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Resumo Estendido 

Sistemas de determinação de atitude são um requisito para a maioria dos 

problemas de navegação e controle. Tradicionalmente, sistemas inerciais de 

orientação (AHRS) têm sido usados para prover dados de orientação com alta 

confiabilidade e precisão. No entanto, este tipo de solução geralmente usa sensores 

muito caros. Tendo em vista disso, um sistema de determinação de orientação 

(atitude) de baixo custo foi proposto no âmbito deste projeto usando componentes 

que podem ser encontrados nos grandes distribuidores de produtos electrónicos, os 

quais incluem um conjunto de giroscópios MEMS, clinômetros, um magnetômetro e 

uma câmera estrelar. Os sensores serão utilizados de forma hierárquica, o que 

significa que os sensores mais rápidos e menos precisos são atualizados pelos 

sensores mais lentos, porém mais precisos.  

 Este projeto é parte de um programa da NASA lançado recentemente 

intitulado “Undergraduate Student Instrument Project Educational Flight Opportunity” 

(USIP), o qual promove uma cooperação entre universidades e pesquisadores da 

NASA no desenvolvimento de experimentos científicos de forma a estabelecer uma 

mão de obra que possua conhecimentos científicos e tecnológicos no estado da arte 

e capacidade de gerenciar grandes projetos. A maior parte deste projeto foi 

desenvolvido na universidade The Catholic University of America com ajuda de 

parceiros em NASA-Goddard Space Flight Center. 

Em um primeiro passo, as saídas de um conjunto de giroscópios foram 

fusionadas através de um filtro de Kalman, de forma a criar um giroscópio virtual 

com maior precisão do que um único giroscópio. Esta tecnologia tem provado ser 

muito eficaz e possui um grande potencial,  tendo em vista que sensores MEMS 

estão experimentando uma rápida melhoria em termos de precisão, robustez, 

tamanho e resposta dinâmica. Em um segundo passo, um algoritmo baseado em um 

filtro de Kalman estendido, foi desenvolvido a fim de fusionar a orientação fornecida 

pelo giroscópio virtual, pelo magnetômetro e pelos clinômetros. A câmera estrelar é 

sensor o mais lento e fornece dados de orientação através da comparação da 

posição das estrelas. O sistema proposto destina-se a aplicações científicas para 

balões de alta altitude. Estes sistemas, tipicamente, precisam de sistemas de 
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apontamento na ordem de arco segundos. A carga científica foi projetada para 

manter todos os sensores e coletar dados em condições normais de voo. Além 

disso, um programa em MATLAB foi desenvolvido para processar todos os dados 

dos sensores e implementar os algoritmos de fusão de dados baseados no filtro de 

Kalman. A carga científica inclui todos os instrumentos responsáveis pela detecção 

de orientação, aquisição de dados e processamento, controle de temperatura e 

regulação de tensão para os componentes. 
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Abstract  

Attitude determination systems are a requirement for most navigation and 

control problems.  Traditionally, attitude and heading reference systems (AHRS) 

have been used to provide attitude with high reliability and accuracy. However, such 

solutions usually use very expensive sensors. Considering that, a low-cost attitude 

determination system has been proposed in the scope of this project using 

commercial-off-the-shelf components, which include a set of MEMS gyroscopes, 

clinometers, a magnetometer and a star-tracking camera. The sensors will be used in 

a hierarchical manner, which means that the faster and less accurate sensors are 

updated by the slower but more precise sensors.   

This project is part of a NASA program recently released untitled as 

"Undergraduate Student Instrument Flight Project Educational Opportunity" (USIP), 

which promotes the cooperation between universities and NASA leading scientists in 

the development of scientific experiments in order to establish high qualified workers 

that have state-of-art scientific and technological knowledge and ability to manage 

large projects. Most of this project was developed at The Catholic University of 

America with the help of partners in NASA-Goddard Space Center Flight. 

In a first step, the outputs from a set of gyroscopes were fused through a 

Kalman Filter to create a virtual gyroscope with higher accuracy than a single 

gyroscope. This technique has been proved to be very successful and has a great 

potential, considering that MEMS sensors are experiencing rapid improvements in 

terms of precision, robustness, size and dynamic response. In a second step, an 

Extended Kalman Filter algorithm was developed in order to fuse the attitude 

provided by the virtual gyroscope, clinometers and magnetometer. The Star Tracking 

Camera is the slowest sensor and provides absolute attitude data by comparing the 

position of the stars. The proposed system is intended to Scientific High Altitude 

Balloon applications, which typically require an accurate pointing system in the order 

of arc seconds. A payload was designed to hold all sensors and gather attitude data 

during flight conditions. In addition, a program in MATLAB was developed to process 

all the data from sensors and implement the Kalman Filter fusion algorithms. The 



 

7 

payload carries all the instruments responsible for the attitude sensing, data 

acquisition & processing, temperature control and voltage regulation. 
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 Introduction Chapter 1:

Attitude determination is one of the most important subsystems in spacecraft, 

satellite or scientific balloons missions, since it can be combined with actuators to 

provide rate stabilization and pointing precision for payloads. It generally uses a 

combination of sensors and mathematical models to provide orientation values in 

relation to an inertial frame. Traditionally, attitude and heading reference systems 

(AHRS) have been used to provide attitude with high reliability and accuracy. 

