, let us recall some mile-
stones throughout its history, compiled from Manwell, McGowan and Rogers
(2009).

The oldest reference to a wind harvesting device belongs to Hero of
Alexandria, believed to have lived around the dawn of the 1st century. His
pneumatics device was similar to a horizontal-axis windmill, and it was used
to pressurize air into an organ (musical instrument). The next reference dates
from the 9th century, when vertical-axis windmills driven by drag forces were
in use in the Persian region of Seistan, now eastern Iran. The first occur-
rence of windmills in Europe was recorded in England, in the 12th century.
The idea may have been introduced by the Vikings, who regularly traveled
to the Middle East, but the English concept was significantly different from
the Seistan one: the rotor axis was horizontal, and it was driven by lift forces.
These windmills spread through northern Europe and were used to provide
mechanical work for tasks like water pumping, grain grinding and wood saw-
ing. They usually had four blades, and were built on posts which could be
turned to face the prevailing wind direction.

In those early stages of wind energy technology, the design of wind-
mills was mostly empirical and limited by building constraints. For instance,
the amount and size of the blades were influenced by the ease of construc-
tion, and the ratio of blade area to swept area was empirical. In the 18th cen-
tury, an important step towards the scientific development of windmills was
taken by Englishman John Smeaton. Basically, he came to the conclusion
that the speed of the blade tips was ideally proportional to the wind speed, the
maximum torque was proportional to the square of the wind speed, and the
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maximum power was proportional to the third power of the wind speed.
After the early decades of the 19th century, the use of windmills started

to retreat, mainly because of competition with the newly introduced fossil fu-
els. For instance, coal and oil could be easily transported everywhere, and
could be stored as well – features that did not apply to the wind. How-
ever, right before their demise, European windmills had achieved a high level
of sophistication when compared to Hero’s pneumatics, for instance. The
power output of some machines could be controlled by an automatic system,
a forerunner of James Watt’s approach to steam engines. The windmill was
equipped with a fly-ball subject to the centrifugal force caused by the rotor
speed and connected to the upper millstone of the windmill grain inlet. If the
speed increased (due to a stronger wind), the radius of the fly-ball trajectory
would increase as well, pulling up the upper millstone away from the lower
one, thus allowing more grain into the grinding chamber. This means more
load was added to the machine and thereby the increase in the rotation could
be contained to a level that maximized the power.

As soon as the early electrical generators were invented, at the end of
the 19th century, there were attempts to power such machines with a windmill
rotor. In the USA, some pioneers in the field were Charles Brush and Marcel-
lus Jacobs. The device later known as the “Jacobs turbine” had an horizontal
axis rotor driven by three blades forged with a true airfoil shape, beginning
to resemble the turbines of today. Moreover, it was coupled to a complete,
residential scale power system, including batteries for energy storage. In Den-
mark, between 1891 and 1918, Poul La Cour built more than 100 electricity
generating turbines with rated power ranging from 20kW to 35kW. Instead
of storing energy in batteries, La Cour used the electricity to produce hydro-
gen, which was later used as fuel for lighting purposes. Back to the USA,
a milestone was achieved when the Smith-Putnam machine was built, in the
late 1930s. It was the largest wind turbine so far, with a 2-bladed rotor 53.3m
wide (in diameter) and with a rated power of 1.25MW. The turbine turned
out to be too large for the level of understanding in wind engineering at that
time, suffering a blade failure in 1945, which caused the project to be aban-
doned. The next important technological advancement came right after World
War II, when Johannes Juul built the 200kW Gedser turbine, in Denmark. Its
innovation was twofold: the use of aerodynamic stall to control the power,
and the use of an induction generator (squirrel cage type) instead of a syn-
chronous machine, which was the convention at the time, allowing for an
easier connection to the grid.

The development of the wind energy industry started to pick up pace
in the late 1960s. It was when the first real environmental concerns about
the industrial development, unconstrained use of fossil fuels and the poten-
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tial danger of nuclear energy started to draw public attention. A couple of
years later came the oil crisis in the USA, in the mid-1970s. This fostered the
deployment of turbines ranging from 100kW to 3.2MW, whose operation
provided valuable research data but did not lead to commercial endeavors at
first. The big opportunities in the USA came in the late 1970s, and soon the
so-called “California wind rush” was taking place. In the early 1980s, the in-
stalled capacity in California had reached 1.5GW. After that, governmental
policies changed in the USA and the “wind rush” collapsed, causing many lo-
cal manufacturers to go out of business. In the 1990s, the focal point of wind
turbine manufacturing turned to Europe, especially Denmark and Germany.
Since then, the wind energy industry suffered an accelerated expansion which
lasts until today. Both for on- and off-shore applications, the power output
of wind turbines has been steadily increasing, with larger rotors being built
on top of taller towers in order to tap into stronger winds, farther from the
ground. Fig. 6 illustrates the growth in size of the turbines along the years.

Figure 6 – Evolution of the size and rated power of wind turbines.

Source: IEA (2013a)

High-altitude winds are usually not only faster than those close to the
surface, but also tend to blow more constantly – in other words, more often.
As a consequence, a system designed to operate at its rated power at a given
wind speed which occurs more often will have a higher capacity factor. In
this regard, Archer and Caldeira (2009) illustrate very well the advantages of
reaching up into higher altitudes. It is well known that the power available in
the wind flow is given by

Pw =
1
2

ρ Aw ‖vw‖3 , (1.1)
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where ρ is the air density and Aw is the rotor swept area perpendicular to vw,
which is the wind speed vector relative to the ground. Although, in general,
the wind speed increases with altitude, the optimal height – where the maxi-
mum wind speed is verified – varies according to the location considered and
may also vary with time, both in short scales, of hours and days, as well as in
longer time scales, of months and years. Therefore, more than being able to
tap into the wind energy at a fixed altitude, if we could continuously control
the altitude of operation of a wind power device, its capacity factor could be
even further increased. Considering the wind data collected in the period be-
tween 1979 and 2006 – thus filtering out any time variations up to the order
of decades – the optimal heights in the world atlas and their respective wind
power densities (Pw/Aw) are depicted in the right and left column maps of
Fig. 7, respectively. The indications 50th, 68th, and 95th correspond to the
percentage of time in which the corresponding wind speed (represented as
power density) was exceeded.

Observe that, if we would like to harness the wind power at a given
wind value that is exceeded at least 95% of the time, the optimal altitudes
would be mostly in the range between 500m and 1.000m worldwide, well
above the current limit of conventional wind turbines. Let us take, for ex-
ample, the Brazilian northeast region, which is characterized by an excellent
wind potential. Along the coastline, in this altitude range, we could reach
power densities up to 0.3kW/m2. This means hypothetically that, if we were
able to deploy in those altitudes one of the largest wind turbines, with ro-
tor diameters about 100m, we could reach an approximated rated power of
2.36MW with a capacity factor of at least 95%, yielding an average produced
power, in the considered period, of 2.24MW. In contrast, let us imagine a
turbine with the same swept area, rated power of 3MW – which is usual for
modern turbines this large – and have it operate at the same location, but at
only 150m of altitude. Furthermore, let us consider that such turbine would
operate with a capacity factor of 40% – a high value for current on-shore wind
farm standards. In this case, the resulting average power would be 1.2MW
for the same time period, only about half of that obtained in the high-altitude
scenario.

Let us now reduce the desired percentage of exceeding the maximum
wind speed to 68%. Further analyzing the Brazilian northeast coastline, the
optimal height would then lie between 1km and 2km. There we would have
even higher power densities, of up to 1kW/m2. Now the turbine, hypothet-
ically operating in this altitude range, would reach a rated power of approx-
imately 7.86MW and, given a (least) capacity factor Cf = 68%, the turbine
would yield an average produced power of 5.34MW. This is already more
than 4 times the average power output of the 150m altitude scenario for the
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Figure 7 – Optimal wind power density (left-column maps) and respective
optimal height (right-column maps) in which the (maximum) wind speed was
exceeded in 50%, 68%, and 95% of the time in the period between 1979 and
2006.

Source: Archer and Caldeira (2009)

same rotor swept area.
Because the average wind speed tends to increase with the altitude, the

trend to build larger and taller wind turbines is well justified, as already dis-
cussed. However, as Thresher, Robinson and Veers (2007) pointed out, this
continued growth in turbine size is progressively running into tighter econom-
ical constraints. The primary argument is the “square-cube-law”: the idea is
that the power of a turbine increases with the rotor swept area, which is a
function of its squared diameter, whereas the volume of material, hence the
mass, increases with the cube of the diameter. Consequently, at some point,
the cost of a larger wind turbine will grow faster than the power gain obtained.
Recent technology advancements have allowed the gain in mass to decrease
from the exponent 3 to 2.3, which in turn allowed the turbine rotor diameter to
reach about 125m nowadays, with a rated power about 5MW. Nevertheless,
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further decreases in this exponent towards 2 should be asymptotically harder
to achieve.

Another important constraint to conventional wind technology are trans-
portation and installation costs. As the turbine components grow in size, it
becomes unfeasible to transport them over cost-effective truck-pulled trailers,
whose size is limited by the width of the existing roads. Rail transportation
is also dimensionally restricted, when available for the desired destinations in
the first place. Assembling structures such as cranes also have a limitation on
the size and weight of the lifted material. In summary, further increases in the
rated power of wind turbines will probably occur at a lower pace if compared
to what it has been so far.

Despite these difficulties, the development of conventional wind en-
ergy technology – based on horizontal-axis wind turbines – has continued at
a fast pace from 2007 up to now. For instance, the turbine design is being
adapted to diverse operating conditions, including icy climates and slower
winds. Control systems are becoming more sophisticated, based on more ac-
curate mathematical models, in order to reduce loads and aerodynamic losses.
Efforts in the enhancement of wind models are also underway, thus allowing
a better predictability and optimization of the power output of wind farms.
Stronger and lighter materials are being developed, as well as novel rotor
architectures with active blade elements. Hydraulic drive-train designs, re-
placing the traditional gearboxes, and direct coupling between turbine and
generator are being considered as possibilities to reduce losses in the con-
version from mechanical to electric energy. Also, new tower materials and
foundations for deep water applications are being investigated, aiming at the
off-shore sector, where there is a greater potential for cost reductions and
technology breakthroughs.

Building on these efforts, the ultimate goal is to further scale up the
turbines towards a rated power in the range from 10MW to 20MW. However,
recalling the square-cube-law previously discussed, we may come to a point
in this road to the 20MW target where further decreases in the system weight,
as well as advances in the fronts already mentioned, simply stop making eco-
nomical sense. Citing again the report from IEA (2013a), “No single element
of on-shore turbine design is likely to reduce dramatically the cost of energy
in the coming years.” Based on this observation, it adverts that “. . . scaling up
turbines to lower costs has been effective so far, but it is not clear the trend
can continue forever.”

In face of these uncertainties and limitations, we should diversify by
also looking into other approaches to harness the wind power available above
200m, which is the approximate altitude reached by the tips of the current
largest rotor blades. Moreover, as importantly as developing the technology to
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harness this high-altitude wind energy is making it economically competitive
to other energy sources. If we had such alternative, the share of wind energy
in the WEPD and electric grid could become even larger, approaching the 450
Scenario of the IEA (see Fig. 4), or perhaps even surpassing it. The solution
may consist of a paradigm shift: what if we removed the tower sustaining the
rotor and found a way to keep it airborne?

1.3 AIRBORNE WIND ENERGY

In recent years, there has been ongoing research to develop other ways
to exploit high-altitude wind energy. One possibility is to replace the rigid,
heavy tower by one or more flexible, light-weight tether(s), and have the wind
power device redesigned to become extremely light, so that it can be kept aloft
either through aerostatic or aerodynamic lift forces. This is a fundamental
characteristic of Airborne Wind Energy (AWE) technology that distinguishes
it from conventional wind energy technology.

Systems that rely on the aerostatic lift to fly, as the aerostat built by
the US company Altaeros Energies, consist essentially of a buoyant device
tethered to the ground – usually a helium-inflated balloon – with an on-board
horizontal-axis turbine, as illustrated in Fig. 8. The principle of work is the
same that applies to conventional tower-based turbines, except that the elec-
tric energy is transmitted to the ground through the tether(s). Lifted by the
buyoant device, the tether(s) could be reeled out to a very large length in or-
der to reach, in principle, altitudes in the scale of a few kilometers, depending
on the tether weight. However, as the wind speed increases, the thrust ex-
erted by the wind upon the turbine and the drag on the balloon and tether(s)
would tilt the rotor away from the vertical direction, i.e. bring it closer to the
ground by decreasing the elevation angle. Therefore climbing up to very high
altitudes with tethered devices using solely the aerostatic lift force, although
conceptually trivial, may be challenging to achieve in practice.

The other category of AWE systems utilizes the aerodynamic lift force
acting on a tethered wing (airfoil) both to remain airborne as well as to har-
vest the wind power. These wings can be either flexible, like a power kite,
rigid, as an airplane wing, or have intermediate characteristics. Compared to
the tethered balloons, the wing-based systems depend on a minimum wind
speed at the ground, or on an auxiliary propulsion system, to be launched and
landed. On the other hand, tethered wings certainly offer a higher power-to-
volume ratio, since the typically helium-inflated balloons must have a high
volume in order to generate the needed aerostatic lift to keep the turbine, bal-
loon structure and tether airborne.
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Figure 8 – Concept of a buoyant wind turbine.

Source: Altaeros Energies

1.3.1 Drag and lift modes of tethered wings

We will show in Sect. 4.3 that the majority of the power extracted
from the wind by a horizontal-axis wind turbine comes from the blade part
closer to the tip, due to its higher tangential speed. This means that all other
components – namely the tower, the nacelle and the blade part closer to the
nacelle – are needed basically to support the blade part closer to the tip. So
if we could find a way to get rid of all those supporting components and have
the remaining blade part – which we will denote from now on as the wing
– kept airborne through aerodynamic lift, we could extract most of the wind
power of the original wind turbine, but with a structure orders of magnitude
lighter and thus probably cheaper to construct, transport, install and maintain.
Moreover, without the tower constraint, we could fly the wing in higher alti-
tudes, which offers advantages in terms of power density in the wind flow, as
already discussed. One way to do this is by tethering the wing to the ground.

Before we continue, let us briefly explain one term very common in
the AWE literature: the crosswind. It refers to the wind perceived by the
airfoil when it flies approximately perpendicular to the nominal wind vector,
vw. This perceived wind, which we name the apparent (or effective) wind
(va), in the crosswind motion can typically reach a magnitude between 5 and
10 times the intensity of vw, depending on the airfoil aerodynamic efficiency
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(glide ratio). Because the aerodynamic forces depend on the square of va, and
the power is proportional to these forces, crosswind operation can yield up to
100 times more power than when harvesting the power in the nominal wind
flow, which is the case, for instance, of the ancient vertical-axis windmills
driven by the aerodynamic drag – similar to a waterwheel. Horizontal-axis
wind turbines also exploit the crosswind, but the resulting aerodynamic force
is used to exert a torque on the rotor. For the case of AWE with tethered
wings, the crosswind operation causes the tether traction force T to increase,
along with an increase in the apparent wind.

It is usually referred to the work of Loyd (1980) as the “official birth”
of modern research with AWE technology based on tethered wings. Loyd
proposed two ways to harness the wind energy by a tethered wing flying in
crosswind motion: the lift and drag modes, illustrated in Fig. 9. In the drag
mode, the system operates with a tether of constant length, while the power P
is harnessed through turbines mounted onto the wing. The product between
the apparent wind tangent to the wing position vector, va,τ ≈ va (in the cross-
wind), and the drag force1 Dp suffered by the turbines due to their operation
gives rise to the mechanical power input to the electric generators connected
to the turbines, according to the expression

P = Dp va . (1.2)

Figure 9 – Loyd’s AWE drag and lift modes with tethered wings to explore
the crosswind.

horizontal-axis
wind turbine AWE drag mode AWE lift mode

Source: original

1To be more precise, the turbine disc is subject to a thrust force, in the axial direction, whereas
the drag force acting on the turbine blades deviates from the axial towards the radial direction as
the blades rotate faster. This is discussed in Sect. 4.3.
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The generated electric power is then transferred to the ground by means
of electric wires passing through the traction tether, as in the case of the teth-
ered balloon. The maximum power output is obtained when the turbines add
an optimal amount of “drag” (thrust), which is half of the drag Dk acting upon
the wing:

D∗p =
1
2

Dk . (1.3)

If more drag is added to the airborne system by the turbines, the effect
of slowing down the wing and thus decreasing va is stronger, such that product
in Eq. (1.2) falls. This is also what happens when Dp is decreased, because
the increase in va does not occur in the same proportion. The US company
Makani Power has already built prototypes for demonstrating the drag-mode
AWE concept. The smaller version is 8m wide and 3m long in total, produces
20kW of rated power at 10m/s of nominal wind speed, and is designed to
operate between 40m and 110m of altitude, in a circular flight trajectory with
a radius of 140m. The aircraft has 4 turbines mounted onto the main wing,
which has a chord length of approximately 60cm. The company is currently
developing its M600 version (see Fig. 10), capable of generating 600kW
through its 8 DC on-board turbines at 11.5m/s of nominal wind, designed to
operate in an altitude range between 140m and 310m in a circular trajectory
with 145m of radius.

Figure 10 – Drag-mode AWE system prototype with 600kW of rated power.

Source: Makani Power

The aloft turbines on a drag-mode system play another role other than
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only capturing the kinetic energy from the apparent wind and driving the
light-weight, high-speed and directly coupled electric machines as genera-
tors. During launch and landing, the turbines act reversely – as engines –
being driven by the electric machines, which then operate as motors. Hence
the AWE system is able to produce the necessary lift regardless of the wind
conditions at the ground level, allowing the wing to hover in the air, similarly
to a “drone”. This feature is one of the biggest advantages of Loyd’s drag-
mode machines in comparison to the lift-mode ones, for which the automated
tasks of launching and landing are still to be properly solved.

Regarding Loyd’s lift mode, the idea is that the tether, of length r,
is reeled out at a speed vt = ṙ from a drum on the ground, connected to an
electric generator, while the wing flies a trajectory that maximizes the trac-
tion force T . As shown in Fig. 9, the flight path has usually the shape of a
lying eight in order to avoid accumulated torsion of the tether that would be
induced if a circular trajectory were flown2. Loyd showed that, if the wing
lift coefficient CL is significantly higher than the wing drag coefficient CD,
the traction force is composed predominantly of the kite lift force L. The me-
chanical power input to the generator is thus basically dependent on the wing
aerodynamic lift, which is the reason behind the name for this configuration:

P = T ṙ ≈ Lvt . (1.4)

Other names found in the literature for the lift mode are pumping kite
and yo-yo. This naming is because, after some time generating energy by
means of reeling out, the tether must be wound back onto the drum so that a
new generation cycle can begin – hence the “pumping” behavior. The maxi-
mum power for the generating phase is obtained if the tether is reeled out at
the optimal speed

v∗t =
1
3

vw sinθ cosφ , (1.5)

where θ is the polar (complementary elevation) angle, and φ is the azimuth
angle of the wing. Starting at vt

∗, if vt is decreased, T increases in a smaller
proportion such that the product in Eq. (1.4) falls. The same happens if vt
is increased, because T falls more strongly. Details on this behavior and the
study of a more thorough strategy for optimizing the pumping cycle will be
addressed in Sect. 3.2.

A few years ago, Goldstein (2013) devised the configuration shown in
Fig. 11. In the notation of his paper, Wg is the kite velocity, V is the nominal

2Observe that, in the drag-mode circular trajectory, the tether would indeed accumulate tor-
sion. Therefore there must be a technological solution similarly to a rescue or fishing swivel, that
withstands the high traction force while allowing for the electric current to go through.



51

wind, W is the effective wind, Dk is the kite drag, U is the tether traction
force, Dt is the tether drag, and Fw,k and Fw,t are the kite and tether weight,
respectively. The motivation behind Goldstein’s concept is that the operation
modes studied by Loyd could face technological issues that could render the
commercial use of such AWE systems unfeasible. Firstly, regarding the drag
mode, the turbines attached to the wing would be significantly heavy, reduc-
ing the overall efficiency. Also, the electric power generated would have to
be transmitted to the ground through the tether, requiring airborne transform-
ers to increase the voltage as an attempt to reduce the ohmic losses and the
conductor cross section. Moreover, these transformers would add undesired
airborne weight. The lift mode configuration would also offer its practical
drawbacks. For instance, the tether would be reeled out from the drum at
a relatively low optimal speed for economically feasible generators, thus re-
quiring a gearbox to amplify the angular speed from the drum. Because the
gearbox has losses, the overall system efficiency would be negatively im-
pacted. Also, as the system is scaled up, the increase in the tether diameter
would require a proportional increase in the drum diameter in order to keep
the tether from excessive mechanical stress due to bending. At some point,
this diameter scaling would render the configuration unfeasible.

Figure 11 – Goldstein’s fast-motion transfer system.

Source: Goldstein (2013)
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The system proposed by Goldstein also exploits the crosswind. The
wing is attached to the ground through a tether of constant length, which be-
comes subject to a traction force T mainly due to the kite lift force L. There
is another tether, named belt. One of its tips is connected to the wing, while
the other is wound around a drum on the ground, connected to an electric
generator. Thus, power is produced as the wing flies with a speed Wg rela-
tive to the ground. Because, in the crosswind motion, the magnitude of the
apparent wind approaches that of the kite, i.e. W ≈Wg, the reel-out speed U
in this configuration is high enough so that the gearbox between drum and
electric machine is no longer needed. Also, the belt tension would be at least
one order of magnitude lower than the tether traction force. This is because
the belt tension has the effect of the turbine “drag” (thrust) force in Loyd’s
drag mode, contributing to the wind power removal. As a consequence, the
optimal belt tension could be approximated by D∗p in Eq. (1.3), as well as by a
function of the tether traction force and aerodynamic coefficients of the wing,
according to the expression

D∗p =
1
2

Dk =
1
3

CD

CL
T . (1.6)

This means that the mechanical system for power conversion on the
ground would be subject to a smaller traction force (and torque on the drum)
because Dp� T , thereby simplifying the mechanical structure. Similarly to
the pumping kite, one operation cycle of Goldstein’s system has two phases:
in the working phase, the wing flies upwards, pulling the belt and producing
electric energy on the ground. At some point, the wing executes an U-turn
and heads downwards, when the returning phase starts, and the belt is reeled
back in through an electric motor connected to the drum. This belt retrieval
would occur at the expense of only a fraction of the energy produced in the
working phase. When the wing executes another U-turn, the flight direction
becomes upwards again, and a new working phase begins. Table 1 contains
some scenarios of parameterization and numeric simulation results of the fast
motion transfer configuration. Flexible (FW) and rigid (RW) wing types were
considered, as well as round (RT) and streamlined (ST) tethers.

Despite Goldstein’s arguments, and to this author’s best knowledge, it
has not been found in the literature so far, nor in the general media, any refer-
ence to a prototype construction of the fast motion transfer system, let alone
its commercial use. This may result from features that, if on the one hand are
the reason for the claimed advantages, on the other hand give rise to compli-
cations as well. For instance, Goldstein’s system has two anchoring points
on the ground, the attachment and the ground platform in Fig. 11, instead of
the single anchoring point of the pumping kite. Hence, the ground platform
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Table 1 – Parameterization and simulation results of power production of
Goldstein’s AWE system.

(wing type,tether type)
(FW, RT) (RW, RT) (FW, ST)

wind [m/s] 12 12 15
wing lift, CL – 1.2 1.5 1.2
wing drag, CD – 0.15 0.05 0.15
tether drag, Ct – 1.2 1.2 0.2
wing area [m2] 500 500 3.000
altitude [m] 1.000 1.000 3.000
working power [MW] 1.82 7.27 15.5
cycle power [MW] 1.09 4.36 9.32

Source: Goldstein (2013)

would have to rotate around the attachment point according to changes in the
wind direction. The distance between the two anchoring points would also
determine the tether length. Therefore changing the tether length to optimize
the harvested power according to variations of the wind with the altitude could
be a challenging thing to do as well. Finally, observe that the flight path of
Goldstein’s system would be similar to a “standing eight”, instead of the “ly-
ing eight” usually considered for Loyd’s lift mode. Flying a standing-eight
path would require a faster steering response to make the wing execute the
U-turn when heading towards the ground at a faster speed, in comparison to
making the U-turn when flying mostly horizontally in the lying-eight.

1.3.2 Multiple-wing configurations

In the turning of the century, Ockels (2001) proposed the laddermill,
a configuration composed of multiple wings attached to a tether in a closed
circuit called the “translator”, similar to a ladder, as depicted in Fig. 12. The
idea is that the sum of the lift force being exerted on each wing that is going
up the ladder is much stronger than the sum of the lift force on each wing
going down the ladder. Consequently, there is a resulting tether (translator)
force, Tres, that drives a generator on the ground. Power is obtained depend-
ing on the speed with which the generator is driven, as in Eq. (1.4), because
this configuration also exploits the lift mode. In Table 2, simulation results of
three operation scenarios are presented. According to Ockels’ estimates, the
laddermill offers advantages like being able to exploit high-altitude wind en-
ergy at a lower installed capacity cost, as well as being scalable to high power
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levels. However, this configuration gives rise to serious safety concerns when
its practical implementation is taken into consideration, such as the collapse
of the ladder structure when there is lack of wind, and the collision risk with
aircraft. Proper launching and landing could be complicated procedures as
well, given the task to keep the multiple wings operating in a synchronized
fashion.

Figure 12 – Ockels’ laddermill AWE concept.
(a) Structure overview and wind profile intercepted. (b) Varying wing setup.

Source: Ockels (2001)

Table 2 – Ockels’ laddermill parameterization and static simulation results
obtained with the simulator from TU Delft.

system size
small medium large

wing size [m2] 20 60 1.000
wing mass [kg] 10 30 500
distance between wings [m] 10 20 65
number of wings – 52 416 416
tether diameter [mm] 3 22 160
cable speed [m/s] 2.0 3.4 5.2
laddermill height [m] 207 3.216 11.100
power [kW] 11 1.220 47.800

Source: Ockels (2001)

Studies of the Carousel configuration, shown in Fig. 13, were first
published by Canale, Fagiano and Milanese (2007). The Carousel consists
of a series of Kite Steering Units (KSUs) – where the generators/motors that
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steer the kite are located – mounted on rails and moving along a circular tra-
jectory. Each KSU is connected through a rigid arm to a rotor in the carousel
center, where an electric generator is located. Power is obtained by exploit-
ing Loyd’s lift mode in two ways: by reeling out the tether at each KSU,
according to Eq. (1.4), and by the electric generator in the carousel center,
whose input mechanical power is P = Θ̇Qc, where Θ̇ is the angular speed of
the carousel, and Qc is the sum of the torques produced by each KSU. The
carousel angular speed is kept constant at an optimal value. As depicted in
Fig 13, the traction phase of a KSU begins at Θ = Θ3, where the tether force
is able to contribute to the total torque Qc. A suitable reference curve for the
tether reel-out speed is applied in order to maximize the power output. At
Θ = Θ0 the kite can no longer pull the carousel because it starts going against
the wind direction, thus characterizing the end of its traction phase and be-
ginning of its passive (retraction) phase. The three subdivisions of the passive
phase refer to how the kite is maneuvered in its flying zone (wind window),
and the corresponding tether winding speeds, in order to maximize the cycle
power of the carousel. The control signals are the difference in the tether
length of each KSU (each kite has two tethers, one for each wingtip), the (av-
erage) tether reel-out speed, and the carousel angular speed. Given a carousel
with at least two KSUs placed 180◦ distant from each other, the carousel is
able to operate without an external input of energy during the passive phase
of each kite individually, as if the carousel were a “windmill in the airflow”.

Two years later, Fagiano (2009) proposed a different carousel config-
uration in which the KSU did not produce torque for a common generator at
the carousel center. Instead, each KSU had an electric generator being driven
by wheels rotating along the carousel track. As a result of his optimal control
strategy, he observed that the maximum absolute power (considering traction
and passive phases) achieved through tether reeling was about 10MW, while
the maximum power generated through the motion of the KSUs along the
carousel was 14MW. Due to the kite passive phase, however, the carousel
average cycle power was of only 1.65MW. These power peaks character-
ized a major drawback, because the electric machines would have to be sized
for about 10 times the average produced power. Thus, he suggested that the
carousel with KSUs having only the wheel-attached generators – i.e. with a
constant average tether length connecting to the kite – was the more promis-
ing candidate for further investigations.

Another multi-wing approach was studied by Houska and Diehl (2007),
who executed numerical optimizations of AWE systems with tethered wings
operating in lift mode. They proposed the configuration with two kites shown
in Fig. 14, informally referred to as the “dancing kites”. The name arises
from the kite antisymmetric trajectories, seen in Fig 14b on the (y,z) plane,
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Figure 13 – Carousel AWE configuration.
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with the wind blowing in the x = z×y. The red-dotted segments refer to the
retraction (passive) phase of periodic orbits3, i.e. orbits which are repeated
with the same initial tether length. The antisymmetric trajectories allow the
main tether – between the ground and the juncture point – to remain almost
static, thus suffering much less air drag. The result is that a greater power
output is possible during the traction phase, when the main tether is reeled
out at an optimal speed. The retraction phase is also benefited, since the kites
can be flown in trajectories where the forces on the secondary tethers – be-

3Periodic orbits can also be referred to as close orbits.
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tween each kite and the juncture point – practically cancel each other out. As
a consequence, the main tether force can be greatly reduced for the retraction
phase.

Figure 14 – Houska and Diehl’s “dancing kites”.
(a) Concept. (b) Optimal kite trajectories.

Source: Houska and Diehl (2007)

Based on simulations with a kite area of 500m2, a main tether length
around 1,350m, and an average wind speed of 12.3m/s at the operating alti-
tude, the dancing kites produced an average cycle power of 14.86MW. This
means 7.43MW per kite whereas, when operating alone, each kite was able to
achieve a cycle power of only 4.9MW. Despite this advantageous prospect,
the dancing kites, as in the case of all previously mentioned multiple-wing
AWE configurations, offer stern challenges for practical implementation. For
instance, the online controller of each kite must track fairly well the offline-
calculated reference trajectories in order to achieve the antisymmetric feature
– needed both for flight stability as well as for cycle power maximization.
Also, the controllers must ensure that the kites do not collide in the presence
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of turbulence. Automated launching and landing maneuvers, still to be solved
in a robust way for the pumping kite, are even more of an open topic for the
dancing kites.

Due to their compelling features, AWE systems based on single teth-
ered wings are also being adapted to other applications. For instance, the
Swedish company Minesto is currently developing a drag-mode underwater
system named “Deep Green”, to generate electricity from the tidal and ocean
currents. The company is aiming at the deployment of a 1.5MW version of
its concept in 2017. The German company SkySails has developed an AWE
system in crosswind flight for towing seagoing vessels, as explained by Er-
hard and Strauch (2012) and Erhard and Strauch (2015). It is claimed that the
system, employing a flexible ram-air kite of 320m2, can replace up to 2MW
of the main engine propulsion power.

Besides the configurations discussed so far, many others can be found
in the literature, including several patents, exploring the use of tethered wings
for harvesting energy from the wind and water flows. Neither the scientific
community nor the industry has yet come to an agreement on which configu-
ration is the most promising one in terms of efficiency, technological and eco-
nomical feasibility, scalability and reliability. According to Schmehl (2015),
at the beginning of 2015 there was a total of 55 institutions around the world
actively involved with Research & Development (R&D) in the field, including
academy and industry, represented in the world map of Fig. 15.

A few years ago, a report from consultants on renewable energies at
GL Garrad Hassan (2011) revealed two fronts which require special attention
in order to push forward AWE technology towards commercial deployment.
First of all, AWE systems must offer a reliable, safe operation. The risk of a
fast-flying flexible kite, or even worse, of a heavier rigid wing aircraft losing
control and crashing into the ground, possibly induced by turbulent operat-
ing conditions or component wear, must be minimized to a tolerated level.
At least, such systems should be able to be promptly put out of operation
when these conditions are formed, thus minimizing the risk of accidents. This
would also be important to receive public support when planning to deploy
AWE systems over land and near populated areas. Also, some technologi-
cal aspects still must be solved or improved to allow for a robust operation,
as, for instance, the automatic launching and landing strategies for lift-mode
systems, especially those with flexible wings.

