

Analysis of a Model Predictive

Impulsional Control for Time Variant

Systems

Relatório submetido à Universidade Federal de Santa Catarina

como requisito para a aprovação na disciplina

DAS 5511: Projeto de Fim de Curso

Bruno Eduardo Benetti

Florianópolis, agosto de 2015

Resumo

Este trabalho apresenta uma estratégia de controle preditivo baseado em modelo para um
sistema variante no tempo. O sistema em questão é formado por dois satélites que compõe
o problema do Rendez-vous orbital. O problema do Rendez-vous orbital consiste em um
satélite chamado alvo que é inerte e orbita ao redor da Terra e outro satélite chamado
caçador que deve permanecer na vizinhança do alvo. O objetivo é então fornecer uma lei
de controle que será aplicada nos atuadores do satélite caçador de modo que ele nunca
saia de uma região determinada ao redor do alvo.

Esta lei de controle é impulsional por considerar que a dinâmica de mudança das
velocidades é instantânea em relação à dinâmica do movimento orbital. O controle deve
gerar uma trajetória que possui restrições dimensionais, além disso ele deve levar em
conta a saturação dos atuadores e o nível de combustível no reservatório do satélite. É
de�nido então um problema formal que fornece o conjunto de controles que satisfaz todas
as restrições. O método de cálculo de controle consiste em achar um ponto na intersecção
de dois conjuntos que de�nem uma trajetória admissível.

Devido a restrições computacionais (memória e processamento) e de tempo não é pos-
sível embarcar solvers de otimização nesses sistemas. Dadas estas restrições é necessário
buscar um algorítimo rápido e leve que forneça os controles a serem aplicados. O algorí-
timo utilizado neste trabalho é o algorítimo de projeções alternadas que, apesar de não
fornecer uma resposta ótima em termos de consumação, é capaz de fornecer um controle
válido respeitando as restrições.

O trabalho então foca na análise do uso deste algorítimo como solução para o problema.
Realiza-se uma análise da e�cácia deste método de controle quanto à consumação de
combustível, uma análise de factibilidade do problema e, por �m, uma análise numérica
da parte iterativa do algorítimo.

Palavras Chave: Controle Preditivo Baseado em Modelo, Rendez-Vous Orbital,
Algorítimo de Projeções Alternadas, Análise Numérica.

Abstract

Impulsive thrust corrections must be executed by spacecrafts to keep a desired trajectory
during orbital rendezvous missions. Robust and simple algorithms are required to com-
pute these corrections in order to overcome the limited performance of the spacecrafts
computing devices. In this report it is analysed the use of the Alternating Projections Al-
gorithm that was proposed as a solution to this problem. Initially, a representation of the
spacecraft relative movement is given with the modelisation of the system. Afterwards,
the control law and the modelisation of the problem's constraints using positive-de�nite
symmetric matrices is presented in order to formulate the mathematical problem that is
solved by the algorithm. The algorithm is then analysed to see its limitations and capac-
ities. The results given are compared to the use of an open source optimization solver to
carry out an optimality analysis. In the end a study of the feasibility of the problem and
a numerical analysis of the algorithm is made.

Keywords: Model Predictive Control, Orbital RendezVous, Alternating Projections
Algorithm, Numerical Analysis.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
2

Acknowledgements

First of all I would like to thank my parents and sister for all the support they gave me

even being a more than 9 thousand kilometres away. If it wasn't for their support and

advice I would never cross the boundaries of my own country alone. Thanks Kelly for

showing mom and dad that is possible to survive when we are far away from home!

In second place I would like to thank all my friends and, in special, my girlfriend for

being there for me every night and every weekend to remember that there is something

else in life besides my job.

In third place I would like to thank UFSC, ENSEEIHT and LAAS for being responsible

of my professional success and everything I've learnt in engineering and mathematics.

I could never forget all the e�orts of my Professors: Eduardo Camponogara for being

my tutor since the begining of my journey in the university untill the last moments of

the graduation course and Christophe Louembet for guiding me through the work in the

aerospace �eld. You are certainly responsible for everything I conquered in this last years.

I would also like to thank CAPES and the CNRS for �nancing my travel and internship

period and also to provide oportunities like this for young students to enter in the academic

world.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
3

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
4

Contents

1 Introduction 11
1.1 Spacecraft Rendezvous . 11
1.2 Motivation and Objectives . 13
1.3 Organisation . 14

2 Spacecraft relative motion 15
2.1 Introduction . 15
2.2 Dynamics of a spacecraft orbiting the Earth 15
2.3 Spacecraft relative motion . 17

2.3.1 Local Cartesian dynamics . 17
2.4 Linearized Cartesian relative motion and State Space Representation . . . 18
2.5 Parametric expressions for the spacecraft relative trajectory 21

2.5.1 Parametrizing relative trajectories 21
2.6 Periodicity Properties . 23
2.7 Summary . 23

3 Model Predictive Control Law and its Computation 25
3.1 Control System . 25
3.2 Actuator Saturation and Limit Budget . 26
3.3 Constrained spacecraft relative trajectories 27

3.3.1 De�nition of admissible trajectories 27
3.3.2 Finite description of admissible trajectories 29
3.3.3 Finite description using non-negative polynomials 29
3.3.4 Rational expressions for the spacecraft relative motion 30
3.3.5 Constrained periodic trajectories 32

3.4 Problem Formulation . 33
3.4.1 Conclusion . 34

4 Alternating Projections Algorithm 35
4.1 Algorithm Principle . 35
4.2 Example . 38
4.3 Implementation . 39

4.3.1 Details of Implementation: Construction of the iteration variable . . 40
4.3.2 Details of Implementation: Translation of the problem 42
4.3.3 Break Conditions . 44
4.3.4 Pseudocode . 45

4.4 Initial Guess . 45

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
5

4.5 Justi�cation of the use of the Alternating Projections Algorithm 47
4.6 Conclusion . 48

5 Initialisation of the Alternating Projections Algortihm 49
5.1 Simulator . 49

5.1.1 Scenario of simulation . 50
5.2 Classic Initialisations . 51

5.2.1 Cold Start . 51
5.2.2 Warm Start . 51

5.3 Current Point Approach . 52
5.3.1 Contruction of the initial guess . 54

5.4 Optimization Process . 57
5.5 Simulated Annealing . 59

5.5.1 Pseudocode . 61
5.6 Results Analysis . 62

6 Feasibility of the Problem 65
6.1 Feasibility of a state . 65
6.2 Control Action in D Space . 70
6.3 Conclusion . 74

7 Numerical Analysis 75
7.1 Example . 75

7.1.1 Trajectory . 75
7.1.2 Iterations . 76
7.1.3 Control Output . 79
7.1.4 Constraints . 80

7.2 Break Conditions . 81
7.2.1 Convergence . 81
7.2.2 Prediction . 86
7.2.3 Maximum Iterations . 88

7.3 Conclusions . 88

Conclusion 92

A Properties of non negative polynomials 93
A.1 Checking polynomials non negativity on a �nite interval 93
A.2 Checking polynomials non negativity on an in�nite interval 95

B Dynamics of the vector of parameters 97

C Nature of the roots of a quartic function 101

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
6

List of Figures

1.1 Stages of the rendezvous representation. 11
1.2 Three axis actuators representation. 12

2.1 The Earth Centered Inertial frame and the satellite trajectory. 16
2.2 The spacecraft relative position and the leader's LVLH frame 18

3.1 Block Diagram of the Control System. 26
3.2 Examples of periodic spacecraft relative trajectories that evolve inside a

polytopic set. 29

4.1 Algorithm behaviour when there is an intersection 36
4.2 Algorithm behaviour when there is no intersection 37
4.3 Ilustration of a fast convergence . 38
4.4 Ilustration of a slow convergence . 39
4.5 Example of the topology the algorithm works in 46
4.6 Another example of topology the algorithm work in 47

5.1 Simulink simulation scheme used in this work 50
5.2 Trajectory for Cold start . 52
5.3 Trajectory for Warm start . 53
5.4 Trajectory Comparison Warm Start and Cold Start 53
5.5 Simulated trajectory for the initial point approach. 56
5.6 Simulated Trajectory using Optimal Controls 59
5.7 Consumption Comparison between Warm, Optimal and Simulated Annealing 62
5.8 Relative Comsumptions Comparison . 63

6.1 Region of feasible solutions . 67
6.2 Top view of the region of feasible solutions 67
6.3 Front/Lateral view of the region of feasible solutions 68
6.4 Cuts of the region for some d3 values. 68
6.5 Superquadric that model the feasible region 70
6.6 Feasible region for e = 0.3 . 71
6.7 Lateral view of the feasible region for e = 0.3 71
6.8 Cuts for the feasible region for e = 0.3 . 71
6.9 Attainable region from an arbitrary point using one control. 72
6.10 Region result of the Minkowski sum for anomaly 0 73
6.11 Region result of the Minkowski sum for two di�erent anomalies (0 and π/3) 74

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
7

7.1 Iterations per Step Warm Start . 77
7.2 Iterations per Step Warm Start . 77
7.3 Iterations per Step Cold Start . 78
7.4 Iterations per Step Cold Start . 78
7.5 Iterations per Step when Varying Tolcons 82
7.6 Iterations per Step when Varying Tolvp . 84
7.7 Iterations per Step when Varying both Tolerances 85
7.8 Iterations per Step for In�nity Norm . 87
7.9 Iterations per step for Cold Start with Inf. Norm 88

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
8

List of Tables

5.1 Data for the scenario simulated . 51
5.2 Consumption for each initial guess strategy for each control frequence . . . 57
5.3 Optimal Controls given by the solver SeDuMi using Yalmip 58
5.4 Controls given by the warm approach . 58
5.5 Consumption Comparison between Cold, Warm and Optimal controls. . . . 60

7.1 Data for the scenario simulated . 76
7.2 Control Values for Warm Start . 79
7.3 Control Values for Cold Start . 79
7.4 Constraints Evolution for the Transitory Regime 80
7.5 Constraints Evolution for the Steady Regime 80
7.6 Constraints Evolution Cold Start . 81
7.7 Constraints Evolution Cold Start . 81
7.8 Constraints Evolution Cold Start . 81
7.9 Di�erence in the Control Output when Varying Tolcons 83
7.10 Di�erence in the Control Output when Varying Tolvp 84
7.11 Di�erence in the Control Output when Varying both Tolerances 84
7.12 Constraints Evolution in a Non Convergence Case 86
7.13 Constraints Evolution in a Non Convergence Case 89
7.14 Prediction of Iterations Evolution . 90

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
9

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
10

Chapter 1

Introduction

1.1 Spacecraft Rendezvous

The orbital rendezvous can be characterized as the set of operations performed by a

satellite (the follower) in order to reach a speci�c position with respect to another satellite

(the target). Normally, this set of operations is divided into several stages, between

two consecutive stages the follower must remain in a certain neighbourhood of the last

reference position. Figure 1.1 ilustrate the problem.

Cible

Chasseur
Target

Follower

Figure 1.1: Stages of the rendezvous representation.

The presence of perturbations does not allow the satellite to remain at a point or on a

stable trajectory and, therefore, corrections must be applied to the follower's movement

to ensure a proper development of the relative trajectories between the satellites and thus

the completion of the rendezvous mission.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
11

The interest is to build a predictive control law that will keep the follower inside a

given tolerance polytope. As the target is considered passive, the control is only applied

on the target in the form of speed impulses. These impulses have the objective to bring the

follower into a periodic trajectory that respect the dimensional constraint. It was chosen

a periodic trajectory, because in the absence of pertubations (short period of time) the

spacecraft will maintain itself inside the polytope with no need to apply corrections.

It is considered that all the corrections applied to the spacecraft trajectory are realized

by the follower's thrusters (three couples of indentical propulsors, each being symmetri-

cally mounted on each of the three axes, see Figure 1.2). This fact makes the follower

spacecraft controllable in all the directions (three degrees of freedom). It is also considered

that the velocity change is instantaneous, which is justi�ed because the time constant of

the orbit trajectory is much greater than the time constant to change the satellite's speed.

y

x

Figure 1.2: Three axis actuators representation.

The total consumption of these thrusters is modeled as the sum of all velocity variations

on each axis and at each impulse:

N∑
i=1

‖∆Vi‖1 =
N∑
i=1

(|∆Vix|+ |∆Viy |+ |∆Viz |) (1.1)

here ∆Vi represents the speed change that is applied to the aircraft. It is used a simpli�-

cation when it comes to the consumption, it is considered that the consumption is equal

to the sum of the velocity variations applied during the mission.

In order to calculate the control, a numerical algorithm is used. This process is based

on �nding a solution that respects all the constraints of the problem (geometrical, satu-

ration, fuel budget) and guarantees that, apart from perturbations, the spacecraft will be

in a good orbit for the problem.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
12

1.2 Motivation and Objectives

This work is inspired by the work of Deaconu, Louembet and Arantes [8], [6], [9],[10] who

proposed solutions to the problem of spacecraft rendezvous. The problem formulation

proposed by Deaconu in [6] was solved by Arantes and Louembet in [9], [10] using the

idea of a simple algorithm that could be used even with low computional resources.

To clarify where this work begins and what it wants to do, it can be explicited all the

material received from past researches. This works receive already made:

• The model of the system presented in [6];

• The problem formulation done in [8] and [9];

• The solution using the Alternating Projections Algorithm proposed in [10];

• The nonlinear simulator written in Simulink from [11].

What this work does is to analyse this solution doing both a numerical analysis of

the algorithm used (number of iterations, tolerances used, di�erent behaviours face to

di�erent problems) and an optimality analysis of the solution produced by the algorithm

in terms of fuel consumption.

This work aims to analyse ways to improve the solution proposed in the above cited

work. This objective is divided between:

• An analysis of the input parameters of the algorithm that calculates the control;

• A study of feasibility of the problem proposed;

• A numerical analysis of the iterative part of the process.

These objectives are justi�ed by the following reasons:

1. There is no proof of how good can the algorithm be in terms of optimization;

2. The good selection of input parameters can improve the control performance;

3. The knowledge of problem feasibility gives a way to know when it is possible to

calculate the control;

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
13

4. The control law will be physically implemented in a parallel project and the numer-

ical analysis is necessary for its success and validation.

1.3 Organisation

Chapter 2 presents the dynamical model and a closed form solution for it. Chapter 3

describes the predictive control law and presents the problem. Chapter 4 focuses on the

algorithm used to calculate the control which is a solution to the problem presented in

Chapter 3. Chapter 5 brings an analysis of the initialisation of the Alternating Projections

Algorithm and compares its solution to the solution obtained with an optimization solver.

Chapter 6 gives a deeper insight into the conditions of feasibility of the problem and how

this can be used to improve the control law. Chapter 7 discusses the numerical analysis

of the proposed algorithm.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
14

Chapter 2

Spacecraft relative motion

2.1 Introduction

In the rendezvous problem treated in this work, the dynamic is composed of the relative

motion between two spacecraft, one called the follower, with respect to the dynamics of

another spacecraft, called the leader or the target. In order to achieve the dynamic model,

�rst it is described the dynamic of the leader spacecraft orbiting around the earth. Than

it is taken the target dynamic and the relative motion between them.

The solution of the dynamic is presented in the form of a state transition matrix. This

way the dynamic can be predicted for a time horizon if needed. Also, it is proposed a

change of variable based on the state transition matrix. With the new set of variables

some characteristics of the trajectories can be put in evidence and a formal description of

trajectories based on a set of parameters can be made.

This chapter is based on the work of Georgia Deaconu [6].