However, such solutions usually use very expensive sensors [ 1 ]. Therefore, in the 

scope of this project a novel low-cost prototype attitude determination system that 

uses an array of pointing sensors in a hierarchical manner, i.e., the faster and less 

precise sensors are updated by the slower, but more precise ones. Sensors will 

include a set of uncorrelated MEMS gyroscopes, two clinometers, a magnetometer, 

and a star tracking camera. The MEMS gyroscopes will be combined into a virtual 

gyroscope as demonstrated by Bayard [ 2 ] to achieve a measurement with higher 

accuracy that from a single gyroscope. Typical accuracies required for most of the 

scientific payloads in high altitude balloon missions are in the order of few arc 

seconds to few arc minutes, thus the system proposed should achieve accuracy on 

that range. 

1.1: Document Structure 

The document is organized in chapters in the following form: In chapter 2, a 

attitude dynamics discussion is presented, which is important to understand the 

following models and derivations. In chapter 3, a discussion of balloon systems 

structure and its importance in current science missions is presented. In chapter 4, a 

system overview is provided including its subsystems and their characteristics. In 

chapter 5, Kalman Filter fundamentals are presented, which give the basis to 

understand the following implementations. In chapter 6, the developed program 

denominated as “PADS Analyzer” for the sensors data analysis and its main 

functions are described. In chapter 7, sensors noise analyses are performed by 

taking advantage of the PADS Analyzer functions. In chapter 8, a virtual gyroscope 

concept is presented following by its implementation and results. In chapter 9, 
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sensors attitude data fusion by using an extended Kalman Filter algorithm is 

discussed and the results are presented. In chapter 10, a power budget for the 

system is presented. 
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 Attitude Dynamics Chapter 2:

The attitude of a rigid body can be defined as the imaginary rotation necessary 

to move the current axes frame to a reference frame. Euler angles can be used to 

determine the orientation of a rigid body in a 3-dimensional Euclidean Space. They 

represent a sequence of three elemental rotations starting from an initial reference 

frame and can be used to represent the spatial orientation in relation to any reference 

frame. There are several conventions for Euler Angles, depending on the selected 

rotation axes. The rotations can either occur about a fixed reference frame (extrinsic 

rotations) or about the rotating coordinate system axes (intrinsic rotations). For the 

following analysis the ZYX convention it is going to be adopted which uses intrinsic 

rotations. The conventions assume that a set of rotations about a fixed reference 

frame, where α, β and γ are the rotations about the z, y and x axes, respectively, of 

the initial reference frame as can be seen in Figure 1. 

 

Figure 1 - ZYX Convention 

The rotation matrixes for rotations around the Z, Y and X axes are respectively 

shown in the following equations:  
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According to the ZYX, a rotation R can be expressed as a composition of 

these matrixes: 

 

The composition of matrixes leads to the following rotational matrix:

 

2.1.1: Attitude Measurements 

There are basically two types of attitude measurements: absolute attitude 

measurements and relative attitude measurements. The first class of measurements 

is based on the fact that by knowing the position of the system in the space, it is 

possible to compute the attitude in respect to an inertial frame [ 6 ]. Typically, 

absolute measurement sensors measure these directions in relation to a body-fixed 

reference frame and compare it to an inertial reference frame to determine the 

relative orientation in respect to the inertial frame. Relative measurements belong to 

the class of gyroscopic instruments. 
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 Scientific Balloons Overview Chapter 3:

Scientific Balloons are very large structures, usually made by a 0.02mm 

thickness polyethylene film material. They can be used as a carrier of scientific 

instruments in a similar way as orbit satellites or Space Shuttle do. The major 

benefits are the low cost compared to other carriers, high capacity and small lead 

time. Balloons can fly in six months once they receive support for the mission [ 7 ]. 

3.1: Balloon System 

The balloon system is basically composed by three elements: a balloon that 

allows the system to reach very high altitudes, a parachute for landing purposes and 

a gondola that carries all the science experiments. The suspended load can weight a 

maximum of 3600 kg and can be lifted to altitudes up to 36 km [ 7 ]. When the 

balloon is fully inflated it can reach dimensions up to 140m in diameter and 121m in 

height (enough to cover a medium sized soccer stadium). 

 

Figure 2 - Scientific Balloon Dimensions [ 7 ] 

Some of its major advantages as Science Carrier are: 

 Short lead time; 

 Lower cost in comparison to orbiting missions; 

 Multiple launch locations around the world; 
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 Recoverable payloads; 

 High mass payloads can fit into the carrier. 

3.2: Balloon Launch and Operation 

In order to launch, the balloon is inflated with helium and coupled to the 

gondola, where the payloads are attached. The helium expands as the balloon 

reaches high altitudes. All instruments are turned on through an integrated command 

system and start gathering data. Conventional Balloon flights last up to two days, 

however, they can be designed to last up to more than 100 days. At the end of the 

mission, the parachute opens and softly brings the payloads into the surface so 

science teams can recover them. NASA nominally supports 15 to 20 balloon flights 

annually [ 7 ]. The graph below shows the altitude versus time profile of a typical 

conventional balloon flight: 

 

Figure 3 - Altitude versus Time Balloon Flight Profile 

3.3: Flight Temperature Profile 

A typical temperature profile for a high altitude balloon flight is shown in the 

Figure 4. 
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Figure 4 - Altitude versus Temperature Balloon Flight Profile 

Temperatures can reach a minimum of -60 °C, which, in turn, requires the 

payloads to have a heating system to control the temperature and thus allow the 

sensors to work in normal operational conditions.  
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 System Overview and Subsystems Chapter 4:

The proposed system consists of a prototype attitude measurement system for 

scientific high altitude balloons applications. The overall goal of the system is to 

collect attitude data and provide attitude estimation in the order of arc-seconds.   