Secondly, when the technology becomes more mature, investors and
insurance companies will require design standards and a certification scheme.
The lifetime of cables and wings, especially when it comes to flexible kites
made of synthetic fabric, must be proven to be minimally long in order to re-
duce maintenance costs. Besides, regulatory issues will have to be addressed
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Figure 15 – Institutions actively involved with R&D in AWE technology
around the world at the beginning of 2015.

Source: Schmehl (2015)

with the air traffic authorities, since the operation of AWE systems can create
a collision risk with aircraft, or cause radar interference.

1.4 OBJECTIVES AND CONTRIBUTIONS

It is evident that the road to large-scale deployment of AWE systems
still requires further advancements. In particular, the prospect for tethered
wings to become a feasible alternative to the challenge of expanding the en-
ergy offer while attending environmental concerns seems promising. With
this motivation, the goal of this dissertation is to serve both as a manuscript
for the lay reader, interested in getting acquainted with the technology and
who has some background on physics, aerodynamics, dynamic systems, clas-
sic control and optimization techniques, as well as by specialists in these
areas, who intend to carry out deeper investigations.

Based on theoretical results obtained through simulations, the contri-
butions of this dissertation address four different aspects of AWE with teth-
ered wings, focused on the pumping kite concept:
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a) to revisit models from the literature used in AWE, especially those
describing the flight dynamics of a tethered wing. The derivation of
the course angle dynamics and the two-tether point-mass wing are ex-
plained step-by-step, and some adjustments to the latter model are pro-
posed. The contribution in this regard is based on the relevance of
these models and the fact that they are not found so far in (didactic)
textbooks. The idea is that all information required to reconstruct a dy-
namic simulation model for the pumping kite flight can be found in this
dissertation;

b) based on some of the models compiled above, to compare different con-
trol laws for the flight of a pumping kite in a decentralized topology,
where the control inputs of the tethered wing and the ground winch are
computed separately. In particular, an approach with Bernoulli’s lem-
niscate for the lying-eight flight during the traction phase is detailed;

c) to formulate an optimization problem, considering constraints on the
angle of attack and reel speed, in order to choose the operating parame-
ters of the traction and retraction phases that yield the maximum cycle
power;

d) to reinterpret Loyd’s lift (the pumping kite traction phase) and drag
modes as particular cases of the actuator disc considered in the deriva-
tion of the Betz limit for power extraction from the wind, using the
same modeling framework as for the horizontal-axis wind turbines.

The rest of the dissertation is organized as follows. In Chap. 2, most
of the mathematical models considered in this work are presented. In Sect.
2.1 we discuss the four-tether steering concept and the state-of-the-art models
describing the deformations and aerodynamics of flexible wings (kites). Sect.
2.2 follows with the concept of the two-tether kite, where we revisit, in detail,
and propose some corrections and extensions to the point-mass kite model,
which will be used to simulate the wing flight. In Sect. 2.3 we discuss the
massless wing in dynamic equilibrium, used to optimize the traction phase
of the pumping cycle. The derivation of an important Single-Input Single-
Output (SISO) model for the flight dynamics, used for control design, is made
in Sect. 2.4. To represent how the average wind increases with altitude due
to viscous interaction with the ground, in Sect. 2.5 we explain and interpo-
late the logarithmic wind shear model and the wind histograms for different
locations.

Several aspects of the pumping kite are addressed in Chap. 3. Firstly,
we will design flight controllers, in Sect. 3.1, to be used both for the lying-
eight figure of the traction phase as well as for the retraction maneuver. With
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this controller we will be able to simulate a full pumping cycle. Before we do
so, we need to choose the values of the parameters that define the pumping cy-
cle, which is the focus of Sect. 3.2. The traction phase is parameterized with
a base angle of attack, a reel-out speed, an average polar angle of the lying-
eight trajectory, and an average tether length. As for the retraction phase, it is
parameterized by means of two coefficients describing the ramp inclinations
of the traction force and base angle of attack, and two constant values at the
end of these ramps. We then formulate an optimization problem with the goal
of finding the set of parameters that yields the maximum cycle power. We will
also consider constraints which affect practical implementations of the AWE
system. Regarding the ground winch, there is the reel speed saturation, which
determines a minimum duration of the retraction phase. As for the flight with
(flexible) kites, we assume a maximum de-powering4 that can be applied, and
a minimum value for the angle of attack, which is important in order to ensure
a robust flight. By taking into consideration these constraints we expect two
things. First, is to obtain a more realistic insight into how much power can be
actually harvested from the wind. Second, the resulting operating parameters
should correspond to an optimal trade-off between cycle power maximiza-
tion and robust operation of the wing, which is a crucial point. The chapter
is concluded with Sect. 3.3, where we compute and analyze the pumping kite
power curve.

The idea in Chap. 4 is to compare, using the same modeling frame-
work, AWE with conventional wind energy based on horizontal-axis wind
turbines. We start, in Sect 4.1, by using momentum theory applied to the
generic actuator disc to derive Betz limit for the extraction of power from the
wind. Next, in Sect 4.2, we extend the model with the radial dimension of the
disc. The model is once more extended, in Sect. 4.3, by considering the aero-
dynamics and geometry of the specific airfoil used for the blades (or wing). In
the sequel we formulate the expression of the power coefficient of Loyd’s lift
mode. Sect. 4.4 finishes the chapter by comparing the average energy gen-
eration (capacity factor) of pumping kites and wind turbines based on their
power curves and the histograms for some locations around the world.

The manuscript is concluded with Chap. 5, where we summarize the
main contributions, emphasize some important conclusions, and point out
topics for future works. The main results of this PhD dissertation in terms of
publications and research grants are also listed.

4By “de-powering” we refer to the decrease of the wing lift and drag coefficients in order
to reduce the aerodynamic force and thereby also the traction force on the tether, which is a
necessary condition to perform an efficient retraction phase.
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2 MODELS FOR TETHERED WINGS

Many models have been proposed in the literature to describe the be-
havior of a tethered wing, in several levels of accuracy and for different steer-
ing mechanisms. The most complex models are able to describe the aerody-
namics and deformations of the wing in detail, yet at a high computational
cost. As a consequence, they are strictly oriented to simulation. Models with
intermediate levels of complexity still achieve a reasonable level of detail and
thus can be used for faster, real-time simulations. The simplest models are
more appropriate for analytical tasks such as optimization and control design,
for instance.

For the contributions in this dissertation we will address four wing
models: one of intermediate complexity, to simulate the 3D translational dy-
namics of the tethered wing, and three simpler, analytical models, used for
optimization and control design. The chosen models will consider a generic
wing with given aerodynamic characteristics and a steering based on the dif-
ference in the length of two tethers reaching the kite, i.e. we will not consider
the aircraft setup with ailerons. For all wing types – rigid or flexible – pulling
one tether while releasing the other will cause the wing to execute a turn in the
same direction. However, the internal mechanisms through which the change
in the flight trajectory is achieved can be different. Basically, a steering in-
put causes a rigid wing to roll and a flexible kite to deform. In the next two
sections we will discuss these different steering implementations, their corre-
sponding de-powering possibilities, and some models found in the literature.

2.1 FOUR-TETHER FLEXIBLE KITES

One of the branches of AWE with tethered wings focuses on the use
of flexible kites, which offer some interesting advantages. First of all, the
current technology allows for a maximum wing loading compatible for en-
ergy generating purposes. For instance, Leading-Edge Inflated (LEI) tube
kites reach a maximum loading of about 500N/m2, while foil (ram-air) kites
– as the 320m2 one described by Paulig, Bungart and Specht (2013) for tow-
ing sea-going vessels – reach even higher values, withstanding approximately
1kN/m2 at a specific weight1 of 7.8N/m2. Moreover, flexible wings are sig-
nificantly lighter and cheaper to build than rigid wings. Also, in the eventual
case of crash with the ground, the damage caused and/or suffered by the flex-

1The specific weight, or fabric density, increases with the wing loading. It is usually found
that LEI tube kites have a higher specific weight than foil kites with the same area.
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ible wing is much lower than the damage associated with a rigid wing.
Based on these motivations, in recent years the level of sophistication

in wing modeling has rapidly increased, focusing especially on a more realis-
tic simulation of the dynamics of flexible kites. The majority of these models
considers the four-tether actuation concept, shown in Fig. 16 for a LEI tube
kite. In this concept, a single (main) traction tether leaves the drum attached
to the generator on the ground and splits into two tethers at a “Y” bifurcation
near the kite. Each of these two tethers are then connected to the kite leading
edge, and are responsible for transmitting the bulk of the traction force used
for power generation at the ground. In the case of a foil kite, the two tethers
are formed by merging the A, B and C lines from each half of the wingspan,
as it will be seen later in this section. Sitting atop the “Y” bifurcation and
held in place by the two traction tethers going up to the kite leading edge is a
control pod. It contains an actuator responsible for manipulating two steering
tethers, which are connected to the wingtips closer to the kite trailing edge.
By pulling one tether while the other is released, i.e. by creating a difference
in the tether length ∆l = lL− lR, where lL is the left tether length and lR is
the right tether length, the kite is deformed, causing it to yaw and translate
sidewards simultaneously.

The base angle of attack α0, and consequently the angle of attack α ,
can be augmented by decreasing the length of both steering tethers through
an equal amount ∆lp. A reverse operation must be done to de-power the kite,
i.e. to make α0 become negative. De-powering, however, is usually limited
to a small interval for this four-tether system with LEI tube kites. The main
reason is that, as α0 becomes negative, the apparent wind starts reaching the
kite from “above” (at the outer kite area), and the wing loading inside the C-
shaped kite drops. Consequently, at some point, the inflated main strut along
the leading edge is not able to withstand the pressure caused by the apparent
wind coming from “above”, and the kite loses its inflated characteristic C-
shape. A consequence of this behavior is that a LEI tube kite must operate
above a minimum angle of attack in order to ensure a safe operation.

The models developed in the latest years for the four-line flexible kite
are particularly important to validate control laws designed with simpler mod-
els. In contrast to the blades of the wind turbines, as pointed out by Bosch et
al. (2014), in the case of a LEI tube kite, the airfoil shape is determined by the
aerodynamic wing loading and pressure distribution in the tubes, as well as
by the internal forces in the membrane fabric and bridle lines. Due to its low
inertia, the wing response is very sensitive to control commands, fluctuations
of the apparent wind (for instance caused by turbulence), and changes in the
kite geometry due to variations of the wing loading. These factors contribute
to making robust automated flight control a challenging task.
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Figure 16 – Four-tether actuation concept with control pod for steering and
de-powering (here seen for a LEI tube kite).
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Implementing a detailed simulation model is far from being an easy
task. The strongly coupled aerodynamics and structural dynamics of the wing
constitutes a challenging Fluid-Structure Interaction (FSI) problem. One ef-
fort in this direction was made by Breukels (2011), who discretized the wing
into multiple bodies, each one having its independent aerodynamics described
by the modeller. Another approach was used by Baayen (2012), who illus-
trated the use of a 3-dimensional panel method to simulate a power kite inter-
acting with the apparent wind. Given that the panel equations can be easily
solved numerically in comparison to the Navier-Stoques equations, the panel
method approach offers a computational advantage which makes it a suit-
able candidate for implementing a detailed dynamic simulation at a relatively
high speed. Simply put, the idea is to use the panel method to obtain the
forces and moments acting on the kite; these cause the shape and tension of
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the tethers to change, which is calculated by a solver of ordinary differential
equations. The force on the bowed tether, in turn, acts back on the kite, de-
forming it. This feedback loop characterizes a stiff interaction. Because in the
panel method the computed aerodynamic forces and moments result from the
shape of the entire wing, its orientation in the flow, and its interaction with
the wake, Baayen expected his method to be more accurate than Breukel’s
multi-body one.

In his modeling framework, Baayen (2012) considered the tether as
a string of point-masses connected by high-modulus dampers. The aerody-
namic forces acting on the kite, resulting from the panel method, are added
to the spring-damper forces of the top point-mass in the tether model. In this
way, the bulk of the kite lift force is balanced by the tether forces. Baayen
attempted to model one important deformation mode of the kite – the span-
wise bending – inspired by the observation that the tips of arc-shaped kites
bend inward when pulling on their respective steering lines. The resulting
asymmetrical shape occurs because, when turning, while the steering line on
one wingtip is being pulled, the steering line on the other wingtip is being
released. Bosch et al. (2014) investigated in more detail this and other kite
deformation effects on an inflatable membrane wing. Their approach, how-
ever, was to use a geometrically nonlinear finite-element framework to de-
scribe the large quasi-static deformations caused by changing the bridle line
geometry and by the varying aerodynamic loading. The effect of the external
flow was described in terms of discrete pressure distributions for the different
wing sections.

The static structural model is based on a finite-element discretization
of the wing. The canopy is represented by triangular shell elements, whereas
the pressurized tubular frame is represented by beam elements. The steady
aerodynamic load model provides a discrete surface pressure distribution for
each wing section as a function of its local relative flow conditions and shape
deformation. The dynamic behavior of the complete system consisting of
wing, bridle lines, control pod and tether is described by a particle system
model. Bridle lines are described as linear spring-damper elements, whereas
the tether is described as a distance constraint. The inertia of the system com-
ponents is represented by point masses at the control pod and at the bridle line
attachments on the wing. For each dynamic integration step, the structural
model provides the resulting wing forces at the bridle line attachments. These
forces are applied as external loads to the particle system model. Following
the integration step, the updated positions of the point masses are returned to
the structural model and treated as displacement boundary conditions.

As observed by Bosch et al. (2014), the spanwise wing bending results
from the aerodynamic wing loading. The heavily loaded center part of the
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wing is pulled outwards, as illustrated in Fig 17b, tensioning the bridle line
system and the tether, and forcing the less loaded wingtips to move towards
each other. This bending deformation reduces the tip distance of the unloaded
wing by an average value of 1m, i.e. about 20% of the design value of the
North Rhino 16m2 kite analyzed in that work.

Figure 17 – Spanwise deformation effects on a LEI tube kite, exemplified
when the right wingtip (left-hand side) is pulled.

(a) Bottom view: wing torsion.

(b) Leading edge perspective view: wing bending .

Source: Bosch et al. (2014)

According to Breukels (2011), pulling on one of the steering lines at-
tached to the kite trailing edge not only increases the aerodynamic forces at
the respective wingtip – due to the increase in the angle of attack in that re-
gion – but also leads to a spanwise wing torsion, depicted in Fig. 17a. This
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antisymmetric deformation significantly amplifies the aerodynamic yaw mo-
ment, forcing the wing to turn around the actuated tip. It is due to this effect
that the C-shaped kite is regarded to have an excellent maneuverability2.

Fig. 17b is also helpful to illustrate how the steering input on a four-
tether LEI tube kite occurs. In the depicted case, by pulling on the right
wingtip (viewer’s left-hand side) the angle of attack increases in that region,
causing both the lift Fr

L and drag Fr
D forces to increase, whereas releasing the

left steering line causes the opposite effects in the left wingtip. Therefore the
kite responds in two ways. First, because the lift on the right wingtip is higher
than on the left wingtip, i.e. Fr

L > Fl
L, the kite suffers an acceleration in its

lateral axis (sidewards translation). Second, we can see that all aerodynamic
forces shown, except for Fl

D, produce a torque around the kite vertical axis
because of the offset induced by the torsion deformation, causing the kite to
yaw in the clockwise direction (as seen from above).

Another flexible wing type that can be used with the four-tether con-
cept is the foil (ram-air) kite. We can highlight some differences between foil
and LEI tube kites. To start, for a same total area, foil kites usually have a
higher projected area, i.e. they are “flatter”. This is good for producing trac-
tion, but at the expense of less maneuverability than LEI tube kites, which
tend to be more “C-shaped”. A second difference is that the bridle line sys-
tem of a foil kite has many more attachments points to the kite, forming ba-
sically three line groups, as shown in Fig. 18. Since the produced lift force is
much higher in the leading than in the trailing edge, most of the wing loading
is supported by the A-lines, an intermediate portion by the B-lines, whereas
the smaller share is transmitted by the C-lines. These three line groups are
merged to form the two traction tethers (one for each side), that merge at the
“Y” junction right below the control pod. Finally, the F-lines (brakes) con-
verge to the corresponding left and right steering tethers, connected to the
differential steering actuator. By pulling on one F-line the respective wingtip
is slowed down, causing the kite to yaw.

Differently from a LEI tube kite, the base angle of attack of a foil kite
cannot, a priori, be changed during operation – it is predetermined by the
bridle line system. Therefore, the de-powering procedure must be other than
equally increasing the length of both steering tethers. One possibility is to
apply the so-called “B-stall”. To this end, a de-powering tether is clamped to
the B-lines (from both sides) some 50cm distant from the control pod. Thus,
when the de-powering actuator pulls on the B-lines between 15cm and 20cm,
the airfoil shape (cross-section) changes, as shown in the right-hand side of
Fig. 18. Basically, the perimeter of the inner part of the airfoil increases so
that the speed of the airflow passing right above and under the airfoil become

2though in detriment of a higher glide ratio.
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Figure 18 – Four-tether actuation concept with control pod, for steering and
de-powering (through “B-stall”) a foil (ram-air) kite.
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practically the same. This causes the pressure in the inner part (wing loading)
to drop, thus decreasing the lift and increasing the drag. With the B-stall
maneuver, the glide ratio can be reduced typically from 10 or 8 to about 2 or
even less.

Another relevant difference is that foil kites are usually lighter than
LEI tube kites of same area, which helps maintaining the apparent speed (and
harvested power) when going up the lying-eight path in the crosswind, be-
sides requiring less wind for launching and landing. Moreover, foil kites
have a higher aerodynamic efficiency, also known as glide ratio, defined as
E = CL(α)/CD(α), where CL(α) is the airfoil lift coefficient, CD(α) is its
drag coefficient, and α , the angle of attack. The higher is E, the more power
can be harnessed from the wind. One last important observation about foil
kites is that, if the angle of attack becomes negative, the air intake (open-
ings) at the kite leading edge may close. This can lead to loss of the airfoil
shape by “deflation”, and the kite may enter a stall without control. Hence,
to avoid this dangerous condition, a constraint on the minimum angle of at-
tack around zero should be considered, perhaps an even stronger constraint
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the one already discussed for LEI tube kites.

2.2 THE TWO-TETHER POINT-MASS WING

We know from aeronautical sciences (see e.g. Stevens and Lewis
(2003)) the three basic control surfaces (actuators) of a “conventional” air-
craft: the ailerons, the rudder and the elevator. By actuating on the ailerons
the airplane rolls (tilts around its longitudinal axis), the lift force vector is
decomposed on the horizontal plane as a centripetal component and, conse-
quently, the airplane executes a turn. Now imagine we remove the ailerons
and tether each of the two wingtips to a drum connected to an electric machine
on the ground. By pulling one tether while releasing the other one in the same
amount, the aircraft is rolled as in the case with ailerons. One advantage of
the tether-induced roll is that, besides controlling the flight, the tethers can be
used to generate electricity if reeled out while subject to a traction force. This
is the steering and power-harvesting concept used e.g. by the Swiss company
TwingTec with its TT100 model, and by the German company Enerkite with
its EK200 model. Changing the base angle of attack α0 (decreasing it for de-
powering) continues to be possible with the two-tethered rigid wing through
the elevator.

We could also hypothetically use this two-tether concept with foil
kites, for instance. In this case, the F-lines (brakes) in Fig. 18 would be
left unused. De-powering could be more challenging, though, because the B-
tethers (from each wing side) should arrive separately at the ground in order
to be pulled, so that we would actually have four tethers (2 ACs and 2Bs)
at the ground level. This increase in complexity leads us to conclude that,
when considering the two-tether steering mechanism, rigid wings3 offer an
advantage over flexible wings due to the separation between the aerodynamic
surfaces upon which the power-generating lift force acts (main wings) and the
surface used for de-powering (elevator). This separation allows the wing to
operate at an angle of attack low enough so to practically cancel the lift, caus-
ing the tether force to be greatly reduced, which is essential for an efficient
reel-in maneuver. In short, the possibility of having the elevator in a rigid
wing is a big advantage for de-powering. Another advantage of rigid wings
over the other types is a higher aerodynamic efficiency (glide ratio), which
unfortunately comes along with a higher density (specific weight) as well.

At this point we are able to highlight some differences between both

3It is well known that even rigid airplane wings are, to some degree, flexible. Yet, when
compared to LEI tube kites or foil kites, which are made of synthetic fabric, the flexibility of
rigid wings is negligible.
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steering concepts. First of all, because the steering causes deformations on
the four-tethered wing, the latter must be flexible – a LEI tube or a foil kite.
Also, having only one main tether is better for reducing the aerodynamic
drag, allowing the kite to reach higher speeds and, ultimately, to produce
more power than with the two-tether concept. On the other hand, keeping the
control pod airborne demands lift force from the kite, which has a negative
impact on the lift force left for power generation, especially when going up in
the eight-figure flight path. Back to the advantages of the four-tether concept,
the fact that the actuators are closer to the kite makes steering less susceptible
to transport delay – an important feature for flight performance and robust-
ness. However, having airborne actuators requires providing power supply to
the control pod. There are basically two ways to achieve this: electricity could
be transmitted from the ground through the main traction tether, or it could
be generated directly on-board. In any case, undesired complexity is added
to the airborne part of the AWE system. Finally, one important advantage of
the four-tether concept is its versatility: because of the single (main) traction
tether, the kite could be more easily used in mechanical configurations other
than the classic pumping kite to convert the traction force into electric power.

As already discussed, the cost for the high level of accuracy and detail
obtained with the state-of-the-art simulation models mentioned in Sect. 2.1
is a high computational load incurring in a slow simulation, besides the im-
plementation effort. Aiming at a faster execution and simpler implementation
while still maintaining a desired level of detail, it was chosen the two-tether
point-mass approach, originally proposed by Diehl (2001), to model the trans-
lational dynamics of the wing. In this work, we will use the two-tether model
also for four-tethered wings as LEI tube kites or foil kites, assuming the “B-
stall” de-powering for the latter wing type. The idea is to focus on the same
steering input that yields a similar change of trajectory – the difference in the
length of the steering tethers. The internal steering mechanism (kite defor-
mation or rolling) is not important for the conclusions that will be drawn.

Making the point-mass model applicable to both two-tethered and
four-tethered wings affects the number of tethers nt whose length r is sig-
nificant to calculate the tether weight and drag. Hence, for the two-tether
case we must consider the two steering/traction tethers, whereas for the four-
tether case only the main traction tether is considered and the weight of the
control pod can be added to that of the wing.

In the following sections, we will revisit the modeling procedure of
the 3D point-mass model, attempting to give more detailed explanations, dis-
cussing the assumptions involved, proposing some adjustments, and interpret-
ing the results. The parameters of this model will be adjusted for simulation
purposes in the rest of the work.
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2.2.1 Kinematics

Let us consider the nominal wind vector vw,[n] = (vw,0,0) and define
the nominal wind frame, with orthonormal basis (xn,yn,zn), whose origin
is the mean point on the ground between the electric machines of the two-
tether concept, or the location of the single electric machine of the four-tether
concept, as illustrated in Fig. 19. The longitudinal direction is defined by
xn = vw/‖vw‖, whereas the lateral direction is defined by the unitary vector
yn ⊥ xn such that vector zn = xn×yn, which represents the vertical direction,
points upwards. We will treat the nominal wind frame as the “inertial” one
because we assume that the nominal wind direction varies with time very
slowly if compared to the kite dynamics. In order to have the kite flight
correctly centered in the wind window in a real application, this rotation of
the nominal wind frame around the z-axis of the ground station frame should
be detected and taken into consideration, for instance, by using the approach
proposed by Zgraggen, Fagiano and Morari (2015).

Figure 19 – The point-mass wing of spherical coordinates (θ ,φ ,r) and Carte-
sian coordinates (xk,yk,zk), and the wind window.
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Source: original

Now let us consider the wing mass m to be concentrated in one point.
Its position in the nominal wind frame can be represented by the spherical
coordinates (θ ,φ ,r), where θ is the polar angle, φ is the azimuth angle, and r
is the radial distance of the point-mass wing to the ground winch. Because the
tether(s) are assumed to be perfectly straight and inelastic, and much greater
than the wingspan, r also corresponds to the tether length. The wing position
vector in Cartesian coordinates is
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r[n] =
[
xk yk zk

]′
= r
[
sinθ cosφ sinθ sinφ cosθ

]′ . (2.1)

Besides corresponding to the wing center of mass, vector r is also the
origin of the local frame (eθ ,eφ ,er), defined in the nominal wind frame by
the orthonormal vectors

eθ =
∂r
∂θ

1
r
=
[
cosθ cosφ cosθ sinφ −sinθ

]′
eφ =

∂r
∂φ

1
r sinθ

=
[
−sinφ cosφ 0

]′
er =

∂r
∂ r

1
r
=
[
sinθ cosφ sinθ sinφ cosθ

]′ ,
(2.2)

hence the rotation matrix from the local to the nominal wind frame is

Rn
l =

[
eθ eφ er

]
=

cosθ cosφ −sinφ sinθ cosφ

cosθ sinφ cosφ sinθ sinφ

−sinθ 0 cosθ

 . (2.3)

The wing velocity in the local frame is

vk,[l] =
[
r θ̇ r φ̇ sinθ ṙ

]′ . (2.4)

The apparent wind in the local frame is

va,[l] = Rl
nvw,[n]−vk,[l] , (2.5)

where Rl
n =

(
Rn

l

)′ is the rotation matrix from the nominal wind to the local
frame, obtained by applying a transpose operation to the matrix for the inverse
direction – a property which holds to all rotation matrices. We use Rl

n in Eq.
(2.5) to have all vectors expressed in the same coordinate system4.

Two other coordinate systems complete the model: the apparent wind
frame, composed by the orthonormal basis (xa,ya,za), and the body frame,
defined by (xb,yb,zb). These coordinate systems are depicted in Fig. 20 and
are used to define the aerodynamic forces and to represent the orientation of
the kite with respect to the local frame, respectively.

For a null rotation of the apparent wind frame with respect to the local
frame we have xa ≡ −eθ , ya ≡ eφ and za ≡ −er. In this point-mass model
we assume that the wing symmetry plane (xb,zb) is coincident with the plane

4Note that we could also have used va,[n] = vw,[n]−Rn
l vk,[l].
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Figure 20 – Bases of the apparent wind frame, (xa,ya,za), and body frame,
(xb,yb,zb).

Source: adapted from Fagiano (2009)

spanned by (xa,za), similarly to what happens with a diamond-shaped kite
because of its tail being blown by the apparent wind. In other words, we
assume that the sideslip angle of the kite is always zero, which means that the
wing changes its orientation instantaneously with va, i.e. we do not model the
wing moment of inertia and torques acting upon it. As reported by Baayen
(2011) based on practical experiments with LEI tube kites, the zero sideslip
angle is a good assumption when the steering input is close to zero, which
typically happens in the center of the lying-eight trajectory of the traction
phase, as well as during the retraction phase with zero azimuth.

The longitudinal axis of the apparent wind frame is defined as

xa =−va/‖va‖ . (2.6)

The wingspan ws can be seen as the wing dimension in its transversal,
ya ≡ yb direction, as depicted in Fig. 20. Considering the two-tether concept
and defining lL and lR as the cable length of the left and right wingtips, respec-
tively, by creating a difference in the length of the steering/traction tethers the
wing is rolled through an angle ψ:

∆l = lL− lR = ws sinψ . (2.7)

The angle ψ represents the inclination of the wing transversal axis
with respect to the tangent local plane (eθ ,eφ ), as shown in Fig. 21, or the
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roll angle in the Tait-Bryan (Euler) nomenclature. If ∆l > 0 ⇒ ψ > 0 and
the kite turns to the right (when looking at the kite leading edge from the
ground), and vice-versa. In this model, the roll angle is only valid in the
interval |ψ| ≤ π/2.

Figure 21 – View of the wing leading edge showing the roll angle ψ , created
by the differential tether length ∆l with the two-tether concept.

Source: original

To complete the basis of the apparent wind frame we define za =
xa× ya. Hence we now need to calculate ya, whose direction changes as a
function of ψ and the apparent wind direction. To this end let us establish
some requirements. First of all, the kite transversal direction should be al-
ways perpendicular to its symmetry plane, therefore

ya ⊥ xa⇒ ya ·xa = ya ·va = 0. (2.8)

Secondly, the projection of ya onto er is sinψ:

ya · er = sinψ = ∆l/ws . (2.9)

A third requirement is that the decomposition of za onto er must be
always negative, i.e. it has to point in the opposite direction of er:

(xa×ya) · er < 0⇒ (va×ya) · er > 0. (2.10)

We start to determine ya by introducing the notion of the partial an-
gle of attack ∆α , which is the angle between xa and the tangent local plane
(eθ ,eφ ), defined as

∆α = arcsin
(

va · er

‖va‖

)
. (2.11)
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We use the adjective partial to describe ∆α because the component
α0, denoted as the base angle of attack by Fagiano (2009), can be added in
order to produce the total angle of attack5, as shown in Fig. 22:

α = α0 +∆α . (2.12)

Figure 22 – View of the wing longitudinal cross section (symmetry plane)
showing the components ∆α and α0 of the (total) angle of attack.

Source: original

The notion of α0 is important, since this quantity can be chosen con-
stant or varied at will as a control input in the case of a two-tether rigid wing
with elevator (or with a third tether in the aircraft tail), or still in the case of a
four-tether LEI tube kite. On the other hand, ∆α depends on va, which in turn
depends on the kite velocity vk and, therefore, on the kite dynamics. Other
authors, as Fechner et al. (2015), refer to a de-powering angle αd = α0,o−α0,
where α0,o is the base angle of attack used during the traction phase. When
going into the retraction phase, de-powering is applied by making αd > 0,
which means that α0 decreases, and so does the angle of attack α . As a con-
sequence, the lift and the tether traction force fall as well. For a null roll angle
ψ , the base angle of attack can be interpreted as the angle between the airfoil
chord direction – represented by the unitary vector xb – and the tangent plane
(eθ ,eφ ). Let us now consider the projection of va onto the tangent plane:

va,τ = (eθ ·va)eθ +
(
eφ ·va

)
eφ = va− (er ·va)er . (2.13)

If ∆α 6= 0 then va,τ 6= va. Let us use va,τ to define the auxiliary vector
5Note that, in the case of a conventional, “untethered” aircraft, it does not make sense to

divide the angle of attack into the base, α0, and partial, ∆α , components.
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ew = va,τ/‖va,τ‖ . (2.14)

Having er ⊥ ew, we complete the orthonormal basis by defining eo =
er×ew, as illustrated in Fig. 23. In this representation, χ is the angle between
the apparent wind projection onto the tangent plane and eθ . Observe that the
plane spanned by vectors (ew,eo) coincides with the tangent plane

(
eθ ,eφ

)
.

Also, if ψ = 0⇒ ya ≡ eo even if ∆α 6= 0. Starting at this scenario, if we now
have ∆α 6= 0 and then apply ψ 6= 0, ya will “detach” itself from eo and its
projection onto the tangent plane will be

ya,τ = ya− (ya · er)er . (2.15)

Figure 23 – View of the wing top surface (outside the “C”) showing the angle
η , here illustrated for a situation with ∆α > 0 and ψ > 0.
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As shown in Fig. 23, η is the angle between eo and the projection
ya,τ . Moreover, since ya ·er = sinψ , then the projection of ya onto the tangent
plane has norm ‖ya,τ‖ = cosψ . Using this information and the commutative
and distributive properties of the inner (scalar) product, let us calculate the
inner product between ew and ya,τ :

ew ·ya,τ = ‖ew‖‖ya,τ‖cos(π/2+η) = cosψ(−sinη) . (2.16)

Solving Eq. (2.16) for sinη , using Eq. (2.15), then Eq. (2.14) and the
requirement of Eq. (2.9), we get
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sinη =−ew · [ya− (ya · er)er]

cosψ
=− (ew ·ya)− ew · [(ya · er)er]

cosψ

=−
va,τ
‖va,τ‖ ·ya− ew · ((sinψ)er)

cosψ
.