2.2 Dynamics of a spacecraft orbiting the Earth

It was chosen a Keplerian model in which the Earth is represented as a homogeneous

sphere and the spacecraft motion is a�ected only by gravitational accelerations. The Ke-

plerian framework leads to less accurate but simpli�ed dynamical models for the spacecraft

relative motion. These simpli�ed models are well suited for control synthesis purposes,

which is the case in this work.

The Keplerian dynamics of a spacecraft with respect to the Earth can be derived from

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
15

Newton's equations of motion between two mass particles. In this case, the motion of a

spacecraft orbiting the Earth is described by the following di�erential equation [3]:

(
d2 ~R

dt2

)
B0

= − µ

‖~R‖3
~R (2.1)

where ~R represents the vector from the center of mass of the Earth to the spacecraft

center of mass and µ is the Earth's gravitational constant. The dynamics are expressed

with respect to an Earth centered inertial frame R0 = (0, ~X, ~Y , ~Z) illustrated in Figure

2.1. The fundamental plane for R0 is the Earth's equatorial plane, the ~Z axis coincides

with the rotation axis of the Earth and is oriented towards the North Pole, the ~X axis

points to the vernal equinox and the ~Y axis is orthogonal to the ~X ~Z plane.

Figure 2.1: The Earth Centered Inertial frame and the satellite trajectory.

Let the orbital plane be the plane which contains the trajectory of the orbiting space-

craft (see Figure 2.1). The equation of the spacecraft trajectory expressed using polar

coordinates with respect to this plane is given by [3]:

R = ‖~R‖ =
a(1− e2)
1 + e cos ν

(2.2)

where a is called the semi-major axis of the spacecraft orbit, e is called the eccentricity

and ν is called the true anomaly. The satellite's orbit is bounded if e < 1 and unbounded

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
16

if e ≥ 1. For e = 0 the spacecraft trajectory is a circle of radius a and for 0 < e < 1 the

trajectory is an ellipse. The true anomaly ν represents the angle between the spacecraft's

current position and the direction of the perigee (Figure 2.1).

The parameters a and e de�ne the dimension and the shape of the satellite's orbit,

while ν gives the instantaneous location of the satellite on its orbit. Under Keplerian

assumptions, the true anomaly changes with time [3]:

ν̇ =

√
µ

a3(1− e2)3
(1 + e cos ν)2. (2.3)

To complete the description of the spacecraft relative motion, the state of the follower

satellite must be expressed with respect to the state of the leader and the representation

used in this work is introduced next.

2.3 Spacecraft relative motion

The spacecraft relative motion refers to the study of the dynamics of the follower spacecraft

in relation to a moving frame in the leader spacecraft center of mass. Here it is made the

choice to use the cartesian position and speed as the state of the spacecraft model. The

mathematical development is presented in what follows.

2.3.1 Local Cartesian dynamics

The spacecraft relative motion represented using local Cartesian dynamics is de�ned with

respect to a local rotating Cartesian frame centered on the leader satellite. A commonly

used frame is the Local Vertical Local Horizontal (LVLH) frame Rl = (Sl, ~x, ~y, ~z) illus-

trated in Figure 2.2. The ~z axis is radially oriented from the leader satellite towards the

center of the Earth, the ~y axis is orthogonal to the orbital plane, in the opposite direction

with respect to the angular momentum vector, and the ~x axis lays in the leader's orbital

plane in the direction of the satellite's velocity.

The relative position between the leader spacecraft Sl and the follower spacecraft Sf

is represented by ~r =
−−→
SlSf in Figure 2.2. Considering that the Keplerian dynamics of

each satellite with respect to the Earth can be described using (2.1), the relative inertial

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
17

Q

PO

a

z

x

r

S

S

l

f

ν

Figure 2.2: The spacecraft relative position and the leader's LVLH frame

acceleration can be written as:

(
d2~r

dt2

)
B0

= − µ

‖~R + ~r‖3
(~R + ~r) +

µ

‖~R‖3
~R (2.4)

where ~R =
−−→
OSf represents the inertial position of the leader spacecraft.

Assuming that the dynamics of the leader spacecraft are expressed using orbital el-

ements and that the spacecraft relative state is given by the local relative position and

velocity X =
[
x y z vx vy vz

]T
, we have:

ẍ− 2 ν̇ ż − ν̈ z − ν̇2x = − µx√
(x2 + y2 + (R− z)2)3

ÿ = − µ y√
(x2 + y2 + (R− z)2)3

z̈ + 2 ν̇ ẋ+ ν̈ x− ν̇2z = − µ(R− z)√
(x2 + y2 + (R− z)2)3

+
µ

R2

(2.5)

2.4 Linearized Cartesian relative motion and State Space

Representation

Let the spacecraft relative state vector be de�ned by the relative position and velocity

projected on each axis of the leader's LVLH frame: X =
[
x y z vx vy vz

]T
. In the

case where the distance between the two satellites is a lot smaller than the distance from

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
18

the leader satellite to the center of the Earth (‖~r‖ � ‖~R‖), the linearized Tschauner-

Hempel equations can be used to describe the spacecraft relative motion [17]:

ẍ = 2 ν̇ ż + ν̈ z + ν̇2x− µ

R3
x

ÿ = − µ

R3
y

z̈ = −2 ν̇ ẋ− ν̈ x+ ν̇2z + 2
µ

R3
z

(2.6)

It can be noticed that for the linearized equations, the dynamics on the y axis are

decoupled from the dynamics in the xz plane and de�ne a harmonical oscillator.

If in (2.6) the independent variable time is replaced by the true anomaly of the leader

spacecraft, a simpli�ed form can be obtained for the equations describing the relative

dynamics between the leader and the follower spacecraft. The derivatives with respect to

time are replaced by:

d(·)
dt

=
d(·)
dν

dν

dt
= (·)′ν̇ d2()

dt2
=
d2()

dν2
ν̇2 +

d()

dν
ν̈ (2.7)

and the following variable change is used:

X̃(ν) =

(1 + e cos ν)I3 03

−e sin νI3
(1 + e cos ν)

ν̇
I3

X(t) (2.8)

where I3 ∈ R3×3 is the identity matrix and 03 ∈ R3×3 is the zero matrix.

This operation leads to a periodic state-space model for the spacecraft relative dy-

namics:

X̃ ′(ν) = Ã(ν)X̃(ν) + B̃ ũ (2.9)

where the dynamical matrix Ã(ν) is given by:

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
19

Ã(ν) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2

0 −1 0 0 0 0

0 0
3

1 + e cos ν
−2 0 0


(2.10)

the control matrix B̃ is de�ned by B̃ = [03 I3]
T and ũ = [ũx ũy ũz]

T represents the

acceleration generated by the spacecraft thrusters.

The system (2.6) can be solved analytically. In this work is used the solution proposed

by [18] that consists in using the fact that the motion in the y axis is decoupled from x

and z. So the state transition matrix has the form of:

X̃(ν) = Φ(ν, ν0)X̃(ν0) (2.11)

And can be divided in:

X̃y(ν) = Φy(ν, ν0)X̃y(ν0)

X̃xz(ν) = Φxz(ν, ν0)X̃xz(ν0)
(2.12)

with solutions:

X̃y(ν) =

 ỹ(ν)

ṽy(ν)

 , Φy(ν, ν0) =

 cos(ν − ν0) sin(ν − ν0)

− sin(ν − ν0) cos(ν − ν0)

 (2.13)

X̃xz(ν) =


x̃(ν)

z̃(ν)

ṽx(ν)

ṽz(ν)

 , Φxz(ν, ν0) = φxz(ν)φ−1xz (ν0) (2.14)

where

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
20

φxz(ν) =



1 − cos ν(2 + e cos ν) sin ν(2 + e cos ν) 3(1 + e cos ν)2J

0 sin ν(1 + e cos ν) cos ν(1 + e cos ν) 2− 3e sin ν(1 + e cos ν)J

0 2 sin ν(1 + e cos ν) 2 cos ν(1 + e cos ν)− e 3− 6e sin ν(1 + e cos ν)J

0 cos ν + e cos 2ν − sin ν − e sin 2ν −3e

(
(cos ν + e cos 2ν)J +

sin ν

1 + e cos ν

)


(2.15)

and

φ−1xz (ν0)=
1

e2−1



e2−1 −3e sin ν0(2 + e cos ν0)

1 + e cos ν0
e sin ν0(2 + e cos ν0) 2−e cos ν0(1+e cos ν0)

0
3 sin ν0(e cos ν0+1+e2)

1 + e cos ν0
− sin ν0(2 + e cos ν0) −(cos ν0+e cos2 ν0−2e)

0 3(e+ cos ν0) −(2 cos ν0+e cos2 ν0+e) sin ν0(1 + e cos ν0)

0 −(3e cos ν0 + e2 + 2) (1 + e cos ν0)
2 −e sin ν0(1 + e cos ν0)


(2.16)

2.5 Parametric expressions for the spacecraft relative

trajectory

A set of parametric expressions can be used to describe the spacecraft relative motion.

These parameters are used as a way to classify di�erent trajectories that we can obtain.

By working in the space of parameters, some interesting properties of the spacecraft

relative motion can be evidenced. Additionally, it is desirable to work only with periodic

trajectories, so a characterisation is made to separate them using the parameters.

2.5.1 Parametrizing relative trajectories

Consider the relative motion between two spacecraft on arbitrary elliptical Keplerian

orbits. The relative state X̃(ν) is de�ned by the spacecraft relative position and velocity

expressed in the LVLH frame attached to the leader.

X̃(ν) =
[
x̃(ν) ỹ(ν) z̃(ν) ṽx(ν) ṽy(ν) ṽz(ν)

]T
(2.17)

Parametric expressions for the relative position between the spacecraft can be obtained

by expanding the terms in (2.11) and then factoring out some of the terms related to the

independent variable ν:

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
21

x̃(ν) = (2 + e cos ν)(d1 sin ν − d2 cos ν) + d3 + 3 d0 J(ν)(1 + e cos ν)2

ỹ(ν) = d4 cos ν + d5 sin ν

z̃(ν) = (1 + e cos ν)(d2 sin ν + d1 cos ν)− 3 e d0 J(ν) sin ν(1 + e cos ν) + 2 d0

, ν ≥ ν0

(2.18)

LetD(ν0) ∈ R6 be the vector of parameters for the spacecraft relative motion evaluated

at ν0, de�ned as:

D(ν0) =
[
d0(ν0) d1(ν0) d2(ν0) d3(ν0) d4(ν0) d5(ν0)

]T
(2.19)

The elements of the vector D(ν0) depend linearly on the initial spacecraft relative

state from which the relative trajectory is propagated:

D(ν0) = C(ν0)X̃(ν0) (2.20)

The matrix C(ν) ∈ R6×6 is de�ned as a function of the eccentricity of the orbit of

the leader satellite and the true anomaly for which the vector of parameters needs to be

evaluated:

C(ν)=



0 0
−(3 e cos ν+e2+2)

e2 − 1

(1 + e cos ν)2

e2 − 1
0

−e sin ν(1+e cos ν)

e2 − 1

0 0
3(e+ cos ν)

e2 − 1

−(2 cos ν+e cos2 ν+e)

e2 − 1
0

sin ν(1 + e cos ν)

e2 − 1

0 0
3 sin ν(1+e cos ν+e2)

(e2 − 1)(1 + e cos ν)

−sin ν(2+e cos ν)

e2 − 1
0

−(cos ν+e cos2 ν−2e)

e2 − 1

1 0
−3 e sin ν(2+e cos ν)

(e2−1)(1+e cos ν)

e sin ν(2+e cos ν)

e2 − 1
0

e2 cos2 ν+e cos ν−2

e2−1

0 cos ν 0 0 −sin ν 0

0 sin ν 0 0 cos ν 0


(2.21)

The advantage of expressing the spacecraft relative position in the form (2.18) is that

it enables the direct identi�cation of some of the e�ects that the values of the parameters

have on the spacecraft relative trajectory. Parameters d1 and d2 in�uence the amplitude

of the motion in the xz plane while parameters d4 and d5 de�ne the amplitude of the

periodic motion on the y axis. The value of the parameter d3 corresponds to an o�set

term on the position on the x axis and the parameter d0 de�nes an o�set on the z axis

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
22

and in�uences the contribution of the integral term J(ν).

2.6 Periodicity Properties

Expressions (2.18) show that the integral term J(ν) is the only non periodic term in the

propagation of the spacecraft relative position. In the particular case where:

d0(ν0) = 0 (2.22)

the resulting relative trajectory is periodic because the drifting term J(ν) is cancelled.

This leads to the following simpli�ed parametric expressions for the propagation of space-

craft periodic relative trajectories:

x̃(ν) = (2 + e cos ν)(d1(ν0) sin ν − d2(ν0) cos ν) + d3(ν0)

ỹ(ν) = d4(ν0) cos ν + d5(ν0) sin ν

z̃(ν) = (1 + e cos ν)(d2(ν0) sin ν + d1(ν0) cos ν)

(2.23)

Expressions (2.23) reveal the fact that the spacecraft relative periodic trajectories are

always centered around zero on the y and z axes. An o�set can be set on the x axis

through the d3 parameter.

The dynamics associated with the parameters D can be studied depper, this study is

presented in the appendix B.

2.7 Summary

The development done in this chapter can be summed up in the following way. First of

all it was used the Newton gravitational law to describe the dynamics of a satellite (the

follower), under Keplerian assumptions, orbiting around the Earth. Then the framework

of this dynamic was changed to the center of mass of another satellite orbitating around

the earth (the target). This dynamic was then expressed in terms of 3 second order

di�erential equations. These equations have a analytical solution, so a state transition

matrix was calculated. The state transition matrix is used to predict any future state

based on the initial conditions, in another words, given the initial conditions it can trace

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
23

the trajectory of the system.

Analysing the elements in the state transition matrix, it is possible to group all the

terms that are independent of the anomaly into a set of 6 variables that were called the

D variables. These 6 variables appear as coe�cients in the trajectory prediction and give

some speci�c information about the characteristics of the trajectory such as periodicity,

boundaries and centralization.

The following chapters will heavily use the vectorD as way to parametrize a trajectory,

so it is an alternative state of the system as importante as the classic positions and

velocities.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
24

Chapter 3

Model Predictive Control Law and its

Computation

In this Chapter a predictive control law that will be used in the system is de�ned. The

speci�cations of the problem are translated into convex constraints in order to have a

rigorous formal description of it. Once the problem is written, it is possible to start

searching for solutions. With the change of variable D introduced in the last chapter,

there is a notion of modeling a trajectory now. The control objective is to �nd a periodic

orbit that respects all the constraints and, then calculate the speed impulse needed to

reach this orbit.

The chapter is divided into the Control system and the three di�erent constraints:

Saturation, Budget and Polytopic along with the �nal problem formulation and a brief

discussion of the solutions.

This chapter is based on the work of Georgia Deaconu [6] and Paulo Arantes [9].

3.1 Control System

The control system in this work uses a model predictive impulsive law. Each time that it

is triggered, it acquires the data from the navigation system in order to calculate a speed

impulse that will maintain the orbit of the satellite inside a pre-de�ned polytope. Figure

3.1 schematizes the control system in a block diagram.

The control law is said predictive because it takes into account the evolution of space-

craft in a time horizon using the state transiton matrix. It is also said impulsive because

the control is applied in the form of velocity impulses, once the change of velocity has

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
25

Figure 3.1: Block Diagram of the Control System.

a faster dynamics than the orbital mouvement, thus considering it as instanteneous or

impulsive.