4.1: System Requirements 

The following requirements were established taking into consideration flight 

conditions, costs, mass constraints and accuracy: 

 Low cost system (less than 50,000 USD) using commercial off-the-shelf 

components; 

 Orientation accuracy in the order of a few arc seconds to a few arc 

minutes, over the three axes X, Y and Z; 

 Low mass system (less than 20 kg); 

 Resist to flight temperatures of -60°C. 

4.2: Subsystems Definition 

The system was divided in several subsystems for design and work division 

purposes. The following subsystems were identified as: 

 

1) Relative Attitude Sensing (RAS) 

2) Absolute Attitude Sensing (AAS) 

3) Analog Data Acquisition (ADAQ) 

4) Signal Processing (SP) 

5) Climate Control and Monitor (CCM) 

6) CIP Interface Board (CIB) 

7) Voltage Regulators Boards (VRB) 

8) Pressure Vessel (PV) 
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9) Unpressurized Boxes (UB) 

All the subsystems and their interconnections are shown in Figure 5. 

 

Figure 5 - Subsystems Interconnection 

 The subsystems from 1-6 are the ones I have directly worked on the design, 

assembly and test phases. 

4.2.1: Relative Attitude Sensing 

The RAS subsystem is located inside the UB subsystem and provides relative 

attitude data to the ADAQ subsystem. It is composed by the Gyroscope Boards.  

4.2.1.1: Gyroscopes 

The gyroscopes are the fastest sensors in the system. They provide angular 

rates measurements around their own body-reference axes. Values of angular 

displacements can be achieved by integrating the sensor output. A MEMS gyroscope 

can be simply modeled according to [ 3 ] as a combination of the true angular velocity 

wti(t), a slowly varying random quantity usually called the bias drift bi(t) and the white 



 

20 

noise ni(t), which corrupts the signal and becomes the angle random walk (ARW) at 

the gyro angle level [ 4 ]. The index i represents the axis in consideration. 

                  

 

This model only takes into account the noises caused by the angle random 

walk (ARW) and the rate random walk (RRW) processes, which are going to be 

discussed in more details in the next sections. Other noises that can be considered in 

the model include the bias drift and the bias instability. However, many experiments 

have shown that these are the most significant noise terms in MEMS gyroscopes 

[ 4 ].  The following diagram represents the model described in the equations above: 

 

Figure 6 - Gyroscope Model 

4.2.1.1.1: Angular Random Walk (ARW) 

The angular random walk is the process noise produced by the white noise in 

the rate signal level and it is expressed in terms of deg/sec0.5. When this component 

is integrated, it generates a random walk in the gyroscope angle level, which corrupts 

the signal over time. The standard deviation of the gyroscope measurement is 

proportional to the ARW value and the amount of time the signal has been 

integrated, as in the following relation:  
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For instance, consider a gyroscope with an ARW of 1 deg/sec0.5
. After one 

second the standard deviation of the measurement will be 1 degree and in 100 

seconds the standard deviation will be 10 degrees. The noise generated by 

integrating the white noise is usually called brown noise.  

4.2.1.1.2: Rate Random Walk (RRW) 

The rate random walk is the noise process produced by the white noise in the 

acceleration signal level of the gyroscope. It produces a random walk in the rate 

signal level, which is usually called bias drift. 

4.2.1.1.3: Gyroscope Model Selected  

The gyroscope model selected to this project was the LPY403AL. The sensor 

has an angular random walk of about 0.03 deg/sec0.5
 at a sample rate of 100Hz, 

which generates a standard deviation of 0.03º after one second of normal operation. 

Figure 7 shows the gyroscope model selected, 

 

Figure 7 - LPY403AL breakout board 

 An amplified board was designed and assembled in order to adjust the sensor 

voltage range into the acquisition board range and thus increase the resolution of 

measurement. The design was provided by partners from NASA/GSFC. In total, six 

gyroscope boards were used in order to decrease the uncertainty of the 

measurements. As shown in Figure 8, three gyroscope boards were mounted one 

above each other. 
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Figure 8 - Gyroscope Boards 

4.2.2: Absolute Attitude Sensing (AAS) 

The absolute attitude sensing provides absolute attitude data to the ADAQ 

and SP subsystems. It is composed by the clinometers, the magnetometer and the 

star tracking camera. 

4.2.2.1: Clinometer 

Clinometers are instruments used for measuring tilt angles. In the current 

system, two clinometers are used to determine the angular displacements around the 

X and Y axes. The clinometer model selected for the system is the Accustar 

Electronic Clinometer (Figure 9), which has a bandwidth of 0.5 Hz and provides a 

measurement with a white noise RMS of less than 0.007 degrees in a +/- 45 degrees 

range.  

      

Figure 9 - Clinometer 
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4.2.2.2: Magnetometer  

Magnetometers are instruments used for measuring magnetic fields in space. 

They can be used to provide a compass heading by taking advantage of the earth’s 

magnetic field. The direction and strength of the local magnetic field are represented 

by Hx, Hy, Hz, which are the values of the magnetic field across each axis. The Hx 

and Hy information can be used to provide a compass heading in relation to the 

magnetic poles. The compass heading can be determined by placing the sensor in a 

flat area aligned to the surface and using the Hx and Hy values [ 8 ]. These values 

vary as the device is rotated, as seen in Figure 10. 