(2.17)

We know that ew ⊥ er⇒ ew · ((sinψ)er) = 0 and that va,τ is given by
Eq. (2.13). Applying these results into Eq. (2.17) yields

sinη =−
[va−(va·er)er]
‖va,τ‖ ·ya

cosψ
=− (va ·ya)− [(va · er)er] ·ya

‖va,τ‖cosψ
. (2.18)

Now, using the requirements of Eq. (2.8) and Eq. (2.9) once more, we
get

sinη =
(va · er)(er ·ya)

‖va,τ‖cosψ
=

(va · er)sinψ

‖va,τ‖cosψ
. (2.19)

Finally, we solve Eq. (2.19) for η and obtain

η = arcsin
(

va · er

‖va,τ‖
tanψ

)
. (2.20)

Recalling the geometric relations in Fig. 23, having determined η we
can now express the base vector of the wing transversal axis as

ya = (−cosψ sinη)ew +(cosψ cosη)eo +(sinψ)er . (2.21)

Now let us check whether this result complies with the requirements.
If we take the first requirement, of Eq. (2.8), and perform the inner product
in the (ew,eo,er) basis using Eq. (2.21), Eq. (2.13) solved for va, and Eq.
(2.20), we arrive at

ya ·va =
[
−cosψ sinη cosψ cosη sinψ

][
‖va,τ‖ 0 er ·va

]′
=−(cosψ sinη)‖va,τ‖+ sinψ (va · er)

=−cosψ
va · er

‖va,τ‖
(tanψ)‖va,τ‖+ sinψ (va · er) = 0,

(2.22)

therefore the requirement of Eq. (2.8) holds true. The condition established
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in Eq. (2.9) is trivially satisfied. At last, by evaluating the requirement of Eq.
(2.10) using Eq. (2.21), and Eq. (2.13) solved for va, we verify that

(va×ya) · er =

 ‖va,τ‖
0

(er ·va)

×
−cosψ sinη

cosψ cosη

sinψ


=

 −cosψ cosη (va · er)
−cosψ sinη (va · er)− sinψ‖va,τ‖

cosψ cosη‖va,τ‖

′0
0
1


= cosψ cosη‖va,τ‖> 0,

(2.23)

i.e. the requirement of Eq. (2.10) holds true ∀ψ,η ∈
(
−π

2 ,
π

2

)
, and given that

va,τ > 0. Keep in mind that this model is valid as long as η can be determined
through Eq. (2.20). This happens if∣∣∣∣ (va · er)

(va · ew)
tanψ

∣∣∣∣≤ 1, (2.24)

which means that ψ may not be arbitrarily large inside the range |ψ| < π/2
previously mentioned, depending on the combination of va · er and va · ew.

Having determined the apparent wind coordinate system, we can ob-
tain the body frame simply by applying a rotation through an angle α around
the transversal axis yb ≡ ya:

Rb
a =

cosα 0 −sinα

0 1 0
sinα 0 cosα

 . (2.25)

In summary, we have used four coordinate systems in this mass-point
model. The rotations among these frames are parameterized by the variables
under the arrows, shown in Fig. 24.

Figure 24 – Coordinate systems in the point-mass model of the tethered wing,
and the rotations involved.
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Source: original

One important observation on this point-mass model arises from the
fact that the body frame is obtained by a rotation through an angle α around
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the lateral axis ya ≡ yb. Imagine a situation where the kite is parked at the
border of the wind window, around the zenith position. If the equilibrium
is perturbed, for instance by increasing α0 (and consequently α), the drag
force increases and the kite may move “backwards”, i.e. vk · vw > 0. If the
backward motion is fast enough so that vk · (vw/‖vw‖)> ‖vw‖ then, accord-
ing to Eq. (2.5), the apparent wind speed va becomes negative. In this case,
the apparent wind longitudinal axis xa in Eq. (2.6) would be inverted, which
means the kite would suddenly rotate 180◦ around its vertical axis – an un-
realistic behavior. Because of such limitation, this point-mass model is not
adequate for studying the dynamic behavior of the wing at the border of the
wind window.

2.2.2 Dynamics

The equations of motion can be constructed using classical mechanics.
Knowing that the kite position vector in the nominal wind frame is given by
Eq. (2.1), the kite velocity is

vk,[n] = ṙ =

ṙ sinθ cosφ + rθ̇ cosθ cosφ − rφ̇ sinθ sinφ

ṙ sinθ sinφ + rθ̇ cosθ sinφ + rφ̇ sinθ cosφ

ṙ cosθ − rθ̇ sinθ

 . (2.26)

Recalling the assumption that the nt tether(s) (1 or 2), of volumetric
mass density ρt and diameter dt, are perfectly straight and inelastic (similarly
to a rod), the total tether mass

mt(r) = (1/4)nt ρt π d2
t r (2.27)

can be assumed to be concentrated at half the tether length. Thus we have the
equivalent tether mass position rt = (1/2)r and the equivalent tether velocity
vt = (1/2)vk. Now we can build the system Lagrangian

L(q) = T (q)−V (q) , (2.28)

where q = (θ ,φ ,r) are the generalized coordinates, and T (q) and V (q) are
the kinetic and potential energy shares, respectively. Denoting the gravita-
tional acceleration constant as g, by performing the calculations we obtain
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T (q) =
1
2

(
m+

1
4

mt

)
v2

k =
1
2

meq
[
ṙ2 + r2 (

θ̇
2 + φ̇

2 sin2
θ
)]

V (q) =
(

m+
1
2

mt

)
gr cosθ ,

(2.29)

where the equivalent mass for the airborne dynamics is

meq = m+(1/4)mt . (2.30)

Let us consider the sum of all external (non-conservative) forces acting
upon the point-mass wing and tether, translated to the wing position r, as
∑Fext. Then we can find the expression of the kite dynamics by solving the
Euler-Lagrange equation

∂L(q)
∂qi

− d
dt

∂L(q)
∂ q̇i

+∑Fext(i) = 0, (2.31)

where ∑Fext(i) is the sum of the external forces in each qi direction. By doing
the calculations we getθ̈

φ̈

r̈

=
1

meq

 (1/r)(G+P+∑Fext) · eθ

(1/(r sinθ))(G+P+∑Fext) · eφ

(G+P+∑Fext) · er

 , (2.32)

where the weight upon the airborne mass is

G = g

(m+(1/2)mt)sinθ

0
−(m+mt)cosθ

 , (2.33)

and the apparent forces (centrifugal and Coriolis) are

P = meq

 φ̇ 2r sinθ cosθ −2ṙθ̇

−2φ̇
(
ṙ sinθ + rθ̇ cosθ

)
r
(
θ̇ 2 + φ̇ 2 sin2

θ
)

 . (2.34)

Observe how the results obtained for G and P are slightly different
from those published by Fagiano (2009). First of all, in that work it was
considered the same magnitude of the tether weight decomposition in the θ

and r directions, namely (m+ (1/2)mt)g, because the tether mass was as-
sumed to be applied at half of the tether length. Nonetheless, under this same
assumption, the whole tether mass mt should, in fact, act in the radial direc-
tion er, which is indeed the result in Eq. (2.33). Also, although considering
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the tether mass for the system’s potential energy (hence weight), the tether
mass was disregarded by Fagiano (2009) for the total kinetic energy. Thus,
to be more rigorous with the physics and assumptions involved, the factor
meq = (m+(1/4)mt) appears in Eqns. (2.32) and (2.34) instead of only the
kite (and eventually control pod) mass m.

We should note here that the validity of the results found in the lit-
erature based on the previous models of Diehl (2001) and Fagiano (2009)
remains unaltered with respect to the changes here proposed. In other words,
the effect of the modifications here proposed on the generated power is usu-
ally negligible6. The reason is that the tether mass can be often very small
in comparison to the wing (and possibly control pod) mass, specially at rel-
atively small tether lengths, where the sagging of the tether can be neglected
and, therefore, where these models are better applicable.

Let us assume that the wing point-mass also corresponds to the wing
aerodynamic center. According to Houska and Diehl (2007), the drag force
acting upon the tether(s) of drag coefficient CD,t, corrected for the angle of
attack ∆α of the apparent wind reaching the tether(s), and translated7 to the
wing aerodynamic center, is

Dt =−
1
8

nt ρ CD,t r dt(cos∆α)v2
a xa . (2.35)

Taking into account also the wing drag coefficient CD,k(α), we can
define the total drag coefficient

CD(α) =CD,k(α)+
nt CD,t r dt(cos∆α)

4A
. (2.36)

Now we are in conditions to define two external forces that act upon
the airborne system and strongly influence the flight dynamics – the aerody-
namic lift L, and (total) drag D:

L(ψ) =−(1/2)ρ ACL(α)v2
a za(ψ)

D =−(1/2)ρ ACD(α)v2
a xa ,

(2.37)

whose intensities depend on the projected wing area A and on the coefficients
of lift, CL(α), and drag, CD(α), respectively. Observe that the decomposition
of the lift in the nominal wind frame is determined by the roll angle ψ through
za. By replacing Eq. (2.37) in ∑Fext of Eq. (2.32), and considering only the

6For the system considered in Sect. 3.2, the increase in the average reel-out power when
using Fagiano’s model was about 0.1%.

7In fact, Houska and Diehl (2007) calculated the torque upon the tether caused by the drag
integrated along the cable length. The resulting force from this torque at the upper end (wing
point-mass) is then obtained by considering the tether length r.
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tangent plane (eθ ,eφ ) to the wing position, we obtain the equations of motion[
θ̈

φ̈

]
=

[
(1/meq r)(G+P+L+D) · eθ

(1/(meq r sinθ))(G+P+L+D) · eφ

]
. (2.38)

One last external force to the airborne system is the tether traction
which, because of the assumption of perfectly straight tether(s), has only a
component in the er direction, i.e. T = (0,0,T ). The magnitude of the trac-
tion force depends on the sum of all other forces as well as on the tether
acceleration r̈. Thus, we can treat the radial dynamics of the wing translation
in two ways. We can either assume we manipulate the traction force T as a
control input and obtain the tether acceleration r̈ as a result, or vice-versa:

r̈ = (1/meq)((G+P+L+D) · er−T ) , or (2.39a)
T = (G+P+L+D) · er−meq r̈ . (2.39b)

Although we are not modeling the dynamics of the ground winch, i.e.
the joint dynamics of the eletric machine coupled to the drum by means of
a gearbox, we can still consider the ground winch inertia in the equations of
motion of the airborne subsystem. To this end let us state rd as the drum
radius, Jd as the drum moment of inertia, κ as the gearbox transmission ratio
(1 : κ), and Je as the electric machine moment of inertia. We can then define
the tangential mass mtan and the radial mass mrad as

mtan = m+(mt/4) , (2.40a)

mrad = (Jd +κ
2Je)/rd +mtan . (2.40b)

With these new mass definitions, we can consider the ground winch
inertia in the airborne dynamics by replacing mtan for meq in Eqns. (2.34) and
(2.38), and replacing mrad for meq in Eq. (2.39).

To conclude this section we would like to highlight one feature of the
adapted point-mass model here proposed: although the model developed by
Diehl (2001) and Fagiano (2009) has been originally conceived for the two-
tether concept, we can now use it for the four-tether concept (with separated
tethers for steering and traction) by considering the amount nt of tethers of
significant length in terms of drag and weight. The flight control input re-
mains as the difference in the length of the steering tethers. What changes in
the four-tether configuration is that, instead of rolling the wing, the ∆l com-
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mand creates the spanwise deformations of bending and torsion, discussed in
Sect. 2.1. In both cases, the same steering input causes the wing to change its
flight direction more or less in the same way.

One last remark is that, because of the relatively complex expression
of ya in Eq. (2.21), which L depends on, it is hard to represent the equations
of motion analytically in a compact form. However, if we consider the partic-
ular case of zero azimuth, the equations are significantly simplified. A flight
trajectory at φ = 0 is, in fact, a good choice for executing the retraction phase,
since the airborne mass helps reducing the tether traction force, especially to-
wards the end of the maneuver (near the zenith). With this motivation, let us
formulate in the sequel such simplified, 2D model.

2.2.3 The zero-azimuth special case

For optimization purposes, the simpler is the model, the faster the al-
gorithm can run, which also allows for more parameters to be optimized. Our
goal now is to have models less complex than the 3D point-mass one pre-
viously discussed in order to, later on, propose an optimization strategy, in
Sect. 3.2. Regarding the traction phase we will discuss, in the following sec-
tion, that a good approximation is to consider the kite in dynamic equilibrium,
i.e. at an approximately constant apparent speed va and wing position (θ ,φ).
Nonetheless, when it comes to the retraction phase of current LEI tube kites,
such assumption may be quite unrealistic.

To achieve a smooth transition into the retraction phase we must ramp
down the base angle of attack from the value used in the traction phase, α0,o,
to the value α0,i. Because α0 usually cannot be low (negative) enough, the
polar angle typically decreases during the reel-in maneuver. Hence, as ar-
gued by Fechner and Schmehl (2013), we must work with a dynamic model
instead of a “static” (in equilibrium) one. To obtain this dynamic model let
us establish some assumptions. Firstly, we replace the lying eight in the flight
control by a trajectory with φ = 0. By doing this the airborne weight con-
tributes to decreasing the traction force, thus allowing us to save some reel-in
power. Secondly, we would like to gradually decrease vt = ṙ (increase the
reel-in speed) during the retraction phase – in this way we avoid spending too
much power while the kite is still in the high-power zone. One way to pur-
sue this, as proposed by Vlugt, Peschel and Schmehl (2013), is to work with
a traction force setpoint: as the kite leaves the high-power zone, the reel-in
speed naturally increases so that the desired traction force can be maintained.
To achieve a smooth transition we also ramp down the traction force setpoint
from the traction phase value To to the retraction phase value Ti. Therefore
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our control inputs will vary in the retraction phase according to

α0(t) = max{α0,o + cα t,α0,i} and T (t) = max{To + cT t,Ti} , (2.41)

where the ramp inclinations are constant values cα < 0 and cT < 0, and the
time t is counted from the moment the retraction phase starts. By applying
the assumptions made here to Eqns. (2.38) and (2.39), while considering the
case of traction force control and the tangent and radial masses of Eq. (2.40),
we arrive at the zero-azimuth equations of motion

θ̈ =
1

mtan r

[
(G+P) · eθ +

1
2

ρ A(CD va,θ −CL va,r)va

]
(2.42a)

r̈ =
1

mrad

[
(G+P) · er +

1
2

ρ A(CD va,r +CL va,θ )va−T
]

, (2.42b)

where the apparent wind vector is simplified to

va =

[
va,θ
va,r

]
=

[
vw cosθ − r θ̇

vw sinθ − ṙ

]
. (2.43)

2.2.4 Polar angle dynamics at the border of the wind window

From the 3D mass-point two-tether wing it is also possible to derive
models for the polar angle dynamics. Similarly to the zero-azimuth model,
these polar angle models can be used to design flight controllers for the retrac-
tion phase, when the wing is flown out of the high-power (crosswind) zone
and towards the border of the wind window, where less power is required to
reel in the tether. Note that, by choosing to perform the retraction phase at a
polar angle similar to the one used in the traction phase we give up on one im-
portant feature of a trajectory with φ = 0, discussed in the previous section:
as the wing flies around the zenith towards the end of the retraction phase,
the airborne weight contributes more to decreasing the traction force, which
is beneficial for a more efficient reel-in maneuver. In any case, let us here
briefly discuss two models derived by Zgraggen, Fagiano and Morari (2016).
These models are not used for the results in this dissertation, but they will
be presented in the sequel to enrich the survey. The reader should keep in
mind that, whereas the original work uses the elevation angle ϑ , we are here
considering its complement, the polar angle θ = π/2−ϑ .
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From this point onwards we will need the notion of the course angle
γ , which is used to represent the flight direction on the tangent plane (eθ ,eφ ).
To this end let us consider in Fig. 25 the projection of the wing speed vector
vk onto the tangent plane to the wing position vector r as vk,τ = vk−vter. We
can then define the course angle as

γ = arctan2
(

vk,τ · eφ

vk,τ · eθ

)
= arctan2

(
φ̇ sinθ

θ̇

)
, (2.44)

where arctan2() is the four-quadrant version of the arctan() function, i.e. γ ∈
(−π,+π). Observe that, if the course angle is kept at γ = 0, the wing will
eventually collide with the ground; γ = ±π/2 means flying parallel to the
ground; and γ =±π means flying towards zenith.

Figure 25 – Course angle (γ) definition.
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Observe in Eq. (2.44) that the course angle loses definition whenever
vk,τ → 0. This is often the case when the wing reaches the border of the wind
window. One way to cope with this issue is by using the nominal wind direc-
tion projected onto the tangent plane to define the orientation of the wing, and
have the course angle represent such orientation. Recall that in Sect. 2.2, Eq.
(2.6), we have already assumed that the wing longitudinal symmetry plane
remains aligned with the apparent wind va, a property that holds for rigid
wings with a rudder as well as C-shaped kites. Let us then define a regular-
ized course angle by considering the angle between −va,τ , contained in the
tangent plane (eθ ,eφ ), and vector eθ . Based on Eq. (2.5) we have

γr = arctan2
(
−va,τ · eφ

−va,τ · eθ

)
= arctan2

(
r φ̇ sinθ + vw sinφ

r θ̇ − vw cosθ cosφ

)
. (2.45)
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Note in Eq. (2.45) that, even if θ̇ , φ̇ → 0, as long as vw > 0 the reg-
ularized course angle remains defined. Also, from the definition of γr we
obtain

va,τ cosγr = r θ̇ − vw cosθ cosφ . (2.46)

Let us consider the trigonometric identity cosγr = sin(π/2− γr). Fur-
thermore, at the border of the wind window with φ ≈ π/2 we have that
γr ≈ π/2, allowing us to make the approximations sin(π/2− γr) ≈ π/2− γr
and cosφ ≈ 0. By applying these considerations to Eq. (2.46) we obtain a
linear, time-variant model for the polar angle dynamics at the border of the
wind window, as a function of the regularized course angle:

θ̇ =
va,τ

r

(
π

2
− γr

)
. (2.47)

Another model developed by Zgraggen, Fagiano and Morari (2016)
expresses the polar angle dynamics at the border of the wind window directly
as a function of the steering input. In short, such model can be obtained by
taking the first row of Eq. (2.38) and assuming a steady-state equilibrium,
i.e. φ̇ ≈ 0. A second assumption is that the steering input is small, so that
its trigonometric functions can be linearized. After some algebraic manipula-
tions, we arrive at the second-order, time-varying non-linear model

θ̈ =−

[
ρ ACL

2r meq ws

(
1+

1
E2

eq

)
vwvk sinφ

]
∆l +

(m+ 1
2 mt)g sinθ

meq r
− 2 ṙ θ̇

r
.

(2.48)
The models of Eqns. (2.47) and (2.48) can be used to design retraction

phase controllers to stabilize the kite flight at a reference polar angle.

2.3 THE POINT-MASS WING IN DYNAMIC EQUILIBRIUM

We will now address a steady-state model which is often used to rep-
resent the average behavior of the tethered wing. This model will be used in
Sect. 3.2.2 to optimize the reel-out power.

Let us consider the scenario depicted in Fig. 26, where Gr = (m+
mt)g cosθ is the airborne weight decomposition in the tether direction, and
Gτ = (m+(1/2)mt)g sinθ cosγ is the weight component in the direction of
flight in the tangent plane. The wing is flying with null steering input, so that
we have no “loss” of lift force (decomposition outside the plane shown in Fig.
26) as centripetal force in order to make turns.



88

Figure 26 – Point-mass wing flying with null steering input and subject to no
apparent forces.
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During the traction phase the wing flies in the high-power zone, in ap-
proximate crosswind conditions. If we consider a sufficiently high glide ratio
E(α), the relatively high aerodynamic forces allow us to neglect the weight
(Gr and Gτ ) and apparent forces – i.e. to neglect the airborne mass, which
implies that the wing is in dynamic equilibrium (at constant speed). Further-
more, let us assume that the elevation and azimuth angles remain approxi-
mately constant. Under these assumptions, we will now reproduce some re-
sults from Schmehl, Noom and van der Vlugt (2013). Knowing that f = vt/vw
is the reel-out factor, and defining the aerodynamic coefficients

CR =
√

C2
L +C2

D , and C =CR

(
CR

CD

)2

, (2.49)

the tether traction force can be approximated as

T =
1
2

ρ AC (sinθ cosφ − f )2 v2
w , (2.50)

while the mechanical power is, by definition,

P = T vt = T f vw . (2.51)

We can calculate the kite tangential speed vk,τ by using the factor λ =
vk,τ/vw, defined by Schmehl, Noom and van der Vlugt (2013) as

λ = a+
√

a2 +b2 +1+E2(b− f )2 , where

a = cosθ cosφ cosγ− sinφ sinγ and b = sinθ cosφ .
(2.52)
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Due to its relative simplicity, we will use this model to optimize the
traction phase of the pumping kite. However, it is important to highlight
some limitations inherent to this model. Firstly, if the glide ratio E is not
high enough, the airborne mass becomes non-negligible, which means that
the wing takes more time to reach the dynamic equilibrium (or may not reach
it at all), and Gr must be subtracted from the tether traction force. Moreover,
an indirect effect of Gτ is that, when flying in the eθ direction, i.e. γ = 0, the
wing speeds up, causing T to increase, whereas the opposite happens when
the wing flies towards zenith. In fact, not only the traction force but also other
system variables such as the (mechanical) power, wing speed and angle of at-
tack – which naturally suffer cyclic variations due to the constantly varying
(θ ,φ) wing position in the wind window –, undergo stronger variations as
the glide ratio is decreased. This is undesired, since we would like to have a
power output as constant as possible (with the lowest variance), less stress in-
duced on the wing and mechanical structure on the ground due to oscillations
in the traction force, as well as a more constant angle of attack, kept inside a
safe region (away from stall).

On the other hand, as E = CL/CD assumes arbitrarily higher values,
so does CR and C in Eq. (2.49), and finally the mechanical power in Eq.
(2.51). This obviously does not correspond to the reality; it happens because
the model does not consider the feedback effect of the tethered wing upon
the nominal wind field vw reaching the wing. In essence, as E increases,
so does the wing velocity vk. As the wing speeds up in the approximate
crosswind plane, it creates an obstacle to the nominal wind, slowing it down
as the airflow reaches the wing orbit. We will discuss this “permeable wall”
effect in the modeling framework used to derive the Betz limit for power
extraction from the wind, to be discussed in Chap. 4.

2.4 COURSE ANGLE DYNAMICS

The course angle γ is an important system variable not only for the
purpose of analysis, but also for control design. If we were to parameter-
ize, for instance, the lying-eight figure of the traction phase by means of the
spherical coordinates (θ ,φ), we would have to control these two system out-
puts by manipulating the steering input ∆l. Hence we would have a Single-
Input Multiple-Output (SIMO) system with (coupled) dynamics described by
Eq. (2.38). However, if we could parameterize the flight dynamics with a
single variable, the control problem would be simplified to the SISO case.
Moreover, if the proposed model were compact enough, it would be possi-
ble to design an analytical control law. Both of these modifications would
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be advantageous when tackling the problem, and this is why using the course
angle to parameterize the flight becomes attractive. With this motivation in
mind, we will derive, in the sequel, the model for the course angle dynamics
originally proposed by Fagiano et al. (2013). This model will be used in Sect.
3.1 to design flight controllers.

Consider the course angle illustrated in Fig. 25, and the kite velocity
vector vk defined in Eq. (2.4). From the course angle definition in Eq. (2.44)
we have

tanγ =
sinγ

cosγ
=

vk,τ · eφ

vk,τ · eθ

=
φ̇ sinθ

θ̇
. (2.53)

By differentiating Eq. (2.53) w.r.t. time we obtain

cosγ (γ̇ cosγ)+ sinγ (γ̇ sinγ)

(cosγ)2 =
θ̇
(
φ̈ sinθ + φ̇ θ̇ cosθ

)
− φ̇ θ̈ sinθ

(θ̇)2
. (2.54)

The left-hand side of Eq. (2.54), when substituting tanγ = (φ̇ sinθ)/θ̇

from Eq. (2.53), becomes

γ̇ + γ̇ (tanγ)2 = γ̇ + γ̇

(
φ̇ sinθ

θ̇

)2

. (2.55)

If we multiply Eq. (2.55) and the right-hand side of Eq. (2.54) by
(θ̇)2, and solve the resulting equation for γ̇ , we obtain

γ̇ (θ̇)2 + γ̇ (φ̇ sinθ)2 = θ̇(φ̈ sinθ + φ̇ θ̇ cosθ)− φ̇ θ̈ sinθ

γ̇ =
θ̇ φ̈ sinθ + φ̇(θ̇)2 cosθ − φ̇ θ̈ sinθ

(φ̇ sinθ)2 +(θ̇)2
.

(2.56)

Now we must apply the expressions (equations of motion) of θ̈ and
φ̈ from Eq. (2.38). Note that we already have analytical expressions for G
and P in the local frame, however the aerodynamic forces are defined in the
apparent wind frame (xa,ya,za): L(za) and D(xa), according to Eq. (2.37).
In order to have these forces expressed in the local frame in a compact way,
we need to establish some assumptions.

We start by considering once more the wing flying with (approxi-
mately) null steering input, as depicted in Fig. 26. If we assume the wing
reaches a high speed relative to the nominal wind (va � vw) – which can
reflect a traction phase executed with a wing of high glide ratio flying in ap-
proximate crosswind conditions and at a relatively low reel-out speed –, the
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airborne weight (and apparent forces) can be neglected and ∆α is small. In
this case, from the equilibrium of forces in the tangent plane we obtain

CL sin∆α =CD cos∆α ⇒ CD

CL
=

1
E

=
sin∆α

cos∆α
≈ ∆α . (2.57)

In the equilibrium scenario of Fig. 26 we have va,r = va sin∆α and
va,τ = va cos∆α . From these components of the apparent wind we obtain
(va,r/va,τ) = (sin∆α/cos∆α). Applying this result to Eq. (2.20), along with
the assumptions of a small steering input ψ and small ∆α , yields

sinη =
va,r

va,τ
tanψ ≈ sin∆α

cos∆α
ψ ≈ (∆α)ψ . (2.58)

We can also express the apparent wind speed, which we defined in Eq.
(2.5), as a function of the course angle – which is interesting at this point
since we are treating γ as a state whose dynamics we are trying to model. The
apparent wind expression becomes

va,(l) =

 vw cosθ cosφ − r θ̇

−vw sinφ − r φ̇ sinθ

vw sinθ cosφ − vt

=

vw cosθ cosφ − vk,τ cosγ

−vw sinφ − vk,τ sinγ

vw sinθ cosφ − vt

 . (2.59)

Based on the assumptions of va� vw, which implies that va,τ ≈ vk,τ ,
and small ∆α , we can simplify the vector that defines the longitudinal di-
rection of the aerodynamic coordinate system in Eq. (2.6) to xa =−va/va ≈
(cosγ,sinγ,−∆α). This allows us to simplify the total drag force acting upon
the airborne system to

D(l) ≈
1
2

ρ ACD v2
a

−cosγ

−sinγ

∆α

 . (2.60)

Note how the drag is not dependent on the roll angle ψ , created by the
steering input ∆l in the two-tether configuration. Regarding the lift force, we
already know it is defined as a function of za, which in turn depends on ya.
According to Eq. (2.21), ya depends on ew and eo, so let us now recalculate
these vectors with the assumptions just made. From Eq. (2.14) we have
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ew =
va,τ

va,τ
=

1
va,τ

vw cosθ cosφ − vk,τ cosγ

−vw sinφ − vk,τ sinγ

0

≈
−cosγ

−sinγ

0


eo = er× ew ≈

0
0
1

×
−cosγ

−sinγ

0

=

 sinγ

−cosγ

0

 .

(2.61)

Using the results above we obtain

ya = (−cosψ sinη)ew +(cosψ cosη)eo +(sinψ)er

≈

(∆α)ψ cosγ + sinγ

(∆α)ψ sinγ− cosγ

ψ

 .
(2.62)

Recalling that za = xa×ya, we can approximate the lift force as

L(l) ≈
1
2

ρ ACL v2
a

(∆α)cosγ−
(
(∆α)2ψ +ψ

)
sinγ

(∆α)sinγ +
(
(∆α)2ψ +ψ

)
cosγ

1

 . (2.63)

Now we can apply these approximations of D and L to the equations
of motion in Eq. (2.38), and replace the resulting expressions of θ̈ and φ̈

into the expression of γ̇ in Eq. (2.56). After some regrouping and algebraic
simplifications, we obtain

γ̇ =
ρ ACL v2

a
(
(∆α)2 +1

)
ψ r
[
θ̇ cosγ + φ̇ sinθ sinγ

]
2meq v2

k,τ

+
ρ Av2

a(CL ∆α−CD)r
(
θ̇ sinγ− φ̇ sinθ cosγ

)
2meq v2

k,τ

− φ̇ cosθ − gr φ̇(sinθ)2

v2
k,τ

.

(2.64)

Note that from the course angle definition we have (sinγ)/(cosγ) =
(r φ̇ sinθ)/(r θ̇) ⇒ θ̇ sinγ− φ̇ sinθ cosγ = 0. Applying this result eliminates
the second term of Eq. (2.64). Also, we know that r φ̇ sinθ = vk,τ sinγ , which
we can use to simplify the fourth term of Eq. (2.64).



93

To simplify the first term of Eq. (2.64), let us use some approxima-
tions and properties of the models of Sects. 2.2 and 2.3. First, aiming to
have an expression depending only on the wing tangential speed, let us rep-
resent va as a function of vk,τ . To this end, from Eq. (2.57) we already know
that (sin∆α)/(cos∆α) = 1/E and, from the decomposition of the apparent
wind speed in Fig. 26, that va,r = va,τ(sin∆α)/(cos∆α). Applying these

results to the apparent wind speed magnitude va =
√

v2
a,τ + v2

a,r yields va =

va,τ
√

1+(1/E2), which can be further developed with the assumption that
va,τ ≈ vk,τ . Also from Eq. (2.57) we know that ∆α ≈ 1/E, and from the def-
inition of the wing tangential speed we have r (θ̇ cosγ + φ̇ sinθ sinγ) = vk,τ .
Moreover, to have an expression as a function of the steering input, from
Eq. (2.7) we can use the approximation (∆l)/ws = sinψ ≈ ψ . By applying
all these developments to Eq. (2.64) we arrive at a similar result to the one
obtained by Fagiano et al. (2013),

γ̇ =
ρ ACL

(
1+ 1

E2

)2
vk,τ

2meq ws︸ ︷︷ ︸
cs

∆l−gsinθ

vk,τ︸ ︷︷ ︸
cg

sinγ−φ̇ cosθ︸ ︷︷ ︸
ca

, (2.65)

where cs, cg and ca are the steering, gravitational, and apparent coefficients,
respectively. The turning rate model in Eq. (2.65) has two differences with re-
spect to the original result from Fagiano et al. (2013): the fact that we use θ to
represent the polar angle instead of the elevation angle, and that we consider
the equivalent mass for the airborne dynamics, meq of Eq. (2.30), instead of
only the wing (and control pod) mass m. Observe that the first-order non-
linear model of Eq. (2.65) has a singularity when vk,τ → 0, which may occur
at the end of a relatively long retraction phase, for instance. Also, for ∆l = 0
the system has stable equilibria at γ̄ = ±2k π (flight towards the ground), as
well as unstable ones at γ̄ = π ± 2k π (flight towards zenith), k ∈ N. More-
over, when γ → k π the wing flies aligned with vector eθ (towards or against
zenith) and the course angle dynamics behaves approximately as an integra-
tor. Eq (2.65) represents, in fact, a non-empirical, more detailed represen-
tation of the wing flight dynamics during the traction phase with respect to
previous models in the literature, as the ones proposed by Baayen and Ockels
(2012), Erhard and Strauch (2012), and Lellis, Saraiva and Trofino (2013).
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2.5 THE WIND SHEAR MODEL AND HISTOGRAMS

In this section we will discuss a wind shear model that is used to ex-
trapolate the wind speed as a function of the altitude. This extrapolation is
important for the pumping kite in order to determine its optimal operating
height. The wind shear model will be used, from Sect. 3.2 onwards, both for
simulation and optimization purposes. We will also present in this section the
wind histograms. They are used to represent the frequency in which intervals
of wind speed occur within a given time span (usually one year). These his-
tograms will be used in Sect. 4.4 to compute the average power generation of
both pumping kites and wind turbines.