Maintaining a satellite in an orbit inside of a polytope is not a classical reference

tracking problem as the trajectory is not chosen a priori. The algorithm tracks a ensemble

of trajectories that respect the constraints rather than a single point. Besides that, the

model is linear time varying and the constraints of saturations and budget are taken

into account to the control computation. In this case, with all these characteristics, the

classical techniques of control, and even the modern techniques, can not be used, so the

problem is written as an optmization problem that is speci�ed in the next sections.

3.2 Actuator Saturation and Limit Budget

The follower thrusters can not provide an arbitrary gain of speed. This saturation is a

constraint in each of the directions and has a maximum value of ∆Vmax. In addition, the

lifespan of a satellite is de�ned by the amount of fuel left in its reservoir, so it is considered

also a constraint on the total consumption σ. The set of constraints directly related to

the actuators can be expressed as:

−∆Vmax ≤ ∆Vi ≤ ∆Vmax, ∀i = 1..N (3.1)

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
26

N∑
i=1

‖∆Vi‖1 ≤ σ (3.2)

3.3 Constrained spacecraft relative trajectories

The present section shows a mathematical characterization of the set of vectors of pa-

rameters D that correspond to spacecraft relative orbits which respect some dimension

constraints.

In what follows it will be shown a description of the admissible trajectories for the

problem. Furthermore the characterization is made a priori continuously in time over

a speci�ed interval or in anomaly over a period. This leads to an ini�nity number of

constraints that need to be veri�ed. A form of translating these constraints into the form

of a �nite convex description of the admissible spacecraft relative trajectories for a given

set of dimensions constraints is also provided.

3.3.1 De�nition of admissible trajectories

From a mathematical point of view, the constraints on the dimensions of the spacecraft

relative trajectories can be written as linear constraints on the spacecraft relative posi-

tions:

xmin ≤ x(t) ≤ xmax

ymin ≤ y(t) ≤ ymax

zmin ≤ z(t) ≤ zmax

, ∀t ∈ [t0 tf] ⇐⇒
x̃min(ν) ≤ x̃(ν) ≤ x̃max(ν)

ỹmin(ν) ≤ ỹ(ν) ≤ ỹmax(ν)

z̃min(ν) ≤ z̃(ν) ≤ z̃max(ν)

, ∀ν ∈ [ν0 νf]

(3.3)

Equation (3.3) illustrates the e�ects of the variable change (2.8) on the dimension

constraints: the constant minimum and maximum bounds in the time domain are trans-

formed into bounds that depend on the true anomaly of the leader spacecraft ν. The

constraints must be respected continuously on the intervals [t0 tf] and [ν0 νf] respectively.

The constraints in (3.3) can be written in a more compact way as:

H X̃(ν) ≤ Ṽ (ν), ∀ν ∈ [ν0 νf] (3.4)

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
27

where the matricesH and V de�ne a generic polytopic set. Using the de�nition from (3.4),

the set of spacecraft relative states from which the autonomously propagated trajectories

remain inside the polytopic set (H,V) during the speci�ed interval can be de�ned as:

S(H,V, ν0, νf) =
{
X̃(ν0) ∈ R6 | X̃(ν) = Φ(ν, ν0)X̃(ν0), H X̃(ν) ≤ Ṽ (ν), ∀ν ∈ [ν0 νf]

}
(3.5)

An equivalent form can be given to the set of parameters de�ning relative trajectories

that respect the given trajectory constraints during the speci�ed interval:

SD(H,V, ν0, νf) =
{
D(ν0) ∈ R6 | D(ν) = ΦD(ν, ν0)D(ν0), H F (ν)D(ν) ≤ Ṽ (ν),

∀ν ∈ [ν0 νf]} (3.6)

with the matrix F (ν) = C−1(ν) de�ned in (B.4).

The trajectory constraints need to be veri�ed continuously on the speci�ed interval.

As a consequence, an in�nite number of conditions need to be checked in order to certify

that a state or a vector of parameters correspond to a trajectory which respects the

speci�ed requirements.

The set of periodic trajectories that satisfy the polytopic constraint is:

SpX(H,V) =
{
X̃ ∈ R6 | X̃(ν0) = X̃(ν0 + 2π), HX̃(ν) ≤ Ṽ (ν), ∀ν ∈ [0 2π]

}
(3.7)

SpD(H, V) =
{
D ∈ R6 | d0 = 0, H F (ν)D ≤ Ṽ (ν), ∀ν ∈ [0 2π]

}
(3.8)

The interval on which the constraints need to be checked is limited to one orbital

period in this case because the trajectory is periodic, but checking that a vector D de�nes

an admissible trajectory is still a hard problem.

Inside a given polytopic set there can be found many trajectories that respect the

dimensions constraints (see Figure 3.2). We are interested in obtaining a �nite description

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
28

of all these admissible periodic trajectories.

60
70

80
90

100
110

120 −40

−20

0

20

40

−40

−30

−20

−10

0

10

20

30

40

y [m]

x [m]

z
[m

]

Figure 3.2: Examples of periodic spacecraft relative trajectories that evolve inside a polytopic set.

3.3.2 Finite description of admissible trajectories

Imposing continuous constraints on the spacecraft relative trajectories leads to a descrip-

tion of the admissible trajectories using an in�nite number of constraints. The provided

description is accurate but not very well suited for our purposes. This is due to the di�-

culty in certifying that a given trajectory respects all the required conditions. A method

for reaching a �nite description of the admissible trajectories is presented in what follows.

3.3.3 Finite description using non-negative polynomials

The idea of using the properties of non-negative polynomials to obtain a �nite descrip-

tion of the admissible spacecraft relative trajectory came from the desire to exploit the

structure of the solution for the relative motion provided by the transition matrix. The

expressions (2.23) show that for the periodic relative motion the trajectory is de�ned by

trigonometric polynomials. In this case, the dimension constraints (3.3) can be written

as polynomial non-negativity constraints through a change of variable.

Once the dimensions constraints on the spacecraft relative trajectory are transformed

into polynomial non negativity constraints of the type:

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
29

P (w) ≥ 0, ∀w ∈ W (3.9)

the results presented by Nesterov in [14] can be used in order to obtain a �nite description

of the admissible trajectories without relying on discretization. It is shown that polyno-

mial non negativity constraints can be transformed into conditions of existence of one or

two constrained positive semi-de�nite matrices (see Appendix A). The in�nite number

of points where the polynomial non-negativity constraint needed to be checked can be

replaced by one Linear Matrix Inequality (LMI) constraint.

3.3.4 Rational expressions for the spacecraft relative motion

The following variable change can be used in order to transform the trigonometrical terms

in the expressions for the propagation of the spacecraft relative trajectory into rational

terms:

w = tan
(ν

2

)
, cos ν =

1− w2

1 + w2
, sin ν =

2w

1 + w2
, (3.10)

Introducing (3.10) into (2.18) leads to the following expressions for the spacecraft

relative positions:

x̃(w) =
1

(1 + w2)2
[Px(w) + 3 d0 PJx(w) J(w)]

ỹ(w) =
1

1 + w2
Py(w)

z̃(w) =
1

(1 + w2)2
[Pz(w) + 2 d0 PJz(w) J(w)]

, w ≥ w0 (3.11)

where the polynomials PJx(w) and PJz(w) depend only on the eccentricity of the orbit

of the leader satellite and are given by:

PJx(w) = ((1 + e) + (1− e)w2)2 PJz(w) = −3e((1− e)w + (1− e)w3) (3.12)

and the term J(w) is obtained by introducing the variable change (3.10):

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
30

J(w) =

∫ w

w0

2 τ 2 + 2

((1− e)τ 2 + e+ 1)2
dτ (3.13)

The polynomials Px(w), Py(w) and Pz(w) are de�ned by:

Px(w) =
4∑
i=0

pxiw
i Py(w) =

2∑
i=0

pyiw
i Pz(w) =

4∑
i=0

pziw
i (3.14)

and their vectors of coe�cients, px =
[
px0 px1 px2 px3 px4

]T
, py =

[
py0 py1 py2

]T
and pz =

[
pz0 pz1 pz2 pz3 pz4

]T
respectively, depend linearly on the vector of param-

eters D(ν0):

px = CxD(ν0) py = CyD(ν0) pz = CzD(ν0) (3.15)

The matrices Cx, Cy and Cz depend only on the eccentricity of the reference orbit and

are given by:

Cx=



0 0 −2−e 1 0 0

0 4+2e 0 0 0 0

0 0 2e 2 0 0

0 4−2e 0 0 0 0

0 0 2−e 1 0 0


Cy=


0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 −1 0

 Cz=



0 e+1 0 0 0 0

0 0 2e+2 0 0 0

0 −2e 0 0 0 0

0 0 2−2e 0 0 0

0 e−1 0 0 0 0


(3.16)

The �nal purpose is to reach some polynomial expressions for the constrained space-

craft relative motion that can lead to a �nite description of the admissible trajectories.

The expressions (3.11) are not entirely rational because of the presence of the term J(w).

Without further manipulations, the spacecraft relative trajectory is de�ned by rational

expressions only in the case of periodic motion. However when d0 = 0, the relative

trajectory is given by:

x̃(w) =
1

(1 + w2)2
Px(w) ỹ(w) =

1

1 + w2
Py(w) z̃(w) =

1

(1 + w2)2
Pz(w) (3.17)

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
31

3.3.5 Constrained periodic trajectories

The description of the admissible trajectories is simpli�ed in the case of periodic spacecraft

relative motion. The periodic trajectories that respect some polytopic constraints can be

de�ned directly in terms of non negativity conditions of some rationals. In the periodic

case, the expression is:

H X̃(ν) ≤ Ṽ (ν), ∀ν ∈ [ν0 νf] (3.18)

which implies that

hi,1 x̃(w) + hi,2 ỹ(w) + hi,3 z̃(w) ≤ 1 + e+ (1− e)w2

1 + w2
vi, ∀w ∈ [w0 wf], i = 1..s (3.19)

Then we can de�ne Ξ

Ξi(w) = −hi,1 x̃(w)− hi,2 ỹ(w)− hi,3 z̃(w) +
1 + e+ (1− e)w2

1 + w2
vi ≥ 0, i = 1..s (3.20)

By bringing the terms to the lowest common denominator, a more compact form can

be obtained for Ξi(w):

Ξi(w) =
1

(1 + w2)2
Γi(w), i = 1..s (3.21)

where the polynomials Γi(w) are de�ned by:

Γi(w) = −hi,1 [Px(w)+3 d0 PJx(w) J(w)]−hi,2 P̄y(w)−hi,3 [Pz(w)+2 d0 PJz(w) J(w)]+vi T (w)

(3.22)

which in the periodic case is:

Γpi (w) = −hi,1 Px(w)− hi,2 P̄y(w)− hi,2 Pz(w) + vi T (w) (3.23)

In the previous de�nition the polynomial P̄y(w) is obtained as P̄y(w) = (1 +w2)Py(w)

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
32

and the polynomial T (w) is given by T (w) =
4∑
i=0

tiw
i with the vector of coe�cients

t =
[
1 + e 0 2 0 1− e

]T
. The coe�cients of the other polynomials in (3.22) depend

on the vector of parameters D, as de�ned in (3.14). This leads to the de�nition of the set

of constant parameters that correspond to admissible trajectories using a �nite number

of polynomial non negativity constraints:

SpD(H,V) =
{
D ∈ R6 | d0 = 0, Γpi (w,D) ≥ 0, ∀w ∈ R, i = 1..s

}
(3.24)

The non negativity of the polynomials Γpi (w) needs to be checked on an in�nite interval

since the variable change (3.10) maps one orbital period to R.

Using the property of non negative polynomials on in�nite intervals given in [14] and

in A, the set of parameters corresponding to spacecraft periodic relative trajectories that

evolve inside a speci�ed polytopic set can be de�ned as:

SpD(H, V) =

D ∈ R6

∣∣∣∣∣∣ d0 = 0

∃Yi � 0 s.t γpi = Λ∗(Yi), ∀i = 1..s

 (3.25)

where γpi are the vectors of coe�cients corresponding to the polynomials Γpi (w). Since

we are dealing with periodic trajectories, the vector of parameters is constant over the

in�nite interval. The degree of the polynomials Γpi (w) is easy to read in this case and is

less or equal to 4 (see (3.23) and (3.14)). This means that the variables Yi are at most 3

by 3 matrices.

3.4 Problem Formulation

Taking the constraints (3.1), (3.2) and (3.25) along with the transition matrices presented

in the previous chapters, the rendezvous problem can be written as follows:

Given an impulse, ν the true anomaly, X(ν) the spacecraft state at ν and H and V

the matrices that de�ne the polytope, determine the existence of a control vector ∆V

such that:

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
33



−∆Vmax ≤ ∆V ≤ ∆Vmax

‖∆V ‖1 ≤ σ

∆Ṽ =
(

1+ecos(νi)
ν̇i

)
∆V

X̃(ν) = T (ν)X(t)

X̃(ν) = φ(ν, ν0)X̃(ν0) + φ(ν, ν0)B̃∆Ṽ

D = C(ν)X̃(ν)

D ∈ SD(H, V)

Yi � 0, ∀i = 1..s

γpi = Λ∗(Yi), ∀i = 1..s

(3.26)

The constraints can all be written as non negativity of symmetric matrices for which

the coe�cients respect some equalities. Given that these constraints are essentially con-

vex, to �nd a solution for this problem is the same as �nding an intersection between two

convex subspaces (the equalities de�ne a subspace of the symmetric real matrices and the

cone of semi-de�nite positive matrices).

3.4.1 Conclusion

In this chapter it was de�ned a predictive impulsive control law by formally de�ning all

the constraints to which the solution must be submitted (3.26). The objective was to

provide a vector of velocity (three axes) that makes that, apart from perturbations, the

orbit made by the spacecraft lay inside the de�ned polytope. The �nal description shows

that all the vectors ∆V , that are solutions to the problem, lay inside the intersection of

two well de�ned convex sets. The problem of �nding an intersection between two convex

sets can be solved in many ways. As this is a problem for embedded systems, there

are computational constraints and the solution can not be of a great level of complexity.

One of the simplest ways of �nd a solution to it is the Alternating Projection Algorithm

proposed by Dykstra in [7]. This algorithm was used in [10] and in [9] and it is based on

it that the analysis in what follows in this work will be done.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
34

Chapter 4

Alternating Projections Algorithm

Previous chapter described the formal problem of rendezvous. As stated, to calculate a

control it is necessary to search for an element which is in two closed convex sets, what

can be done by �nding a point in the intersection of both sets. As a low cost solution from

the computational point of view is searched, the idea is to use the Alternating Projections

Algorithm proposed by [4] and used in [10] and [9] to solve the problem.

The present and the following chapters will present and use this algorithm exhaustively,

so a great importance is given to the knowledge of how it works. Some examples will be

shown �rst and the real implementation in Matlab for the resolution of the problem will

come next.

4.1 Algorithm Principle

Although many authors worked in this algorithm, here the work of Boyd and Dattoro [4]

is used as reference. Alternating projections is a very simple algorithm for computing a

point in the intersection of two convex sets using a sequence of projections onto these sets.

The main idea behind the algorithm is to trace a path between the sets untill a point of

the intersection is reached.

Like many other iterative algorithms, alternating projections can be slow, but if we

have a good way of calculating the projections it is very e�cient. As used in [4], the

Euclidean norm, Euclidean distance, and Euclidean projection will be used as standard.