 

Figure 10 -  Hx and Hy components in a magnetometer  full rotation [ 8 ] 

The compass heading is the angular displacement in relation to the local 

magnetic north vector and it can be obtained using the following relation: 

 

In order to obtain the true north heading, the magnetic declination angle of the 

current region must be subtracted. The magnetic declination is the angle between the 

magnetic north and the true north, and it varies depending on the position on Earth.  

The magnetometer selected for the system was the model HMC2003, which 

provides a resolution of 40 µgauss with a nominal sensitivity of 1 Volts/ µgauss.  
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4.2.2.2.1: Tilt Compensation 

The tilt compensation maps the current Hx and Hy measurements to the 

horizontal plane and provides a more accurate heading calculation by compensating 

the angular displacements around the X and Y axes. The following calculations are 

needed for the tilt compensation according to [ 9 ] 

 

 

 

Where HX and Hy are the magnetometer components along the X and Y axes, 

ϕ is the angular displacement around the X axis given by the clinometer and β is the 

angular displacement around the Y axis given by the clinometer. 

4.2.2.3: Star Tracking Camera 

The Star Tracking Camera is used to provide very accurate attitude data by 

comparing the position of stars. The camera selected for the system is the Canon-

EOS7D. The program gphoto2 is used to communicate with the camera via flight 

computer and is responsible to control the camera parameters and photo 

commands. 

 

Figure 11 - Star Tracking Camera 
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4.2.2.4: Baffle System 

Baffle systems are used in Star Trackers in order to minimize the exposure of 

the optical system to stray light (scattered by dust particles) and prevent from Sun 

blinding. When the stray light is minimized, the Star Tracker is able to detect very 

faint stars and provide an attitude value with high precision. The major drawback is 

that the baffle could reduce the field of view of the camera, which requires the star 

tracker to detect a sufficient amount of stars in order to have enough number of stars 

for the attitude determination [ 5 ].  

 

       

Figure 12 - External Baffle 

4.2.3: Analog Data Acquisition (ADAQ) 

The analog data acquisition subsystem is responsible for extracting attitude 

data from the RAS and AAS subsystems and send it to the Signal Processing 

subsystem.  

4.2.3.1: Analog Acquisition Board 

The analog acquisition board can read 32 differentials analog channels with 

16 bits of resolution at sample rates from 0-400 Hz with a very low noise. For its 

range of application (+/- 10V), the measured inner noise is white, with a RMS value 

of 0.18mV, which represents 0.6 LSB.  
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Figure 13 - Analog Acquisition Board (PSyncADC) 

A program developed in Python reads the differential channels voltages, in 

which the sensors are coupled, and saves all the data into a file. 

4.2.4: Signal Processing (SP)  

The signal processing subsystem is responsible for receiving all data from the 

ADAQ and AAS, estimating the current attitude and storing all data in the Hard Drive. 

4.2.4.1: Flight Computer 

The flight computer is the element responsible for receiving all the data from 

sensors and camera, process them and send it to the hard drive. The flight computer 

selected for the application is the Beagle Board xM, which is a low-power open-

source hardware single board computer. This single board computer was selected 

due to its processor speed, Linux compatibility, number of USB ports, low mass and 

short dimensions.  

 

Figure 14 - Beagle Board xM 
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4.2.5: Climate Control and Monitor (CCM) 

The climate control and monitor is the subsystem responsible of controlling the 

temperature and thus maintaining all system components in a normal operation 

mode. A simple on-off control temperature was implemented, since there are not rigid 

requirements for temperature. The following table shows the operational 

temperatures of the different components in the system: 

Component  Working Temperature 

Clinometer from -30˚C to +65˚C 

Gyroscope Board from -40˚C to +85˚C 

Magnetometer from -40˚C to +85˚C 

PSyncADC from -40˚C to +85˚C 

Arduino from -40˚C to +85˚C 

Star Camera from 0˚C to +40˚C 

BeagleBoard xM from 0˚C to +85˚C 

Hard Drive from +5˚C to +40˚C 

 

The temperature range selected for the on-off control based on the elements 

working temperature was chosen to be between +15˚C and +20˚C. 

 

4.2.5.1: Temperature Sensor 

The temperature sensor selected was the AD590, which is a 2-terminal sensor 

that produces an output current proportional to the absolute temperature and senses 

a wide range temperature: from -55 C to +150 C.  

 

Figure 15 - AD590 Sensor 

The AD590 produces an output current proportional to the absolute 

temperature. The device acts as a high impedance constant current regulator, 
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conducting 1 µA / K for supply voltages between +4V and +30V. Thus, by using a 

1000 ohm resistor, its sensitivity becomes 0.001 V / K. 

The following circuit was used for measuring the temperature: 

 

Figure 16 - AD590 Application Circuit 

The temperature is read by the temperature controller, which compares it to 

the desired range of temperature and decides to switch the heaters on or off. 

4.2.5.2: Temperature Controller 

An Arduino Uno was selected to read the analog temperatures provided by the 

AD590 sensors and to send signals to switch on/off the heaters.   

A gain amplifier was needed for the sensors signal, since the controller 

selected has a very low resolution and due to the fact that the Arduino can only read 

10-bit analog data, which represents a resolution voltage of about 0.00488 V. This 

resolution is not very good considering that the voltage changes 0.001 V / K with 

temperature.  In order to increase the resolution of the measurement an analog-to-

digital converter was selected. The model selected was the ADS1115, which 

provides 16-bit precision at 860 samples per second over the protocol I2C. 