Assuming that the pumping kite will operate inside the atmospheric
boundary layer which, according to Archer (2014), extends up to z ≈ 600m
above ground, we choose the logarithmic wind shear model

vw(z) = vref

ln
(

z
z0

)
ln
(

zref
z0

) , (2.66)

where ln() is the natural logarithm8, parameters zref and vref = vw(zref) are
the reference height and its correspondent wind speed, respectively, and z0 is
the surface roughness. The latter coefficient represents the wind gain with the
altitude due to dissipative interactions (friction) of the airflow with the rough
terrain. Note that this logarithmic model loses validity very fast when zref >
z→ 0, i.e. when the altitude becomes very close to the ground level, in which
case vw(z→ 0)→−∞. Obviously, such conditions will not be considered in
our analyses henceforth.

Wind recordings in several altitude levels are difficult to find. First of
all, measuring probes are usually assembled only at two different heights on
the towers of wind turbines. Hence the resolution along the height domain
is low, as well as only a small fraction of the desired 600m span is swept.
Another option would be to employ remote sensing technology such as Light
Detection and Ranging (LIDAR). As the acronym suggests, the technology
consists of illuminating a target with a laser light. For the purpose of at-
mospheric and meteorology studies, it is measured the backscatter from the
atmosphere in specific frequencies and polarizations. Especially in the case of
sophisticated technology such as LIDAR, the collected data can be valuable
for the decision-making of investors in the wind energy sector, for instance.
Hence, even when the wind data exists, it is seldom available to the public for
free.

8logarithm of base e≈ 2.72: Euler’s number, also known as Napier’s constant.
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To cope with this we turn to the radiosonde database of the Earth Sys-
tem Research Laboratory (ESRL) of the National Oceanic and Atmospheric
Administration (NOAA), in the USA. A radiosonde consists essentially of a
battery-powered telemetry instrument package carried into the atmosphere by
a weather balloon. As the balloon ascends, the on-board instruments carry out
several readings such as humidity, pressure, wind speed and direction, radia-
tion etc. All this data is transmitted to a ground station through radio waves.
When a certain altitude is reached, the balloon explodes due to the low atmo-
spheric pressure, and the instrument package falls safely by parachute so that
it can be later re-launched.

For the purpose of illustrating how the power curve of pumping kites
and wind turbines compare to each other in different locations, we will pro-
cess data from the 3-year period between January 2013 and 2016 at different
sites. This time interval corresponds approximately to that required by Brazil-
ian authorities for the auction of wind power plants. In our case, the collected
data consist of one or two soundings per day with wind measurements at dif-
ferent altitudes. Let us define an altitude grid with a resolution of a few tens
of meters, and take the average wind speed, for the considered time period, at
every grid point (slot). The slot size is chosen to ensure no slot is left empty.
Then, with the resulting data set of n points (slots), the wind shear model is
interpolated with the least-squares method by placing Eq. (2.66) in the form

[
vw(z)

]︸ ︷︷ ︸
Y[n×1]

=
[
1 ln(z)

]︸ ︷︷ ︸
X[n×2]

− vref ln(z0)
ln(zref)−ln(z0)

vref
ln(zref)−ln(z0)


︸ ︷︷ ︸

A[2×1]

, (2.67)

where Y is the set of measured outputs – a function of vw(z) – and X is the set
of measured inputs – a function of z. Thus, A =

[
A1 A2

]′ can be calculated

as A =
(
XT X

)−1 XT Y. By solving A1 and A2 for ln(zref)− ln(z0) we find
the surface roughness to be z0 = e−A1/A2 > 0. Knowing that the shape of the
logarithmic curve in Eq. (2.66) depends strictly on z0, it can be shown that
there are infinite solutions for the two remaining parameters. Therefore, by
arbitrarily choosing zref > z0, we obtain vref = A2(ln(zref)− ln(z0)). In Table
3 the interpolation results for some sites in Brazil and Europe are shown.

The parameters shown in Table 3 yield the curves presented in Fig.
27. In the case of Schleswig (Germany), and for the purpose of illustration,
the average wind speed of each slot is also shown as the red asterisks around
the interpolated dashed curve. In fact, Schleswig is the location where the
highest average wind speed is found at almost all heights, except when very
close to the ground, where in Brindisi (Italy) stronger winds are verified, in
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Table 3 – Interpolated parameters of the logarithmic wind shear model for
different sites from January/2013 through January/2016.

Location (latitude,longitude)
zref vref z0 Slot
[m] [m/s] [m] [m]

Belém/PA, Brazil (1.38◦S,48.48◦W) 45 4.09 8.5124 30

Manaus/AM, Brazil (3.1◦S,59.98◦W) 30 3.42 2.8739 20

Fortaleza/CE, Brazil (3.73◦S,38.55◦W) 30 6.71 0.0052 20

Porto Velho/RO, Brazil (8.77◦S,63.92◦W) 30 3.44 2.2000 20

Alta Floresta/MT, Brazil (9.87◦S,56.10◦W) 30 5.41 0.0012 20

Brasília/DF, Brazil (15.87◦S,47.93◦W) 60 5.63 0.3773 40

Confins/MG, Brazil (19.62◦S,43.57◦W) 30 4.50 0.3932 20

Foz do Iguacu/PR, Brazil (25.52◦S,54.58◦W) 60 6.77 0.4213 40

Florianopolis/SC, Brazil (27.67◦S,48.55◦W) 30 4.48 0.8160 20

Porto Alegre/RS, Brazil (30◦S,51.18◦W) 30 3.47 4.8328 20

De Bilt, the Netherlands (52.10◦N,5.18◦E) 30 3.79 7.4770 20

Schleswig, Germany (54.53◦N,9.55◦E) 30 5.21 3.8512 20

Brindisi, Italy (40.65◦N,17.95◦E) 30 6.30 0.0083 20

Source: original

average. Note that the wind gain with altitude in Brindisi is low, varying only
about 1m/s in the range from 100m to 600m. So is the case of Fortaleza, re-
garded as an excellent location to operate wind power plants in Brazil. On the
other hand, for locations as Schleswig, De Bilt (the Netherlands) and Belém
(Brazil), the wind gain is clearly stronger. As a matter of fact, in altitudes
above 250m, Belém has a higher vw(z) than Fortaleza. For the sites where
the average wind speed is already high enough to justify the deployment of
power plants based on conventional wind turbine technology, the wind gain
is not a decisive factor. However, at locations such as Florianópolis, Manaus
and Porto Velho (all in Brazil), where the average wind speed in the altitude
range ≥ 300m becomes significant, wind power plants could be deployed
if the technology were technically and economically feasible. This is one of
the market niches where AWE technology is expected to become particularly
competitive in the near future.

As we already discussed in Sect. 1.2, because the available wind
power depends on the cube of the nominal wind speed, even slight differ-
ences in vw(z), in the order of tenths of meters per second, may turn out to be
a decisive factor for the feasibility of wind power plants. However, only the
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Figure 27 – Average wind curve vw(z) obtained with the wind shear model
interpolated for different sites from January/2013 through January/2016.

Source: original

average wind speed is not enough to characterize the potential of a given loca-
tion. It is also important to know the frequency of observation of the different
intervals of the wind speed. Let us take, for instance, the case of Schleswig.
Imagine we have a wind turbine installed in that location, reaching 3MW of
rated power at a minimum wind speed of vw,min ≈ 8m/s. As we will see in the
power curves in Sect. 4.3.1, and considering t as the time variable, if vw(t)
increases above vw,min the power output remains saturated at the rated value;
on the other hand, if vw(t)< vw,min the power output falls according to a cubic
curve. Hence we would only be able to harvest, in average, the wind power
correspondent to the curves in Fig. 27 if vw(t) would remain constant at the
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average value for a given altitude z. This, however, is not verified in practice.
For some sites the variation around the average wind speed is greater than
for others. The frequency of observation fobs of the different wind speed in-
tervals can be quantified by means of the wind histograms. In a histogram, it
must hold that ∑

k
i=1 fobs(i) = 1, where k is the number of wind speed intervals

considered.
A drawback about the data obtained from ESRL is that the wind sam-

ples are often poorly distributed along the altitude range. Hence, in the case
of a desired histogram whose slot contains only a few wind samples, the result
is more likely to be biased. Let us keep in mind that, because the pumping
kite may change its average operating altitude, it would be important to be
able to compute the corresponding histogram in spite of the lack of specific
data to that altitude. To cope with this we decide for the following approach:
for each given wind sample vw(z, i), we apply the interpolated z0 to find the
corresponding vref(i) at the chosen reference height zref. In this way we are
able to build the histogram for zref and, by later calculating the pumping kite
and wind turbine power curves as a function of vref, their average power pro-
duction can be obtained. Also, by substituting each vref(i) into Eq, (2.66) and
using the same z0, we can extrapolate the respective vw(z, i) for any altitude z.
In other words, we use the specific roughness coefficient of the site – which
should be time-invariant as long as the site remains unaltered – to compute
the histogram for any altitude in the range where the wind shear model is
valid.

For the sake of illustration, let us analyze the histograms computed for
the locations of Schleswig and Brasília (Brazil), presented in Fig. 28. The
reference heights are zref = 30m and zref = 60m, respectively, and they are
represented by the starting points in the respective curves of Fig. 27. Note
that vw(zref) given by those curves correspond roughly to the wind speed in-
terval with the highest observation frequency, vw ∈ (4,5)m/s for both loca-
tions. This correspondence between vw(z) of highest observation frequency
and that given by the wind shear model is also verified for the altitudes of
100m, where the nacelle of the wind turbines with rated power range between
3MW and 4MW usually operate, and for z = 300m, where the pumping kites
are expected to operate. Another common feature for both locations is that,
as the altitude increases, so does the most frequent wind speed. However, it is
evident that Schleswig offers a greater wind power potential as the altitude in-
creases: observe how the wind distribution shifts to the right, towards higher
wind speed values, whereas in the case of Brasília this shifting behavior is
much less significant.

One important difference to be noted between Figs. 28a and 28b is the
shape of the histograms for a same altitude: the frequency of observation of
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Figure 28 – Wind histograms for three altitudes and two locations, from Jan-
uary/2013 through January/2016.

(a) Schleswig, Germany.

(b) Brasília, Brazil.

Source: original

winds in Brasília is more concentrated around the average value. For instance,
at z = 100m, according to Fig. 27 we have vw(z)≈ 6m/s. If we take ±2m/s
around that average value, we can see in the histogram that about 70% of the
time the wind speed is in the interval vw(t) ∈ (4,8)m/s. On the other hand,
in Schleswig we have a stronger average wind vw(z = 100m) ≈ 8m/s but,
considering the same variation of ±2m/s, the percentage of time in which
the wind is inside the interval vw(t) ∈ (6,10)m/s is only around 40%. This
means that, in Schleswig, a wind turbine whose size was chosen based on the
average wind would spend 30% less time operating at its rated power than in



100

Brasília, even though the average wind power is much stronger at the German
site. In other words, the capacity factor tends to be lower in Schleswig than
in Brasília, whereas the opposite applies to the rated power. Both of these
characteristics affect the amount of wind energy harvested inside a time span
(3 years, in this case). We will address more on this topic in Sect. 4.4.
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3 THE PUMPING KITE

The pumping kite has been probably the most studied configuration in
the literature so far. One of the reasons for this is the simple fact that control-
ling an AWE system comprising a single wing is simpler than with multiple
wings, like the laddermill, carousel, or the dancing kites, discussed in Sect.
1.3.2. Early prototype implementations used predominantly flexible kites in
detriment of rigid wings, which is partially justified by the cost criterion – LEI
tube and foil kites are easily purchased from the kitesurfing and paragliding
markets, respectively – and the fact that, in the case of collision during ex-
periments, flexible kites are less likely to be damaged and to cause damage.
Nonetheless, in recent years, an increasing number of research groups and
companies have migrated to pumping kite implementations with rigid wings.
We can name three reasons for this trend: the fact that rigid wings have a
higher aerodynamic efficiency than flexible ones, the possibility of attach-
ing small on-board propellers to solve the problem of launching and landing
the wing, and the difficulty in de-powering the flexible kite for the retrac-
tion phase – a problem that has a negative impact on the net power delivered
by the AWE system. Regardless of the wing type, current implementations
employ only a single wing. Once the pumping kite concept becomes more
mature in terms of sensing, control, materials, and safety/robustness, among
other aspects, researchers will be in a better position to start experimenting
with multiple-wing configurations, or even with different mechanical struc-
tures at the ground for converting the captured wind energy from the wing(s)
into electricity.

As already mentioned, a pumping kite operation cycle comprises two
phases. In the traction phase the tether is reeled out from a drum connected
to the electric machine on the ground, which then acts as a generator. In
order to maximize the power during the traction phase – the traction power
– while avoiding accumulated torsion of the tether(s), Argatov and Silven-
noinen (2010) showed that the optimal trajectories of the wing have the shape
of a “standing figure-of-eight”: an “8”. However, due to the risk of losing
control over the kite and having it crash when vertically fast flying towards
the ground, the de-facto trajectory is usually the “lying figure-of-eight”: “∞”.
When the tether reaches a predetermined length, the retraction phase (also
denoted as “passive” phase) starts, during which the tether is reeled back in
around the drum, with the electric machine operating as a motor. Aiming at
the maximization of the cycle power – which corresponds to the net harvested
mechanical energy divided by the cycle duration –, the retraction phase must
be executed according to a compromise between minimization of the energy
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consumption and the duration of the reel-in maneuver. The name “pumping
kite” derives from this cyclic behavior of reeling out and in, i.e. adjacent
traction and retraction phases, respectively.

3.1 FLIGHT CONTROL

Flight control is of fundamental importance not only for power max-
imization, but also for safety reasons, i.e. to avoid having the wing collide
with the ground or eventual nearby obstacles. Before we address the control
strategies proposed in this dissertation, let us discuss some related previous
works. It is not our intention here to make an exhaustive literature review, but
only to exemplify the main control approaches and their variants.

3.1.1 Previous works

In the last decade, the majority of the works found in the literature
used NMPC to tackle the problem of controlling the flight of tethered wings.
These works usually considered the dynamic model proposed by Diehl (2001)
for the wing flight, and later some models based on that original one, in order
to compute the NMPC control law. The first efforts regarding flight control
trace back to Diehl, Magni and Nicolao (2004), who used the “infinite horizon
closed loop costing” scheme to ensure nominal stability to control the flight
of a tethered kite with a constant tether length – therefore with no energy pro-
duction. In a first step, a controller based on the Linear-Quadratic Regulator
(LQR) was designed to stabilize the kite locally in a periodic lying-eight orbit.
Then, a two-stage NMPC optimal control problem was formulated and solved
in real-time, to penalize deviations of the system state from the periodic orbit
reference, considering also a state constrain to avoid collision of the kite with
the ground. The numerical solution of the sequence of optimization prob-
lems was achieved through the real-time iteration scheme. The solution was
based on the direct multiple shooting method, that reformulates the optimiza-
tion problem as a finite dimensional non-linear programming problem with a
special structure, and solves it with an iterative optimization algorithm. The
real-time iteration scheme exploits the fact that, in the NMPC optimization,
a sequence of neighboring optimization problems has to be solved. Thus,
the solution of the previous problem can be used as an initial guess for the
next iteration through a so-called “initial value embedding” strategy. This
initialization procedure is so efficient that it allows to perform only one sin-
gle iteration per optimization problem, without sacrificing much the solution
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accuracy. Another important conclusion from the authors is that their NMPC
formulation showed good robustness for model mismatch: in the presence
of a side wind with a magnitude 50% of the nominal wind, the shape of the
periodic orbit changed, but remained stable.

Two years later, Canale et al. (2006) used NMPC to control the pump-
ing kite flight, hence now including electricity generation, by means of ma-
nipulating the wing roll angle ψ (see Sect. 2.2.1). Controllers were designed
for both operating phases of the pumping kite. In the traction phase, the aim
was to obtain as much mechanical energy as possible from the wind, thus
the chosen cost function to be minimized, at every sampling instant tk and
considering a prediction horizon Tp, was

J(tk) =−
tk+Tp∫
tk

ṙ(τ)T (τ)dτ . (3.1)

The resulting optimal orbit had the same lying-eight shape as previ-
ously mentioned. When the tether reached a predefined length, the passive
(retraction) phase, which was subdivided into three stages, started. In the first
stage, the reel-out speed ṙ was smoothly decreased to zero and the kite was
brought to a region of the wind window where the apparent wind va, the lift
force L, and consequently the traction force T , are all reduced, thus contribut-
ing to a low energy expense for the reeling-in. The cost function of the NMPC
controller in the first stage of the retraction phase was

J(tk) =

tk+Tp∫
tk

[
θ

2(τ)+(|φ(τ)|−π/2)2
]

dτ . (3.2)

Once |φ(t)| ≥ φII and θ(t)≤ θII , where 0 < φII ,θII < π/2, the second
stage started, when the tether was actually reeled in. In order to minimize the
energy expense, the cost function became

J(tk) =

tk+Tp∫
tk

|ṙ(τ)|T (τ)dτ . (3.3)

Finally, when the tether initial length was reached, ṙ was smoothly
increased to zero and the kite was maneuvered into a region where a new
traction phase could start. This was achieved with the cost function



104

J(tk) =

tk+Tp∫
tk

(|θ(τ)−θ1|+ |φ(τ)|)dτ , (3.4)

where θ1 is the average polar angle of the allowed region for the kite flight.
Because the computation time to solve the optimization problem should typi-
cally not exceed 100ms due to the relatively fast flight dynamics, the authors
proposed a fast NMPC implementation. In a few words, it consists of evaluat-
ing offline a certain number of values of the optimization function f , and then
use these to find online an approximation f̂ of the solution at every instant tk.

In the following years, Canale, Fagiano and Milanese (2007) and then
Canale, Fagiano and Milanese (2009) used NMPC to control AWE systems
both in the pumping kite and carousel configurations. In the latter case, re-
calling that Θ is the angular position of the carousel (see Fig. 13), and Qc is
the resulting torque from all the KSUs, the cost function to be minimized was

J(tk) =−
tk+Tp∫
tk

[
ṙ(τ)T (τ)+ Θ̇(τ)Qc(τ)

]
dτ . (3.5)

Fagiano (2009), and an year later Fagiano, Milanese and Piga (2010),
extended these results by taking into consideration the wind shear behavior
and wind histograms at some sites to better exemplify the advantages of work-
ing at high altitudes, culminating in a significantly higher capacity factor than
that of the conventional wind turbines. It was also investigated how the power
output of the pumping kite varies with system parameters like the kite area,
tether length and aerodynamic efficiency.

Houska and Diehl (2007) also used the optimal control approach, with
a direct multiple shooting method, to control a pumping kite. The objective
function to be maximized was the cycle power, and the control inputs were
the reeling speed ṙ, the roll angle ψ , and the coefficient of lift CL. Besides
considering control constraints (saturation), they aimed at a closed periodic
orbit, i.e. one that repeats itself with the same starting and finishing 3D points.
The optimal trajectories, again, turned out to be lying-eights. This time, how-
ever, due to the closed-orbit constraint, the figure was not symmetric: the side
of the lying-eight which contained the reeling-in segment had a significantly
larger perimeter, allowing the needed time to retrieve all the released cable
during the traction phase.

Ilzhöfer, Houska and Diehl (2007) further used the NMPC approach
with direct multiple shooting and closed (periodic) orbit constraint for the
trajectory solution. An optimal reference trajectory with a fixed period of 20s
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was predetermined for each nominal wind speed vw inside a given set. Then,
the NMPC task was, at every iteration t0, and given a prediction horizon Tp,
to find the sequence of control inputs that achieves

min
x(·),u(·)

t0+Tp∫
t0

(
‖∆x(t)‖2

Q +‖∆u(t)‖2
R
)

dt +‖∆x(t0)+Tp‖2
P(t0+Tp)

, (3.6)

where ∆x(t) = x(t)− xvw
ref(t) is the state deviation, ∆u(t) = u(t)− uvw

ref(t) is
the control input deviation, and Q, R and P are penalizing diagonal matrices
of the current state, control input, and final state, respectively.

Continuing with the NMPC approach, Williams, Lansdorp and Ockels
(2007) studied the use of power kites for two applications: the towing of
ground vehicles and electric power generation on the ground – the latter in
the pumping kite configuration. A mass-point model was derived for the kite
using crosswind angular coordinates other than the ones used in Sect. 2.2.1.
For the purpose of power generation, it was assumed that the derivatives of
the kite angle of attack α , roll angle ψ , and the tether reeling speed ṙ were
controlled. The flight trajectories were constrained to periodic closed ones,
and the goal of the optimizer was to find a (pseudo-) control input u(t) =
{α̇, ψ̇, r̈} that minimizes the combined cost function

J =

tf∫
t0

[
−T (t)ṙ(t)

tf− t0
+W3

(
α̇

2(t)+ ψ̇
2(t)+W4 r̈2(t)

)]
dt , (3.7)

where t0 is the initial time, tf is the final time, and W3 and W4 are weighting
coefficients to penalize the control action. Later on, Williams, Lansdorp and
Ockels (2008) used the trajectories obtained offline with Eq. (3.7) as refer-
ence values for an online tracking control based on two loops. The outer loop
generated a full constrained nonlinear trajectory using NMPC based on the
state estimate taken at the outer-loop sampling time. In turn, the inner loop
employed unconstrained linear receding horizon control to track the outer
loop reference. The resulting control signals were clipped at their saturation
values, if needed. It was claimed that such two-loop control strategy allows
fast enough update rates (small latency) to ensure the system stability. Also,
the proposed state estimator reconstructed all system states out of the assumed
noisy measurements from the Global Positioning System (GPS) sensor at the
kite, tether traction force, tether length and reeling speed measured at the
ground winch. The used estimator was a square-root version of the unscented
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Kalman Filter.
From the year 2012 onwards, the trend has shifted from the MIMO

centralized control approach – which was tackled through NMPC – to a SISO
decentralized one based on the wing course angle, discussed in Sects. 2.3 and
2.4. Here we use the term decentralized to refer to a topology where the con-
trol laws of the kite flight and ground winch are computed separately. One of
the first works under this new paradigm was published by Baayen and Ockels
(2012), who used the turning angle concept from differential geometry – an
approximation of the kite course angle – in a two-loop strategy to control the
flight of the pumping kite in the traction phase: the outer loop computed a
target flight trajectory in terms of a turning angle reference, whereas the inner
loop tracked this reference by using an adaptive Lyapunov-based nonlinear
control that manipulates the differential length of the steering lines. An esti-
mator was designed, which maintains and updates an internal representation
of the steering control derivatives.

In the scope of this doctoral dissertation, in the following year, Lel-
lis, Saraiva and Trofino (2013) employed a similar strategy to control the kite
flight. The main differences with respect to Baayen and Ockels’ work were
the use of Bernoulli’s lemniscate in the outer loop as a reference for the lying-
eight figure, the offline identification of the model used for the course angle
dynamics, and the design of a feedback linearization controller based on that
identified model. Since then the control strategy has been constantly refined,
aiming at practical implementation in a prototype, and also extended for the
retraction phase. We will now discuss, in the sequel, the improvements made
on the two-loop decentralized flight control, comparing the continuous ref-
erence with Bernoulli’s lemniscate to a “bang-bang” strategy with only two
points of reference, and three different course angle controllers for the inner
loop.

3.1.2 Proposed strategy

As we have seen, initial studies on the control of tethered wings em-
ployed mostly NMPC in a centralized, MIMO topology, as investigated by
Fagiano (2009), Houska and Diehl (2007), and Ilzhöfer, Houska and Diehl
(2007). In a few words, the approach consists of computing the control inputs
for the flight (steering) and the ground winch (reel speed) of the pumping kite
system by solving an optimization problem to maximize the average power
in a pumping cycle – the cycle power. In this case, the references are jointly
determined resulting in a coupled solution, in the sense that the flight trajec-
tory is not predefined, but results from the optimization problem, that must be
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solved within a sampling time typically smaller than 100ms, according to the
experience of Fechner and Schmehl (2012). Despite its advantages, NMPC
may be quite a demanding task to solve at such a fast rate, especially for more
complex, accurate models.

Alternatively, a decentralized control topology has received increasing
attention in recent years, e.g. through the works of Fagiano et al. (2013),
Jehle and Schmehl (2014), and Erhard and Strauch (2015). Keeping in mind
that the complete pumping kite system can be viewed as a connection of two
distinct parts – the wing flight subsystem and the ground winch subsystem –,
the idea is to design a decentralized1 control for the pumping kite, in the sense
that the control loops use only variables available locally, and the computed
control action is also applied only to the considered subsystem. Decentralized
control is normally used to improve robustness of the control strategy against
failures in the communication between the subsystems, as e.g. failures in the
data link between the ground station and the airborne control pod.

Regarding the flight subsystem, we can use the turning rate law of Eq.
(2.65), derived in Sect. 2.4, which is a SISO system compact enough to allow
for an analytical control law. The idea is to use a cascade scheme comprising
two (or more) loops, as shown in Fig. 29. An advantage of this approach is
that it allows for a parameterization of the flight trajectory in the outermost
loop, either from a continuous reference or from some points of reference.
In the inner loop the steering input of the wing subsystem is manipulated to
control the course angle, whose reference is generated in the outer loop based
on the wing position relative to the reference trajectory.

Figure 29 – Cascade flight control based on the course angle dynamics.
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3.1.2.1 Outer loop: trajectory generation

For the traction phase, one common strategy found in the literature
is to parameterize the trajectory in terms of a few attraction points (attrac-

1More information and detailed examples on decentralized control were compiled e.g. by
Bakule (2008).
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tors), as used e.g. by Erhard and Strauch (2012), Vlugt, Peschel and Schmehl
(2013), and Fagiano et al. (2013). These attractors are usually at the right
and left edges of the lying eight, and serve as a steady reference position that
the wing should reach. To better exemplify, let us consider the simple state
machine with two attractors in Fig. 30, and that the wing is initially flying
towards the left. The attractors have the same polar coordinate θattr, and are
symmetrically displaced from the center of the wind window by an azimuth
distance φattr. The wing position in the tangent plane is represented by rk.

Figure 30 – “Bang-bang” state-machine for generation of the lying-eight
flight pattern in the outer loop.
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As soon as the wing crosses the positive azimuth coordinate φattr, the
attractor at −φattr (right-hand side) becomes the active one, and vice-versa.
Observe that, when the active attractor changes, the reference vector rr of
the wing tangential velocity suffers a discontinuity. The consequence will be
a discontinuity in the tracking error of the inner loop – which is the angle
between rr and rk. In turn, a discontinuity in the control action (a “bang”)
may happen every time the attractor changes. Due to this characteristic, this
strategy for generating the lying eight is often referred to as “bang-bang”, and
offers some interesting advantages. First of all, it is effective in producing a
lying-eight figure using only a few tuning parameters, besides giving freedom
to the wing to find its own path when moving between both sides of the wind
window – which is an important feature for small trajectories. Another moti-
vation is to avoid the need to precompute a whole trajectory based on on-line
optimization, which is often dependent on an identified model of the system.

Depending on the situation, the bang-bang with two attractors may
also offer some drawbacks, as the lack of a well-defined trajectory for the
lying eight. For instance, as the perimeter (arc length) of the trajectory in-
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creases, the tendency is the lying eight to become “squeezed” (flat) along
the horizontal axis. Because previous studies, such as of Argatov and Sil-
vennoinen (2010), have shown that the trajectory shape affects the harvested
power, this relatively uncertainty in the lying eight shape obtained with the
bang-bang may result in a lower power production. Zgraggen, Fagiano and
Morari (2015), using the analytical model of the tethered wing in dynamic
equilibrium of Sect. 2.3, showed that the average traction force (and, conse-
quently, the harvested power) is not very sensitive on the lateral span ∆φ of
the trajectory, and that the vertical span ∆θ should be small around the opti-
mal value. However, the latter authors do recall that the model they employed
does not capture the significant loss of speed (and force) due to performing
tight turns in order to achieve a trajectory with a small span. In any case, an-
other possible issue with the bang-bang control with two attractors, especially
in the long term, is the mechanical stress induced on the steering actuator due
to the discontinuity when switching between the attractors.

As an alternative approach for wide trajectories, we propose the use of
Bernoulli’s lemniscate, shown in Fig. 31. It has already been used for simi-
lar purposes – e.g. by Vaughn (2003) to control the trajectory of unmanned
aerial vehicles – and it offers some interesting advantages to lift-mode AWE
systems. First, the lemniscate resembles the optimal lying-eight trajectories
investigated by Argatov and Silvennoinen (2010). Also, a smooth control
action is expected when inverting the flight direction at the sides, instead of
the possible discontinuity with the “bang-bang” strategy, because the lemnis-
cate is a continuous mathematical function in these regions, as we will see.
This is an interesting feature for reducing mechanical stress on the actuators.
Furthermore, for being a well-defined mathematical function, it allows for an
analytical approach to investigate how the parameterization of the trajectory
affects system variables such as wing speed, harvested power, control input
etc. Parallel to this dissertation, the use of Bernoulli’s lemniscate in the de-
centralized, two-loop flight control scheme was also studied by Silva (2014).
We will here build on those results, aiming to give more details on the imple-
mentation of the control strategy, exploring three different controllers for the
inner loop, and comparing the performances of the lemniscate-based control
with the bang-bang strategy.

The mathematical properties of the lemniscate were compiled, for in-
stance, by Yates (1959)2. In short, the lemniscate is a 2D geometric figure
with polar coordinates rl and ωl (radius and angle, respectively), defined by
the function

2Keep in mind, though, that in the representation of Yates (1959) the lemniscate focus is
a = al

√
2, where al is the focus considered in this dissertation.
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Figure 31 – Bernoulli’s lemniscate, with its four quadrants, as a reference for
the lying-eight trajectory of the traction phase.

x = φ
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y = θ −θl
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Source: original

rl = f (ωl) = al
√

2cos(2ωl) , (3.8)

where al is the focal length. Eq. (3.8) yields real values – i.e. a positive
radius, of physical meaning – in the interval

f (ωl) :
[
0,

π

4

]
∪
(

3
π

4
,5

π

4

]
∪
(

7
π

4
,2π

)
+2k π 7→ R+ , (3.9)

k ∈ N. We will now proceed to an explanation on how the trajectory gener-
ation works. Keep in mind that the wing Cartesian coordinates in the lem-
niscate frame are x = φ and y = θ − θl, where θl is the polar angle of the
lemniscate center. From Eq. (3.8) it follows that a generic point in the lem-
niscate has coordinates

rl =

[
al
√

2cos(2ωl)cosωl

al
√

2cos(2ωl)sinωl

]
, (3.10)

The tangent vector to a generic lemniscate point is

rt =
drl

dωl
=

al
√

2√
cos(2ωl)

[
−sin(3ωl)
cos(3ωl)

]
. (3.11)

Note that the norm of the tangent vector varies, depending on ωl. In
fact, it should be noted that the lemniscate function described by Eq. (3.8)
has inflection points at ω† = π/4± k π , k ∈ N, where ‖rt(ω

†
l )‖ → ∞ and rt
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changes direction. Thus, in order to have a continuous direction of flight, we
must invert the tangent vector rt on either side of the lemniscate. This was al-
ready done in Fig. 31, where the arrows representing the tangent vectors were
inverted on the right-hand side (cos(ωl)< 0) to have the wing flying down at
the lemniscate edges (edge-down). For an edge-up flight, the inversion of rt
must be made whenever cos(ωl)≥ 0.