Suppose C and D are two closed convex sets in Rn , and let PC and PD denote

projection on C and D, respectively. The algorithm starts with any x0 ∈ C, and then

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
35

alternately projects onto C and D:

Yk = PD(Xk), Xk+1 = PC(Yk), k = 0, 1, 2, ... (4.1)

This generates a sequence of points Xk ∈ C and Yk ∈ D. A basic result, shown by

Cheney and Goldstein [5] is that: If C ∩ D 6= ∅, then the sequences Xk and Yk both

converge to a point x∗ ∈ C ∩D. Roughly speaking, alternating projections �nds a point

in the intersection of the sets, provided they intersect. Note that the algorithm does not

produces a point in C∩D in a �nite number of steps. What is claimed is that the sequence

Xk (which lies in C) satis�es dist(Xk, D)→ 0, and likewise for Yk . A simple example is

illustrated in �gure 4.1.

CD

X1

Y1

X2

Y2

X*

Figure 4.1: Algorithm behaviour when there is an intersection

The alternating projections algorithm can also be used when the sets do not have an

intersection. In this case it can be proved that:

Assume the distance between C and D is achieved (i.e., there exist points in C and D

whose distance is dist(C,D)). Then Xk → x∗ ∈ C, and Yk → y∗ ∈ D, where ‖x∗−y∗‖2 =

dist(C,D). In other words, alternating projections converges to a pair of points in C and

D that have the minimum distance between the sets. In this case, alternating projections

also yields (in the limit) a hyperplane that separates C and D. A simple example is

illustrated in �gure 4.2.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
36

CD

X1

Y1

X2

Y2

X*
Y *

Figure 4.2: Algorithm behaviour when there is no intersection

The proof of convergence is presented in [4].

The Projections

In the work of Boyd and Dattoro [4] they give an example for the feasibility of Positive

Semide�nite De�nition problems that we are dealing with. The analytical formulas used

in their work are what will be used in this work in order to do the projections.

Find χ ∈ Sn that satis�es

 χ � 0

tr(Aiχ) = bi, Ai ∈ Sn, i = 1..m
(4.2)

Here we take C to be the semide�nite positive cone of Sn, and we take D to be the

a�ne set in Sn de�ned by the linear equalities. The Euclidean norm here is the Frobenius

norm.

The projection of iterate Yk onto C can be found from the eigenvalue decomposition

(Yk = V DV T)

PC(Yk) = V diag(max{0, λ1}, ...,max{0, λn})V T (4.3)

in other words, all the positive eigenvalues are conserved and the others are set to 0.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
37

The projection of iterate Xk onto the a�ne set is also easy to work out:

PD(Xk) = Xk −
m∑
i=1

uiAi (4.4)

where ui are found from the normal equations:

Gu = (tr(A1Xk)− b1, ..., tr(AmXk)− bm), Gij = tr(AiAj). (4.5)

in other words the matrix Xk is forced to solve the system using the residuals.

Convergence Speed

It is good to notice that the speed of convergence of the algorithm depends strongly on the

geometry between the two sets. Another parameter that will count is the initial position,

these two factors will be important aspects of the numerical analysis made in this work.

Figures 4.3 and 4.4 ilustrate how the angle between the sets will change completely

the convergence speed.

1

0

2

3

4

Figure 4.3: Ilustration of a fast convergence

4.2 Example

Determine the existence of a pair (x, y) such that

 x+ y = 2

x ≥ 0, y ≥ 0
(4.6)

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
38

1

0 2

3

4

Figure 4.4: Ilustration of a slow convergence

Solving this problem is the same as �nding the existence of a point that is in the

straight line x + y − 2 = 0 and is in the non-negative quarter of the cartesian plane. In

order to use the alternating projection algorithm, the problem must be translated into a

problem of feasibility of PSD:

 χ � 0

tr(Aiχ) = bi, Ai ∈ Sn, i = 1..m
(4.7)

where χ =

x 0

0 y

 , A =

1 0

0 1

 and b = 2; the problem is in the right way and the

projections can be used in the same way as stabilished before.

4.3 Implementation

The implementation of the algorithm itself needs the translation of the constraints of the

problem

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
39



−∆Vmax ≤ ∆Vi ≤ ∆Vmax,∀i = 1..N∑N
i=1 ‖∆Vi‖1 ≤ σ

∆Ṽi =
(

1+ecos(νi)
ν̇i

)
∆Vi,∀i = 1..N

X̃(ν) = T (ν)X(t)

X̃(νi) = φ(ν, ν1)X̃(ν1) +
∑

i φ(ν, νi)B̃∆Ṽi

Di = C(νi)X̃(νi),∀i = 1..N

Di ∈ SD(H,V),∀i = 1..N

Yi � 0, ∀i = 1..s

γpi = Λ∗(Yi), ∀i = 1..s

(4.8)

into the form

 χ � 0

tr(Aiχ) = bi, Ai ∈ Sn, i = 1..m
(4.9)

The implementation of the algorithm can basically be divided into two steps: the

decision variables choice and the process of building the matrices Ai and the vector b.

The algorithm receives the data to build the problem in the form tr(Aiχ) = bi, χ � 0 and

from the problem it can start the iterative process, as the formulas for projection depend

exclusively on A and b. The algorithm has three di�erent stopping conditions and returns

the control value (vector of speed impulse) in the end.

4.3.1 Details of Implementation: Construction of the iteration

variable

For the example of section 4.2, it was clear that χ =

x 0

0 y

 should be the variable, but

when we look at the problem it is not obvious what use as the iterative variable (χ) in

the algorithm. Looking through the list of constraints, it is evident that some variables

need to be in χ very clearly. As in the problem de�nition it is stabilished χ � 0, all the

variables in the problem that are subjected to positivity constraint must be in χ. Note

that, if χ is block diagonal, χ is PSD1 if and only if every element of it is PSD.

1Positive Semide�nite

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
40

The saturation constraints can be translated into a positive de�nitness constraint. For

example, using the block matrix:

Mx =

 ∆Vmax ∆Vx

∆Vx ∆Vmax

 (4.10)

Making it semi-positive de�nite is equivalent to (∆Vx)
2 ≤ (∆Vmax)

2 which is one of

the inequality constraints.

The budget constraints can also be translated with the help of slack variables in the

following way:



Zi + ∆Vi = W+
i

Zi −∆Vi = W−
i

σ −
∑

i Zi = W0

Zi,W
+
i ,W

−
i ,W0 ≥ 0

(4.11)

Which would produce 10 variables that need to be semi-de�nite positive and 7 equality

constraints using these variables.

So, at �rst, the following matrix could be used as the iteration variable in the algo-

rithm:

χ = diag(Mx,My,Mz, Zx, Zy, Zz,W
+
x ,W

+
y ,W

+
z ,W

−
x ,W

−
y ,W

−
z ,W0, Y1, Y2, Y3, Y4, Y5, Y6)

(4.12)

The �rst blocks are all composed by the consumption constraints and the last block

are related to the polytope constraints. Each block will be analysed separately.

The �rst 3 blocks are related to the saturation constraints

Mx =

 ∆Vmax ∆Vx

∆Vx ∆Vmax

My =

 ∆Vmax ∆Vy

∆Vy ∆Vmax

Mz =

 ∆Vmax ∆Vz

∆Vz ∆Vmax

 (4.13)

Following in the matrix blocks we have Zx,Zy,Zz,W+
x ,W

+
y ,W

+
z ,W

−
x ,W

−
y ,W

−
z ,W0 all

scalars and related to the consumption.

In the last 6 blocks there are the matrices Y1, .., Y6 associated with the polytopic

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
41

constraints.

This presents the big variable χ that is used in the problem and must be PSD (note

that to a diagonal matrix be PSD it has to have all elements of its diagonal PSD as well).

The saturation constraints are solved in the way the variable X was built. To the

budget constraints it is su�cient adding the 7 equality constraints presented in (4.11).

The equality constraints which remain are the ones used to create the matrices Y1, ..., Y6.

4.3.2 Details of Implementation: Translation of the problem

In order to build the matrices Ai and the vector bi, it is needed to build the equality

constraints in the form

Aeqy = beq (4.14)

The �rst constraint is

d0 = 0 (4.15)

then there is a set of constraints that are linked to the polytopic constraint:

tr(Y1hi) = −px(i) + xmax ∗ tc(i), i = 1, ..., 5

tr(Y2hi) = −py(i) + ymax ∗ tc(i), i = 1, ..., 3

tr(Y3hi) = −pz(i) + zmax ∗ tc(i), i = 1, ..., 5

tr(Y4hi) = px(i) + xmin ∗ tc(i), i = 1, ..., 5

tr(Y5hi) = py(i) + ymin ∗ tc(i), i = 1, ..., 3

tr(Y6hi) = pz(i) + zmin ∗ tc(i), i = 1, ..., 5

(4.16)

where hi is the i-th Hankel matrix as described in Appendix A. These are 26 constraints,

namely

px = CxD(ν) = CxCX(ν) = CxCTX(t) (4.17)

and the last 7 constraints are the constraints associated with the introduction of the slack

variables in the saturation and budget constraints.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
42

Zi + ∆Vi = W+
i , i = x, y, z

Zi −∆Vi = W−
i , i = x, y, z

σ −
∑

i Zi = W0, i = x, y, z

(4.18)

These are the 34 equality constraints of the problem. These equations plus the 6

equations that de�ne the 6 values of saturation (one maximum and one minimum for

each direction) form 40 constraints. So, in order to complete these development, each

equation will be transformed into a constraint in the form of

tr(Aχ) = b (4.19)

where A is a matrix 32×32, χ is the iteration variable de�ned previously, and b is a scalar.

Basically, this process is a reallocation of the terms of the equality and an example is given

next.

Transformation of the equations

The following equation system:

 4 2 8 20

12 14 2 30



r

s

t

u

 =

2

7

 (4.20)

with the constraint

r s

s t

 � 0, u ≥ 0 (4.21)

can be translated into

x =


r s 0

s t 0

0 0 u

 � 0 (4.22)

and

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
43

tr




4 1 0

1 8 0

0 0 20



r s 0

s t 0

0 0 u


 = 2, tr




12 7 0

7 2 0

0 0 30



r s 0

s t 0

0 0 u


 = 7 (4.23)

4.3.3 Break Conditions

As computers have a �nite precision, some tolerances were estabilished to use in the break

points of the algorithm. This tolerances are: tol_vp and tol_cons. This way, in fact, our

problem is:

 min(eig(X) ≥ tol_vp

‖tr(AiX)− bi‖ ≤ tol_cons, Ai ∈ Sn, i = 1..m
(4.24)

The study of how the value of these tolerances in�uence in the resulting control is

made in chapter 7. There are three break conditions in the algorithm: Convergence,

maximum number of iterations and a prediction of convergence. The convergence tests if

the variable satis�es the conditions of the problem, the maximum number of iterations is

a guarantee that the algorithm will stop even if it does not converge and the prediction is

made with a linear regression to try to estimate how many iterations will be needed until

it converges.

Prediction

[9] Suggests that a form of number of iterations prediction can be used as a break condition.

As the convergence evolution is strictly monotonic decreasing, a linear regression can be

made to determine how many iterations are needed to arrive at a certain value. This

convergence is considered as the di�erence between the projections, and tol_fro is de�ned

as the desired value that would imply into the convergence.

The linear regression will give a number of iterations that either we can wait until it

converges or stop the algorithm because it is known that it will not converge. One option

is to compare the number of iterations predicted with the maximum number of iterations

de�ned for the algorithm, if it is higher in any moment the algorithm can stop for it will

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
44

necessarily stop because of the maximum number of iterations.

4.3.4 Pseudocode

Data: initial guess,environment,saturation,fuel budget,tolerances,polytope

input: state,anomaly

Result: control

X = initial guess;

make_A();

make_b();

while true do

Y = Projection(X,C);

X = Projection(Y,D);

iter + +;

if (trace(AiX)− bi < tol_cons, i = 1 : I and min[eigenvalue(X)] > tol_vp)

then

break;

else

if iter > max_iter then

break;

else
Convergence Prediction

end

end

end

extract_control();
Algorithm 1: Alternate Projection Algorithm

4.4 Initial Guess

The initial guess has a great importance in the result of the algorithm when it comes to

the consumption level. The algorithm starts with a matrice X0 and tries to �nd a matrice

X∗ which is in the intersection of two sets: The cone of the PSD matrices and the set

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
45

described by the equality constraints tr(Aiχ) = bi. The algorithm takes the matrice X0

and does a sequence of projections into both sets until it converges to the intersection or

at least the point of minimal distance between the sets. Figure 4.5 ilustrates one situation

for the algorithm.

Figure 4.5: Example of the topology the algorithm works in

If X1 is the initial guess, the algorithm will converge to X∗1 , however if X2 is the initial

guess the algorithm will converge to X∗2 . Figure 4.6 ilustrates another situation for the

algorithm.

For a situation with disconnected sets the initial guess is even more important as it

can converge to really di�erent regions in the space. This leads to the conjecture that if

we search for a global optimal we have to search the optimal initial guess as well.

It is important to see that the constraints depend on time, anomaly, position and

actual speed of the aircraft as well. This way there can be di�erent geometric situations

for consecutive problems.

At �rst, to generate the initial guess, some logical choices were made like what is called

the Cold Start and the Warm Start. The Cold start consists in using everytime the same

initial guess, therefore starting always from the same point. The Warm start, however,

consists in using the last solution generated by the algorithm as the initial guess for the

following control computation. This two were the only initialisation strategies used in in

[9] and in [10].

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
46

Figure 4.6: Another example of topology the algorithm work in

4.5 Justi�cation of the use of the Alternating Projec-

tions Algorithm

The strongest reason to use the Alternating Projections Algorithm instead of a optimiza-

tion solver in this work is the computational cost of the algorithm. Given that sattelites

uses Leon kind of boards and that the memory available for the control algorithm in this

application is in the order of hundreds of kilobytes, there is no way to use an already

made optimization solver in the satellite. Besides that, there is a time constraint as the

satellite is a time critical embedded system and uses a TDMA algorithm to manage its

processor, so the algorithm has to give a control in the order of miliseconds.

Nowadays the solution used in this kind of application is to calculate the control

remotely and send it to the satellite, however this does not give much independence to

the system. So, considering all the constraints we have to deal with when it comes to

embed a control algorithm, the Alternating Projections Algorithm is a great option face

to optimization solvers.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
47

The next chapter will, then, analyse how we can improve this solution in terms of

consumption and feasibility so that it approaches its e�ciency to the level of a optimization

solver.

4.6 Conclusion

In this chapter the Alternating Projections Algorithm was fully described, so from now

on this work will treat all the aspects related to using it as the solution to the problem

of rendezvous. Next chapters will describe deeper the issues with the initial guess, the

feasibility of the problem as well as a numerical analysis from the iterative point of view

of the whole process.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
48

Chapter 5

Initialisation of the Alternating

Projections Algortihm

As showed in the last chapter, the initial guess in the algorithm is really relevant to the

results. If we compare only the two �classical� initialisations used in the work of Arantes

and Louembet in [10] we see already that the consumption in the warm start is really

lower than the cold start. In this chapter we study the in�uence of the initial guess in the

�nal consumption of the mission. It is also compared the results given by the Alternating

Projections Algorithm to the results given when using an optimization solver.

Intrigued by the results given by an optimization solver, we did not know if it was

possible to arrive at such low consumption using the alternating projection algorithm. So

in this chapter:

1. The results obtained by an optimization solver (SeDuMi) are presented.

2. A metaheuristic based on the process of Simulated Annealing was used to �nd out

if there is any initial guess that can result in the optimal consumption.

3. Another method of initialisation was proposed to be an option to the cold and warm

start.