 

29 

 

Figure 17 - Temperature Controller (Arduino Uno) 

4.2.5.3: Heaters 

The heaters selected for the application are wirewound, aluminum housed 

resistors, which can be mounted on chassis to take advantage of the heat-sink effect. 

The resistance value selected was 25 Ω. 

 

Figure 18 - Wirewound Resistor 

4.2.5.4: Transistor Boards 

In order to switch the power supplied to the heaters, a BJT transistor was 

selected. The transistors base is controlled by the arduino. The transistor selected 

was a NPN Silicon Transistor with a maximum current of 3A and a breakdown 

voltage of 30 V. 
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Figure 19 - Transistor Boards 

4.2.6:  Voltage Regulator Boards (VRB) 

Since the components require different operation voltages, voltage regulator 

boards have been designed in order to supply the desired values. The voltages 

required are the following: +5V, +8V, +9V, +12V, +15V and -15V.  The voltage 

regulator selected for the design is the LT1764A, which is a low dropout regulator 

with a low noise in the order of 40 µV RMS. It allows an output current of 3 amperes. 

The design also uses metal heat sinks on the border of the boards. Figure 20 shows 

the voltage regulator boards assembled: 

 

 

Figure 20 - Voltage Regulator Boards 
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4.2.7:  CIP Interface Board (CIB) 

The Consolidated Instrument Package (CIP) is the command and data 

acquisition system of the balloon carrier. It can be used to receive data from the 

payload for telemetry and housekeeping and send/receive commands. In our 

application, the CIP will be used only for commands of power on/off. An interface 

board has been designed to receive the command and switch the batteries on and 

off. A power relay with a maximum switch current of 8 amperes has been selected for 

this purpose. The following circuit design (Figure 21) was used for assembly the CIP 

Interface Board. 

 

Figure 21 - CIP Interface Board Scheme 

 

The assembled board is shown in the figure below: 

 

Figure 22 - CIP Board  
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4.2.8: Unpressurized Boxes (UB) 

The unpressurized boxes subsystem is composed by the rectangular 

unpressurized box, the triangular box and the battery box. The components that fit 

inside them do not have criticality concerns about temperature. 

4.2.8.1: Rectangular Unpressurized Box 

The rectangular unpressurized box holds all the elements, which are not 

strictly required to be in the pressure vessel. The box selected is an aluminum box, 

which is a lightweight material, with 17 inches large, 15 inches height and 6 inches 

height. In Figure 23 is shown a top view of the unpressurized box with the elements 

inside. 

                  

Figure 23 - Rectangular Unpressurized Box 

4.2.8.2: Triangular Box 

The triangular box has provides an inclination to the pressure vessel in order 

to remove the balloon carrier from the camera field o view and connect it to the 

unpressurized box. 
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Figure 24 - Triangular box 

4.2.8.3: Battery Box 

The battery box holds the batteries that supply power to the elements inside 

the unpressurized box and the pressure vessel. 

 

Figure 25 - Battery box 

4.2.9: Pressure Vessel (PV) 

The pressure vessel subsystem is the structure responsible to provide a 

suitable environment to the elements that are more sensitive to temperature, which 

include: the Flight Computer, the Star Tracking Camera and the Hard Drive. The 

pressure vessel consists of an aluminum cylinder attached to a bottom plate. Two 

hermetic connectors are mounted on the bottom surface of the pressure vessel in 

order to connect wires between the pressurized and the unpressurized system. A 

glass window and an external baffle are also attached to the lid of the cylinder. 
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Figure 26 - Pressure Vessel Elements 

A comparison between the designed system and the assembled system without the 

battery boxes is shown in Figure 27. 

 

 

Figure 27 -  Final design and real system comparison 
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 Kalman Filter Fundamentals Chapter 5:

The Kalman Filter is an optimal estimator that uses a series of measurements 

containing noise and a prior state knowledge in a recursive manner to produce 

statistically optimal estimates of the current system state with a better precision than 

the measurement itself. This algorithm has applications in several areas such as 

control of vehicles, guidance and navigation and It has been successfully explored in 

many different applications, such as in the Apollo program for trajectories estimation, 

in the implementation of nuclear ballistic missile submarines and in the guidance and 

navigation systems of cruise missiles. It is currently used in the guidance and 

navigation systems of the NASA Space Shuttle and in the attitude control and 

navigation systems of the International Space Station [ 10 ]. The Kalman filter model 

assumes that the state of the system is governed by a linear stochastic difference 

equation: 

 

Where, Fk is the transition model matrix that relates the state at time step k to 

the state at step k+1, xk the current system state, Bk is the control gain matrix, uk is 

the control vector and wk is the zero-mean Gaussian process noise 

. 

The measurement z is given by a linear combination of the state and the 

measurement noise. 

 

Where, Hk is the observation model matrix that maps the true space into the 

observed space and vk is the zero-mean Gaussian measurement noise 

. 

The initial state x0 is assumed also to follow a Gaussian distribution: 

 

 

http://en.wikipedia.org/wiki/Attitude_dynamics_and_control
http://en.wikipedia.org/wiki/International_Space_Station
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In the following sections of this chapter, the notation  will be used, which 

represents the estimate of x at time step n and taking into account the observations 

up to and including time step m. There are, basically, two estimates used in the 

Kalman Filter, which are typically called the a priori estimate represented by   

and the a posteriori estimate . The a priori estimate is produced by 

propagating the last estimate state into the model linear stochastic equation. The a 

posteriori estimate is calculated by taking into account the current measurement and 

the a priori estimate. Thus, we can define the a priori and a posteriori estimates 

errors respectively as  and .  