The distance between a generic point in the lemniscate and the wing
position rk in the tangent plane is

rd = rl(ωl)− rk . (3.12)

The idea behind the algorithm is simple: we must look in the domain
given by Eq. (3.9) for the ω∗l coordinate which minimizes ‖rd(ωl)‖ in Eq.
(3.12), and scale the normalized, sign-corrected tangent vector rt,n(ω

∗
l ) by a

factor δ . We must normalize rt because its norm varies with ωl, as already
discussed. The reference vector for the wing tangential velocity is then com-
puted as

rr = rl(ω
∗
l )− rk +δrt,n(ω

∗
l ) , (3.13)

where δ represents the tangential distance that the wing needs to cover in
order to reach the lemniscate if the lemniscate were a straight line. In other
words, δ acts as an inverse gain. In the case of a straight line, if δ → ∞ the
wing would fly parallel to the line (no correction), whereas if δ → 0 the wing
would approach the line in a perpendicular trajectory (strongest correction).
Because the lemniscate path is obviously not a straight line, there will always
be a small tracking error, unless δ → 0. Such a tuning should be avoided in
practice, though, since it would cause the control action to constantly saturate.

Observe that, in the scheme of Fig. 29, the outer loop is providing a
reference γref to the inner loop. However, there is an inherent problem with us-
ing a course angle reference: because γ ∈ (−π,+π), as defined in Eq. (2.44),
if rr× (−eθ ) happened to change sign, there would be a discontinuity in γref,
switching from +π to −π . In this scenario, if γ× (−eθ ) did not change sign,
then the control error eγ = γref− γ would also suffer a strong discontinuity
and a sign inversion, which could lead to instability and eventual crash. To
cope with this we choose to define the control error in terms of the relative
angular displacement between γref and γ , regardless of their orientation with
respect to (eθ ,eφ ). To this end, let us consider that

rr×vk,τ = (b1,b2,b3) , (3.14)

where b3 is the coordinate perpendicular to the lemniscate plane (x,y). If
b3 ≥ 0 then it means that rr is “in front” of or collinear with vk,τ , i.e. eγ ≥ 0,
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else eγ < 0. Based on this reasoning, we define the control error as

eγ = arctan2
(
‖rr×vk,τ‖

rr ·vk,τ
sign(b3)

)
. (3.15)

Let us now discuss some particularities when implementing the con-
trol strategy here proposed. First, in order to look for a solution which yields
the desired eight-figure trajectory, we must define an appropriate quadrant to
search for ω∗l . Each quadrant has its domain, according to Table 4.

Table 4 – Lemniscate ωl-domain depending on the active quadrant.
Quadrant ωl domain

1 [0,π/4]
2 (3π/4,π]
3 (π,5π/4]
4 (7π/4,2π)

Source: original

In principle, we could set the active quadrant depending on the (x,y)
wing position in the lemniscate frame and the desired sequence of quadrants
to be observed: 1→ 3→ 2→ 4 when flying edge-down, and 1→ 4→ 2→ 3
when going edge-up. At each sampling time, an ω∗l solution should be found
either in the current active quadrant or in the next one in the predefined se-
quence. This approach, however, has some issues in the case of smaller tra-
jectories, where the angular dynamics is faster and the tracking error becomes
relatively large so that the predefined sequence of quadrants may be hard to
guarantee. It proved to be a more robust strategy choosing a quadrant based
on the kite x-coordinate and its horizontal speed ẋ = φ̇ . By doing so we avoid
the need to necessarily switch from one quadrant to the next expected one: the
active quadrant (hence the search domain) is chosen based on where the kite
is, where it is going to, and the direction of flight (edge-down or edge-up),
according to Algorithm 1.

When the quadrant changes, we redefine the solution from the previ-
ous iteration, ω∗l (i− 1), as the beginning of the new quadrant interval, de-
pending on the direction of flight. Centered at ω∗l (i− 1) we apply a search
window ∆ωl which must be contained within the quadrant interval. Such
window is important in order to avoid finding a solution, based on the per-
pendicularity condition to be discussed in the following, which in fact does
not correspond to the least distance ‖r∗d‖ between the wing position and the
lemniscate. This is another problem that may occur especially with tighter
trajectories, when the tracking error tends to increase. The search domain is
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Algorithm 1: Choice of active quadrant to search for a lemniscate solu-
tion ω∗l .

if x≥ 0 then
if ẋ≥ 0 then

if edge-down then
quadrant = 4;

else
quadrant = 1;

end
else

if edge-down then
quadrant = 1;

else
quadrant = 4;

end
end

else
if ẋ≥ 0 then

if edge-down then
quadrant = 2;

else
quadrant = 3;

end
else

if edge-down then
quadrant = 3;

else
quadrant = 2;

end
end

end
Source: original
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set according to Algorithm 2.

Algorithm 2: Definition of the search domain for ω∗l to be used with the
perpendicularity condition.

if quadrant == 1 then
domain =

[
max{ω∗l (i−1)− ∆ωl

2 ,0},min{ω∗l (i−1)+ ∆ωl
2 , π

4 }
]
;

else if quadrant == 2 then
domain =

[
max{ω∗l (i−1)− ∆ωl

2 ,3 π

4 },min{ω∗l (i−1)+ ∆ωl
2 ,π}

]
;

else if quadrant == 3 then
domain =

[
max{ω∗l (i−1)− ∆ωl

2 ,π},min{ω∗l (i−1)+ ∆ωl
2 ,5 π

4 }
]
;

else if quadrant == 4 then
domain =

[
max{ω∗l (i−1)− ∆ωl

2 ,7 π

4 },min{ω∗l (i−1)+ ∆ωl
2 ,2π}

]
;

end
Source: original

Our first strategy to find ω∗l derives from the fact that, when ‖rd(ωl)‖
is minimum, rt(ωl) · rd(ωl) = 0 (perpendicularity condition). However, the
opposite is not necessarily true: the occurrence of rt(ωl) · rd(ωl) = 0 does
not imply in minimum ‖rd(ωl)‖ since we could have two conditions of per-
pendicularity between rt(ωl) and rd(ωl) in the same quadrant – therefore the
importance of the ∆ωl window. With the search domain set, it follows that
ω∗l can be found as the solution to the equation

xsin(3ωl)− ycos(3ωl)−al
√

2cos(2ωl)sin(2ωl) = 0. (3.16)

It may happen that, for the active (chosen) quadrant, @ ωl | rt(ωl) ·
rd(ωl) = 0. This may be the case, for instance, when the wing is going edge
up on the right-hand side of the lemniscate, it has already crossed the x-axis,
i.e. y< 0, but still ẋ< 0 due to the inner-loop tracking error. For situations like
these, we can obtain ω∗l by numerically minimizing ‖rd(ωl)‖ in Eq. (3.12),
given the minimization domain in Table 4. Observe that ω∗l that minimizes
‖rd(ωl)‖ also minimizes ‖rd(ωl)‖2 = rd(ωl) · rd(ωl), hence

ω
∗
l = argmin{2(a2

l )cos(2ωl)−2al
√

2cos(2ωl)(xcosωl + ysinωl)

+ x2 + y2} .
(3.17)

We use the minimization strategy as a second attempt because it is
computationally more expensive than finding the root of Eq. (3.16) from the
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perpendicularity condition. Once ω∗l is obtained through minimization, we
only consider the solution as valid if it corresponds to an increment of arc
along the lemniscate perimeter, considering the direction of flight, else we
maintain the solution from the previous iteration. The pseudo-code for this
check routine is in Algorithm 3.

Algorithm 3: Post-processing of ω∗l obtained through minimization to
determine whether it is a valid solution.

if edge-down AND
{[(quadrant 1 OR 4) & (ωl(i)∗ ≥ ω∗l (i−1))] OR
[(quadrant 2 OR 3) & (ωl(i)∗ ≤ ω∗l (i−1))]}

OR
edge-up AND

{[(quadrant 1 OR 4) & (ωl(i)∗ ≤ ω∗l (i−1))] OR
[(quadrant 2 OR 3) & (ωl(i)∗ ≥ ω∗l (i−1))]} then
solution = ωl(i)∗;

else
solution = ωl(i−1)∗;

end
Source: original

In the unlikely event that both search algorithms fail, the reference
vector rr remains the same as of the last iteration.

3.1.2.2 Inner loop: trajectory tracking

The role of the inner loop of Fig. 29 is to make the course angle con-
trol error eγ , generated in the outer loop and given by Eq. (3.15), as small
as possible by manipulating the steering input ∆l. To choose an appropriate
control technique for the inner loop we should keep in mind that the course
angle reference is constantly changing with time, especially if we consider
a lemniscate not too wide, in order to have the kite flight more concentrated
in the high-power zone (φ ≈ 0). Therefore, by adding an integral action to
the controller we should not expect a significant improvement in the refer-
ence tracking. For the sake of simplicity, let us then consider a proportional
controller

∆l = kp eγ = kp(γref− γ) , (3.18)

where kp is the proportional gain. To find the tuning of kp to achieve a stable
flight we replace the control law of Eq. (3.18) in the course angle dynamics
given by Eq. (2.65), recalling that cs, cg and ca are the steering, gravitational
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and apparent coefficients. By linearizing the resulting closed-loop dynam-
ics we obtain the Jacobian J(γ) = −cs kp + cg cosγ . Since, in this case, the
Jacobian corresponds to the pole, for closed-loop stability it must be that
J(γ) < 0, a condition we should analyze for three cases. If γ̄ = 0 the pro-
portional gain should be kp > cg/cs. Else, if the wing is flying parallel to the
ground, γ̄ =±π/2 and it follows that kp > 0. Finally, if the wing is flying to-
wards zenith, with γ̄ =±π , then the proportional gain should be kp >−cg/cs.
Because cg < 0, the more restrictive case is the latter one. We can express the
proportional gain in terms of the stable closed-loop pole p < 0 at any lin-
earization point γ̄ as

kp =
cg cos γ̄− p

cs
=−

2meqws(vk,τ p−gsinθ cos γ̄)

ρ ACL(1+ 1
E2 )

2 v2
k,τ

. (3.19)

Another relatively simple control strategy for the inner loop is possi-
ble if we assume we know, in execution time, the identified coefficients of
the course angle model in Eq. (2.65). If so, we could use a proportional con-
troller while compensating for the non-linearities of the model. This is the
idea behind the feedback linearization technique. To derive the control law,
we differentiate the error expression eγ = γref− γ w.r.t. time, substitute the
course angle derivative by the open-loop dynamics of Eq. (2.65), and impose
a first-order linear behavior, with pole p< 0, to the resulting closed-loop error
dynamics. We can then solve the expression for the control input, obtaining

∆l =
γ̇ref− ca

cs
−

p+ cg sinγ

cs︸ ︷︷ ︸
k′p

eγ . (3.20)

It is interesting to observe that the composition of kp and k′p is the
same for γ = γ̄ = 3π/4± k π , k ∈ N. In fact, the proportional gain k′p of the
feedback linearization controller in Eq. (3.20) changes as a function of sinγ

in order to compensate for that nonlinearity. Moreover, in a separate term,
the control law compensates for the apparent force and the rate of variation of
the course angle reference γ̇ref. Nonetheless, for practical implementations,
the latter variable must be used with caution, since the trajectory reference
is computed by a kinematic algorithm in the outer loop and, therefore, it is
not subject to a limited rate of variation. Therefore let us consider, in the
simulation results that will follow, also the controller given by Eq. (3.20) but
with γ̇ref = 0.
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3.1.3 Simulation results

The simulation results to be presented in this section were obtained
with a setup of the pumping kite airborne components aiming to match the
characteristics of a small prototype built at UFSC to investigate flight con-
trol with no reeling capability, i.e. with a constant tether length. Regarding
the tether, we will consider the Dyneema R© technology, which combines high
minimum breaking loads with small diameters and small linear densities, ac-
cording to Fig. 32. The curves are very similar in shape, and were interpolated
with 3rd degree polynomials.

Figure 32 – Characteristics of the Dyneema R© tether.

Source: data obtained from a commercial distributor

We will also consider a foil kite, with the aerodynamic curves shown
in Fig. 33. These curves were borrowed from Paulig, Bungart and Specht
(2013), correspond to a flat aspect ratio of 4.8, and were slightly extrapolated
down to 0◦ and up to 40◦ of angle of attack. We will assume that, outside
this range, the foil kite does not operate. For the sake of comparison, we also
show in Fig. 33 the curves of a LEI tube kite, reproduced from Fechner et
al. (2015). We highlight that the latter set of curves was not validated against
experimental wind tunnel nor through Computational Fluid Dynamics (CFD)
methods. Instead, these curves were obtained from empirical modifications
on a wind turbine airfoil in order to reproduce the expected behavior of a LEI
tube kite. Note that, because of the inflated leading-edge tube and struts, the
LEI tube kite should be able to operate in a broader span of angle of attack



118

than the foil kite. Table 5 contains all other system parameters required for
the simulations. It is important to emphasize that we are here considering a
very small and constant tether length of 24m. Hence the angular speeds θ̇

and φ̇ are very high, thus requiring a high sampling rate of the control law
and a fast response of the actuators. On the other hand, for real systems used
to generate electricity with a much longer tether length (typically longer than
200m), the angular dynamics is much slower and, therefore, the sampling
rate and actuator response become less critical for controlling the flight.

Figure 33 – Aerodynamic curves for a foil (ram-air) kite with aspect ratio of
4.8, and for a LEI tube kite.

Source: data obtained from Paulig, Bungart and Specht (2013) (foil kite) and
Fechner et al. (2015) (LEI tube kite)

We start by considering a constant nominal wind vw = 5m/s, and a
lemniscate with focus al = 25◦ centered at θl = 60◦. By choosing the edge-
up direction of flight, we can expect the average course angle to be γ̄ = ±π .
Considering this value in Eq. (3.19) and a 95% settling time of 1s, in average,
we obtain the feedback gain kp = 0.39 to use with the proportional controller.
For the outer loop we use the inverse gain δ = 10◦. The simulation results are
presented in Fig. 34, where the red-filled small circles indicate the completion
of one orbit, when the wing crosses the lemniscate center going from the 3rd to
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Table 5 – Parameterization of a small foil kite for simulations of flight control.
Description Symbol Value Unit

wing mass m 1 kg
projected wing area A 3 m2

projected wingspan ws 1 m
base angle of attack α0 0 deg
tether length r 24 m
tether diameter dc 4 mm
minimum breaking load Tmax 1.495 kgf
tether volumetric density ρc 656 kg/m3

Source: original

the 1st quadrant3. Observe that the reference trajectory, indicated by the green
dash-dotted line, is tracked with a relatively large control error. Regarding the
inner loop, the tracking error peaked at about±69◦, with a standard deviation
of 42.9◦, whereas the outer loop control error peaked at about 13.6◦, with
standard deviation of 3.5◦. This tracking performance is due to a control
action peaking at about 45cm, which corresponds to a roll angle of about 8◦.

Note how the traction force T strongly oscillates throughout one orbit,
with standard deviation of 21.2kgf, which corresponds to approximately 38%
of the average traction force. This behavior is undesired, since it implies in an
equally oscillating electric power output. It can be shown that this oscillation
can be reduced by properly adjusting the lemniscate focus. Differently from
the traction force, the angle of attack varies little, kept between 8◦ and 10◦.
Also note how the apparent wind speed va is approximately the same as the
wing speed vk, corroborating the assumptions made to derive the course angle
model in Sect. 2.4.

The control performance can be improved by tuning the gains of the
inner and outer loops, as illustrated in Fig. 35. Observe how either decreas-
ing the 95% settling time4 of the inner loop (i.e. decreasing the pole given by
Eq. (3.19) towards −∞) as well as reducing the δ -parameter (inverse gain)
of the outer loop causes both the inner and outer loop tracking errors to de-
crease. This improvement in the control performance comes with the cost
of a more intense (higher amplitude) control signal. On the other hand, for
combinations of inner loop settling time and δ -value large enough, the max-
imum value of the inner loop tracking error eγ approaches its definition limit

3or vice-versa in the case of an edge-down flight.
4In fact we are referring to the minimum settling time of the inner loop, since we are consid-

ering the error dynamics of the inner loop linearized around γ̄ =±π , according to Eq. (3.19).
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Figure 34 – Simulation results of a 3m2 foil kite with vw = 5m/s, edge-up
lemniscate in the outer loop, and proportional controller with average 95%
settling time of 1s.

Source: original

at 180◦, which is a dangerous region to operate in because of the discontinuity
around ±180◦. Moreover, observe in the upper plot of Fig. 34 that the mini-
mum angular distance from the lemniscate to the ground level is less than 20◦

(in the θ -direction). This margin of outer loop error is already trespassed for



121

a settling time higher than 1s, depending on the value of δ , which means the
wing would have crashed into the ground.

Figure 35 – Lemniscate tracking performance as a function of the inner loop
settling time with proportional controller and the outer loop (inverse) gain.

Source: original

Let us now compare the performance of the proportional controller
with the feedback linearization one. We proceed as follows: for a same setting
of the outer loop (δ = 10◦), we vary the pole p (hence the settling time)
of the inner loop and obtain the corresponding feedback gain kp given by
Eq. (3.19) for the proportional controller, as well as the gain k′p defined in
Eq. (3.20) for the linearizing controller. Note that, in order to compute the
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latter controller, we must assume we know all variables encapsulated by the
coefficients cs, cg and ca. Moreover, we will consider two implementations
of the linearizing controller: one with supply of the time-derivative of the
reference course angle γ̇ref, and another without it. The results are presented
in Fig. 36. Observe that, for all three cases, the tracking performance both
of the inner and outer loops deteriorates when the inner loop settling time
is increased, as one could have expected. However, for almost all values of
settling time analyzed, the proportional controller yields a lower maximum
error for both loops when compared to the feedback linearization controller
without accounting for γ̇ref. As for the complete implementation of the latter
controller according to Eq. (3.20), it produces the better performance by far,
although at the expense of a control signal that reaches higher peaks. Note
that, despite the compensation of the inner loop non-linearities (assuming we
know on-line the exact values of the system parameters), the tracking errors
do not converge to zero, but to a region nearby. This is because the model for
the course angle dynamics, given by Eq. (2.65) and used by the linearizing
controller, has some errors due to approximations made w.r.t. the two-tether
point-mass model of Sect. 2.2, hence the non-linear dynamics is not perfectly
compensated. The inner and outer loop tracking errors could be arbitrarily
decreased by adjusting the control parameters, but then stability problems
could eventually arise in the presence of wind turbulence, for instance.

The results of Fig. 36 suggest that, if practical implementation issues
do not allow for a smooth and accurate computation of γ̇ref, e.g. due to sensor
noise, then the proportional controller results in a better tracking performance
than the feedback linearization one without the derivative term. This conclu-
sion holds if we consider the same closed-loop pole for both controllers, i.e.
the imposed closed-loop pole with the linearizing controller, and the closed-
loop pole obtained with the proportional controller at the linearization point
γ̄ = ±π . Also note that, if the parameters of the model for the course angle
dynamics are not known on-line, the feedback linearizing controller becomes
unfeasible even if γ̇ref could be efficiently computed.

Now let us check the flight performance with the bang-bang outer-
loop strategy. We used the attractor azimuth coordinate φattr = al

√
2≈ 35.4◦,

which corresponds to the largest azimuth coordinate of the lemniscate, whereas
the polar coordinate was the same, θattr = θl = 60◦. In the inner loop we used
the same proportional controller with kp = 0.39. The results are shown in
Fig. 37. Observe how the trajectory tends to become horizontally flatter.
Also note the steep peaks on the steering (the discontinuity happens right be-
fore each peak), caused by the peaks in the inner loop tracking error eγ . We
do not compute the outer loop error because the trajectory is not a continu-
ous closed-figure anymore, now consisting only of the two attractors. The
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Figure 36 – Performance comparison between the proportional and Feedback
Linearization (FL) controllers for tracking the lemniscate trajectory.

Source: original

average traction force was 48.6kgf, which is about 13% lower than the value
obtained with the corresponding lemniscate.

To have a better feeling of how the direction of flight affects the trajec-
tory tracking – both in the case of a continuous reference such as Bernoulli’s
lemniscate, as well as in the case of the two reference points of the bang-
bang strategy – let us turn to the results of Fig. 38. The inner-loop was the
same for all cases: the proportional controller with kp = 0.39. In comparison
to the edge-up lemniscate of the upper plot, observe that in the edge-down
lemniscate the outer loop tracking error peaks at a higher value: the kite flies
very close to θ = 90◦, which would mean a collision with the ground. This
behavior is due to the pull of gravity, which contributes more to accelerat-
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Figure 37 – Simulation results of a 3m2 foil kite with vw = 5m/s, bang-bang
edge-up strategy in the outer loop, and proportional controller with average
95% settling time of 1s.

Source: original

ing the kite when the course angle crosses γ = 0◦ at the lateral edges of the
lemniscate. Despite the increased tracking error, flying edge-down yielded
an average traction force of 64.3kgf, roughly 15% more than in the case of
the edge-up lemniscate. This result is in accordance to Vlugt, Peschel and
Schmehl (2013) who, in their practical experiments with a prototype, ob-
served that “. . . in lightwind conditions, the downloop5 figure eight (. . . ) has
proven to be the more efficient shape.”

Regarding the bang-bang outer loop, note that in the edge-down flight
(lowermost plot) the wing did not manage to turn around the attractor points:
it reached the azimuth margin at a polar angle higher than θattr due to the
tracking error of the proportional controller in the inner loop. One could al-
ready have expected this since, in order to “climb” above the attractor, a con-
trol error eγ > 0 is needed. However, as θ → θattr the control error vanishes,
and so does the control action.

5i.e. the edge-down flight direction, as denoted in this dissertation.
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Figure 38 – Trajectory tracking results for Bernoulli’s lemniscate and the
bang-bang outer loop, with the same inner-loop proportional controller kp =
0.39, and for both directions of flight.

Source: original

We can also observe in Fig. 38 that, when turning edge-down to-
wards the other attractor, the wing flied even closer to the ground than in the
case of the edge-down lemniscate. In fact, the wing did not crash with the
ground only because the polar coordinate of the attractors was decreased to
θattr = 50◦. While the edge-up bang-bang yielded an average traction force
about 13% lower than the edge-up lemniscate, the edge-down bang-bang pro-
duced an average traction force approximately 33% higher than the edge-up
lemniscate. This “excessive” increase can be explained by the resulting bang-
bang edge-down trajectory with an average polar angle higher than in the
edge-up lemniscate case. Let us recall that, the higher is θ , the more in cross-
wind the wing flies and the higher is the traction force6, according to Eq.

6This conclusion is only valid if the nominal wind is kept constant regardless of the altitude.
Because, in practice, the nominal wind tends to vary with the altitude, e.g. according to a log-
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(2.50).
We would like to conclude this section by highlighting some particu-

larities of the control strategies here discussed. Although, in the simulation
environment, both the continuous reference (Bernoulli’s lemniscate) and the
few-points-of-reference (bang-bang with two attractors) may seem equally
feasible to implement, this is not the case in a real system. Preliminary tests
with a small prototype (parameterization similar to Table 5) for flight con-
trol studies have shown that a combination of factors makes it challenging
to stabilize the kite flight with the lemniscate strategy. First of all, the fast
angular dynamics allied with a relatively large sampling time (about 70ms)
allows for only a few updates of the control algorithm along the continuous
trajectory reference. It is well known that, as the sampling time increases
w.r.t. the open-loop dynamics, the closed-loop performance may deteriorate,
or closed-loop stablity may even be lost at all.

Another factor to be considered is the speed saturation of the servomo-
tor used for the steering actuator: this limitation characterizes a non-linearity
that cannot be neglected for systems with faster flight dynamics. Hence, we
should consider this speed saturation in the model of the open-loop system
– e.g. by considering ∆l in Eq. (2.65) as a state whose time derivative is
limited – in order to design a more appropriate flight controller. One last fac-
tor we can mention in the real system is the delay between pulling/releasing
the steering cables and the kite response in terms of the turning rate γ̇ . We
estimate this delay to be in the order of tenths of seconds (depending on the
wind speed), hence this delay becomes relevant for the considered system.
Similarly to the speed saturation of the steering actuator, this transport delay
should also be modeled in the open-loop dynamics used to design the flight
controller.

In spite of these issues, the bang-bang outer loop with two attractors
and some improvements (not discussed so far) seem to cope well with the
task of stabilizing the kite flight with fast angular dynamics. As put by Vlugt,
Peschel and Schmehl (2013), the idea is “. . . to give the kite a certain freedom
to find its own path while tracking from one point to the other.” By doing
so we tackle the problem of the slow sampling rate relative to the system dy-
namics. The non-linearities of the steering speed saturation and the steering
transport delay can be overcome by means of a predictive strategy in the outer
loop: in order to calculate the course angle reference, instead of considering
the current kite position we extrapolate the future kite position given the cur-
rent turning rate γ̇ and a given prediction horizon (usually between 0.5s and
1s). Preliminary tests with these enhancements in the control law have shown

arithmic wind shear model, trajectories too close to the ground tend to yield a lower traction
force.
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promising results, which are expected to be published soon.
Based on the same reasoning discussed above that claims the bang-

bang control to be the more appropriate strategy in the case of faster flight
dynamics, when it comes to slower dynamics that allow for a trajectory with
a larger (arc length) perimeter, the continuous reference trajectory could be-
come the more appropriate strategy. Especially in terms of the trajectory
shape, it could already be verified (see Fig. 38) that the lying eight tends to
become distorted (horizontally squeezed) with only the two attractors. This
issue should be augmented as the tether length increases (and consequently
the arc length of the lying-eight perimeter). If this happens, the tethered wing
should loose efficiency in harvesting the wind power by deviating more from
the optimal lying eight trajectories studied e.g. by Argatov and Silvennoinen
(2010). One way to “correct” the lying-eight shape would be to add more
points of reference: Vlugt, Peschel and Schmehl (2013) parameterized the
flight trajectory with two, three and four attractors. Observe that, if the angu-
lar dynamics becomes slow enough, then the increasing sequence of points of
reference could, in fact, become an approximation of a continuous trajectory.

3.2 OPTIMIZATION OF A PUMPING CYCLE

Having discussed the open-loop model of the two-tether point-mass
wing in Sect. 2.2, and a corresponding flight control strategy in Sect. 3.1,
we are now left with the question: what is the set of control parameters and
references that maximizes the average produced power within a pumping cy-
cle? Before we discuss the contribution of this dissertation on the topic, let
us recall some related works in the literature

3.2.1 Related works

One of the first attempts to optimize a complete pumping cycle was
carried out by Fagiano (2009) and Fagiano, Milanese and Piga (2011). In
these papers, constant values of the polar angle θ , reel-out speed ṙ, and aero-
dynamic coefficients CL (lift) and CD (drag) for each pumping phase were
assumed. It was also considered that the tether length variation ∆r is negligi-
ble in comparison to the average tether length r̄, so that r would be approx-
imately constant during the whole pumping cycle. Under these assumptions
the tether traction force T could be considered constant for each phase and,
consequently, a simplified expression for the cycle power Pcyc was found.
Two subsets of optimal solutions were proposed, µo = (θo, ṙo,ro) for the trac-
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tion and µi = (θi, ṙi,ri) for the retraction phase, and the optimal solution was
computed as µ∗ = argmax{Pcyc(µo,µi)}. The solution for the azimuth angle
was trivial, φ ∗o = φ ∗i = 0, for the “wing-glide maneuver”7.

Some important remarks can be made on such approach. Firstly, in
order for ∆r to be negligible in comparison to r̄, the traction phase must be
short. By choosing to reel out 50m around the optimal tether length of 611m,
i.e. ∆r≈ 8%r∗, the traction phase of Fagiano (2009) (p. 84) lasted about 23s.
This relatively short duration may give rise to a practical issue: if one takes
into account the need for a transition maneuver between the pumping phases,
and that such maneuver can take e.g. between 4s and 10s, this relatively
long transition time may have a negative impact on the cycle power. This is
because, during the transition, energy is not being optimally generated nor
consumed. Secondly, keeping θ constant during the retraction phase may
be a hard task to achieve in practice because pulling the wing “as a flag”, as
required for the wing-glide maneuver, leaves the elevation angle uncontrolled.
It can also happen that the kite, especially if flexible, simply may not be de-
powered as much as required to generate the needed low lift and stabilize the
elevation. If this is the case, the decrease of θ during the retraction phase
significantly affects the power consumption and thus should be taken into
account by the optimizer. A third concern, and perhaps more importantly,
is that it was not clear what angle of attack was used for the traction phase
in order to run the optimization, nor was it justified the choice of the base
angle of attack α0 = 3.5◦. In other words, the angle of attack α was not (at
least explicitly) considered as an argument of the optimization, although the
aerodynamic curves CL(α) and CD(α) had been declared.

A similar approach and assumptions was used by Luchsinger (2013),
who approximated the cycle power as a function of the constant values of reel-
out and reel-in speeds, aerodynamic coefficients (different values for each
pumping phase), and the elevation angle, which was assumed to be the same
for the whole pumping cycle. However, the dependency of the system drag
on the tether length was left out, as well as the wind shear model. There-
fore, given θ , CL and CD, the only arguments to be optimized were ṙo and
ṙi. More recently, Erhard and Strauch (2015) proposed an optimization al-
gorithm to compute the pumping cycle duration and the instantaneous values
of the tether reel speed. The algorithm is based on a simplified model of
the wing, similar to the one discussed in Sect. 2.3. In their approach, the au-
thors considered a constant glide ratio (no de-powering) throughout the whole
pumping cycle and showed that, by moving the kite to a position upwind of

7Fagiano (2009) also considered the “low-power maneuver” for the retraction phase, where
the kite is brought to the border of the wind window at 0 < |φ |< π/2 before the tether is reeled-
in.
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the ground station before reeling in the tether, a significant amount of cycle
power can be achieved (rather contrary to intuition).

Besides the works mentioned so far and those dealing strictly with the
traction phase, only a few papers have been published focused on the retrac-
tion phase. A well-designed reel-in maneuver is essential for a higher cycle
power since, regardless of the power generated in the traction phase, if that
same amount is spent in the retraction phase, no net power is obtained. We
can mention the work of Fechner and Schmehl (2013), who proposed a reel-in
maneuver where the kite flies towards zenith while the azimuth angle is kept
at zero. A numerical, iterative procedure based on a simplified model of the
kite dynamics was used to compute the reel-in speed and elevation, at each
time step, in order to maximize the cycle power. This strategy was chosen be-
cause the elevation angle typically increases during the maneuver execution,
hence rendering the use of a quasi-steady model inappropriate. The optimiza-
tion framework could be further explored though, as only the kite trajectory
was shown as a result. Furthermore, the assumptions of constant aerodynamic
coefficients and constant ratio between reel-in speed and traction force could
be relaxed, allowing for a more thorough analysis. These are some of the
points to be addressed in this section. On a different approach, Zgraggen,
Fagiano and Morari (2015) designed a retraction maneuver to maintain the
wing flying parallel to the ground, i.e. with a constant elevation angle, while
the tether was reeled in. However, no criterion for the choice of the reel-in
speed nor its impact on the cycle power was presented.

In the sequel we will discuss the contributions of this dissertation on
the topic of cycle power maximization. We should keep in mind that we are
here considering a decentralized control scheme, with distinct control laws
(i.e. computed separately) for the flight and ground winch subsystems of the
pumping kite. For the numerical results – that will be presented right next
to the theoretical formulations – we will consider a system parameterization
given by Table 6, the wind shear model depicted in Fig. 39, and the aerody-
namic curves of a LEI tube kite shown in Fig. 33.

3.2.2 Traction power

We start our effort to maximize the cycle power by maximizing the
traction power8, approximated in Eq. (2.51) by the function P( f ,θ ,φ ,r,α).
To this end, the optimal (instantaneous) reel-out factor is well known to be
f ∗ = (1/3)sinθ cosφ , as demonstrated e.g. by Schmehl, Noom and van der

8As we will discuss in Sect. 3.2.4, maximizing the power in the traction phase does not
necessarily mean maximizing the cycle power.
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Table 6 – Nominal parameters (constants) of the pumping kite model.
Description Symbol Value Unit

Air density ρ 1.2 kg/m3

Gravitational acceleration g 9.82 m/s2

Wing mass m 7 kg
Projected wing area A 12 m2

Projected wingspan ws 7.75 m
Electric machine inertia Je 0.25 kg ·m2

Drum inertia Jd 0.1 kg ·m2

Drum radius rd 0.2 m
Ground winch transmission ratio κ 9 -
Number of main tether(s) nt 1 -
Tether density ρt 970 kg/m3

Tether drag coefficient CD,t 1.2 -
Main tether diameter dt 5 mm
Wind model reference height zref 15 m
Wind model reference speed vw,ref 7 m/s
Wind model roughness coefficient z0 0.05 m

Source: original
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Figure 39 – Logarithmic wind shear model.
Source: original

Vlugt (2013). Keep in mind that the arguments θ , φ and α typically suffer
cyclic variations inside a lying-eight orbit. Therefore we will attempt to op-
timize their average values within a single orbit, as well as the average tether
length, since r constantly increases during the traction phase. By inspection
in Eq. (2.51) we conclude that the optimal azimuth is φ ∗ = 0.