5.1 Simulator

The simulator presented in Figure 5.1 was used to evaluate the performance of the algo-

rithm used. It was conceived by Kara-Zaïtri [11] and consists in a Simulink Block Diagram

which simulates separately the trajectories of the follower and the target using two non

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
49

linear equivalent models based on Gauss equations. Although it was used the linearized

equations of Tschauner-Hempel when modeling the system to our control system, this

simulator considers the angles i, ω and Ω, the non-homogeneous geometry of the Earth,

the atmospheric drag and the solar activity.

Figure 5.1: Simulink simulation scheme used in this work

The green blocs in Figure 5.1 are responsible for simulating the orbital elements evo-

lution, while the red one is the block which will contain our control algorithm.

For the simulations an initialisation is done before to set a scenario. It is decided as

well the frequency we will apply the control as well as the total time of simulation, initial

position of the spacecrafts and total budget of the follower.

The simulation keeps track of the whole trajectory traced by the follower in the LVLH

(Local Vertical Local Horizontal) framework situated in the mass center of the target.

5.1.1 Scenario of simulation

The scenario of simulation used through the rest of the work is presented in Table 5.1.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
50

Parameter Value Parameter Value

a[km] 6763 Target Mass [kg] 462949

e 0.0052 Follower Mass [kg] 20000

i[o] 52 Drag Coe� Target 3

ω[o] 0 Drag Coe� Follower 2.274

Ω[o] 0 Target Surface [m2] 1703

t_0 0 Follower Surface [m2] 50

X_0[m,m/s] [5;5;5;0;0;0] max_it 100

∆ Vmax 0.26 Tol_vp -0.001

σ [m/s] 6763 Tol_cons 0.001

Box [-40,40,-40,40,-40,40] Time Between Controls [s] 800

Table 5.1: Data for the scenario simulated

5.2 Classic Initialisations

5.2.1 Cold Start

The cold start used in [10] uses the zero matrix or the identity as initial guess. This gives

an almost constant behaviour to the algorithm when we see the iterations graphics. As it

starts always at the same place it tends to converge always to a similar solution, unless

the set given by the constraints changed a lot from one control calculation to another.

The cold start is less e�cient when compared to the warm start as it is shown during the

numerical analysis in Chapter 7, producing solutions that have a higher consumption and

less smooth trajectories. The trajectory traced by the Cold Start is presented in Figure

5.2.

5.2.2 Warm Start

The warm starts consists in using always the solution of the last control calculation as the

initial guess. This way it will start from the point the algorithm stopped last time, in other

words, it starts from the latest intersection of the two previous sets. If it is considered

that the problem does not change drastically from one control calculation to the next,

this initial guess should be really near the intersection of the two sets. The intuitive idea

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
51

Figure 5.2: Trajectory for Cold start

is to try to maintain always the same trajectory, considering that the perturbations are

small, continuing in the same orbit should cost little. The results show that this is a great

initial guess indeed, but as will be shown in this chapter, the solution of the warm start is

yet far from the optimum. For the �rst control calculation it is used a cold start, taking

the zero or the indentity matrix as initial guess. The trajectory traced by the Cold Start

is presented in Figure 5.3.

Figure 5.4 gives a better insight at how di�erent are the trajectories given by the

solutions of warm and cold start. In blue it is showed the trajectory resulted of warm

start control. In red is the trajectory that would have resulted from a cold start in the

same situation. It is possible to note that the solution of cold start tends to diverge from

the actual trajectory, while the warm start tends to maintain its orbit.

5.3 Current Point Approach

Another alternative to the initial guess is to use the state mesure and try to build an

initial guess matrice as though the current state were the solution. With this we try to

force the algorithm to converge to the nearest solution of the instanteneous orbit, which

would cost less than the others. This is reasonable since a direct control in speed is used,

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
52

Figure 5.3: Trajectory for Warm start

Figure 5.4: Trajectory Comparison Warm Start and Cold Start

so if it starts with the current speed we could �nd a trajectory that does not need a great

impulse.

To understand the real di�erence between this approach and the warm start, let the

following situation: From the last control application the spacecraft su�ered a great per-

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
53

turbation in terms of speed, so now it was driven away from the orbit planned. If it uses

the Warm Start, it will try to come back to its last trajectory, which is far away right

now. The lowest cost solution would be to try to �nd a trajectory that passes through

the point it is at now, requiring the smallest control possible.

The mathmetical development is presented next.

5.3.1 Contruction of the initial guess

Let X0(tk) ∈ R6 the state measure at the instant tk and νk the true anomaly at the instant

tk. The objective is to calculate Y0 ∈ R32x32 starting point for the Alternate Projections

Algorithm. In order to build Y0 it is needed to analyse the structure of it: Y0 is a diagonal

block matrix that comes from the problem constraints.

Y0 = diag(Mx,My,Mz, Zx, Zy, Zz,W
+
x ,W

+
y ,W

+
z ,W

−
x ,W

−
y ,W

−
z ,W0, Y1, Y2, Y3, Y4, Y5, Y6)

(5.1)

The �rst blocks are all composed by the consumption constraints and the last block

are related to the polytope constraints. Each block will be analysed separately.

The �rst 3 blocks are related to the saturation constraints

Mx =

 ∆Vmax ∆Vx

∆Vx ∆Vmax

My =

 ∆Vmax ∆Vy

∆Vy ∆Vmax

Mz =

 ∆Vmax ∆Vz

∆Vz ∆Vmax

 (5.2)

Since the algorithm gives the closest solution to the initial point and, the objective is to

minimize the variable ∆V for the 3 axes, the best is to set them 0 at the initial point.

The value of ∆Vmax is �xed when the problem is de�ned, so it will be set to this value.

This way, the matrices will be

Ms =

 ∆Vmax 0

0 ∆Vmax

 , s = x, y, z (5.3)

Following the blocks in matrix Y0, there is Zx,Zy,Zz,W+
x ,W

+
y ,W

+
z ,W

−
x ,W

−
y ,W

−
z all

scalars and related to the consumption. For the same reason presented before, they will

be set to 0 trying to minimize them.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
54

The next block isW0 which is the total budget of the mission and is a �xed value from

the problem de�nition.

In the last 6 blocks there are the matrices Y1, .., Y6 associated with the polytopic

constraints. It is here that the measured state value will be used. To build this matrices

all the constraint de�nition process has to be followed. First of all to pass the measure

from time to true anomaly, this transformation follows

X̃0(νk) = T (νk)X0(tk) (5.4)

Now the state is in function of the true anomaly, the parameters D0(νk) associated with

this state can be calculated:

D0(νk) = C(νk)X̃0(νk) (5.5)

From this parameter, the polynomial coe�cients associated to the motion in each axe

of the satellite.

px = CxD(νk), py = CyD(νk), pz = CxD(νk) (5.6)

From the polynomial coe�cients the polynomials that we will imposed to be non-

negative can be explicited as follows:

Γi = −hi,1[Px]− hi,2[P̃y]− hi,3[Pz] + viT (5.7)

The politopic constraints that were variable of time have to be transformed into

anomaly as well. To give an example of how this polynomials look like we can explicit Γ1

which will be associated to the constraint Y1

Γ1 = −px + xmax ∗ ti, ti = [(1 + e), 0, 2, 0, (1− e)]t (5.8)

where xmax is a scalar in the problem de�ned constraint from the polytope de�nition.

The next step is to transform the polynomial constraints into positive de�niteness ones.

This is made with the help of the Λ operator de�ned in [14]. In fact, it is not used the

operator itself, but with the property:

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
55

Figure 5.5: Simulated trajectory for the initial point approach.

< Γ,Λ∗(Y) > = < Λ(Γ), Y > (5.9)

it is possible to write the matrice Λ(Γ) explicitly. In a general form the matrice will be:

Yi =


Γi(1) Γi(2) Γi(3)

Γi(2) Γi(3) Γi(4)

Γi(3) Γi(4) Γi(5)

 , i = 1, .., 6 (5.10)

and with this the last elements of the Initial Point Matrix are de�ned.

Results

To compare this approach to the others used previously, the same scenario presented

before was used. The trajectory that resulted for a period of 1000 seconds between the

control aplications is presented in Figure 5.5.

The consumptions for comparison with the cold and the warm approaches are pre-

sented in Table 5.2. which shows that this approach is not optimal.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
56

Period [s]
Consumption

cold start warm start current point start
10 0.1056 0.0197 0.1687
100 0.0903 0.0222 0.1488
500 0.0677 0.0321 0.1117
600 0.0656 0.0340 0.1047
700 0.0659 0.0361 0.0908
800 0.0652 0.0378 0.0983
900 0.0662 0.0397 0.1028
1000 0.0694 0.0420 0.0981
1100 0.0723 0.0447 0.0981

Table 5.2: Consumption for each initial guess strategy for each control frequence

5.4 Optimization Process

To solve the problem optimally it was used the Yalmip language with the solver SeDuMi.

YALMIP is a language for advanced modeling and solution of convex and nonconvex

optimization problems and it is implemented as a free toolbox for MATLAB.

The main motivation for using YALMIP is that all the implementation could be used

with no changes. The language is consistent with standard MATLAB syntax, thus making

it extremely simple to use for anyone familiar with MATLAB. The problem constraints

were written in MATLAB language rebuilding the problem in the LMI (PSD) form. Then

the problem was solved with the objective function to minimize the consumption (sum of

speed variations applied) by the solver SeDuMi.

The controls given by the optimization process are showed in Table 5.3 and using the

warm start in the Table 5.4. The results when comparing the SeDuMi solution and the

Warm Start are similar.

It can be seen that the solutions given by the optimization process are similar to the

warm start, however the optimal control uses only the actuator in X, this way reducing

the consumption. Basically the warm start is not far from the optimum solution, it just

uses more e�ort than necessary. The trajectory presented by the optimal solution is really

similar to the Warm start as well and it is possible to see it in Figure 5.6.

Comparing the trajectory in Figure 5.6 with the one presented in Figure 5.3 can be

concluded that the optimal solution gives a trajectory really similar to the warm approach.

The intuitive idea is that the optimal solution is capable of giving an orbit that is nearer

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
57

X Y Z
0.0107 0 -0.0083
-0.0005 0 0
-0.0003 0 0
-0.0002 0 0
-0.0003 0 0
-0.0005 0 0
-0.0007 0 0
-0.0008 0 0
-0.0006 0 0
-0.0004 0 0
-0.0001 0 0
-0.0003 0 0

Table 5.3: Optimal Controls given by the solver SeDuMi using Yalmip

X Y Z
0.0106 0.0046 -0.014
-0.0005 0 0.0005
-0.0003 0 0.0002
-0.0002 0 0.0001
-0.0003 0 0.0003
-0.0005 0 0.0004
-0.0008 0 0.0006
-0.0008 0 0.0005
-0.0006 0 0.0005
-0.0004 0 0.0003
-0.0001 0 0.0001
-0.0003 0 0.0002

Table 5.4: Controls given by the warm approach

to the bounds of the polytope, thus reducing the consumption.

The consumption results comparing warm start, cold start and optimal solutions are

presented in the Table 5.5. The column Period refers to the period between two applica-

tions of the control. As shown in the work of Arantes and Louembet [10] this parameter

(period) can be really important to the consumption in the sense that a short period

implicates in many but low controls whereas a great period implicates in fewer but higher

controls. This period is a priori constant through all the mission.

What leads to a further investigation is that SeDuMi also uses a external path algo-

rithm. This means that a priori it would be possible to reach the same solution using the

Alternating Projections Algorithm. However to reach this solution it would have to be

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
58

Figure 5.6: Simulated Trajectory using Optimal Controls

used a di�erent initial guess that would lead to the �right� path and, therefore, the optimal

solution. In order to search for this Optimal Initial Guess is that it was used a meta-

heuristic varying the initial guess to analyse the solution that it gives. This metaheuristic

is presented in the next section.

5.5 Simulated Annealing

In this section it is presented the use of the Simulated Annealing algorithm to know if it

is possible to reach the same results produced by the optimization process using the Al-

ternating Projections Algorithm. Note that the Simulated Annealing will not substitute

the Alternating Projections, but it will work producing intial guess to the Alternating

Projections, searching the initial guess that will produce the best result in terms of con-

sumption.

It is important to note as well, that the Simulated Annealing will not be used online,

in the processor of the satellite. This is a analysis made by this work, using it to prove

how near the optimality it is possible to get without using a optimization algorithm.

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global op-

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
59

Period (s) Warm SeDuMi Cold
10 0.0196 0.0167 0.1044
100 0.0214 0.0166 0.0903
500 0.0318 0.0173 0.0677
600 0.0338 0.0191 0.0668
700 0.0363 0.0215 0.0660
800 0.0375 0.0236 0.0676
900 0.0398 0.0257 0.0661
1000 0.0419 0.0284 0.0695
1100 0.0447 0.0359 0.0727

Table 5.5: Consumption Comparison between Cold, Warm and Optimal controls.

timization problem of locating a good approximation to the global optimum of a given

function in a large search space. For certain problems, simulated annealing may be more

e�cient than exhaustive enumeration � provided that the goal is merely to �nd an ac-

ceptably good solution in a �xed amount of time, rather than the best possible solution.

The name and inspiration come from annealing in metallurgy, a technique involving

heating and controlled cooling of a material to increase the size of its crystals and reduce

their defects. Both are attributes of the material that depend on its thermodynamic free

energy. Heating and cooling the material a�ects both the temperature and the thermody-

namic free energy. While the same amount of cooling brings the same amount of decrease

in temperature it will bring a bigger or smaller decrease in the thermodynamic free energy

depending on the rate that it occurs, with a slower rate producing a bigger decrease. This

notion of slow cooling is implemented in the Simulated Annealing algorithm as a slow

decrease in the probability of accepting worse solutions as it explores the solution space.

Accepting worse solutions is a fundamental property of metaheuristics because it allows

for a more extensive search for the optimal solution.

As something to search for a possible Optimal Initial Guess was needed, this meta-

heuristic was ideal to lead the search. It is really good to explore the space and it is

robust enough to avoid falling into local optima in the case of the geometry is hard.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
60

5.5.1 Pseudocode

Data: Problem, Optimal Solution

Result: Initial Guess that gives the Optimal Solution (Best Result in the List)

De�ne initial temperature;

De�ne �nal temperature;

De�ne law to update temperature;

for cycles do

x = generate_initial_guess();

fx = objective_function(x);

if worse soluntion then

generate probability of acceptance based on temperature;

if rand < probability of acceptance then

accept new solution;

else

do not accept new solution;

end

else

accept new solution;

end

if new solution accepted then

update list of solutions;

end

update temperature;

end

Algorithm 2: Simulated Annealing Algorithm
An intuitive idea for the algorithm is that it starts with an initial guess. Than it

generates an initial guess in the neighbourhood of the �rst using a random method (but

conserving the structure of the matrix) and evaluates it. If the new initial guess is better

than the old one it is accepted and put in the list of solutions, however in the case that it is

worse than the old one there is also a probability of it being accepted. This scheme with a

probability of acceptance enables the algorithm to exit local optimas. As the cycles pass,

the temperature is decreased and the probability of acceptance is decreased as well. So

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
61

when we approach the last iterations, the temperature converges to 0 and the probability

converges to 0 in the same way, considering just improvements in the objective function.

This process is random and o�ers no optimal garanties, however the optimal values

are obtained from the Yalmip analysis (using SeDuMi) and the metaheuristic ran until it

�nds an initial guess that gives a result near enough to the optimum. This means that

from the 100 problems solved with this method, for 90 it found an Optimal Initial Guess

in the �rst try; however for a decade of problems it had to run some more times the

metaheuristic in order to �nd it.

5.6 Results Analysis

The results show that it is possible indeed to �nd the optimal value with the alternating

projections algorithm. However there is no unicity of the optimal initial guess and we

were not able to �nd a logical process of building it as it did not ressembled either the

strategies we used before. The consumption results are presented in Figure 5.7.