The a priori and a posteriori error covariance can be defined, as well, as: 

 

 

The state of the filter is given by two variables: 

 The a posteriori state represented by ; 

 The a posteriori error covariance matrix , which is a measure of the 

current accuracy of the state estimate. 

5.1: Kalman Filter Loop 

The Kalman Filter calculation is usually divided in two phases: the predict 

phase and the update phase. In the predict phase, the a priori estimate and the 

predicted error covariance matrix are calculated. In the update phase, the a posteriori 

estimate and the a posteriori error covariance matrix are calculated. These phases 

are discussed in the following sections. 

5.1.1: Predict Phase 

The predict phase generates the a priori estimate, since it is calculated without 

taking account any observations. The a priori estimate is given by the following 

relation: 
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The a priori error covariance is also calculated in the predict phase using the 

transition matrix F and the process noise covariance matrix Q.  

 

5.1.2: Update Phase 

In the update phase, the a posteriori estimate is calculated by taking into 

account the observation at the current time step and the a priori estimate. In a first 

step, the innovation is calculated which represents the difference between the 

observed state zk+1 and the a priori estimate.  

 

In order to calculate the Kalman Gain, that minimizes the a posteriori error 

covariance, the innovation covariance matrix Sk is calculated as follows: 

 

Where R is the measurements noise covariance matrix. 

The Kalman gain is, then, given by the following equation: 

 

The a posteriori estimate is calculated using the a priori estimate and the 

Kalman gain to weight the innovation. 

 

When the measurement error covariance Rk tends to zero, which means that 

the measurement is trusted, the gain K weights the innovation more heavily, as can 

be represented by the following limit: [ 11 ] 

 

On the other hand, if the a priori estimate error covariance Pk approaches 

zero, the gain K weights less the innovation, as can be represented in the following 

limit: [ 11 ] 
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The a posteriori error covariance is given by the following equation:  

 

5.1.3: Kalman Filter Flowchart 

The following flux chart represents the whole recursive calculations of the 

Kalman Filter algorithm: 

 

Figure 28 - Kalman Filter Flowchart 

 

5.2: Performance 

It has been proven that the Kalman Filter is optimal for the following 

conditions: [ 13 ] 
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a) The model of the system is completely right; 

b) The measurement noises can be modeled as white 

c) The noises covariances are exactly determined. 

5.3: Extended Kalman Filter 

The classic Kalman filter is designed for estimate the state of linear stochastic 

systems. In order to estimate the state of non-linear systems, an extended Kalman 

filter needs to be implemented, which consists of linearizing the Kalman filter 

equations around the current estimate and apply the classic Kalman filter concepts. 

The model of a non-linear stochastic difference equation is then given by: 

 

With a measurement given by: 

 

5.3.1: Linearization of Process Model 

For using the Extended Kalman Filter the process model is linearized using 

first order Taylor series around its current estimate: 

 

Where  is the Jacobian of the function f with respect to x evaluated at the 

current estimate . All the higher order terms are ignored in this equation, since it 

is assumed that  is close to  . [ 12 ] 

The linearized model can be written as: 

 

Where and  

5.3.2: Linearization of the observation model 

Same linearization needs to be applied to the observation model using first 

order Taylor series around the current estimate: 
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Where  is the Jacobian of function h evaluated at the current estimate . 

The linearized observation model above can be written as:  

 

Where the matrixes H and  are defined as: 

 

 

5.3.3: Extended Kalman Filter (EKF) Loop 

The phases in the Extended Kalman Filter are the same than the classic 

Kalman Filter. The predict phases and update phases are discussed below: 

5.3.3.1: EKF Predict Phase 

In order to obtain the a priori estimate, the non-linear model is used with the 

values of the last state estimate and the control inputs. 

 

The covariance state error matrix can be calculated by: 

 

Where FK is the Jacobian of function f evaluated at time step k. 

5.3.3.2: EKF Update Phase  

The calculations for the extended Kalman filter are quite similar to the ones 

presented in the classic version. 

The innovation covariance matrix Sk is given by: 

 

Where H is the Jacobian of function h. The Kalman gain is given by: 

 

The following equations are used for updating the state and state error 

covariance matrix.  
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5.3.4: Extended Kalman Filter Loop 

The following flowchart shows all the recursive calculations needed for the 

extended Kalman Filter: 

              

Figure 29 - Extended Kalman Filter Flowchart 
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 PADS Analyzer Chapter 6:

In order to view and analyze the data from sensors, a program in MATLAB with a 

GUI interface, denominated “PADS Analyzer” was developed. Several functions were 

implemented on it. Each of these functions is going to be discussed below. The 

program interface is shown in Figure 30: 

 

 

Figure 30 - PADS Analyzer 

 

All functions can be accessed by buttons that appear in the right side of the 

interface screen. In the left side of the screen, there is an axes that can be used by 

the functions for plotting purposes and a display, which shows basic parameters of 

the signal being processed.  