Regarding the remaining three arguments observe that, by decreasing
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θ the kite is able to reach a higher altitude z = r cosθ , where the wind is
stronger. However, this positive effect on P is counterbalanced by displac-
ing the system from the ideal crosswind condition, represented by the (sinθ)
factor in Eq. (2.51). There is also a trade-off with the tether length optimiza-
tion: by increasing r the kite gains altitude where, again, the wind is stronger,
nevertheless the total airborne drag increases due to the longer tether(s), ac-
cording to Eq. (2.36). In fact, we will here predetermine the tether length
variation ∆r = rmax− rmin and have it centered around the optimized value of
r, i.e. the initial tether length of the traction phase will be rmin = r∗− (∆r)/2.
Regarding the angle of attack note that, if we neglect the tether drag, the op-
timal value would be the one that maximizes the C term in Eq. (2.49), as
discussed by Paulig, Bungart and Specht (2013). However, because we are
taking the tether drag into account, there may be another value of α that,
combined with a certain value of r, further maximizes P, even though C is
not maximum. With this in mind we come to realize that the traction power
depends on nonlinear combinations (multiplications) between θ , r and α and,
therefore, these three arguments must be optimized jointly.

Before we formulate the optimization problem, observe that we intend
to use Bernoulli’s lemniscate as the lying-eight trajectory reference. Hence,
ideally we should also treat the lemniscate focus al as an optimization argu-
ment. Basically, if al is too small the harvested power would be small due to
the large steering needed to execute the tight curves and, consequently, due to
the loss of the lift force decomposition onto the tether direction. On the other
hand, if al is too big the kite would deviate too much from the high-power
zone (at φ ∗ = 0), hence P is also small. This leads us to conclude that there
should be an intermediate value of al which is optimal. This behavior is cur-
rently under investigation and results should be published in the near future.
For the numerical results in the sequel, we will consider an ad-hoc value for
the lemniscate focus.

Aiming at a safe operation, we should also limit the traction force to
a maximum value Tmax, imposed by the tether minimum breaking load. The
polar angle should also be constrained to a maximum in order to ensure the
kite does not fly too close to the ground. We establish a minimum altitude
zmin = 3.5ws, i.e. the kite wingtip should keep a least distance of 3 wingspans
from the ground9. Based on what has been presented so far and considering
the point-mass wing model in dynamic equilibrium of Sect. 2.3 – which we
will here refer to as the optimization model –, the solution is numerically
obtained as

9considering no outer-loop tracking error on the lemniscate trajectory.
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ν
∗
o = (θ ∗,r∗,α∗) = argmax

{
C(α,r) [vw(θ ,r)sinθ ]3

}
subject to
T ≤ Tmax

θ ≤ arccos
(

zmin

r− (∆r)/2
− al

2

)
.

(3.21)

Having computed the optimal solution, we need to find the corre-
sponding base angle of attack α∗0 that yields the desired angle of attack α∗.
To this end let us consider once more the flight in dynamic equilibrium of
Fig. 26. The partial angle of attack ∆α can be computed as the solution of the
force equilibrium equation in the tangent plane, while α0 follows by using the
definition of α:

∆α = arg{CL(α)sin∆α−CD(α,r)cos∆α = 0} ,
α0 = α−∆α .

(3.22)

With the chosen system parameters, the constraints of minimum alti-
tude zmin = 27m, and maximum tether traction force Tmax = 15kN, and set-
ting the tether length variation as ∆r = 200m, the optimal solution obtained
is ν∗o = (70.6◦,456m,20.9◦), yielding a mechanical power P = 14.5kW at a
traction force T = 7.2kN, achieved with a base angle of attack α0 = 6.4◦ and
at a reel-out speed vt = 3.1m/s.

Note how α∗ = 20.9◦ differs from the angle of attack of maximum
kite aerodynamic efficiency αE = 16◦, and of maximum lift αL = 29◦ (see
the curves for the LEI tube kite in Fig. 33), as expected. The optimal angle
of attack is, in fact, very close to the value that maximizes the C term without
considering the tether drag, α = 19.4◦, the theoretical optimum discussed by
Paulig, Bungart and Specht (2013). To investigate how α∗ varies with the
tether drag, we ran the optimization of Eq. (3.21) for three different values
of the tether drag coefficient CD,t. For each value we changed α around the
optimal value. We also applied the setpoints to the two-tether point-mass
model of Sect. 2.2, which we will now denote as the validation model. The
results are presented in Fig. 40.

Observe in Fig. 40 (top) that, by varying CD,t from 0 to 10 times the
nominal value, the optimal angle of attack (indicated by the small circle on
the peak of each power curve) only slightly varies inside the interval α∗ ∈
[19.4◦,23.4◦]. This leads us to conclude that, although the tether drag has
a strong impact on the harvested power (peak value of the P curves), it does
not significantly influence the optimal angle of attack. Therefore it is indeed a
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Figure 40 – Traction phase results with the massless wing model in dynamic
equilibrium, used for optimization (opt mod), and the two-tether point-mass
wing model, used for validation (val mod), for different values of tether drag
coefficient CD,t.
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good approximation to compute α∗= argmax{C(α)}, as proposed by Paulig,
Bungart and Specht (2013), instead of having to use Eq. (3.21).

We can also see that the results obtained with the validation model
(filled circles) have a high correlation with the optimization results (contin-
uous curves). This is also the case in Fig. 40 (bottom), where the angle of
attack obtained as a function of the base angle of attack is shown. For the
optimization model we used Eq. (3.22), whereas for the validation model we
took the average value of α . The validation experiments were carried out
starting at α = 5◦, in increments of 5◦. Note that from α = 30◦ onwards no
more validation results are shown. The reason is that, after the lift peak at
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αL = 29◦, the kite eventually comes to a stall and a complete traction phase is
no more possible. We can here draw two conclusions. First, that the dynamic
equilibrium model of Sect. 2.3 produces results which are very close to those
obtained with a more complex model (of Sect. 2.2), hence the simpler model
is a good choice between computational speed and modeling accuracy (the
optimization takes about 3s). The second conclusion is that we should avoid
operating too close to the angle of attack of maximum lift to keep away from
a stall condition.

Back to Fig. 40 (bottom), observe that the angle of attack becomes
more sensitive on the base angle of attack as the latter is increased. More-
over, for high enough values of α0 there are two equilibria of α , one of them
beyond 35◦. This is something to keep in mind, especially under turbulent
wind conditions: a wind gust may perturb the angle of attack in such a way
that it is attracted to the high-value equilibrium, causing the kite to stall. A
more detailed study on the α-equilibria is yet to be carried out before we can
draw further conclusions in this regard.

As a final remark on the traction power maximization, we would like
to emphasize the importance of choosing the proper base angle of attack in
face of the results presented in Fig 40. For instance, if we apply this op-
timization approach to the 500m2 kite considered in the paper of Lellis,
Saraiva and Trofino (2013) we obtain the solution ν∗o = (74◦,408m,4.2◦),
with a corresponding α0 = 1.1◦. Operation at this point results in 4.3MW
of electric power, i.e. a roughly 20% increase with respect to the solution
νo = (79.8◦,652m,7.8◦) presented in that work, where it was used α0 = 3.5◦,
the same value used by Fagiano (2009).

3.2.3 Retraction phase

Our goal here is to take a more realistic look into the retraction phase,
obtaining results which could be actually tested with current prototype tech-
nology. Therefore we assumed a smooth transition from traction to retraction
phase by ramping down – instead of abruptly changing – the base angle of
attack and traction force to constant setpoints, which will be optimally de-
termined in the sequel. Intuition on how to design a more efficient reel-in
maneuver led us to establish the flight trajectory at φ = 0, and use the trac-
tion force as the controlled variable for the electric machine at the ground,
as explained in Sect. 2.2.3. For a realistic maneuver we should also take
into account system constraints. Firstly, the kite, especially if made of flexi-
ble material as a LEI tube kite – or even more critically for a ram-air kite –,
should not fly at too low angles of attack. Otherwise the wing loading can be
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very low, the kite may lose its proper inflated shape, and thus lose steering
capability. Hence let us consider a lower limit αmin on the angle of attack.
Secondly, there is in practice a speed limitation vt,sat of the electric machine,
imposed by factors such as the maximum centrifugal force withstood by the
windings, the number of poles, and the transmission ratio κ between drum
and electric machine.

Differently from Sect. 3.2.2, our goal now is to maximize the cycle
power. Considering that Po(t) and Pi(t) are the instantaneous mechanical
power in the traction and retraction phases, respectively, the cycle power is

Pcyc =

∫
Po(t)dt +

∫
Pi(t)dt

∆to +∆ti
. (3.23)

Having optimized the traction phase a priori, we know
∫

Po(t)dt and
∆to. Therefore we can promptly set the following initial conditions of the
retraction phase: ṙi(0) = v∗t,o = f ∗vw, ri(0) = r∗o +(∆r)/2 and θi(0) = θ ∗o . If
we consider the kite flying towards zenith, i.e. γ =±π , the tangential velocity
is solely in the θ direction: vk,τ = r θ̇ . By replacing this into Eq. (2.52)
the initial angular condition θ̇i(0) can be computed. The initial value of the
traction force can be obtained by solving Eq. (2.42b) for T with r̈ = 0 and all
other variables as already discussed. Then, with the zero-azimuth model of
Sect. 2.2.3, including given ramp inclinations cα and cT of the control input
curves of Eq. (2.41), we can simulate the retraction phase and compute the
instantaneous power Pi(t) = Ti(t)vt,i(t) and cycle power in Eq. (3.23). We
are now in conditions of optimizing the constant setpoints of base angle of
attack and traction force to be used during the retraction phase. To this end
we execute a grid search and obtain

ν
∗
i = (α∗0,i,T

∗
i ) = argmax

{
Pcyc(α0,i,Ti,

∫
Po(t)dt,∆to)

}
subject to
α ≥ αmin

vt ≥−vt,sat .

(3.24)

It is intuitive to think we would like to de-power the kite as fast as pos-
sible, but there is also a speed limitation to execute that. Let us assume we are
using the (maximum) de-powering speed cα =−10◦/s. For ramping down the
traction force, we will consider a ramp inclination cT = 982N/s. Moreover,
let us assume the optimization constraints are αmin =−5◦ and vt,sat = 10m/s.
To have a more comprehensive look into the optimization, we define a broad
grid interval, composed by α0,i ∈ [−100,0]◦ and Ti ∈ [0,1000]N, with reso-
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lution δα0,i = 5◦ and δTi = 50N. Using a time-integration step δ t = 50ms
to simulate the retraction phase, the resulting cycle power surface is shown in
Fig. 41.

Figure 41 – Cycle power as a function of the constant references of traction
force and base angle of attack, used after the ramping down in the retraction
phase.
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Observe that, for intermediate values of Ti and α0,i, the retraction
phase is completed without violating the constraints on the angle of attack
and reel-in speed. In this case we say the solution νi = (α0,i,Ti) is inside the
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feasible region. Let us take a grid point for our analysis somewhere in the
middle of this region. Starting there, if Ti is increased there may be initially
an increase in Pcyc because the tether must be reeled-in faster. However, at
a certain point, reel-in saturation may happen. If not, we may reach a cer-
tain value of Ti beyond which the benefit of operating at a faster reel-in speed
– thus with a shorter retraction phase – is overshadowed by the increase in
the power expense to reel-in the tether, hence Pcyc starts to decrease. Back
to the starting point of our analysis and moving towards lower values of Ti,
the tendency is for the cycle power to decrease because the retraction phase
must be carried out at a reel-in speed closer to zero, hence ∆ti increases in
Eq. (3.23). If Ti becomes too low, the retraction maneuver is not possible
anymore because the tether must be actually reeled-out to allow for the low
traction force.

Once again in the middle of the feasible region and then decreasing
α0,i, the cycle power increases monotonically, regardless of Ti. The prob-
lem is that, below a certain value of base angle of attack, the constraint on
the minimum angle of attack is violated at some point during the maneuver.
Looking into the other direction, when increasing α0,i it comes a point when
the retraction phase cannot be completed anymore for the same reason as for
a traction force too low: the tether must be reeled out. Grid points for which
the retraction phase cannot be completed were omitted (blank/white squares)
in Fig. 41.

Observe that the maximum cycle power P∗cyc,unc = 0.639Po is obtained
with ν∗i,unc = (−90◦,650N), in a region where both constraints vt,sat and αmin
are violated. We refer to ν∗i,unc as the unconstrained optimum. To comply
with the constraints we must look for the optimal solution inside the feasible
region. Thus our choice becomes ν∗i = (−50◦,650N), the feasible optimum,
which yields Pcyc

∗ = 0.556Po. As can be seen in Fig. 41, one could think of
the optimal solution more as a “plateau region”, since the cycle power remains
approximately constant in the vicinity of ν∗i,unc. In fact note that, relative to
the unconstrained optimum, the decrease in cycle power to reach the feasible
optimum is below 10%.

If this optimization were applied to a rigid wing, the constraint on the
minimum angle of attack could probably be disregarded. However, when
considering a foil (ram-air) kite, the αmin constraint could be more restrictive.
In this case the border of αmin violation – indicated by the black squares in
Fig. 41 – would move towards higher values of α0, “squeezing” the feasible
region. This would also be the case if we had a ground station with less reel
speed capability: the feasible region would be squeezed to the left by the vt,sat
line (blue diamonds in Fig. 41). Also note that, not only power kites have a
limited de-powering speed cα , but also the maximum de-powering itself may
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be limited, i.e. α0 may not be arbitrarily low, especially for flexible kites.
This constraint can be easily taken into account by reducing the α0,i search
domain. Similarly, a minimum value of traction force Tmin, which is important
to ensure the kite maintains steering capability during the reel-in maneuver,
can be taken into account by reducing the search domain to Ti ≥ Tmin.

Figure 42 – Examples of retraction phase trajectories in the φ = 0 plane: (i)
feasible optimum, (ii) unconstrained optimum, (iii) violation of αmin, and (iv)
violation of vt,sat.
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In Fig. 42 we can compare flight trajectories obtained with different
values of νi. Note that, in the first 4s, when α0 and T are being ramped
down in all cases, the trajectories are the same because of the same cα and
cT. Furthermore, we can see that the unconstrained optimum, which requires
α0,i = −90◦, causes the kite to follow more of a straight trajectory towards
the ground station – a behavior we already expected since it makes the kite
operate at a very low angle of attack. To verify this, and understand how
these trajectories are generated, let us take a look at some system variables,
presented in Fig. 43.

Note how the unconstrained optimum causes both the vt,sat and αmin
constraints to be violated. In fact, the angle of attack becomes extremely low,
closing in on α = −20◦, below which the aerodynamic curves of the LEI
tube kite are not defined (see Fig. 33). We can also see that the maneuver
with (−70◦,300N) is the longer one, which is mostly due to the relatively
low traction force, requiring very little power to be spent, but also violating
αmin because of the high de-powering.
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Figure 43 – Time evolution of system variables of four different retraction
phase solutions: (i) feasible optimum, (ii) unconstrained optimum, (iii) vio-
lation of αmin, and (iv) violation of vt,sat.
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3.2.4 Iterative algorithm

As stated in the beginning of this section, our end goal is to find a
pumping cycle parameterization that maximizes the cycle power. This was
already considered in the retraction phase optimization of Sect. 3.2.3. How-
ever, in Sect. 3.2.2 the maximized function was the traction power P, whose
maximum does not correspond to the maximum of the cycle power Pcyc. The
reason is simple: imagine we decrease the traction phase reel-out speed vt,o.
It can be shown that the traction power, approximated by Eq. (2.51), will
decrease, yet the duty cycle ∆to/(∆to +∆ti) will increase – i.e. the kite will
spend a greater ratio of the pumping cycle duration harvesting energy. While
the decrease of P has a negative effect on Pcyc (see Eq. (3.23)), the increase
in the duty cycle has a positive effect on Pcyc. We will see in the sequel that,
if vt,o is decreased to a certain amount, we can further maximize the cycle
power.
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The idea is, once the traction power and retraction phase are optimized
in a first iteration, to run a second iteration where the traction phase is opti-
mized to maximize the cycle power, this time considering the reel-out speed
as an argument. Because we have discussed it is a good approximation to
optimize the angle of attack by maximizing C(α) in Eq. (2.49) regardless of
the tether drag, we will keep the value of α∗ found in the first iteration. Also,
since the retraction phase initial conditions depend on the optimal solution of
the traction phase, we must complete the iteration with a new optimization of
the retraction phase as well. We will execute these iterations until the increase
in Pcyc falls below a tolerance, meaning we reached a new optimum. This is
represented in pseudo code by Algorithm 4.

Algorithm 4: Iterative algorithm for pumping cycle optimization (con-
straints have been omitted for a compact representation).

while increase in Pcyc ≥ tolerance do
if 1st iteration then

(θ ∗o ,r
∗
o,α

∗
o ) = argmax

{
C(α,r) [vw(θ ,r)sinθ ]3

}
;

vt,o(t) = (1/3)sinθ(t)cosφ(t)vw(t) ;
else

(θ ∗o ,r
∗
o,v
∗
t,o) = argmax

{
Pcyc (θ ,r,vt,

∫
Pi(t)dt,∆ti)

}
;

vt,o(t) = v∗t,o cosφ(t);
end
α∗0,o = α∗o −∆α(α∗o ,r

∗
o);

(α∗0,i,T
∗

i ) = argmax
{

Pcyc(α0,i,Ti,
∫

Po(t)dt,∆to)
}

;
end

Let us consider the de-powering limit of the kite is α0 = −60◦, set
the convergence tolerance to 100W, and shorten the retraction phase opti-
mization grid to intervals in which the optimal values are more likely to be
found. For the 1st iteration, we search inside α0,i ∈ [−60,−20]◦ (δα0,i = 2.5◦)
and Ti ∈ [200,900]N (δTi = 100N). For the following iterations we still
consider these intervals, but center the grid around the solution previously
found 5 times the resolution in each direction. The resolution is then set
to δα0,i = 2◦ and δTi = 25N. The values of all other involved parameters
remain as presented so far. With these settings, the solution found is ν∗ =
(θ ∗o ,r

∗
o,v
∗
t,o,α

∗
0,o,α

∗
0,i,T

∗
i ) = (70.4◦,400m,2.3m/s,6.8◦,−50◦,600N), yield-

ing an optimal cycle power Pcyc
∗ = 9.2kW = 0.672Po. The algorithm took 1

minute and 55 seconds to converge in 3 iterations, with more than 90% of the
duration required for simulating the retraction phases. Note that, because the
optimal reel-out speed found was 25.8% lower than the value that maximizes
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the traction power (1st iteration), we obtained a 9.3% increase in the optimal
value of cycle power, accompanied by a 27.8% increase in the traction force.
The optimized kite trajectory is shown in Fig. 44.

Figure 44 – Optimized flight trajectory during two pumping cycles. The 1st

cycle begins in the middle of the traction phase.
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The time course of some system variables are shown in Fig. 45. Note
how the design and validation results of the retraction phase, with the 2D
and 3D models of Sects. 2.2.3 and 2.2, respectively, closely match. In the
traction phase we can see the cyclic variations in the traction force, power,
polar angle, angle of attack, and in the steering input ∆l. The discontinuity in
∆l is due to the transition from the reel-in trajectory with φ = 0 back to the
lemniscate, when a new pumping cycle begins.

To show how the optimal pumping cycle solution behaves when sys-
tem parameters are varied we ran a sensitivity analysis with respect to the
nominal solution previously obtained. Because the traction force is influ-
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Figure 45 – Time evolution of system variables in a pumping cycle.
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enced by the kite glide ratio Ek through the C coefficient, whereas T depends
linearly on the kite area A (see Eq. (2.50)), we adjusted the ramp inclina-
tion from the nominal value as cT = cT,nom(C/Cnom) when varying Ek, and
cT = cT,nom(A/Anom) when altering A. The results are shown in Fig. 46. Vari-
ations of the kite mass were not considered because the model used for the
traction power optimization is massless. Also keep in mind that the tether
diameter remained unaltered, although in reality it should vary according to
the traction force variations.

Observe the strong influence of the kite glide ratio on the cycle power:
a variation of 30% on Ek almost doubled Pcyc, only possible because the base
angle of attack increased by 50%, to α0,i =−27.5◦. Less de-powering results
in a higher traction force during the reeling-in, which is indeed observed. Al-
though not shown in Fig. 46, the higher glide ratio causes the kite tangential
speed to increase, and therefore the reel-in maneuver must end around zenith.
This situation may require a more elaborate strategy to maintain the traction
force above a minimum safety level when making the transition back to the
traction phase. In any case, the high sensitivity of Pcyc on Ek justifies the ef-
forts in developing more aerodynamically efficient materials for power kites,
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Figure 46 – Sensitivity analysis by varying the kite glide ratio, Ek =CL/CD,k,
and projected wing area, A, around their nominal values.
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especially for flexible (ram-air and LEI tube) ones. In the right-hand side plot
we can see that the base angle of attack is not affected by variations of the
kite area, as one could have expected. On the other hand, the inclination of
the Pcyc curve is higher than one, which does not correspond to the expected
linear behavior modeled by Eqns. (2.50) and (2.51). This is partially because
the tether diameter was kept constant in spite of the changing traction force,
but especially due to variations of the average tether length r∗o, and the corre-
sponding changes on the operating altitude and nominal wind, according to
Eq. (2.66).

It is important to highlight that, when scaling up to higher power lev-
els an AWE system based on a tethered wing, the necessary increase in the
tether diameter required to match the higher traction force levels contributes
to decreasing the equivalent drag coefficient of the airborne system, indepen-
dently of the airfoil efficiency. To better understand this effect, let us recall
Eq. (2.36). In the right-hand side of that expression we have two shares of
the total drag: the airfoil drag, and the tether drag – the latter depending on
the tether diameter dt. Therefore, even if the airfoil drag coefficient CD,k and
the tether drag “specific” coefficient CD,t remain the same when scaling up
the system, the “total” tether drag coefficient, i.e. the second share in Eq.
(2.36), grows linearly with dt, just as it does with the tether length r. This
observation suggests that the increase in Pcyc when increasing either the wing
glide ratio Ek or the projected wing area A in the sensitivity analysis of Fig.
46 should be, in reality, lower. A more detailed study in this regard is yet to
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be carried out.
As final remarks to this section, we can mention a few other points for

investigation in future works. Firstly, the lemniscate focus al is a parameter
that is still to be optimized. Also, the ramp inclinations of the base angle of
attack cα and traction force cT were set empirically. Therefore an interesting
question is what would be the best values of cα and cT to be considered or,
more generally, how to optimize these parameters. This is particularly im-
portant because the combination of tether length with the wing tangent speed
(e.g. about 100km/h regardless of the system size) determines a required
time to leave the crosswind condition, i.e. to reach a certain elevation angle.
Hence, if the parameters cT and cα are not properly chosen, the transition into
the reel-in phase may be too fast or too slow.

Alternatively, it would be interesting to relax the requirement of con-
stant setpoints and linear ramping down of the base angle of attack and trac-
tion force, and use more powerful optimization tools, such as NMPC, to find
trajectories of these parameters that yield a higher cycle power. In this work
we have used a simple grid search method for the optimization because we
would like to have an idea on how sensitive the optimal solution is with re-
spect to changes in some parameters as, for instance, the base angle of attack
and traction force setpoints of the retraction phase.

Another improvement would be to model and include in the optimiza-
tion the transition from the retraction back to the traction phase in order to
guarantee a safe maneuver. Also, for the cases when e.g. the wing aerody-
namic curves and the wind model are not well known, an alternative modeling
and optimization procedure based on more easily estimated (available) pa-
rameters could be developed. Finally, regarding the aerodynamics and struc-
tural dynamics of flexible kites, it would be valuable to know where the con-
straint on the minimum angle of attack is, since we showed how a relaxation
of this constraint yields a higher cycle power.

3.3 POWER CURVE

The power curve of a wind device represents how much power is
extracted from the wind as a function of the wind speed. In the case of a
horizontal-axis wind turbine, because the rotor operates at a fixed height, we
need to consider only the wind speed at that height. This means that the power
curve would be, in principle, independent of the site where the turbine oper-
ates. However, in the case of a pumping kite, due to its degree of freedom to
change the operating height according to the wind shear model of Eq. (2.66),
we must vary the wind speed at the reference height, vref. As a consequence,
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the wind speed will be changed accordingly at all heights. As we will see, the
distinct interpolation of the wind shear model for each location may result in
a distinct power curve for the same pumping kite system.

For the sake of simplicity, we will consider from now on a simpler
model for the pumping cycle than the optimization method proposed in Sect.
3.2. This simplification is twofold. Firstly, as long as the traction force is
below the tether capacity, the reel-out speed is the “classic” solution for the
traction power maximization, given by Eq. (1.5). If the nominal wind at the
wing altitude becomes large enough so that the traction force is saturated, the
reel-out speed increases above the value that maximizes the traction power in
order to limit the traction force. The second simplification on the pumping
cycle regards the retraction phase: we will assume we can reel-in the tether
while keeping the polar angle constant. This requires finding the angle of
attack that stabilizes the θ motion given by Eq. (2.42a). Such reel-in maneu-
ver could be realized, for instance, by means of the B-stall procedure for foil
kites, discussed in Sect. 2.1. Here we will assume that, during the retraction
phase, the B-stall causes the lift coefficient to be reduced to a fifth of the value
indicated in Fig. 33, i.e. the whole curve is divided by 5. Another advantage
of considering the foil kite curves instead of the LEI tube kite ones of Fig. 33
is that the foil curves were obtained through a CFD method. Therefore, based
on the latter curves we should get a more realistic feel of how much mechan-
ical power can be harvested by a real system during the traction phase.

Motivated by the idea of comparing the AWE approach to the con-
ventional technology of wind turbines, we will consider henceforth a larger,
more powerful pumping kite system. As a size reference, let us consider a
wind turbine with a rotor diameter of 90m and a nacelle placed on top of a
tower 80m high, driven by three blades with a length of 44m (“wingspan”)
and an average chord length (blade “height”) of 2.5m. Turbines of this size
usually have a rated (electric) power around 2MW. We then define the wing
projected area as the total area of the three blades combined. The pumping
kite parameters are summarized in Table 7.

Considering the location of Schleswig (Germany), the power curve as
well as the behavior of other system variables are presented in Fig. 47. It is
important to mention that we are considering two constraints here. The first
one is the maximum operating height, zk,max = 600m, which corresponds to
the limit above which the logarithmic wind shear model may loose accuracy.
The second constraint is the maximum tether length rmax, which derives from
spatial constraints for a hypothetical hybrid wind farm with both tower-based
wind turbines and pumping kites. For wind power plants installed in flat areas,
as a general rule, the turbines are distant from one another 7R in the direction
of the prevalent wind, and 4R in the perpendicular direction, where R is the
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Table 7 – Parameterization of a foil pumping kite similar in size to a 2MW
horizontal-axis wind turbine.

Description Symbol Value Unit

Air density ρ 1.2 kg/m3

Gravitational acceleration g 9.82 m/s2

Mass of wing and control pod m 203 kg
Projected wing area A 330 m2

Projected wingspan ws 39.8 m
Number of main tether(s) nt 1 -
Tether density ρt 731.9 kg/m3

Tether drag coefficient CD,t 1.2 -
Tether diameter dt 18 mm

Source: original

rotor diameter. Hence, assuming R≈ 100m and 100m of minimum distance
between the tethered wing and the turbine tower, we obtain rmax = 600m (for
θ = φ = 0). The amount of tether to be reeled-out/in during a pumping cycle
is ∆r = 200m. We can divide the power curve in five regions:

I right below the cut-in value, the wind speed is simply too low for op-
eration. Although the mathematical model suggests a very small yet
positive cycle power, unmodeled mechanisms, such as the possible de-
pendence on a minimally strong wind to allow for launching and land-
ing the kite, as well as the negative effect of the airborne weight (wing,
control pod and tether), render the operation unfeasible;

II right after the cut-in value, the wind speed becomes strong enough for
the system operation. The mean, optimal values of tether length r∗,
polar angle θ ∗, and angle of attack α∗ result from the traction power
optimization given by Eq. (3.21). Within this region the traction power
grows with the cube of the wind speed, according to Eq. (2.51). It
is interesting to observe that, although the power in the traction and
retraction phases are (in magnitude) approximately the same, the cy-
cle power is almost as high as the traction power. This is due to the
relatively very high duration of the traction phase w.r.t. the retraction
phase, i.e. a large duty cycle10. Also, observe how the reel-out speed
curve has a lower inclination than the nominal wind curve (one third,
in fact). The traction force grows according to a parabola given by Eq.

10The importance of the duty cycle was considered in the pumping cycle optimization pro-
posed in Sect. 3.2. In this simplified method, the duty cycle is not an optimized variable.



147

Figure 47 – Power curve of a pumping kite with a 330m2 foil wing and ad-
hoc retraction phase with constant polar angle, for the location of Schleswig,
Germany. The reference height of the wind model is zref = 30m.

Source: original

(2.50). Note how the polar angle is high, around 63◦, placing the wing
in approximate crosswind conditions. Combined with the mean tether
length saturated at r∗ = rmax− 0.5∆r, the operating altitude is around
220m, which is above the blade tips of our hypothetical 2MW wind
turbine. It is also interesting to observe that the angle of attack of the
retraction phase, in this region, decreases as the reference wind speed
vref increases. This is because, as the apparent wind becomes faster, a
lower lift coefficient is needed to counterbalance the airborne mass in
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order to keep the polar angle constant.

III the beginning of this region is characterized by the saturation of the
traction force. In this case, considering the Dyneema R© curve of mini-
mum breaking load of Fig. 32 and the tether diameter dt = 18mm, the
saturation value is Tsat = 31.05ton. As vref continues to increase, the
reel-out speed must become higher than the optimal value given by Eq.
(1.5) in order to ensure that the traction force saturation is respected.
This means the pumping kite must harvest less power in the traction
phase than it theoretically could do. In fact, note how the inclination of
the reel-out speed and the nominal wind speed become the same (par-
allel lines). Since, in this region, the reel-out speed varies whereas the
traction force is kept constant, the power P = T vt now varies linearly
with the reel-out speed. Also, note how the traction phase duration
decreases towards the retraction phase duration as the nominal wind
becomes stronger, i.e. the duty cycle decreases. This has a negative
impact on the cycle power, which increases progressively slower than
the traction power.

IV this region begins when the reel-out speed reaches saturation, here as-
sumed to be at vt,sat = 10m/s. Since the traction force was already
saturated, the mechanical power is kept constant even though the nom-
inal wind increases with the increasing vref. This power saturation can
be achieved by deviating the operating point from the optimal cross-
wind condition, i.e. θ diminishes. Consequently, the operating height
increases, and so does the nominal wind speed (note the slight change
of inclination w.r.t. region III). Another consequence of the decrease
in the mean polar angle is that the increasing drag force – due to the
stronger wind – tends to push the wing back to a high θ . Thus, the θ

equilibrium at low values can only be achieved by a stronger lift force,
and therefore the angle of attack must increase. This, in turn, causes
the traction force during the reel-in phase, and consequently the power
expense, to increase. Finally, the augmented power expense causes the
cycle power to monotonically diminish as vref becomes faster.

V if the nominal wind becomes too strong, above the cut-off value that
defines the beginning of this region, the pumping kite must be put out
of operation (landed). One reason for this is that the cycle power pro-
gressively decreases in spite of the increasing wind – a loss of effi-
ciency that was already happening in region IV. Secondly, the very fast
nominal wind (approaching hurricane speeds around 100km/h) usually
comes along with high turbulence and stormy conditions, not to men-
tion other threats as lightning, thus resulting in a hazardous operating



149

scenario. It is postulated, though, that the extra degree of freedom of
the pumping kite to move away from the crosswind (by decreasing θ )
allows the pumping kite to operate in stronger wind speeds than the
tower-based wind turbine, i.e. to have a higher cut-off wind speed.