Figure 5.7: Consumption Comparison between Warm, Optimal and Simulated Annealing

The simulated annealing was able to �nd initial guesses that gave a solution near

enough to the optimum. Figure 5.8 shows how far the warm aproach is from the optimal

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
62

as well as shows that it is possible to arrive at arbitrarily near the optimal solution using

the Alternating Projection Algorithm if it uses the good initial guess. These results show

that there is yet at least a 40% margin to gain in consumption when using the alternating

projections algorithm when compared to the optimal solution. This margin stays open for

future works to try to �nd a logical process that generates better initial guesses than the

warm start or to at least know how much is the loss using this strategy when compared

to the use of an optimization process.

Figure 5.8: Relative Comsumptions Comparison

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
63

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
64

Chapter 6

Feasibility of the Problem

With the addition of the saturation and budget constraints to the problem, it is not always

possible to �nd a feasible solution to the problem. Two situations can happen here, either

there is need of higher actuation than our actuators can provide or there is not enough

fuel to apply the control. In these situations it would be nice if there was a test to know

if the algorithm can �nd a feasible solution or not.

Saying that there is a solution to the problem is the same thing as saying that the two

sets have an intersection. In other words, to study the feasibility of the problem is the

same as studying the topology of both sets. In order to do such study we need to decide

which form of the problem will be use. In this chapter the work is always in the space

of D (the set of 6 variables that describe the space of trajectories) and with the problem

written as polynomials in D that need to be positive de�nite in respect to ω = tan(ν
2
).

There are basically three objectives in this chapter: Create a simple test to know if there

is intersection between the sets, �nd a better way to decide when to apply the control

rather than �xed time intervals and, study the topology where the problem is solved (if

the sets are connected or not and other characteristics).

6.1 Feasibility of a state

The problem can be built in a way that for each vector D there is a test to say if it

respects the constraints of the problem. In other words, the vector D de�nes a trajectory

and, if this trajectory lay inside the polytope forever than it is an admissible trajectory.

Another way to see this is to build the polynomials de�ned in Chapter 2 to see if, for the

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
65

vector D, it is positive de�nite.

For the algorithm, it was used the criterion of [14] to see if the polynomials were

positive de�nite or not. Another way to see if the polynomial has this characteristic is the

following: Let p(x) be a polynomial of even degree, if it has only imaginary roots then

either p(x) > 0 or p(x) < 0 ∀x ∈ <. So as our six polynomials are two of degree 2 (the

ones related to the axis Y) and four of degree 4 (the ones related to the axis X and Z), if

there is a criterion that tells when the roots are all imaginary based on the coe�cients,

the same criterion could be used to say when they are positive or negative de�nite.

The coe�cients of the polynomials are functions of the parameters [d0, d1, ..., d5]. This

way, each vector D can be related to a polynomial and this criterion can be used to know

if it is positive de�nite or not.

For degree 2 there is Bhaskara's Discriminant that is well know. For degree 4 there is

a simular structure. Appendix C shows the process for polynomials of degree 4.

The conditions presented were used based on the polynomials. The objective is to

have a positive de�nite polynomial of degree 4, so the test used was:

• ∆ > 0

• P > 0 or δ > 0

these conditions are all functions of the variables [d1, d2, d3]. So was made a grid of points

in the space made by these 3 variables to �nd the region that satis�es the conditions and

is positive.

It is known that the movement in Y is decoupled of the movement in X and Z. From

the vector [d0, d1, ..., d5] the parameters d4 and d5 de�ne all the trajectory in Y . Besides

that, d0 is set to 0 as a problem constraint (to take only periodic trajectories). So d1,d2

and d3 de�ne the trajectory in the plan X − Z. As the two problems are analogue here

it only presents results for the trajectory X − Z.

Feasible Region

We can de�ne a region that contains all the vectors [d1, d2, d3] that are a solution to our

problem, based on the contraints for a quartic function be positive de�nite. This region

is presented in Figures 6.1, 6.2 and 6.3

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
66

Figure 6.1: Region of feasible solutions

Figure 6.2: Top view of the region of feasible solutions

This results are for a problem with 0 excentricity. The case for excentricity greater

than 0 will be discussed later in this chapter.

The region ressembles a diamond form, the result of a revolution of the polygone shown

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
67

Figure 6.3: Front/Lateral view of the region of feasible solutions

in Figure 6.3. It is possible to see as well, that for a �xed d3 value there is a circular �gure

in d1 × d2. Figure 6.4 shows the cuts for some values of d3.

Figure 6.4: Cuts of the region for some d3 values.

It can be seen as well that the radius of the circles has a linear behaviour with d3.

Analyzing this results and Equation (6.1) it is possible to conclude that this region can be

modeled by a superquadric. Taking d0 equals to 0 and varying the anomaly (ν) between

0 and 2π, if the direction, for example, x is �xed less than a xmax there is a constraint on

d1, d2 and d3 that will result in a circle for e = 0. So the results given by the grid in the

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
68

space D and the equations are consistent.

x̃(ν) = (2 + e cos ν)(d1 sin ν − d2 cos ν) + d3 + 3 d0 J(ν)(1 + e cos ν)2

ỹ(ν) = d4 cos ν + d5 sin ν

z̃(ν) = (1 + e cos ν)(d2 sin ν + d1 cos ν)− 3 e d0 J(ν) sin ν(1 + e cos ν) + 2 d0

, ν ≥ ν0

(6.1)

It is trivial to see how Equations (6.1) originate the circles. For e = 0 it is possible to

write the equations for xmin ≤ x ≤ xmax and it is analogue to z. Then take d3 �xed, so

the constraints will be on d1 and d2 in a similar way to �gure 6.3. Taking the intersection

for all values of anomaly (ν ∈ [0, 2π]) it will generate the circle observed in 6.4.

In mathematics, the superquadrics or super-quadrics (also superquadratics) are a fam-

ily of geometric shapes de�ned by formulas that resemble those of ellipsoids and other

quadrics, except that the squaring operations are replaced by arbitrary powers. They can

be seen as the three-dimensional relatives of the Lamé curves ("Superellipses").

The superquadrics include many shapes that resemble cubes, octahedra, cylinders,

lozenges and spindles, with rounded or sharp corners. Because of their �exibility and

relative simplicity, they are popular geometric modeling tools, especially in computer

graphics.

The basic superquadric has the formula

|x|r + |y|s + |z|t = 1 (6.2)

where r, s, and t are positive real numbers that determine the main features of the

superquadric. Namely:

1. less than 1: a pointy octahedron with concave faces and sharp edges.

2. exactly 1: a regular octahedron.

3. between 1 and 2: an octahedron with convex faces, blunt edges and blunt corners.

4. exactly 2: a sphere

5. greater than 2: a cube with rounded edges and corners.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
69

6. in�nite (in the limit): a cube

Each exponent can be varied independently to obtain combined shapes. For example,

if r = s = 2, and t = 4, one obtains a solid of revolution which resembles an ellipsoid with

round cross-section but �attened ends. This formula is a special case of the superellipsoid's

formula if (and only if) r = s. To a deeper knowledge of superquadrics [2] is a good

reference.

The importance of �nding a model to the Feasible Region is that a simple test can be

made to know wheter or not a point is inside of it. The superquadrics make it easy, as to

know if a point is in its interior it is su�cient to test if a speci�c expression is superior to 0

for that point. In this case the region de�ned for e = 0 can be modeled by a superquadric

with r = s = 1 and t = 2 resulting in the shape presented in Figure 6.5.

Figure 6.5: Superquadric that model the feasible region

for other values of excentricity we �nd similar �gures, but we could not yet model the

region. Figures 6.6, 6.7 and 6.8 show the region for an excentricity of 0.3.

6.2 Control Action in D Space

Now that the trajectories that satisfy the problem are well de�ned, it is possible to analyse

how the algorithm works in this space. Since there is a saturation constraint, when applied

a control the change in the trajectory is limited. In a situation where the spacecraft is

really far from the feasible region it will not be possible to, with the application of only

one control to come back to a feasible solution (return to a periodic orbit that respect

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
70

Figure 6.6: Feasible region for e = 0.3

Figure 6.7: Lateral view of the feasible region for e = 0.3

Figure 6.8: Cuts for the feasible region for e = 0.3

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
71

the polytopic constraints). The question is now how far can the spacecraft be from the

feasible region and be able to come back with a single impulse.

It is possible to de�ne a region that will be the region that can be reached in theD space

if it is applied every possible control value. Using (6.3) and �xed maximum/minimum

speed values we can trace the region in D it could reach. Like before, the movement is

decoupled and it will be analysed only in terms of d1, d2 and d3. This region is the plane

shown in Figure 6.9.

C(ν)=



0 0
−(3 e cos ν+e2+2)

e2 − 1

(1 + e cos ν)2

e2 − 1
0

−e sin ν(1+e cos ν)

e2 − 1

0 0
3(e+ cos ν)

e2 − 1

−(2 cos ν+e cos2 ν+e)

e2 − 1
0

sin ν(1 + e cos ν)

e2 − 1

0 0
3 sin ν(1+e cos ν+e2)

(e2 − 1)(1 + e cos ν)

−sin ν(2+e cos ν)

e2 − 1
0

−(cos ν+e cos2 ν−2e)

e2 − 1

1 0
−3 e sin ν(2+e cos ν)

(e2−1)(1+e cos ν)

e sin ν(2+e cos ν)

e2 − 1
0

e2 cos2 ν+e cos ν−2

e2−1

0 cos ν 0 0 −sin ν 0

0 sin ν 0 0 cos ν 0


(6.3)

Figure 6.9: Attainable region from an arbitrary point using one control.

From 6.3 it is possible to see that the in�uence of the control into [d0, d1, d2, d3] is a

matrix with, at best, rank 3. If the periodicity constraint is applied and forces d0 to 0,

this rank is reduced to 2. So even if there are actuators in the 3 axes, only 2 directions can

be, in fact, controled. It is important to note that matrix 6.3 depends on the anomaly, so

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
72

for each anomaly value the plan is di�erent, in the sense that the direction of its normal

vector changes.

So in the situation that we need to control a spacecraft in the rendezvous stage. If

there is access to its state in D it is possible to know if it is inside the feasible region. If

it is inside, there is no need to correct anything since the trajectory will be periodic and

will rest inside the polytope. Now suppose that the state is not inside the feasible region,

it is possible to trace the plan for the anomaly value and see if it intersects the feasible

region. If there is an intersection so there is a control value that can be applied to bring

our spacecraft to a good trajectory. Now take the region de�ned by all the points from

which is possible to reach the feasible region for a determined anomaly. If a point is inside

this region there is always a control that will bring it to a good trajectory, however, if it

is outside it is clear that for that value of anomaly there is no solution to the problem.

The region described above can be de�ned as the minkowski sum of both the plan

and the feasible region [13],[16],[12]. Figure 6.10 show this region for excentricity 0 and a

value of anomaly (0) and �gure 6.11 compares for two anomaly values (0 and π/3).

Figure 6.10: Region result of the Minkowski sum for anomaly 0

So the problem to know if there is a solution to the problem is equal to the problem

to determine if the spacecraft is in this region or not, which can be easy if there is a

analitical formula for it.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
73

Figure 6.11: Region result of the Minkowski sum for two di�erent anomalies (0 and π/3)

6.3 Conclusion

In this chapter was made a deeper analysis of the feasibility of the problem. Given the

state of the spacecraft and the constraints de�nition it is possible to know if there exists

a speed impulse that will bring the spacecraft to an orbit that respect the constraints. If

there is no solution to the problem, another strategies can be used like the method using

two impulses presented in [6]. Another solution if the problem is not feasible is to wait

until it comes to feasibility, as explained before, all the constraints and the plane of action

depend on the anomaly, so the problem can go from the feasibility to the unfeasibility

only with the evolution of the anomaly.

Other applications of what was developed here is when it comes to the period between

applications of control. If in some way the state of the spacecraft is monitored, it is

possible to know when the problem will become unfeasible. As the dynamics of the vector

D are well explained, the only thing that can be a problem are the perturbations. In

a way it is possible to create a �ag that decides when there is need to actuate in the

spacecraft trajectory to avoid it going into the unfeasible region.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
74

Chapter 7

Numerical Analysis

With the algorithm �nished and its theoric aspects studied, a numerical analysis is im-

portant to know the behavior of the algorithm facing di�erent situations. Many questions

can be answered with this analysis, like: How many iterations are needed to converge

using a warm start? And for the cold start? How is the constraints evolution during the

iterative process? How can be set the breaking tolerances? The convergence prediction

really works? Is there any problematic point for the algorithm?

In this chapter all this questions are answered and a logical explanation is given.

7.1 Example

This section describes an example of use of the algorithm in a complete simulation. Using

the scenario presented in Table 7.1 we have simulated the system and acquired the data

from the Algorithm of Alternating Projections.

7.1.1 Trajectory

Just analysing the trajectories we can see that both approaches shown in Chapter 5

solve the problem and maintain the satellite inside the especi�c box set as a constraint.

Although both solutions are accepted we see that the control given as a result depends

heavily on the initial condition as stated before. The warm start tends to maintain the

satellite in the same trajectory given by the last step as we can see in Figure 5.3. On

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
75

Parameter Value Parameter Value

a[km] 6763 Target Mass [kg] 462949

e 0.0052 Follower Mass [kg] 20000

i[o] 52 Drag Coe� Target 3

ω[o] 0 Drag Coe� Follower 2.274

Ω[o] 0 Target Surface [m2] 1703

t_0 0 Follower Surface [m2] 50

X_0[m,m/s] [5;5;5;0;0;0] max_it 100

∆ Vmax 0.26 Tol_vp -0.001

σ [m/s] 6763 Tol_cons 0.001

Box [-40,40,-40,40,-40,40] Time Between Controls [s] 800

Table 7.1: Data for the scenario simulated

the other hand the cold start will begin always from the same initial point and will give

diferent trajectories each step as showed in Figure 5.2.

7.1.2 Iterations

In the �rst step the warm approach initiates empty, what means that the initial guess is

the identity matrix, so the convergence takes a greater number of iterations. After the

�rst step though, the convergence is really fast and takes only a couple of iterations to �nd

the feasible solution. For example, we can see this process as transient and steady regime,

in a way that the number of iterations, similar to a state, will converge to a constant

number (equilibrium). This process is shown in Figures 7.1 and 7.2. Steps 1 and 2 can be

considered as the transitory regime for Figure 7.1 and steps from 1 to 6 are the transitory

for Figure 7.2.

For the cold start we observe, in oposition to the warm, a constant number of iterations

to converge. Since we start always from the same point, there is no division between

temporary and steady regime. This results are presented in Figures 7.3 and 7.4. Both

graphs are for the same simulation but Figure 7.4 represents a simulation of 50000 seconds

instead of the 10000 seconds stabilished for this scenario.

Note that there are some points that did not converge, this issue will be treated later

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
76

in this chapter.

Figure 7.1: Iterations per Step Warm Start

Figure 7.2: Iterations per Step Warm Start

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
77

Figure 7.3: Iterations per Step Cold Start

Figure 7.4: Iterations per Step Cold Start

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
78

7.1.3 Control Output

Analysing the control output, given by the warm start, along the time we see that it

gives a �rst great e�ort to put the satellite on a trajectory and after that the control is

just to maintain the trajectory. The satellite will diverge from the planned trajectory

due to many factors: perturbations, model simpli�cations and errors; so the following

controls will compensate these factors to maintain the trajectory stated in the �rst control

calculation. This can be seen in the �nal trajectory made by the satellite. The control

outputs given by ther warm start for the scenario described as example are in the Table

7.2.