6.1: PADS Analyzer Data Flow 

The sensor data is read by the Analog Acquisition Board, which runs a program 

in Python that saves all the data into a text file. The text file is organized in a way in 

which each row represents a new measurement and each column represents a 

channel that is coupled to a specific sensor. 
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A sample of this file is showed below: 

     

 

Figure 31 - Data text file sample 

This file is continuously updated by the Analog Acquisition Board with a 

sample time determined by the user. The PADS Analyzer reads this data, process it , 

saves related parameters and data into a file and allows the user to view the data 

through graphs in real time. A simple data flowchart of the integrated system is 

shown in Figure 32: 

 

Figure 32 - PADS Analyzer Flowchart 
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6.2: Gyroscope X,Y,Z Output Functions 

The Gyroscope X,Y,Z Output functions allow the user to view the non-

integrated gyroscope data. It basically converts the voltage readings into values of 

angular velocity in degrees per second and plots the data in real time in the main 

axes. Related parameters such as average and standard deviation are calculated 

and displayed in the main screen. All sensors data and parameters are saved into a 

file. 

 A flow chart for the function is shown in Figure 33: 

 

Figure 33 - Gyroscope X,Y,Z Output Functions Flowchart 

 

6.3: Gyroscope X,Y,Z Angle Output Functions 

The Gyroscope X,Y,Z Angle Output functions allows the user to view the 

integrated gyroscope data. It subtracts the biases from the gyroscope outputs and 

integrates the values in order to provide a value of angular displacement. The 

gyroscope biases are estimated by calculating the average values of the stationary 

sensor output. It also calculates related parameters and saves them along with the 

sensors data in a text file. 



 

45 

 

Figure 34 - Gyroscope X, Y, Z Angle Output Functions Flowchart 

 

6.4: Clinometer X, Y Functions 

The Clinometer X, Y functions allow the user to view the clinometers data and 

related parameters. The function receives the voltage provided by the clinometer and 

converts it to an angle. It calculates basic parameters and saves all the data and 

parameters into a text file. A flowchart of the function is shown in Figure 35. 

 

 

Figure 35 - Clinometer X, Y Functions Flowchart 
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6.5: Magnetometer Z Function 

The Magnetometer Z function receives the magnetometer X and Y readings 

and calculates a compass heading that provides a value of the Z displacement 

regarding to the local magnetic flux reference. Tilt compensation is also performed 

using the X and Y displacement values from the clinometers in order increase the 

accuracy of the measurement. 

A flowchart of the Magnetometer Z function is shown in Figure 36. 

 

 

Figure 36 - Magnetometer Z Function Flowchart 

6.6: Virtual Gyro X, Y, Z Functions 

The Virtual Gyro X, Y, Z functions estimate the true angular rate by using an 

Kalman Filter algorithm, which combines the different gyroscopes outputs into a 

single value, with more accuracy than the one provided by a single gyroscope. A 

flowchart for the Virtual Gyro X, Y, a Z function is shown in Figure 37. 
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Figure 37 - Virtual Gyro X, Y, Z Flowchart   

6.7: Kalman X, Y, Z Functions 

The Kalman X, Y, Z functions use an Extended Kalman Filter algorithm to fuse 

the attitude provided by the virtual gyroscope and the attitude provided by the 

clinometers and magnetometer. The virtual gyroscope estimate is used to predict the 

next attitude states until a new clinometer X, Y or magnetometer Z value is available. 

 

Figure 38 - Kalman X, Y, Z Functions Flowchart 
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6.8: 3D Visualization Function 

A 3D Visualization function was created in order to visualize and check the 

attitude models and measurements by sensors. The 3D Visualization function applies 

the attitude estimated by the Kalman X, Y, Z to a rotating block, so the user can see 

in real time the rotation motion applied to the sensors. The 3D Visualization Function 

flow chart is shown in the Figure 39: 

 

Figure 39 - 3D Visualization Function Flowchart 
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 Sensors Noise Analysis Chapter 7:

In this chapter the stationary noise of each sensor is going to be analyzed. 

This noise analysis is important in order to check if the sensors are working as 

specified and to obtain important parameters for using in the Kalman Filter fusion 

algorithms. 

7.1: Gyroscope Noise Analysis 

In order to analyze the noise from the gyroscopes the Gyroscope X, Y, Z 

Graph functions and the Gyroscope X, Y, Z Angle functions of the PADS Analyzer 

were used. The non-integrated outputs in the X, Y, Z axes are shown below for the 

gyroscopes in a stationary state. 

 

Figure 40 -  Gyroscope X Axis Sample Angular Rate 
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Figure 41 - Gyroscope Y Axis Sample Angular Rate 

 

 

Figure 42 - Gyroscope Z Axis Sample Angular Rate 
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The values found for the RMS (standard deviation) and biases are shown in 

the following table: 

Output RMS Bias (degrees/sec) 

Gyroscope X 0.03631 -0.03711 

Gyroscope Y 0.03120 -0.01320 

Gyrosocpe Z 0.03956 0.02560 

 

The outputs shown in Figures 43, 44 and 45 are the result of the white noise 

integration, which is usually called the angle random walk (ARW). The angle random 

walk can be calculated from the RMS parameters by using the following formula: 

 

 

This quantity represents the standard deviation of the angle indirect 

measurement at time equal to one second, as discussed in section 4.2.1.1. 