One can also observe in Fig. 47 that r∗ remains approximately con-
stant even though the mean tether length is optimized for each distinct value
of the reference wind speed vref. This occurs in this particular case because,
given the maximum tether length constraint rmax = 600m, changing the po-
lar angle has a much more significant effect on keeping the traction power
constant (in regions IV and V) than changing r.

As claimed in the beginning of this section, differently from a con-
ventional wind turbine, the power curve of a pumping kite depends on the
location where it operates because of the distinct wind shear model interpo-
lations. To illustrate this, we computed the power curve of the same pumping
kite, with parameters given in Table 7 and Fig. 33, for the locations of Con-
fins, Fortaleza and Schleswig, considering their wind shear model parameters
in Table 3. Note that the wind model for these sites was interpolated with the
same reference height zref. This is required for the analysis that will follow.
The resulting curves of (mechanical) cycle power, average polar angle, av-
erage operating height, and nominal wind at the operating height are shown
in Fig. 48. The average tether length was roughly 500m for all locations
throughout the whole span of vref.

Taking into consideration the wind shear curves of Fig. 27, one could
readily accept the higher cycle power (up to reaching its peak) in Schleswig.
What can seem a contradiction at first sight is the fact that the cycle power
curve in Confins increases faster than in Fortaleza, although Fortaleza has a
clearly stronger wind speed at all heights. The explanation lies in the surface
roughness coefficient z0: it basically indicates how strong is the wind gain
with the altitude. For low values of z0 the wind grows slowly with the al-
titude (more “horizontal” wind shear curves in Fig. 27), as happens e.g. at
the sites of Fortaleza (z0 = 0.0052), Alta Floresta (z0 = 0.0012) and Brindisi
(z0 = 0.0083). On the other hand, sites as Belém (z0 = 8.5124), Porto Alegre
(z0 = 4.8328), De Bilt (z0 = 7.4770) and Schleswig (z0 = 3.8512) present a
stronger wind gain, with more “C-shaped” wind curves. Confins has an in-
termediate surface roughness: z0 = 0.3932. Because in the comparison of the
cycle power curves in Fig. 48 we are applying the same vref for all locations,
regardless of how often such wind speed occur, what causes the curves to be
different is the z0 coefficient. We will see in Chap. 4 that, although Confins
yields theoretically a better cycle power curve than Fortaleza, the influence
of the wind histogram causes a pumping kite in Fortaleza to produce a higher
amount of energy because of the higher capacity factor.
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Figure 48 – Power curves of a pumping kite with a 330m2 foil wing and ad-
hoc retraction phase with constant polar angle, for the locations of Confins,
Fortaleza and Schleswig.

Source: original

Furthermore, observe in Fig. 48 that the pumping kite in Schleswig
operates at a lower polar angle, which implies a higher altitude. In such case,
the option to deviate more from the crosswind operation in order to have
a stronger nominal wind is advantageous, given the larger z0 coefficient of
Schleswig. For the cases of Confins and Fortaleza, however, the best option
found by the optimizer was to prioritize the crosswind condition.

As a final comment on the power curve note that, although the pump-
ing kite has been parameterized to approximately match a 2MW wind tur-
bine, it has reached a peak traction power of about 3MW. As we will discuss
for the case of wind turbines in Sect. 4.3.1, to obtain the electric power we
should take into account several losses, including aerodynamic (blade tip),
mechanical and electrical ones. Put together, these losses may result in an ef-
ficiency factor around ζ ≈ 0.7, to be applied to the mechanical power curve.
This would cause the maximum traction power of Fig. 47 to yield the approx-
imated 2MW of electric power expected. Moreover, to compute the electric
cycle power through Eq. (3.23), besides multiplying the traction power by
ζ , one must divide the retraction power by the same efficiency factor. This
leads us to conclude that the conversion efficiency of the pumping kite has a
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stronger impact on the net power delivered – due to the retraction phase – than
in the case of a wind turbine or even Loyd’s drag mode, which are constantly
generating energy.
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4 MODELING FUNDAMENTALS OF WIND ENERGY

We have two goals in this chapter. The first one is to compare horizontal-
axis wind turbines with pumping kites in terms of power production. Having
studied the power curve of a pumping kite based on the model of Sect. 2.3,
we now need a model for the turbine. Our second goal is to verify that both
Loyd’s lift and drag mode machines can be seen as a specific case of the
generic actuator disc – considered when deriving the Betz limit for power
extraction from the wind through conservation of energy.

4.1 BETZ THEORY AND THE ACTUATOR DISC MODEL

The modeling framework discussed in the sequel is reproduced from
Manwell, McGowan and Rogers (2009). Let us consider an actuator disc
subject to an airflow within a control volume. This actuator disc is a generic
device upon which the airflow can execute work and, therefore, transfer en-
ergy. Keep in mind that we are not specifying whether the disc corresponds to
the rotor swept area of a horizontal-axis wind turbine, or the area covered by
a tethered wing in a circular flight path and operating with a high polar angle
(approaching 90◦). We will start by considering only the axial dimension of
the disc, and use momentum theory to derive the Betz limit. To this end, let
us also establish the following assumptions:

• a homogeneous and incompressible fluid flow at steady state (no accel-
erations);

• no frictional drag;

• an infinite number of blades (or wings);

• a uniform thrust force upon the disc area;

• a non-rotating wake;

• a static pressure far upstream and far downstream of the disc equal to
the undisturbed ambient static pressure.

The idea is that the energy harvested by the actuator disc from the
airflow must decrease the wind speed, in accordance with the principle of
conservation of energy. In other words, if the wind has lost kinetic energy, its
speed downstream of the disc must be lower than it is upstream. Hence we can
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define four wind speeds along the airflow direction: the far upstream speed,
U1, the upstream speed reaching the disk, U2, the downstream speed leaving
the disc, U3, and the far downstream speed, U4. This scenario is depicted in
Fig. 49. The disc area is A2 = A3 = A.

Figure 49 – Actuator disc of a generic wind power device immersed in a
homogeneous airflow.

Source: Manwell, McGowan and Rogers (2009)

From the conservation of linear momentum for a one-dimensional, in-
compressible, time-invariant airflow interacting with the actuator disc, the
thrust (force) T upon the disc is equal, in magnitude, to the rate of change of
momentum of the air stream:

T =U1 (ρAU)1−U4 (ρAU)4 , (4.1)

where A is the cross-sectional area, U is the wind speed, and the subscript
indicates the numbered cross-section along the flow of Fig. 49. Observe that
ρAU = ṁ is the mass flow rate, which is constant according to our assumption
of a steady state flow. Hence (ρAU)1 = (ρAU)4, and Eq. (4.1) is simplified
to

T = ṁ(U1−U4) . (4.2)

Note that a positive thrust upon the disc requires that U1 >U4. Now let
us find how the wind speeds U2 and U3 are related to U1 and U4. Since work
is executed by the air stream only upon the disc, i.e. between cross-sections
2 and 3, we can apply Bernoulli’s equation to the control volumes on either
sides of the disc:
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4 , (4.3)

knowing that the assumption of a homogeneous fluid implies that ρ1 = ρ2 =
ρ3 = ρ4 = ρ . The thrust can also be expressed as the net sum of forces on
each side of the actuator disc:

T = A(p2− p3) . (4.4)

The assumption of static pressures far upstream and far downstream
equal to the undisturbed ambient static pressure means that p1 = p4 in Eq.
(4.3), whereas the non-rotating wake implies that U2 = U3. With these sim-
plifications we can solve Eq. (4.3) for p2− p3 and replace the result into Eq.
(4.4), obtaining another expression for the thrust:

T =
1
2

ρA
(
U2

1 −U2
4
)

. (4.5)

If we now equate the thrust expressions of Eqns. (4.2) and (4.5), re-
calling that the constant mass flow also means that ṁ = ρAU2, we get

U2 =
U1 +U4

2
. (4.6)

With this we have related the wind speeds at all four cross-sections of
Fig. 49. The next step is to relate the wind speeds to the power extraction at
the rotor disc. To this end, let us define the axial induction factor a, repre-
senting the fractional decrease in wind speed between the far upstream and
the upstream cross-section at the rotor disc:

a =
U1−U2

U1
. (4.7)

Another way to think of a is as a variable representing a “permeable
wall” effect: if a = 0 then the actuator disc does not slow down the wind
flow reaching it, i.e. the disc is a perfectly permeable obstacle. As the disc
starts extracting kinetic energy from the airflow, U2 decreases and a increases,
meaning that the disc becomes less permeable. From Eqns. (4.7) and (4.6)
we get the relations

U2 =U1(1−a) and U4 =U1(1−2a) . (4.8)

Observe that, if a = 1/2, the wind far downstream of the actuator disc
has slowed down to zero. In fact, for a > 1/2 the wind at U4 would reverse
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its direction, which obviously does not correspond to the reality. The a = 1/2
value corresponds to an upper limit for the validity of this model based on the
one-dimensional linear momentum theory (or simply “Betz theory”).

The mechanical power captured by the actuator disc can be obtained
as the thrust, given by Eq. (4.5), times the wind speed at the disc:

P =
1
2

ρA(U2
1 −U2

4 )U2 . (4.9)

By substituting the expressions of U2 and U4 from Eq. (4.8) into Eq.
(4.9), and denoting the free stream (far upstream) wind speed as U =U1, we
obtain

P =
1
2

ρAU34a(1−a)2 . (4.10)

If we now divide the harvested power by the power available in the
wind flow, given by Eq. (1.1), we obtain the power coefficient

CP =
(1/2)ρAU34a(1−a)2

(1/2)ρAU3 = 4a(1−a)2 . (4.11)

There are two roots to the polynomial ∂CP(a)/∂a. The first root is a=
1 and corresponds to the minimum of the function CP(a), whereas the other
root is a∗ = 1/3 and corresponds to the maximum of the power coefficient,
CP(a∗) = 16/27≈ 0.5926, also known as the Betz limit. This means that any
wind power device, under the assumptions here made, can extract no more
than about 60% of the kinetic energy from the wind.

Similarly to the mechanical power, we can also obtain the thrust coef-
ficient by replacing the expression of U4 from Eq. (4.8) into Eq. (4.5), and
then dividing the resulting expression by the dynamic force present in the
airflow:

CT =
(1/2)ρAU24a(1−a)

(1/2)ρAU2 = 4a(1−a) . (4.12)

In Fig. 50 we can see the plots of the power and thrust coefficients just
discussed. Observe that, if the axial induction factor grows above the optimal
value a∗ = 1/3, not only does the power start to drop but also the thrust on the
actuator disc keeps increasing up to a = 1/2. If the device is a horizontal-axis
wind turbine, the thrust produces a torque on the foundations at the ground
proportional to the tower height. Hence, one should avoid exposing the tur-
bine supporting structure to unnecessarily high loads with a > 1/3. Note that,
in the case of an AWE tethered wing, the thrust corresponds to the tether trac-
tion force, whereas the torque on the foundation should be negligible because
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the drum housing the tether is practically at ground level.

Figure 50 – Curves of power and thrust coefficients of the actuator disc, ac-
cording to Betz theory, as a function of the axial induction factor (a).

Source: Manwell, McGowan and Rogers (2009)

So far we have related the wind speed at different points along the
wind direction with the power and thrust coefficients of the actuator disc im-
mersed in this airflow. This was possible by introducing the axial induction
factor a. Although we have determined an optimal value of a for the power
extraction, it is still not clear how we can reach such value. We need an en-
hanced model that considers the aerodynamic curves of the turbine blades, or
the tethered wing, and gives us a control parameter/input. Before we do this,
let us take an intermediate step in the modeling procedure, where we will in-
troduce the radial dimension of the disc and, by doing so, consider its angular
speed.

4.2 ANGULAR MOMENTUM THEORY

Because in the previous section we considered only the axial dimen-
sion of the actuator disc, we did not model the rotational effects in the radial
direction. For instance, we disregarded real-world effects such as the rota-
tional wake, and the influence of the disc angular speed on the “permeable
wall”. In this section we will extend the one-dimensional disc model with
the radial dimension. We will use the variable dr as an infinitesimal displace-
ment in the direction of the radius r, forming an annular stream tube with
cross-sectional area dA = 2π r dr, as shown in the right-hand side of Fig. 51.
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Figure 51 – Actuator disc, with axial and radial dimensions, of a generic wind
power device immersed in a homogeneous airflow.

Source: Manwell, McGowan and Rogers (2009)

As a starting point of our analysis, let us now consider that, as the wind
flows through the actuator disc, it causes the disc to rotate with an angular
speed Ω, i.e. a torque is applied to the disc by the wind. According to the
principle of conservation of angular momentum, the disc must then apply a
torque of similar magnitude and opposite direction to the wind mass, causing
it to rotate with an angular speed ω as the wind continues to flow downstream.
The result is a helical trajectory of the wind flow downstream, characterizing
the wake rotation. From the principle of conservation of energy, we can say
that the work exerted by the thrust upon the actuator disc causes the disc to
rotate relative to the wind flow, or vice-versa. From the point-of-view of the
wind mass, its angular speed relative to the disc increases from Ω to Ω+ω ,
hence a variation of ω inside a time interval ∆t, where the average relative
wind speed is Ω+ω/2. We have that the torque exerted upon the disc ring is
mr2(ω/∆t), where m = ρ dAU2 ∆t is the wind mass and ω/∆t is the suffered
acceleration. Multiplying this torque by the average angular speed of the wind
Ω+ω/2 inside the ∆t interval gives us the harvested mechanical power. The
latter is then equal to the power exerted by the thrust: (p2 − p3)dAU2 ∆t.
Equating both power expressions yields

p2− p3 = ρ

(
Ω+

1
2

ω

)
ωr2 . (4.13)

Hence the thrust on a ring of radius r is

dT = (p2− p3)dA =

[
ρ

(
Ω+

1
2

ω

)
ωr2

]
2π r dr . (4.14)
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Let us now define the angular induction factor

a′ = ω/(2Ω) . (4.15)

By solving Eq. (4.15) for ω and substituting the result into Eq. (4.14),
the expression of the annular thrust becomes

dT = 4a′(1+a′)ρ Ω
2

π r3 dr . (4.16)

Note that we can also obtain the thrust on an annular section by mul-
tiplying the thrust coefficient of Eq. (4.12) by the ring cross section dA =
2π r dr. The result is

dT = 4a(1−a)ρ U2
π r dr . (4.17)

By equating the thrust expressions of Eqns. (4.16) and (4.17) we ob-
tain the relationships

a(1−a)
a′(1+a′)

=
Ω2 r2

U2 = λ
2
r , (4.18)

where λr is the local speed ratio, which relates the tangential speed of the
ring of radius r to the free-stream wind speed U . If we make r = R, where R
is the radius of the actuator disc, we obtain the tip speed ratio

λ =
ΩR
U

=
R
r

λr , (4.19)

an important quantity when optimizing the operating point of the wind power
device, as we will see. Again using the principle of conservation of angu-
lar momentum, the torque exerted upon the rotor disc must be equal to the
variation of angular momentum of the airflow during the ∆t time interval
in which the wind goes through the disc. Recalling that the wind mass is
m = ρ dAU2 ∆t, and the ring area is dA = 2π r dr, the torque becomes

dQ = mr2︸︷︷︸
wind inertia

ω

∆t
= ρ 2π U2 ω r3 dr . (4.20)

Substituting U2 = U(1− a) from Eq. (4.8) and ω = 2Ωa′ from Eq.
(4.15), we can rewrite Eq. (4.20) as

dQ = 4a′(1−a)ρ U Ωπ r3 dr . (4.21)

The mechanical power harvested by each annular segment of the ac-
tuator disc is dP = ΩdQ, in which we can replace Eqns. (4.21), (4.19) and
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(4.18) to obtain

dP =
1
2

ρ AU3
[

8
λ 2 a′(1−a)λ 3

r dλr

]
︸ ︷︷ ︸

dCP

, (4.22)

where dCP is the power coefficient of the ring. If we integrate it from λr = 0
(assuming that the blades/wing begin at r = 0) to λ we get the total power
coefficient of the actuator disc. In order to integrate dCP in Eq. (4.22), we
need to relate the variables a, a′ and λr. We start by solving Eq. (4.18) for a′,
whose positive root (the one with physical meaning) is

a′ =−1
2
+

1
2

√
1+

4
λ 2

r
a(1−a) . (4.23)

Note that, in order to maximize the power production, the term a′(1−
a) in Eq. (4.22) should be maximum. Hence, substituting the expression for
a′ of Eq. (4.23) into a′(1−a) and setting its partial derivative w.r.t. a to zero,
the root of physical meaning is

λ
2
r =

(1−a)(4a−1)2

1−3a
. (4.24)

Substituting this result into Eq. (4.18) yields the relationship between
a and a′ we were looking for:

a′ =
1−3a
4a−1

. (4.25)

If we differentiate Eq. (4.24) w.r.t. a, we obtain a relationship between
the infinitesimals da and dλr at the condition of maximum power production:

2λr dλr =
6(4a−1)(1−2a)2

(1−3a)2 da . (4.26)

By using Eqns. (4.24), (4.25) and (4.26) into the expression of dCP in
Eq. (4.22), and taking the integral, we end up with

CP,max =
24
λ 2

∫ a2

a1

[
(1−a)(1−2a)(1−4a)

(1−3a)

]2

da . (4.27)

The lower integration limit, a1, is obtained by replacing λr = 0 in Eq.
(4.24). The root a1 = 1 does not correspond to a feasible operation (outside
the validity interval of Betz theory), whereas the root a1 = 1/4 is the one with
physical meaning, that we will work with. As for the upper integration limit,
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a2, it remains as a function of the tip speed ratio by replacing λr = λ in Eq.
(4.24). Also, note in Eq. (4.24) that the tip speed ratio goes to infinity as
a→ 1/3. By solving Eq. (4.27) as a function of λ we get the result shown
in Fig. 52. We can see that, because we are now modeling the wake rotation,
as the tip speed ratio increases the maximum power coefficient approaches
asymptotically the Betz limit. In plain words, the conclusion we take under
the set of assumptions made is that, the faster the turbine rotates (or the faster
is the tangential speed of the tethered wing), the more energy can be harvested
from the wind within the limit established by Betz.

Figure 52 – Maximum power coefficient of the actuator disc as a function of
the tip speed ratio.

Source: Manwell, McGowan and Rogers (2009)

In spite of the results of Fig. 52, the optimal tip speed ratio of horizontal-
axis wind turbines is known to be typically below 10; for faster angular speeds
the power extraction progressively diminishes. This effect is due to the com-
bination of lift and drag forces upon the airfoil (blade or wing) as a function
of the angle of attack, as we will see in the sequel.

4.3 BLADE ELEMENT MOMENTUM THEORY

So far in this chapter we have analyzed a device extracting the wind
power without taking into account the components which actually interface
with the wind: the blades of a wind turbine (or the tethered wing). When
considering an airfoil with aerodynamic curves resulting in a limited glide
ratio, the curve of the power coefficient with wake rotation shown in Fig.
52 becomes an upper limit (ideal case). Even though we will now consider
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a discrete number of turbine blades (or one tethered wing), and the airfoil
aerodynamic behavior as a function of the blade section through the variable
r, we will assume no interaction between the sections comprising the blades,
i.e. no radial airflow. In reality, there is a radial flow that contributes to
decreasing the efficiency of the airfoil.

The apparent wind reaching the blade is the vector sum of the axial
wind component U(1− a), according to Eq. (4.8), and the average apparent
(relative) tangential speed Urad = Ω+ω/2 discussed in Sect. 4.2. If we use
the expression of ω from Eq. (4.15), we can reformulate the tangential speed
as

Urad = r Ω(1+a′) . (4.28)

The magnitude of the relative (apparent) wind speed reaching the blade
section is then

Urel =
√
[U(1−a)]2 +[r Ω(1+a′)]2 . (4.29)

The variables used to model the blade geometry and the aerodynamic
forces are depicted in Fig. 53. The blade pitch angle at the blade root (nearest
section to the nacelle) is θp,0, and is used as a control input to optimize the
power extraction, or keep it at the rated power for stronger winds. The dif-
ferent twist angle θT for each section is what gives the “twisted” shape of a
wind turbine blade, and is obtained to optimize the torque on the rotor. The
section pitch angle1 θp = θp,0+θT is the angle between the section chord line
and the plane of rotation. The angle of relative wind is φ , which corresponds
to the partial angle of attack, ∆α , of the pumping kite model (see Sect. 2.2),
whereas the section pitch angle corresponds to the base angle of attack, α0.
The difference here is that, instead of having the (total) angle of attack of
each section as the sum of the partial (∆α) and base (α0) components, the
relationship is

φ = θp +α = (θp,0 +θT)+α . (4.30)

The lift and drag forces on a blade section are dFL and dFD, respec-
tively. From their vector sum we obtain the total aerodynamic force, which
can be decomposed as a component in the axial (normal) direction, the thrust
dFN, and a component in the radial direction, dFT. From Fig. 53, the defini-
tion of the local speed ratio λr in Eq. (4.18), the definition of the aerodynamic
forces as used in Eq. (2.37), and knowing that c is the section chord length,

1Note that, in a tethered wing, we have θT = 0.
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Figure 53 – Blade geometry and variables used to model the blade aerody-
namics, from the perspective of looking down from the blade tip.

Source: Manwell, McGowan and Rogers (2009)

we obtain the following relationships:

tanφ =
U(1−a)

Ωr(1+a′)
=

1−a
(1+a′)λr

(4.31a)

Urel =
U(1−a)

sinφ
(4.31b)

dFL = (1/2)ρ Cl U2
rel cdr (4.31c)

dFD = (1/2)ρ Cd U2
rel cdr (4.31d)

dFN = dFL cosφ +dFD sinφ (4.31e)
dFT = dFL sinφ −dFD cosφ (4.31f)

Assuming that the actuator disc has B blades, substituting Eqns. (4.31c),
(4.31d) and (4.31b) into Eq. (4.31e) yields the total thrust differential at a ring
of radius r of the disc:
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dFN =
1
2

ρ B(Cl cosφ +Cd sinφ)
U2(1−a)2

sin2
φ

cdr . (4.32)

Similarly, we can calculate the total torque differential at the ring:

dQ = Br dFT =
1
2

ρ B(Cl sinφ −Cd cosφ)
U2(1−a)2

sin2
φ

cr dr . (4.33)

Observe that the drag force has the negative effects of increasing the
thrust and decreasing the torque, in the case of a wind turbine. These ef-
fects are amplified when the actuator disc rotates at a higher angular speed Ω,
thus causing φ to diminish. Using Eqns. (4.33), (4.31b) and (4.19), we can
compute the total power harvested by the horizontal-axis turbine as

P =
∫ R

r0

ΩdQ =
1
2

ρ U3 λ Bc
R

∫ R

r0

(1−a)2

sin2
φ

(Cl sinφ −Cd cosφ)r dr . (4.34)

Let us define the local solidity

σ
′ =

Bc
2π r

, (4.35)

which represents the ratio between the ring arc occupied by the blades w.r.t.
the total ring perimeter. Assuming that the blades begin at a radial dis-
tance r0 from the rotor center, we can define the equivalent rotor radius Rb =√

R2− r2
0. Eq. (4.34) can then be rewritten as

P =
1
2

ρ π R2
b U3︸ ︷︷ ︸

wind power

2λ

R2
b R

∫ R

r0

σ ′ (1−a)2

sin2
φ

(Cl sinφ −Cd cosφ)r2 dr︸ ︷︷ ︸
power coefficient, CP

. (4.36)

Before we can numerically integrate CP in Eq. (4.36), we need to find
a relationship between a, a′ and φ . This can be achieved by equating both
expressions for the torque differential: Eq. (4.21), obtained only with the
conservation of angular momentum, and Eq. (4.33), obtained through the
aerodynamic forces on the blades. The result is

a′ =
σ ′(Cl sinφ −Cd cosφ)

4λr sin2
φ

(1−a) . (4.37)
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In a similar way, the other relationship comes from equating the thrust
expressions of Eqns. (4.17) and (4.32). We obtain

a
1−a

=
σ ′(Cl cosφ +Cd sinφ)

4 sin2
φ

= x ⇒ a =
x

1+ x
. (4.38)

To compute the solution of (φ ,a,a′) at each blade section, we use
an iterative procedure similar to that suggested by Manwell, McGowan and
Rogers (2009). Basically, we define a tolerance, tol = 10−3, and set the initial
guesses of the induction factors as aold = 1/3 and a′old = 0. These particular
values are chosen because they are asymptotes in the ideal case of a machine
with no drag and infinite number of blades, thus helping in the convergence
of the algorithm for high tip speed ratios. Having initialized (a,a′), we then
enter a while-loop in which we first compute φ using Eq. (4.31a), followed
by the computation of anew using Eq. (4.38), and then a′new using Eq. (4.37).
Next, we compute the norm of the error vector norm_err = (anew,a′new)−
(aold,a′old). If norm_err < tol the algorithm has converged and we leave the
while-loop, else we keep iterating. Besides the particular initialization values
for (a,a′), the convergence of the algorithm for high values of tip speed ratio
is also facilitated if we make Cd = 0 in Eqns. (4.38) and (4.37). This yields
negligible errors in the solution found in the case of efficient airfoils (with
high Cl/Cd). Note that, in spite of the assumption Cd = 0 to compute the
solution, we still consider the drag coefficient when computing the CP of the
wind turbine through Eq. (4.36).

For the following numerical results regarding the wind turbine, we will
consider the aerodynamic characteristics of three airfoils from the National
Renewable Energy Research Laboratory (NREL), shown in Fig. 54. We
will assume a constant chord length for all blade sections (i.e. along the
r dimensions), c = 2.5m, although the optimal c typically changes with r.
The root airfoil is at the base of the blade, at r0 = 1m, whereas the primary
airfoil is at 75% of the rotor radius R = 45, and the tip airfoil is at 95% of R.
The Cl(α) and Cd(α) coefficients of each blade section result from the linear
interpolation of the corresponding coefficients of these airfoils. Note in Fig.
54 how apparently slight modifications on the airfoil shape cause relatively
big changes on the aerodynamic coefficients. The root airfoil is the thicker,
also due to the more demanding structural (load) constraints. On the other
hand, the tip airfoil is the thinner, thus becoming the more aerodynamically
efficient between 1 and 6 degrees of angle of attack.

In fact, observe how the maximum aerodynamic efficiency E reaches
about 170 for the tip airfoil, which is about 24 times the maximum efficiency
of the foil kite of Fig. 33. The Pumping Kite (PK) equivalent aerodynamic
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Figure 54 – Aerodynamic characteristics and shape of the three NREL airfoils
comprising the blades of a wind turbine: S818 (root), S827 (primary) and
S828 (tip).

−0.5

0

0.5

1

1.5

2

L
if
t
co

effi
ci
en
t
C

L

 

 

root
primary

tip

−10 −5 0 5 10 15
−50

0

50

100

150

200

A
er
o
d
y
n
.
effi

c.
E

Angle of attack, α [deg]

−10 −5 0 5 10 15

0

0.5

1

1.5

2

x 10
4

Angle of attack, α [deg]

P
K

co
eff
.
C

0.5 1 1.5 2 2.5

−0.5

0

0.5

chord line [m]

th
ic
k
n
es
s
[m

]

 

 
root
primary

tip

Source: data from NREL

coefficient C of Eq. (2.50), upon which the power depends linearly, is in av-
erage about 330 times greater for the NREL airfoils. Because of the high
sensitivity of the pumping kite models from Sects. 2.2 and 2.3 on the aerody-
namic coefficients C and E, if we were to use these NREL airfoils we would
obtain unrealistically high values of power (and other affected variables) for
the pumping kite. What happens is that the reverse effect of the tethered wing
slowing down the airflow going through the disc, as the wing tangential speed
increases, is not considered in those models. Further in this section we will
formulate an expression for the harvested power of the traction phase of a
pumping kite (Loyd’s lift mode), flying in a circular trajectory, using blade
element momentum theory. The solution of that power expression should re-
spect the Betz limit, derived in Sect. 4.1, for any given value of aerodynamic
efficiency, thus becoming a more appropriate model for the case of more effi-
cient wings.

In Fig. 55 we can see some numerical results for the considered wind
turbine. Keep in mind that all the results were obtained by optimizing the
angle of attack of each blade section, i.e. independently choosing the angle of
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attack that maximizes the contribution dCP of each section to the total power
coefficient CP. Observe that, for a hypothetical one-bladed turbine, the peak
on CP occurs at a relatively high tip speed ratio. As we add more blades to
the turbine, the optimal λ decreases. This happens because, if λ remains the
same, the increasing number of blades tends to progressively slow down the
wind reaching the disc (thus to increase a above the optimal value a∗ = 1/3).
Also note that the higher maximum CP is obtained with 5 blades, at the lower
optimal tip speed ratio (around 6). It can be shown that, for a wind turbine
airfoil with no drag (thus infinite efficiency), the highest CP is obtained with
an infinite number of blades, and the CP curve approaches asymptotically the
Betz limit as the tip speed ratio increases to infinity, according to the dotted
curve of Fig. 52. Modern, utility-scale wind turbines have converged to 3
blades, among other factors, because of the higher cost and added complexity
of adding up blades to the rotor. Nonetheless, note that the decrease in the
maximum CP is small when comparing the 5-blade case (CP = 0.5531) to
the 3-blade case (CP = 0.5445): a 1.6% decrease considering these NREL
airfoils.

Figure 55 – Optimization results of a wind turbine with rotor radius of 45m
and a combination of the NREL airfoils S818 (blade root), S827 and S828
(blade tip).
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As already stated, for the results of Fig. 55 we have optimized the
angle of attack2 at each blade section, as shown in the bottom-right plot. We
can see that α decreases along the blade length towards the tip. Given α

and the angle of the relative wind φ found for each section, we can calculate
the pitch angle by using Eq. (4.30), as shown in the upper-right plot. If we
assume a null base pitch angle, i.e. θp,0 = 0, the pitch corresponds to the twist
angle, which can be interpolated by a function3 and used for the blade design.
This result corroborates the typical characteristic of the blades of horizontal-
axis wind turbines: the blade leaves the nacelle with a high twist angle, and
“unwinds” itself towards the tip.

Probably the most important result of Fig. 55, which is often used to
promote the development of AWE, is in the lower-left plot. The curve shows
the accumulated power coefficient (integrated dCP) along the radial direction
towards the tip of the blades. We can clearly see that the half of the blade area
connected to the root (nacelle) contributes only to about 20% of the whole
power harvested by the turbine. Therefore, much more than its contribution
to the power, the main role of the first half of the blade is to support (hold
in place) the outermost half. This conclusion leads us back to the hypothesis
presented in the beginning of Sect. 1.3.1: if we could eliminate the tower,
nacelle and the first half of the blades, and find a way to keep the second blade
half airborne, we could still generate about half of the original power, yet
with a structure orders of magnitude lighter. Consequently, transportation and
installations costs should decrease dramatically, and the economical return on
the investment should be higher, as argued by Lellis et al. (2016).

Let us consider from now on the turbine with 3 blades, following the
de-facto standard of nowadays. Its peak power coefficient is around 91.9% of
the Betz limit – a high value even for the current state-of-the-art technology.
In practice, there are several sources of inefficiency that must be applied to
the theoretical CP of Fig. 55 in order to get a realistic value of electric power
generated. Among these sources are mechanical losses (e.g. friction in the
gearbox), electrical losses in the generator, and aerodynamic losses at the
tip of the blades4 and between the blade sections. We will consider that these
combined losses result in an efficiency factor ζ = 0.7, that we should multiply
by the harvested mechanical power in order to compute the electric power.
Hence, in the case of our hypothetical 3-bladed turbine, the electric power
coefficient we will consider from now on is CP,ele = 0.7 ·0.5445≈ 0.3811.