Step 1 2 3 4 6 8 12

DVx 0.0106 -0.0005 -0.0003 -0.0002 -0.0005 -0.0008 -0.0003

DVy 0.0046 0 0 0 0 0 0

DVz -0.014 0.0005 0.0002 0.0001 0.0004 0.0005 0.0002

Table 7.2: Control Values for Warm Start

Similar to the warm, the cold start will require a greater e�ort in the �rst control

application and then it will decreases. We can see that although the strategy is similar,

the control e�orts are bigger in the cold start what will re�ect the greater consumption

a priori and the di�erent trajectory that it will trace. The control outputs given by the

cold start for the scenario described as example are in the Table 7.3.

Step 1 2 3 4 6 8 12

DVx 0.0106 -0.0005 -0.0003 -0.0002 -0.0005 -0.0008 -0.0002

DVy 0.0046 0.0027 0.0017 0.0011 0.0005 0.0002 0

DVz -0.014 0.0042 0.001 -0.0022 -0.0033 -0.0008 0.002

Table 7.3: Control Values for Cold Start

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
79

7.1.4 Constraints

Warm

We can see that our initial solution is unfeasible and violates both constraints and as the

projections are made the solution gets closer to the feasibility. In the second calculation

however, as we use the last solution as our initial guess one of the constraints is already

respected and the other is not far from being respected. The constraints evolution is

showed in Tables 7.4 and 7.5.

min[eig(X)] norm(v)

-0.85 262.2496

-0.425 0.85

-0.2125 0.425

-0.1062 0.2125

-0.0531 0.1062

-0.0266 0.0531

-0.0133 0.0266

-0.0066 0.0133

-0.0033 0.0066

-0.0017 0.0033

-0.0008 0.0017

-0.0004 0.0008

Table 7.4: Constraints Evolution for the Transitory Regime

min[eig(X)] norm(v)

0 2.0221

0 0

Table 7.5: Constraints Evolution for the Steady Regime

Cold

For the cold start we have a di�erent situation. As we start always with a matrice of

zeros we are always far from one of the constraint (the equality) but we are near the

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
80

positive-de�niteness. the constraint evolution is showed in Tables 7.6, 7.7 and 7.8.

min[eig(X)] norm(v)

0.0468 220.7375

0.0468 0.0000

Table 7.6: Constraints Evolution Cold Start

min[eig(X)] norm(v)

0.0467 217.7904

0.0467 0.0000

Table 7.7: Constraints Evolution Cold Start

min[eig(X)] norm(v)

0.0471 216.0448

0.0471 0.0000

Table 7.8: Constraints Evolution Cold Start

7.2 Break Conditions

In order to study better the algorithm behaviour, we will now vary some parameters that

a�ect the algorithm outcome. As explicited before, there are 3 conditions to stop the

algorithm: Convergence in the sense of the tolerances, number of iterations is greater

than its maximum or we predicted that the algorithm won't converge. These 3 cases have

to be studied deeply because they are the only anomaly �nd in the algorithm performance.

7.2.1 Convergence

The convergence is determined when the minimum eigenvalue of the matrix X is greater

than the tolerance tol_vp and the norm of the vector whic contains the residual from the

equalities, vi = trace(AiX)− bi, is inferior to the tolerance tol_cons. So if we change this

tolerances to greater values we should have values that are less precise, on the other hand

if we decrease the tolerances we will require a more precise solution from the algorithm.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
81

First we will work only with the �rst tolerance and see its in�uence in the results, than

the other and �nally both. The simulation scenario will be the same from the beginning

of this chapter and we will vary only the time of application. When needed other scenario

will be explicited.

tol_cons

A priori tol_cons is set for 10−3 which is a great reference. We woul like to see what

happens when we require more precision, so we will decrease the tolerance and compare the

control output when solved the problem using the tolerance of 10−4 and 10−6. Although

the control will be calculated for 3 di�erent tolerances we will apply only the one calculated

with the reference value, so the trajectory and other results will be exactly the same as

shown in the example. We increased the tolerance to see what happens when we relax

the problem. We tried the values 10−2 and 1, and we expect to see less iterations than

the normal but worst results. The di�erence in iterations is shown in Figure 7.5. In case

of non convergence the last iteration is used as result.

Figure 7.5: Iterations per Step when Varying Tolcons

We can see that if we decrease the tolerance we will have more iterations in the

transitory regime but in the steady regime it remains the same number. Increasing the

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
82

tolerance can have good results, in the �gure we can see that with 10−2 the algorithm

converged in the third step. However if we increase too much we will get many iterations

as well. Although the number of iterations have changed the control hasn't, the results

are given in Table 7.9.

Comparation Results
10−3 − 10−4 -1.2387 10−17

10−3 − 10−6 -6.8236 10−18

10−3 − 10−2 4.0086 10−11

10−3 − 1 3.9370 10−11

Table 7.9: Di�erence in the Control Output when Varying Tolcons

The results are de sum of the di�erence in the control value, in fact, this di�erence is

just in the transient regime and is caused by the di�erence in iterations. As the di�erence

is virtually zero we conclude that changes in this tolerance won't a�ect the satellite's

trajectory or consumption except in these cases of non-convergence that will be explained

later. All these results are for the warm start, as cold start has no transitory regime in

its evolution.

tol_vp

The same way as tol_cons, tol_vp is −10−3 as reference. To observe the algorithm's

behaviour when we vary this tolerance we ran the simulation with the values −10−4,

−10−6, −10−2 and −1 the same way it was done with tol_cons.

As we can see in Figure 7.6, when we change tol_vp the transitory regime evolve

in the same way tol_cons did. However, as showed in the example, this constraint is

easily satis�ed in the begining, so if we change the tolerance to high values such as -1 it

will continue to have many iterations caused by the other constraint. This show as well

that we can relax one of the constraints if we maintain the other, the control results are

virtually the same as showed in Table 7.10.

Both

Figure 7.7 and Table 7.11 show that when we change both tolerances we have a �combined�

e�ect in terms of iterations and control output. Although we changed signi�cantly the

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
83

Figure 7.6: Iterations per Step when Varying Tolvp

Comparation Results
−10−3 −−10−4 -1.9441 10−17

−10−3 −−10−6 -3.0459 10−17

−10−3 −−10−2 0
−10−3 −−1 0

Table 7.10: Di�erence in the Control Output when Varying Tolvp

tolerances, the output is virtually the same (greater diference of 10−11. So a priori we

could solve a well relaxed problem that we would obtain the same performance.

Comparation Results
10−3 − 10−4 -1.3660 10−17

10−3 − 10−6 -6.1596 10−18

10−3 − 10−2 4.0086 10−11

10−3 − 1 3.9870 10−11

Table 7.11: Di�erence in the Control Output when Varying both Tolerances

Cases of Non Convergence

As observed in the last section we have some situations where the algorithm won't converge

for some tolerances. To study this deeply we solved the same problem with the solver

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
84

Figure 7.7: Iterations per Step when Varying both Tolerances

SeDuMi using the language YALMIP to see if the problem was of our algorithm or it was

a case of infeasability. YALMIP showed that the problem was feasible, so we looked the

constraints dynamics just for this case, the results are sohwed in Table 7.12.

The constraints show that eventually the algorithm will converge, but the rate norm(v)

is decreasing is too slow. If we use the tolerance of 10−2 it will converge fast as showed

before, but this is due to the fact that the norm we are using here is not the best. When

we use the Euclidean norm we will in fact sum all the 40 errors we have in each equality,

so norm(v) will be an information about the sum of errors and not about the greateast

error itself. So here we change the euclidean norm for the in�nity norm which would suit

better. Doing again the simulation but now with the new norm and �xing both tolerances

at 10−3 we obtain the results showed in Figure 7.8.

The results prove that changing the norm we correct the problem for this scenario,

but maybe a better norm could be chosen. We can see in Figure 7.9 the example used

for cold start with a simultaion time of 50000s that the new norm solves many of the non

convergence cases but some are still not converging.

If we observe the constrains' dynamics we see the same evolution we had before. The

norm will converge fast for a number greater than the tolerance, altough small, and will

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
85

Iteration min[eig(X)] norm(v)
1 -5.1879882812 10−5 4.0409368482
2 -2.5939941406 10−5 0.0015116952
3 -1.297 10−6 0.0015110264
4 -6.485 10−6 0.0015108585
10 -1.01327896 10−7 0.001510797
11 -5.0663948 10−8 0.001510796
12 -2.5331974 10−8 0.0015107951
18 -3.95812 10−10 0.0015107893
19 -1.97906 10−10 0.0015107883
20 -9.8953 10−11 0.0015107874
21 -4.9477 10−11 0.0015107864
22 -2.4738 10−11 0.0015107854
23 -1.2369 10−11 0.0015107845
24 -6.185 10−12 0.0015107835
35 -3 10−15 0.0015107729
36 -2 10−15 0.0015107719
37 -1 10−15 0.001510771
38 0 0.00151077
39 0 0.001510769
40 0 0.0015107681
98 0 0.0015107121
99 0 0.0015107112
100 0 0.0015107102

Table 7.12: Constraints Evolution in a Non Convergence Case

start to converge very slowly to zero. This dynamic is presented in Table 7.13.

7.2.2 Prediction

The prediction done propose that with a linear regression of the evolution of the distance

between the projections and the iterations we could foresee when the algorithm would

converge. The idea is simple, if we know how many iterations it lasts to converge, we

have a better control of the algorithm. To apply this method, we save the 10 last values

of the distance which is calculated with the frobenius norm and take their logarithm.

The theory proves that if the algorithm converge, its dynamic will be linear and if it

doesn't converge this distance will go to the least distance bewtween the sets (will remain

constant). So we set a tolerance for this distance and we calculate with the function gave

by the linear regression how many iterations we would need to calculate to arrive to this

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
86

Figure 7.8: Iterations per Step for In�nity Norm

distance.

The problem here is that we do not use the distance between iterations as a break

criteria, so we do not have a direct relation between a value for the distance when the

algorithm stops. The prediction in fact is false as we wont do this number of iterations

and we can't interpretate this that way.

We can, however, use this value to conclude about the convergence. If the distance is

almost constant and we calculate a linear regression, the solution will be nearly parallel

to a constant function, so the "prediction" will explose and tend to in�nite. On the other

hand if the distance has a real linear behaviour we will obtain a prediction value that will

be proportional to our tolerance but will not diverge.

The decision we made at this point is to use not the prediction of how many iterations

we need to certain distance, but rather use the number of iterations to gain one more

decimal case of precision. This way, instead of have a �xed value we had to achieve,

which has not necessarily correlation with the convergence, we have a di�erent value each

iteration, which is log10(norm(X − Y))− 1.

In Table 7.14 we can see the values predicted for 3 cases, the �rst is a transistory

regime iterations, the second is one of the cases when the algorithm has a very slow rate

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
87

Figure 7.9: Iterations per step for Cold Start with Inf. Norm

of convergence and the last one is a case of non convergence.

As we see from the data, the three cases have really di�erent values for the prediction

and we will use this criteria to detect when the algorithm will converge and when it won't.

7.2.3 Maximum Iterations

Given the results presented in this chapter, the convergence if occurs is fast, so the number

maximum of iterations must be a bound just for the transitory regime. Based on these

same results a value of 100 is enough, but higher values could be used if the prediction

works �ne.

7.3 Conclusions

In this chapter a numerical analysis of the algorithm was made showing that:

• The algorithm converges really fast in general, but the number of iterations to

converge depends heavily on the initial guess.

• For the warm start is possible to divide the mission in 2 stages:

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
88

Iteration min[eig(X)] norm(v)
1 0.04919442 212.14268699
2 0.04919442 2.303833705 10−3

3 0.04919442 2.3038321886 10−3

4 0.04919442 2.3038306887 10−3

21 0.04919442 2.3038051911 10−3

58 0.04919442 2.303749696 10−3

59 0.04919442 2.3037481962 10−3

60 0.04919442 2.3037466964 10−3

98 0.04919442 2.3036897021 10−3

99 0.04919442 2.3036882023 10−3

100 0.04919442 2.3036867025 10−3

Table 7.13: Constraints Evolution in a Non Convergence Case

1. A transient regime where the number of iterations oscillate.

2. A steady regime when the number of iterations is constant and low.

• The control output has a di�erent evolution for di�erent initialisation strategies.

• There is a phenomenum that, for a feasible point, the algorithm converges to a solu-

tion, however this convergence becomes very slow, causing a false �non-convergence�.

• As the convergence is, in general, fast, when small changes are made to the break

conditions (tolerances) there is no di�erence in the results.

• The prediction is a good way to separate the fast convergence, the slow conver-

gence and the non convergence cases. However, it can not really predict when the

algorithm will converge (stop).

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
89

Iteration Case Non Convergence Case Fast Convergence Case Slow Convergence
11 1287396 21.7005 10.372074504
12 3171419 32.9043 14.772304552
14 13224645 34.9346 20.683916708
15 22029066 35.9475 27.128929675
16 33217492 36.9591 41.086584297
17 47039102 37.9696 79.535599668
18 64220403 38.9791 212.357647429
19 85818793 39.9876 727.332298743
30 1241754288 51.0404 3601993.73633929
31 1539938237 52.0428 3605405.19474435
32 1904277883 53.045 3606231.42814846
33 2348867834 54.047 3606404.45062156
34 2890821657 55.0488 3606425.9677981
35 3550887814 56.0504 3606396.86061344
36 4354222876 57.0518 3606406.52483441
37 5331410024 58.0531 3606422.13400877
42 14437248913 63.0579 3606556.74352201
43 17580305645 64.0586 3606544.26828223
44 21395465049 65.0592 3606502.97471186
45 26027468875 66.0598 3606429.45345462
46 31651073756 67.0603 3606407.8043123
47 38475101743 0 3606408.75590034
48 46754759729 0 3606401.77375098
49 56811402158 0 3606406.58288186
50 69008191130 0 3606406.31002688
51 83817723609 0 3606452.09854168
63 857532447644 0 3606464.77438039
64 1039522116077 0 3606460.26417575
65 1265167132675 0 3606502.24297534
66 1531641245609 0 3606511.61180991
67 1855432949852 0 3606577.66466431
68 2258080099026 0 3606560.86251601
69 2726459345405 0 3606523.30683028
70 3313754612067 0 3606515.27755723
95 320255973501994 0 3606544.85934599
96 1310138073416970 0 3606498.39468827
97 661078844384760 0 3606476.46378038
98 4503599627370610 0 3606445.53829439
99 1601279867509610 0 3606414.9316065
100 -800639933754664 0 3606408.03268244

Table 7.14: Prediction of Iterations Evolution

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
90

Conclusion

The purpose of this work was to analyse a model predictive control strategy for the

problem of orbital rendezvous. The MPC was translated as a constraint satisfaction

problem, formally described as to �nd a point in an intersection of two convex sets. The

computational resources in satellites are not great so it was searched for a solution that

could be executed with the computational constraints given by embedded systems. With

this computational constraint we had to discard all the comercial optimization softwares,

for example.

The algorithm chosen was the Alternating Projection and in the work of Arantes

and Louembet [10],[9] all the development to write the algorithm in Matlab and the

simulation environment in Simulink was done. This work was based on both the code

and the simulator and it consists of a numerical analysis of the limitations in this solution.

Chapter 2 and 3 presented the mathematical development of the model used and all

the process to write the problem into the constraints. Chapter 4 presented the algorithm

and the simulator and its details. Chapter 7 describes all the numerical analysis of the

code including variations in the entry parameters and changings in the break conditions.

Chapter 5 presented how sensitive the algorithm is in relation to its initial guess and

explored the bounds of its solution. Comparing with an optimization method it was found

out that the Alternating Projections Algorithm is capable of giving the optimal solution

but for this it has to have a speci�c initial guess.

Chapter 6 presented a analysis of feasibility of the algorithm that can be used in future

works including a robust analysis or the model of the system as a hybrid system.

In general this work shows that it is completely possible to use a low computational cost

algorithm to control the time variant system, however it has many limitations. The main

contribituion of this work is to explain and show the cons of using this kind of algorithm

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
91

when compared to highly precise optimization methods. Sometimes it is not possible to

use complex optmization methods in embedded systems, when these cases arrive it is good

to know the boundaries of the capacities for algorithms like the Alternating Projections.

Future works can be based on the physical implementation of the control law presented

in this work. The physical implementation can be used to compare the numerical analysis

and also analysis time constraints.Besides that, this work demonstrated that it is possible

to achieve optimal consumptions using the Alternating Projections Algorithm, however it

has not shown how to achieve it. From the theoric point of view there is a lot to develop

in the direction of Hybrid Systems, using its tools to prove good characteristics of the

control system proposed.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
92

Appendix A

Properties of non negative polynomials

The results presented in Chapter 3 are based on the properties of non-negative polynomials

given by Nesterov in [14]. Nesterov proves that the cone of coe�cients of univariate

polynomials which are non-negative on some segment of the real axis can be represented

as the linear image of the cone of positive semi-de�nite matrices. This result enables

the usage of the semi-de�nite programming for optimization problems with polynomial

non-negativity constraints.

The de�nitions presented here are extracted from [14] and they concern only the

concepts needed in order to understand the mathematical development in Chapter 3.

A.1 Checking polynomials non negativity on a �nite

interval

let κa,b be the convex, closed and pointed cone of the coe�cients of polynomials that are

non negative on a �nite interval [a, b] ∈ <:

κa,b =

{
p ∈ <n+1, P (ω) =

n∑
i=0

piω
i, ∀ω ∈ [a, b]

}
(A.1)

Nesterov [14] shows that a polynomial P (ω), represented through its vector of coe�-

cients p = [p0, ..., pn]T , belongs to κa,b if and only if there exist two symmetric positive

semi-de�nite matrices Y1 and Y2 such that:

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
93

p ∈ κa,b ⇔ ∃Y1, Y2 � 0s.t.p = Λ∗(Y1, Y2) (A.2)

the de�nition of the linear operator Λ∗ and the dimensions of the matrices Y1 and Y2

depend on whether the polynomial P (ω) has an odd or even degree.

For n odd take Y1,Y2 ∈ <(m+1)x(m+1) � 0, where m = (n−1)/2. Let Hk,i ∈ <(k+1)x(k+1)

be some Hankel matrices that contain ones on the i-th anti-diagonal and zeros everywhere

else:

Hk,1 =


1 0 0 · · ·

0 0 0 · · ·

0 0 0 · · ·
...

. . .

Hk,2 =


0 1 0 · · ·

1 0 0 · · ·

0 0 0 · · ·
...

. . .

Hk,3 =


0 0 1 · · ·

0 1 0 · · ·

1 0 0 · · ·
...

. . .

 (A.3)

In this case, the operator Λ∗ is de�ned as:

Λ∗(Y1, Y2) =



tr(Y1(−aHm,1)) + tr(Y2(bHm,1))

tr(Y1(Hm,1 − aHm,2)) + tr(Y2(bHm,2 −Hm,1))
...

tr(Y1(Hm,i−1 − aHm,i)) + tr(Y2(bHm,i −Hm,i−1))
...

tr(Y1Hm,2m+1) + tr(Y2(−Hm−1,2m−1))


(A.4)

For n even take Y1 ∈ <(m+1)x(m+1) � 0 and Y2 ∈ <mxm � 0, where m = n
2
. In this

case, the operator Λ∗ is de�ned by:

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
94

Λ∗(Y1, Y2) =



tr(Y1Hm,1) + tr(Y2(−abHm−1,1))

tr(Y1Hm,2) + tr(Y2((b+ a)Hm−1,1 − abHm−1,2))

tr(Y1Hm,3) + tr(Y2((b+ a)Hm−1,2 −Hm−1,1 − abHm−1,3))
...

tr(Y1Hm,i) + tr(Y2((b+ a)Hm−1,i−1 −Hm−1,i−2 − abHm−1,i))
...

tr(Y1Hm,2m) + tr(Y2((b+ a)Hm−1,2m−1 −Hm−1,2m−2))

tr(Y1Hm,2m+1) + tr(Y2(−Hm−1,2m−1))



(A.5)

A.2 Checking polynomials non negativity on an in�nite

interval

The necessary and su�cient conditions for non negativity of univariate polynomials on

in�nite intervals have also been given in [14]. A polynomiaml P (ω) is non negative on

< if and only if there exists a symmetric positive semi-de�nite matrix Y ∈ <(m+1)x(m+1)

such that p, the vector of coe�cients of P (ω), veri�es:

p ∈ κ∞ ⇔ ∃Y � 0 s.t. p = Λ∗(Y) (A.6)

where the linear operator Λ∗ is de�ned by:

Λ∗(Y)(j) = tr(Y Hm,j), j = 1, .., 2m+ 1 (A.7)

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
95

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
96

Appendix B

Dynamics of the vector of parameters

The variable change de�ned by:

D(ν) = C(ν)X̃(ν) (B.1)

represents a valid state transformation since the matrix C(ν) is always invertible on the

domain on which the spacecraft closed trajectories are de�ned:

det(C(ν)) =
1

1− e2
6= 0, ∀ 0 ≤ e < 1 (B.2)

The passage from the space of the D parameters back to the Cartesian relative state

is given by the inverse matrix:

X̃(ν) = C−1(ν)D(ν) = F (ν)D(ν) (B.3)

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
97

where F (ν) ∈ R6×6 is de�ned as:

F (ν) =



0 sin ν(2 + e cos ν) − cos ν(2 + e cos ν) 1 0 0

0 0 0 0 cos ν sin ν

2 cos ν(1 + e cos ν) sin ν(1 + e cos ν) 0 0 0

3 2e cos2 ν + 2 cos ν − e 2 sin ν(1 + e cos ν) 0 0 0

0 0 0 0 − sin ν cos ν

− 3e sin ν

1 + e cos ν
− sin ν(1 + 2e cos ν) 2e cos2 ν − e+ cos ν 0 0 0


(B.4)

The dynamics of the vector of parameters D(ν) can be deduced from the dynamics

de�ning the spacecraft relative motion. When the relative state is represented using local

Cartesian coordinates, the relative dynamics can be modelled by a linear periodic dynamic

equation:

X̃ ′(ν) = Ã(ν)X̃(ν) (B.5)

where the matrix Ã(ν) is de�ned as in (2.10). After di�erentiating (B.1) with respect

to the independent variable ν, we obtain:

D′(ν) = C ′(ν)X̃(ν) + C(ν)X̃ ′(ν) (B.6)

Introducing (B.3) and (B.5) in the previous equations leads to:

D′(ν) = AD(ν)D(ν) (B.7)

with the matrix AD(ν) de�ned by:

AD(ν) = C ′(ν)C−1(ν) + C(ν)Ã(ν)C−1(ν) (B.8)

The expression for the dynamic matrix AD(ν) can be obtained through direct compu-

tation:

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
98

AD(ν) =



0 0 0 0 0 0

0 0 0 0 0 0

− 3e

(1 + e cos ν)2
0 0 0 0 0

3

(1 + e cos ν)2
0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(B.9)

A state transition matrix can be easily computed for the dynamical system (B.7).

Assuming that the spacecraft relative motion is propagated using the Yamanaka-Ankersen

transition matrix as in (2.11) and using the transformation (2.20), we obtain:

D(ν) = C(ν)Φ(ν, ν0)C
−1(ν0)D(ν0) = ΦD(ν, ν0)D(ν0) (B.10)

where the state transition matrix ΦD(ν, ν0) is given by:

ΦD(ν, ν0) =



1 0 0 0 0 0

0 1 0 0 0 0

−3eJ(ν, ν0) 0 1 0 0 0

3J(ν, ν0) 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(B.11)

The term J(ν, ν0) is the same integral term de�ned in (3.13).

The dynamic matrix AD and the transition matrix ΦD highlight some interesting

properties of the spacecraft relative motion. It can be seen that the parameters d4 and

d5 that de�ne the motion on the y axis are always constant in time, implying that the

motion on the y axis is always bounded. This is consistent with the fact that the motion

on the y axis is known to be periodic. The parameters d0 and d1 are also constant while

the values of d2 and d3 change over time. The evolution of d2 and d3 is conditioned by

the value of d0. It can be seen that in the general case their modulus grows linearly with

respect to time. The parameters remain constant only when d0 = 0.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
99

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
100

Appendix C

Nature of the roots of a quartic

function

This appendix is based on [1]. Given the general quartic equation

ax4 + bx3 + cx2 + dx+ e = 0 (C.1)

with real coe�cients and a 6= 0, the nature of its roots is mainly determined by the

sign of its discriminant

∆ = 256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e− 27a2d4

+144ab2ce2 − 6ab2d2e− 80abc2de+ 18abcd3 + 16ac4e

−4ac3d2 − 27b4e2 + 18b3cde− 4b3d3 − 4b2c3e+ b2c2d2

(C.2)

This may be re�ned by considering the signs of four other polynomials:

P = 8ac− 3b2 (C.3)

such that P
8a2

is the second degree coe�cient of the associated depressed quartic

Q = b3 + 8da2 − 4abc (C.4)

such that Q
8a3

is the �rst degree coe�cient of the associated depressed quartic

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
101

∆0 = c2 − 3bd+ 12ae (C.5)

which is 0 if the quartic has a triple root; and

δ = 64a3e− 16a2c2 + 16ab2c− 16a2bd− 3b4 (C.6)

which is 0 if the quartic has two double roots.

The possible cases for the nature of the roots are as follows [15]:

1. If ∆ < 0 then the equation has two real roots and two complex conjugate roots.

2. If ∆ > 0 then the equation's four roots are either all real or all complex.

• If P < 0 and δ < 0 then all four roots are real and distinct.

• If P > 0 or δ > 0 then there are two pairs of complex conjugate roots.

3. If ∆ = 0 then either the polynomial has a multiple root, or it is the square of a

quadratic polynomial. Here are the di�erent cases that can occur:

• If P < 0 and δ < 0 and ∆0 6= 0, there is a real double root and two real simple

roots.

• If δ > 0 or (P > 0 and (δ 6= 0 or Q 6= 0)), there is a real double root and two

complex conjugate roots.

• If ∆0 = 0 and δ 6= 0, there is a triple root and a simple root, all real.

• If δ = 0, then:

� If P < 0, there are two real double roots.

� If P > 0 and Q = 0, there are two complex conjugate double roots.

� If ∆0 = 0, all four roots are equal to − b
4a

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
102

Bibliography

[1] Wikipedia quartic function. https://en.wikipedia.org/wiki/Quartic_function.

Accessed: July 2015.

[2] A.H. Barr. Superquadrics and angle-preserving transformations. IEEE CGA,

1(1):11�23, 1981.

[3] R.H. Battin. An Introduction in the Mathematics and Methods of Astrodynamics.

American Institute of Aeronautics and Astronautics, 1999.

[4] S. Boyd and J. Dattoro. Alternating Projections. Stanford University, 2003.

[5] W. Cheney and A. Goldstein. Proximity maps for convex sets. Proceedings of the

AMS, 10:448�450, 1959.

[6] G. I. Deaconu. On the trajectory design, guidance and control for spacecraft ren-

dezvous and proximity operations. PhD thesis, Université Paul Sabatier - Toulouse

III, 2013.

[7] R.L. Dykstra. An algorithm for restricted least squares regression. Journal of the

American Statistical Association, 78(384):837�842, 1983.

[8] C. Louembet G. Deaconu and A. Théron. Constrained periodic spacecraft relative

motion using non negative polynomials. American Control Conference (ACC), 2012.

[9] P.R. Arantes Gilz. Contrôle impulsionnel pour une classe de systèmes linéaires à

temps variant. Technical report, LAAS - CNRS, 2014.

[10] P.R. Arantes Gilz and C. Louembet. Predictive control algorithm for spacecraft

rendezvous hovering phases. In European Control Conference.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
103

https://en.wikipedia.org/wiki/Quartic_function

[11] M. Kara-Zaïtri. Modélisation et guidage robuste et autonome pour le problème du

rendez-vous orbital. PhD thesis, Université Paul Sabatier - Toulouse III, 2010.

[12] H. Mann. Addition Theorems: The Addition Theorems of Group Theory and Number

Theory. Robert E. Krieger Publishing Company, 1976.

[13] M. B. Nathanson. Additive Number Theory: Inverse Problems and Geometry of

Sumsets. Springer, 1996.

[14] Y. Nesterov. Squared Functional Systems and Optimization Problems. Kluwer Aca-

demic Publishers, 2000.

[15] E. L. Rees. Graphical discussion of the roots of a quartic equation. The American

Mathematical Monthly, 29(2):51�55, 1922.

[16] R. Tyrrell Rockafellar. Convex analysis. Princeton landmarks in mathematics.

Princeton University Press, 1997.

[17] J. Tschauner. Elliptic orbit rendezvous. AIAA Journal, 5(6):1110�1113, 1967.

[18] K. Yamanaka and F. Ankersen. New state transition matrix for relative motion on an

arbitrary elliptical orbit. Journal of Guidance, Control and Dynamics, 25(1):60�66,

2002.

Bruno Eduardo BENETTI / UFSC and LAAS-CNRS
104

	Introduction
	Spacecraft Rendezvous
	Motivation and Objectives
	Organisation

	Spacecraft relative motion
	Introduction
	Dynamics of a spacecraft orbiting the Earth
	Spacecraft relative motion
	Local Cartesian dynamics

	Linearized Cartesian relative motion and State Space Representation
	Parametric expressions for the spacecraft relative trajectory
	Parametrizing relative trajectories

	Periodicity Properties
	Summary

	Model Predictive Control Law and its Computation
	Control System
	Actuator Saturation and Limit Budget
	Constrained spacecraft relative trajectories
	Definition of admissible trajectories
	Finite description of admissible trajectories
	Finite description using non-negative polynomials
	Rational expressions for the spacecraft relative motion
	Constrained periodic trajectories

	Problem Formulation
	Conclusion

	Alternating Projections Algorithm
	Algorithm Principle
	Example
	Implementation
	Details of Implementation: Construction of the iteration variable
	Details of Implementation: Translation of the problem
	Break Conditions
	Pseudocode

	Initial Guess
	Justification of the use of the Alternating Projections Algorithm
	Conclusion

	Initialisation of the Alternating Projections Algortihm
	Simulator
	Scenario of simulation

	Classic Initialisations
	Cold Start
	Warm Start

	Current Point Approach
	Contruction of the initial guess

	Optimization Process
	Simulated Annealing
	Pseudocode

	Results Analysis

	Feasibility of the Problem
	Feasibility of a state
	Control Action in D Space
	Conclusion

	Numerical Analysis
	Example
	Trajectory
	Iterations
	Control Output
	Constraints

	Break Conditions
	Convergence
	Prediction
	Maximum Iterations

	Conclusions

	Conclusion
	Properties of non negative polynomials
	Checking polynomials non negativity on a finite interval
	Checking polynomials non negativity on an infinite interval

	Dynamics of the vector of parameters
	Nature of the roots of a quartic function