2We have used a resolution of 0.5◦ for the angle of attack.
3In the upper-right plot of Fig. 55 we used the ad-hoc function for the twist angle θT =

−0.09 ln(0.5r/R)/((r/R)+0.4), where ln() is the natural logarithm.
4Similarly to the recirculation of air from the lower to the upper part of an airplane wing at

its tip. To minimize these losses, modern aircraft are equipped with winglets.
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4.3.1 Power curves of a wind turbine and a pumping kite

To conclude our discussions on the wind turbine, let us now compute
its (electrical) power curve and compare it to the power curve of the pumping
kite. We will again take as an example the location of Schleswig, Germany,
and vary the wind speed vref at the reference height zref = 30m. According to
Eq. (4.36), the harvested power of the turbine (P curve in Fig. 56) is the prod-
uct between the power coefficient and the power in the airflow going through
the rotor swept area. We will also consider five variants of the pumping kite:

a) similar parameterization as in Sect. 3.3: projected wing area of 330m2,
which is equal to the total area of the three turbine blades combined;
foil (ram-air) kite with maximum aerodynamic efficiency around 7, and
reel speed saturation at 10m/s. The differences here are: (i) we are
saturating the mechanical traction power at 2MW/ζ , where ζ = 0.7
is the same efficiency factor considered for the turbine; (ii) the tether
diameter was increased by 4mm, becoming dt = 22mm; (iii) motivated
by the results of Sect. 3.2.4 and as long as the traction force is not
saturated, we will use an ad-hoc optimal reel-out speed equal to 3/4 of
the value given by Eq. (1.5), that maximizes the traction power. The
cycle power is denoted by the Pcyc curve, whereas the traction power
is represented by Ptra. We will refer to this setup as the “standard”
pumping kite;

b) similar to a), except that the projected wing area is increased by 50%,
reaching 495m2. The cycle power is denoted by the Pcyc (1.5A) curve;

c) similar to a), except that the aerodynamic efficiency of the foil kite is
increased by 50%, reaching a maximum around 10.5. The cycle power
is denoted by the Pcyc (1.5E) curve;

d) similar to a), except that the maximum reel-speed, which is used during
the ad-hoc retraction phase, is increased by 50%, reaching 15m/s. The
cycle power is denoted by the Pcyc (1.5vt,sat) curve;

e) a combination of the three previous variants with respect to the setup
of item a). The cycle power is denoted by the Pcyc (all) curve;

The power curve results are shown in Fig. 56. We can see that the
turbine generates more power than the standard pumping kite at all (reference)
wind speeds. Note that, when the turbine reaches saturation at 2MW at a
wind speed around 11m/s, the pumping kite cycle power is about 750kW,
even though at a slightly stronger wind, around 15m/s. This happens as a
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Figure 56 – Electrical power curves of a 2MW horizontal-axis wind turbine
and five variants of a 2MW pumping kite, for the location of Schleswig, Ger-
many. The reference height is zref = 30m.

Source: original

consequence of the much higher aerodynamic efficiency of the NREL airfoils
used for the turbine blades – about 24 times more efficient than the foil (ram-
air) kite, of Fig. 33, used for the pumping kite. Moreover, the cycle (net)
power delivered by the AWE device is negatively impacted by the retraction
phase: the significant traction force and time required for the reeling-in of the
tether is the reason for the vertical gap between the traction power (Ptra) and
cycle power (Pcyc) curves in Fig. 56.

We could argue that comparing both wind power devices based on
an equal total wing area could be too restrictive for the pumping kite, since
the cost per area of the flexible kite should be much lower than for a rigid
turbine blade. Hence, while adding more blade area to a wind turbine could be
economically disadvantageous, increasing the flexible wing area in a pumping
kite would most likely result in an augmentation of the revenues from the
power plant, since the increment in the generated power would pay off for
the increase in the wing area. Observe in Fig. 56 that a 50% increment in
the projected wing area has indeed increased the harvested power at lower
wind speeds, yet still not reaching the turbine power curve. At higher wind
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speeds the cycle power curve decreases faster than in the case of the standard
pumping kite due to the stronger drag on the wing.

Another possible improvement on the pumping kite is on the aerody-
namic efficiency of the foil (raim-air) wing. Keep in mind that the considered
curves, of Fig. 33, correspond to an existing kite tuned for towing sea-going
vessels. The best current paragliding kites, used for racing, are known to
achieve an aerodynamic efficiency around 10, which corresponds to an incre-
ment of roughly 50% on the efficiency considered for the standard pumping
kite. Observe in Fig. 56 that improving the aerodynamic efficiency has a
stronger positive impact on the net power than increasing the wing area: this
time, the pumping kite power curve reaches the turbine power curve for refer-
ence wind speed up to approx. 5m/s. Furthermore, at stronger wind speeds,
the decrease in the cycle power is less intense. This is an important observa-
tion to foster the research in the development of more efficient flexible wings.

A third opportunity for improvement on the pumping cycle regards
the reel speed limitation. In the ideal case of a retraction maneuver with
insignificant traction force, the vertical gap between the traction and cycle
power curves would be solely due to the reel speed saturation. Hence, if
the traction phase duration could be made arbitrarily small, the mentioned
vertical gap would tend to disappear. When assuming an improved ground
winch capable of reeling in 50% faster than in the standard scenario, we can
see an overall improvement on the cycle power curve, although not in the
same proportion due to the non-negligible traction force during the retraction
phase. As we will see in Sect. 4.4, this more significant improvement on the
cycle power for higher wind speeds does not impact much the capacity factor
because the observation frequency of faster winds is usually low.

Finally, by combining the 50% increments in the projected kite area,
aerodynamic efficiency and reel-in speed saturation, we can see in Fig. 56
that the pumping kite power curve improves substantially, generating more
power than the wind turbine for reference wind speeds up to approx. 6.5m/s,
which corresponds to a wind speed near 10m/s at the turbine. We should bear
in mind that the increase in the cycle power could be, in fact, more modest.
This is due to the decrease in the equivalent drag coefficient that comes along
with an increase in the tether diameter in order to match the higher traction
force, as discussed in Sect. 3.2.4. Even so, the results in Fig. 56 suggest
that combined improvements on different aspects of the AWE system, with
respect to the technology that is available today, could allow the pumping
kite to generate a net power equivalent to that of current wind energy technol-
ogy, if not more. When adding to this observation the expectation of overall
reduced costs – especially on transportation, installation and materials –, a
promising scenario is formed for the future development of this AWE con-
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cept based on flexible wings (kites). We should note, however, that although
upfront costs can be lower for AWE with respect to conventional wind energy
technology, it is still uncertain whether operational and maintenance costs
can be limited to the same levels found with the tower-based turbines. For
instance, the frequency of maintenance of the individual components such as
wing and cables, and the impact that these maintenance procedures would
have on the economics of the power plant is still hard to assess quantitatively.
These points should become more clear when aspects such as launching and
landing strategies become more mature, and more extensive testing of AWE
systems in longer time intervals are carried out.

One could argue that the comparison between the wind turbine and
pumping kite power curves may still be biased by the fact that the models
we have used deal differently with the aerodynamic efficiency. Let us recall
that, for the ideal case of an airfoil with no drag (thus infinite efficiency), the
turbine power reaches the Betz limit according to the models of this section,
whereas the pumping kite power goes to infinity according to the models of
Sects. 2.2 and 2.3. Hence, if we were to reproduce the results of Fig. 56
for a rigid-wing pumping kite, with an aerodynamic efficiency equivalent to
the NREL airfoils, we could be running into a significant overestimation of
the AWE power curve. To cope with this and improve the conditions for
comparison, we should work with the same modeling framework for both
systems. In this case, using Blade Element Momentum (BEM) theory would
be more appropriate because it respects the power limit shown by Betz. With
this motivation in mind, let us discuss, in the following section, how Loyd’s
lift mode system (the pumping kite traction phase) can be analyzed using
BEM theory.

4.3.2 Application to airborne wind energy

One important observation about the Betz limit for extraction of power
from the airflow by an actuator disc in Sect. 4.1 is that, for the derivation
of the limit, it was not assumed a specific means of power extraction. In
other words, we have not specifically assumed the power as the torque on the
actuator disc multiplied by its angular speed (wind turbine), nor the power as
the thrust on the disc times the reel-out speed of the disc (Loyd’s lift mode),
not even the power as the tangential speed on the disc times the useful drag5

5By “useful drag” we mean the axial force to which a turbine attached to the tethered wing
is subject when extracting power from the tangential component of the apparent wind, i.e. the
thrust force discussed in this section. Added to this useful drag there is the drag on the tethered
wing, which does not execute useful work (power extraction).



173

force tangent to the disc (Loyd’s drag mode). The generalization was done
as the power being obtained through the thrust times the speed of the wind
going through the actuator disc, which can be more or less permeable to the
airflow, depending on the axial induction factor a. Hence, if we now consider
that the tethered wing is a fraction of only one blade of the disc (see Fig. 51),
the Betz limit automatically applies to AWE devices operating in crosswind.
This brings us to the question: how to compute the power coefficient of lift
and drag mode AWE devices?

Applying BEM theory to Loyd’s lift mode is, in principle, simple. The
idea is that the actuator disc is not only rotating, but also moving downstream
at a speed vt, i.e. the reel-out speed. Hence, in the expression of the differ-
ential thrust of Eq. (4.32) the wind speed far upstream U becomes U − vt.
The harvested power P is then obtained as the integral of this modified dif-
ferential thrust times the reel-out speed vt. Knowing that the harvested power

is P = (1/2)ρ π R2
b U3 CP, where Rb =

√
R2− r2

0 and R− r0 = ws is the pro-
jected wingspan, the power coefficient becomes

CP =
2(U− vt)

2vt

R2
b︸ ︷︷ ︸

gain kL

∫ R

r0

σ ′ (1−a)2

sin2
φ

(Cl cosφ +Cd sinφ)r dr . (4.39)

Note that the power coefficient can be expressed as a gain kL(vt) ap-
plied to an integral. Hence we need to find the value of vt that maximizes this
gain and, consequently, CP. By doing ∂kL(vt)/∂vt = 0 we obtain two roots:
the root vt =U corresponds to the minimum of kL(vt), whereas vt

∗ = (1/3)U
corresponds to the maximum. Because here we are assuming ideal crosswind
conditions with θ = π/2 and φ = 0, observe that the optimal reel-out value
just found corresponds to the “classic” solution v∗t = (1/3)vw sinθ cosφ ob-
tained by analyzing the model of Sect. 2.3. If we apply vt = (1/3)U to the
power coefficient gain it becomes k∗L = 8/(27R2

b). Recalling that the Betz
limit is CP,max = 16/27, then the maximum value of the integral in Eq. (4.39)
must be 2R2

b.
Unfortunately, using the same iterative procedure to compute the so-

lution (φ ,a,a′) at each section of the wingspan, proposed by Manwell, Mc-
Gowan and Rogers (2009) and based on Eqns. (4.37) and (4.38), did not yield
numerical results that seem correct. We will leave this question open for fu-
ture investigations. It would be a valuable contribution to the AWE field the
use of Betz theory and the models based on the conservation of energy, as the
ones discussed in this chapter, to analyze and optimize AWE devices based
on Loyd’s lift and drag modes.
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4.4 AVERAGE POWER GENERATION

As mentioned in Sect. 1.1.2, another important aspect of a wind power
device, besides its power curve, is the capacity factor:

Cf =
Pavg

Pnom
, (4.40)

where Pavg is the average electric power produced within a given time interval,
and Pnom is the rated electric power of the device. Given its power curve and
the wind histogram fobs at the operating height z, the average power can be
computed as

Pavg =
N

∑
n=1

P(vw(n)) fobs(vw(n,z)) (4.41)

over a discrete interval with N elements of vw(n) at the operating height of
the device. In our case, because the pumping kite may change its average
operating height depending on the roughness coefficient z0 of the wind shear
model in Eq. (2.66) for a specific location, we computed the power curve as
a function of the reference wind speed vref. To facilitate the comparison, we
also computed the wind turbine power curve as a function of vref. Therefore,
one way to obtain the average produced power using Eq. (4.41) is by com-
puting the histogram at the reference height zref. Let us recall, from Sect. 2.5,
that we have used a strategy of extrapolating each wind sample vw(n,z) ob-
tained from the NREL database to any height of interest z by using the wind
shear model, once z0 had already been computed through least-squares. The
motivation was that, because of the often poor distribution of wind samples
along the altitude range (among the altitude slots), the histogram for the na-
celle height (z = 80m) in such cases was not representative. We consider this
strategy valid because, for instance, if a given wind sample vw(z1,n) at an
altitude z1 is stronger than the average value given by the logarithmic curve
(see Fig. 27), then the wind speed at a different altitude z2 must also be
higher than average, according to the roughness coefficient z0. Hence, since
the power curves were already computed as a function of vref, we will use this
extrapolation strategy to compute the histogram at zref and, finally, to obtain
the average power through Eq. (4.41).

For the following numerical results, we will consider the locations of
Table 3, the 2MW wind turbine (WT), and the five variants of the 2MW
pumping kite (PK) explained in Sect. 4.3.1. The power coefficients obtained
by the convolution of the power curves with the histogram at the reference
height are shown in Table 8, where the green-shaded cells denote a higher
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capacity factor of the pumping kite compared to the wind turbine. We can
see that the turbine generates more average power than the standard pumping
kite in all locations. Again, the much higher aerodynamic efficiency of the
NREL airfoils used for the blades are responsible for this result. Nevertheless,
the different power curves and wind histogram at each location causes the
capacity factor of the wind turbine to vary between less than twice (as in
Belém and De Bilt) and less than four times (as in Fortaleza) the value of the
standard pumping kite. In this regard note that, given the assumed lower costs
of the AWE-based power plant, the minimum capacity factor to allow for
economical feasibility should be lower as well. Therefore it is possible that,
for some of the locations where the turbine is not economically attractive,
the pumping kite capacity factor could already be at a level to motivate an
utility-scale wind power project.

Table 8 – Capacity factors, from January/2013 through January/2016, for a
2MW wind turbine (WT) with NREL airfoils, a 2MW pumping foil kite (PK)
and its three variants: 50% more reel-in speed (PK 1.5vt,i), 50% more area
(PK 1.5A), 50% more aerodynamic efficiency (PK 1.5E), and all previous
three variants combined (PK all).

Location
WT PK PK PK PK PK

std. 1.5vt,i 1.5A 1.5E all
[%] [%] [%] [%] [%] [%]

Belém/PA, Brazil 14.93 9.07 9.72 14.38 18.29 28.46

Manaus/AM, Brazil 8.95 3.82 4.10 6.21 7.95 13.01

Fortaleza/CE, Brazil 37.75 11.01 11.81 17.21 21.55 32.89

Porto Velho/RO, Brazil 7.14 2.86 3.08 4.69 6.02 10.05

Alta Floresta/MT, Brazil 17.16 4.94 5.32 7.75 9.72 15.44

Brasília/DF, Brazil 20.07 6.81 7.29 10.85 13.82 21.95

Confins/MG, Brazil 16.68 5.61 6.00 9.09 11.66 18.96

Foz do Iguacu/PR, Brazil 34.55 13.19 14.38 18.83 22.49 32.45

Florianopolis/SC, Brazil 19.39 7.19 7.75 11.07 13.75 21.06

Porto Alegre/RS, Brazil 16.04 7.89 8.52 12.05 14.88 22.48

De Bilt, the Netherlands 27.85 15.67 17.11 22.03 26.12 36.66

Schleswig, Germany 42.11 20.58 22.86 27.10 31.29 41.99

Brindisi, Italy 33.35 11.12 12.11 16.01 19.20 27.95

Source: original

Now analyzing the pumping kite variants, when adding 50% more
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reel-in speed capability, the increment in the capacity factor is small. This
is because the advantage of reeling in faster is more evident at higher wind
speeds, when the traction phase duration is shorter. However, faster wind
speeds occur very seldom, and therefore the contribution to the convolution
of Eq. (4.41) is small, about 1%. On the other hand, when adding 50% more
wing area, the positive impact on the capacity factor is larger, increasing be-
tween 50% and 100%. Among the three possible improvements on the AWE
system, the most impacting one is on the aerodynamic efficiency, though. Ob-
serve that, in the case of Belém, the pumping kite overtakes the wind turbine
in terms of average power generation – which is due to the favoring wind
shear behavior at that site (see Fig. 27). At last, when considering all the
three improvements simultaneously, the pumping kite capacity factor over-
takes that of the wind turbine in most of the locations. In Belém this relative
increment is the largest, almost twice as much average power. In the remain-
ing locations, where the pumping kite still does not generate more average
power, the AWE generation becomes very close to the wind turbine perfor-
mance. The reason for this is that the most frequent wind speed values are
usually observed in the region where the power curve of the wind turbine and
the improved pumping kite are growing (see Fig. 56) and equivalent.

As we have already mentioned, the investment in a pumping kite unit
is expected to be significantly lower than in a horizontal-axis wind turbine
of same rated power. Therefore, in face of the results in Table 8, we are
left with the following question: what would be the minimum value of the
pumping kite capacity factor that would turn a hypothetical wind farm based
on pumping kite units into an economically feasible power plant? Studies in
this direction would be a valuable contribution to the field and are the subject
of ongoing research, as an extension of the work of Lellis et al. (2016).
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5 CONCLUDING REMARKS

Airborne Wind Energy (AWE) is an alternative approach, that has been
more intensively investigated in the past ten years, to harvest the wind power.
This new approach is currently moving from the stage of technology demon-
stration towards establishing commercial viability (see Zillmann and Hach
(2014)). We can mention two main motivations that foster the increasing re-
search and development in the area. First is the fact that, for being capable
to remain airborne by either aerodynamic or aerostatic forces, AWE devices
do not need a rigid, heavy and expensive tower to operate. This cuts down on
the usually high costs of transportation/logistics and assembly of wind power
plants. Moreover, in case that the wing is made of flexible material (fabric),
the reduction in the transportation costs is even more dramatic. Basically, one
replaces the rigid tower and nacelle of a horizontal-axis wind turbine by one
or more tethers, whereas the rigid blades are substituted by a rigid or flexible
wing, or even a tethered buoyant device holding a light-weight wind turbine.
The second attractive aspect of AWE is the possibility of operating at higher
altitudes than those reached by the blade tips of the current tower-based wind
turbines, which is possible by reeling out the tether(s) of the AWE device to
a larger length. Since the general behavior of the airflow is to become more
laminar, constant and stronger as the altitude increases, operating at higher
altitudes becomes clearly an advantage.

Among the several configurations of AWE devices already proposed
in the literature, the so-called pumping kite draws attention by probably being
the simpler one to experiment with. Because the generator is located at the
ground, the tethered wing may consist of a flexible kite, and thereby the sys-
tem becomes cheaper and simpler to build. Motivated by these advantages,
this doctoral dissertation proposed contributions in several aspects of AWE
technology, giving emphasis to the pumping kite configuration. The over-
all goal was to carry out a rather comprehensive (but not exhaustive) study
that could serve either as a manuscript for those intending to get acquainted
with how the technology works, as well as a reference point for more specific
investigations in the field.

5.1 SUMMARY OF THE CONTRIBUTIONS

After an introductory chapter, the first contribution was to discuss sev-
eral models that can be used to simulate, analyze, and to design controllers for
tethered wings. First, it was derived in detail the 3D two-tether actuation con-



178

cept which, due to its relative simplicity and reasonable accuracy in modeling
the wing translational dynamics, is often used to validate flight control laws,
especially when simulation in real time is desired. In order to make the model
more accurate from the point of view of physics, adjustments on the effect of
the tether mass on the weight, apparent forces and on the equations of motion
were proposed. We also revisited the model for the course angle dynamics
– an important variable that is often used to design flight controllers. Again,
the focus was to be instructive, explaining all assumptions and intermediate
steps to get to the model. In the sequel we discussed the logarithmic wind
shear model, which is often considered in the literature to represent how the
average wind speed increases with the altitude up to about 600m. Based on
data publicly available from the ESRL database, the model was interpolated
for several sites around the world. It was also briefly explained how to gener-
ate the respective wind histograms, representing the frequency of observation
of the different wind speed intervals for a specific location.

A second contribution of this dissertation was on the control aspect of
AWE. A decentralized topology was considered, where the control laws of
the ground winch and the tethered wing are computed separately. Regarding
the task of flight control specifically, the idea was to compare different con-
trol laws in a two-loop cascade scheme used for both operating phases of the
pumping kite. During the traction phase, the outer loop uses Bernoulli’s lem-
niscate as a reference for the lying-eight flight trajectory and, based on the
tracking error, generates a course angle reference for the inner loop. For the
retraction phase, the course angle reference is set to the zenith to move away
from the high-power zone (crosswind condition) and thus allow for an effi-
cient reel-in maneuver. It was also discussed a simpler strategy for the outer
loop during the traction phase, consisting of only two attraction points (at-
tractors), with only one of them being active at a time. We discussed how the
bang-bang may be advantageous to control tethered wings flying in trajecto-
ries with a short perimeter (arc length), in which case the controller sampling
rate becomes relatively low, whereas continuous references (as Bernoulli’s
lemniscate) may be more adequate for trajectories with a wider perimeter.

As for the inner loop, three variants were investigated. The first one
consists of a simple proportional controller. Using the model of the course
angle open-loop dynamics, a feedback linearization controller was designed
in order to guarantee a first-order linear dynamics to the course angle track-
ing error. The third variant is the previous linearizing controller without the
derivative of the course angle reference, generated in the outer loop, which
may be hard to obtain free of significant noise. When comparing the three
variants considering an approximately same closed-loop pole, the complete
feedback linearization controller achieved a better performance, whereas the



179

variant without the derivative term, although remaining stable, performed
worse than the proportional controller.

A third area to which this dissertation has contributed is the optimiza-
tion of a pumping cycle when considering the decentralized topology already
mentioned. Because the flight control law is computed separately from the
ground winch, we need to choose values for some operating parameters, and
this choice may have a significant impact on the net power delivered by the
AWE system. For instance, regarding the traction phase, it was shown how
the base angle of attack can be computed from the angle of attack that max-
imizes the traction power. In this particular topic, the contribution was to
demonstrate that the optimal angle of attack is not significantly influenced
by the tether drag. It was also shown how the base angle of attack influ-
ences, non-linearly, the average angle of attack, and may even leave the wing
more exposed to a stall condition if not adjusted properly. Another important
parameter to be optimized in the traction phase is the reel-out speed. The
contribution in this regard was to show that the reel-out speed value that max-
imizes the cycle power is lower than the value that maximizes the traction
power. This happens because the positive effect of increasing the duty cy-
cle is greater than the negative effect of generating less power in the traction
phase. Considering a 12m2 foil kite with maximum aerodynamic efficiency
around 7 and subject to a nominal wind around 10m/s it was observed that,
by using a reel-out speed 26% lower than the value that maximizes the trac-
tion power, the cycle power increases by 9%, reaching approximately 9.2kW,
which corresponds to 67% of the average traction power. The increment in
the cycle power by increasing the duty cycle was accompanied by a 28% in-
crease in the average traction force during the reeling-out. Other parameters
optimized for the traction phase were the average polar angle of the lying
eight and the average tether length, which depend on the parameters of the
wind shear model considered.

For the retraction phase, a maneuver was designed aiming at maxi-
mizing the cycle power. To this end a flight trajectory at zero azimuth was
established, during which the base angle of attack (de-powering process) and
the traction force are ramped down towards constant values. Therefore the
parameters to be tuned are the two ramp inclinations and the two constant
values. Assuming a maximum feasible de-powering and an ad-hoc value for
the traction force ramp inclination, a grid search was carried out to optimize
the constant values of base angle of attack and traction force without violat-
ing constraints on the minimum angle of attack and tether reel speed satu-
ration. The first constraint is particularly important in the case of a flexible
wing to ensure that the kite maintains its proper inflated shape, whereas the
reel-in speed saturation corresponds to a practical limitation of the ground
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winch, which must be respected for a feasible maneuver. Because the re-
traction phase is computed based on the solution of the traction phase and
vice-versa, the operating parameters of the pumping cycle were adjusted by
means of an iterative algorithm.

The pumping kite power curve was computed by varying the reference
wind speed applied to the wind shear model while considering a cycle power
simplified in two ways: the reel-out speed that maximizes the traction power
was used, and it was assumed an ad-hoc retraction phase during which the
wing remains at a constant polar angle while the tether is reeled-in at the
saturation speed. Two differences with respect to the wind turbine power
curve were discussed. First, as the wind keeps increasing above the point
where the rated (traction) power is reached, the cycle power starts to decline
because of the progressive increase in the traction force during the reeling-in.
The second difference is that, because of the degree of freedom to decrease
the polar angle and, thereby, to limit the traction power, the pumping kite
is thought of being able to operate at higher wind speeds, where the wind
turbine would have already been put out of operation for safety reasons. This
advantage of the pumping kite can contribute to an increase in its capacity
factor.

In wind energy technology, it is well known that the maximum frac-
tion of power (the power coefficient) that can be harvested from the wind flow
through a wind turbine is 16/27≈ 0.59: the Betz limit. We have revisited the
modeling procedure leading to the derivation of this limit, highlighting that
it in fact applies to a generic device named the “actuator disc”, which is sub-
ject to a thrust force resulting from the interaction between the wind speed
far upstream of the disc and the “permeability” of the disc to the wind (the
axial induction factor). The harvested power of the actuator disc is formu-
lated as the thrust times the wind speed going through the disc. Observe that
this is not how a horizontal-axis wind turbine operates. Its harvested power
results from the torque on the disc times its angular speed. The contribution
of this dissertation in this context is to point out that Loyd’s lift (the pump-
ing kite traction phase) and drag modes can be seen as particular cases of
the actuator disc, just as the horizontal-axis turbine is. Using blade element
momentum theory, once the expressions of the thrust and torque on a ring of
the actuator disc have been formulated, the harvested power of the lift mode
is obtained by considering the product between the thrust and the introduced
reel-out (downstream) speed of the disc, which should be subtracted from the
wind speed far upstream. By maximizing the resulting power expression, the
optimal reel-out speed is obtained: one-third of the wind speed far upstream
– a result which is already known by working with specific AWE models.

Lastly, it was carried out a comparison on the capacity factor of a
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wind turbine and a pumping kite, the latter with an existing foil (ram-air)
kite. When considering the wing area equal to the combined area of the
three turbine blades, it could be seen that, given the much higher aerody-
namic efficiency of the wind turbine airfoil and the loss of cycle power of
the pumping kite due to the retraction phase, the capacity factor of the wind
turbine tends to be greater. However, we should note that adding more wing
area to the pumping kite while keeping its rated power constant would aug-
ment its power curve and, thereby, the capacity factor, approaching the values
achieved by the turbines. The increase in the kite area would probably pay off
due to the much lower costs of the flexible wing relative to the rigid blades.
Furthermore, when adding to the larger kite a slightly higher aerodynamic ef-
ficiency, and more reel-in speed capability, the pumping kite achieves a higher
capacity factor than the one turbine does in most of the locations considered.
These observations, combined with the expectations of greatly reduced trans-
portation and installation costs, establish a promising scenario for the further
development and future deployment of pumping kite systems in commercial
scale.

5.2 RECOMMENDATIONS FOR FUTURE WORK

In this work, the lying eight was considered as the flight path during
the traction phase of the pumping kite. Nonetheless, the lying-eight is of-
ten chosen only because it allows the wing to remain in the high-power zone
without accumulating torsion on the tether(s). If we were to employ a mech-
anism, similar to a fishing swivel, to avoid this issue on the pumping kite
with only one tether between the ground winch and the airborne control pod,
another candidate for the optimal flight trajectory would be a circle. In fact,
the circle is the chosen trajectory for some AWE concepts, such as Makani
Power’s drag mode system. One hypothesis is that the circular trajectory may
be advantageous w.r.t. the lying eight in terms of the control energy and ease
of control. Note that, if there were no gravity, a constant steering input would
be enough to produce the circle: the larger is the value of this constant steer-
ing input, the smaller is the radius of the trajectory. Nonetheless, due to the
pull of gravity, when the wing passes closer to the ground the steering input
must slightly increase, whereas the opposite happens when the wing flies in
the upper part of the circle. Hence, we would need only a small varying con-
trol action on top of a constant value. If the steering actuator had something
similar to a self-locking worm gearbox, no energy would be spent for the
constant portion of the steering signal, and we would thereby save energy for
the actuator. We can also postulate that the controller to track the circular tra-
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jectory may be easier to design and more robust against wind perturbations,
since the reference trajectory has a constant derivative (thus no inflections).
In face of this promising prospect, the circular trajectory for the traction phase
of a pumping kite is recommended for future works.

There is also significant room for improvement regarding the iterative
optimization procedure for the cycle power. Firstly, although it was conceived
for any airfoil with given aerodynamic curves, it may be hard to apply the
method in the case of flexible wings because their aerodynamic characteris-
tics, when known in the first place, may change depending on the wing load-
ing, apparent wind speed, angle of attack and deformations induced by steer-
ing. Therefore one branch for future studies is the adaptation of the method
for wings with unknown aerodynamic curves, possibly by means of online
adaptation (maximum-seeking) and estimation algorithms. In this work, a
simple grid search strategy was used with the purpose of illustrating how sen-
sitive the optimal solution is with respect to changes in some parameters as,
for instance, the base angle of attack and traction force setpoints of the reel-
in phase. Therefore one possible improvement is the use of more powerful
optimization tools that could not only compute the solution in a faster way,
but also relax the constraints of a ramp followed by a constant value of the
setpoints, thus obtaining a less conservative solution. Moreover, it would be
desirable to include in the search the ramp inclinations of the base angle of
attack and traction force. By doing so the cycle power could be further maxi-
mized.

One important observation on the pumping kite AWE concept is the
need for a retraction phase. When considering rigid wings, de-powering
should not be a problem since the wing shape is unaffected by the angle
of attack. As we argued in this work, flexible wings are also attractive for
a handful of reasons, but executing a “good” retraction phase with flexible
kites is still a challenging task because of the limitation on the minimum an-
gle of attack for safe operation. Another drawback is the limited reel-in speed
of the ground winch: even if we could practically spend no energy during the
retraction due to an excellent de-powering, we would still spend a significant
amount of the cycle duration reeling in the tether, which has a negative im-
pact on the cycle power. In short, the retraction phase is a crucial aspect of the
pumping kite concept, and may be decisive in terms of whether such AWE
system becomes economically feasible and reliable enough for operation. In
face of these observations, the investigation of alternative mechanical struc-
tures at the ground for harvesting lift-mode power would also be an important
task. Keep in mind that Loyd’s drag mode system does not have its operation
divided into traction and retraction phases, since the tether length is kept con-
stant. However, drag mode systems tend to be technologically more complex,
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besides other disadvantages w.r.t. lift-mode systems, therefore focus should
be turned to the pumping kite retraction phase, with the goal of making it
more efficient and reliable.

From a technical point of view, perhaps one of the most significant
challenges that still remain is the development of autonomous launching and
landing strategies for AWE pumping systems based on both flexible and rigid
wings. When it comes to the latter wing type, there is the possibility of using
relatively small turbines in order to have the aircraft hover during the transi-
tion maneuvers – a strategy employed e.g. by the Swiss company TwingTec.
Such small on-board turbines are hard to attach to a flexible wing like a LEI
tube or a ram-air kite, in which case a dedicated structure based e.g. on a
mast would have to be designed. The level of complexity and automation,
as well as the robustness of these launching and landing strategies will im-
pact the operation costs of the AWE power plant. These costs, along with
the maintenance costs, will determine how competitive, and in which power
scale, AWE pumping systems will be in comparison to the conventional wind
energy technology of nowadays.

To conclude these recommendations, let us recall the effort of compar-
ing horizontal-axis wind turbines and tethered wings under the same model-
ing framework through blade element theory. The expression for the power
coefficient of Loyd’s lift mode was formulated in this dissertation, but the
computation of the axial and radial induction factors and the angle of relative
wind at each annular section of the disc must still be carried out. The power
coefficient could be formulated for Loyd’s drag mode as well. The solution
of these problems would be another valuable contribution, since the current
models used for tethered wings do not take into account the conservation of
energy. As a consequence, the power extraction from the wind increases in-
definitely (and non-linearly) with the increase in the aerodynamic efficiency
of the wing, which is obviously something not realistic.
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