The angle random walk parameters for the three axes are showed in the 

following table: 

Output Angle Random Walk 

(deg/sec0.5) 

Gyroscope X 0.03631 

Gyroscope Y 0.03120 

Gyroscope Z 0.03956 

 

The rate random walk parameters were obtained by observing the bias 

change over time. An one hour test was performed to get data samples, that were 

clustered and used for the bias calculation. Then, a best-fit linear estimation in 

MATLAB was used to calculate the RRW parameters, which are shown in the 

following table: 
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Output Rate Random Walk (dps 

/sec0.5) 

Gyroscope X 4.14 x 10-5 

Gyroscope Y 4.05 x 10-5 

Gyroscope Z 3.99 x 10-5 

 

The most relevant gyroscope noise parameters are caused by the ARW 

process. 

In order to visualize the integrated output of the gyros, the Gyroscope X,Y,Z 

Angle functions are used. For the gyroscope in a stationary state, the angular 

displacement in the X, Y, Z axes are shown in Figure 43, 44 and 45.  

 

Figure 43 - Angle Random Walk Gyroscope X Output 
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Figure 44 - Angle Random Walk Gyroscope Y Output 

 

 

Figure 45 - Angle Random Walk Gyroscope Z Output 
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7.2: Clinometer Noise Analysis 

For the clinometer noise analysis, the Clinometer X,Y functions were used. 

The following graphs were obtained with the clinometer in a stationary state for the X 

and Y axes, respectively. 

 

 

Figure 46 - Clinometer X Output 
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Figure 47 - Clinometer Y Output 

The RMS parameters for the X and Y clinometers are given in the table below: 

Output RMS 

Clinometer X 0.006818 

Clinometer Y 0.005908 

 

7.3: Magnetometer Noise Analysis 

For the magnetometer noise analysis, the Magnetometer Z from the PADS 

Analyzer function was used. In order to calculate a heading compass from the values 

of the magnetic field in the X and Y direction is used. The graph shown in Figure 48 

was obtained for the magnetometer in stationary state. 
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Figure 48 - Magnetometer Z Output 

The RMS parameter for the Magnetometer Z function is shown in the table 

below: 

Output RMS 

Magnetometer Z 0.1164 

 

The high noise and standard deviation obtained were, in part, due to the not 

complete magnetic-Isolated place used during the tests. 
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 Virtual Gyroscope Chapter 8:

In order to improve the measurement system accuracy, several MEMS 

gyroscopes were combined to create a virtual gyroscope with a higher resolution. 

This approach was originally proposed by Bayard in [ 2 ]. The virtual gyroscope 

technology fuses several MEMS gyroscopes and uses signal processing to improve 

the accuracy of the sensors. This technology takes advantage of the fact that MEMS 

sensors can be easily fabricated in a large number, in a single wafer with a relative 

low cost. Some simulations results have shown that by using four single gyroscopes, 

with a correlation factor of -0.333, the gyros drift could be divided by about 139 times 

[ 14 ]. Improving the accuracy by improving the mechanical sensing design has 

demonstrated not to be very easy and efficient, so new methods have been proposed 

in the last years. Creating virtual sensors by combining multiple sensing units has 

demonstrated to be a very efficient technique and it has been employed in many 

different engineering areas [ 15 ]. In 1992 Weis and Allan created a smart clock, by 

combining three inexpensive wrist watches with an error of 40 seconds a month, and 

achieved an error of 1 second a month [ 14 ].  

8.1: Correlation between MEMS sensors  

 Bayard in [ 2 ] has shown that combining independent sensors (i.e. with no 

correlation between each other) can improve the accuracy by 1/sqrt(N), where N is 

the number of sensors. If there is correlation between sensors, this accuracy can be 

improved even further. Correlation could be created by fabricating the sensors in a 

single silicon chip with a same readout. In this project, since commercial-off-the-shelf 

components are being used, the selected MEMS gyroscopes are assumed to be 

uncorrelated.  

 

8.2: Virtual Gyro Kalman Filter 

A Kalman filter algorithm was used to optimally combine the measurements 

provided by the single gyroscopes into a measurement with higher precision. The 
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state of the system was treated as the true angular rate w and the drift values bi and 

the state model equations were established as follows: 

 

 

Where w(t) = [nb1 nb2 nb3 nw] and v(t) = [na1 na2 na3] are the process noise and 

the measurement noise with covariances given by the matrixes Q and R, 

respectively: 

 

 

For the following analysis, a virtual gyroscope composed by three gyroscopes 

will be considered. More gyroscopes can be added to the virtual gyroscope by 

expanding the equations that will be presented in this chapter. 

The state of the system X(t) is composed by the drift rate bias of each 

gyroscope and by the true angular rate w.  

 

The virtual gyroscope transition matrix can be then modeled, according to        

[ 15 ], by: 

 

The process noise is given by the matrix Q: 

 

 In this model, the bias drifts derivatives and variances are assumed to be 

negligible and the true angular rate derivative variance was assumed vw=1. 
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The observation model is  given by: 

 

The measurement noises are assumed to be independent and with a 

variance of about 0.0009, given by the noise analysis performed in chapter 7.  The 

measurement noise matrix R is, then, given by: 

 

The linear space model described above can be discretized according to 

[ 16 ] by the following equations: 

 

 

The discretized equations, assuming a first order approximation for a small 

time step T are shown below. 

 

 

; ; ; ; ;  

 

The final approximate solution, then, is given by: 

 

 

The following matrixes are given by applying the discretization model to the 

gyroscope state model: 
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8.3: Virtual Gyro Implementation Results 

The virtual gyroscope was implemented by the Virtual Gyroscope function of 

the PADS Analyzer. The graph below is a comparison of the output provided with a 

single gyroscope and the one provided by the virtual gyroscope. 

 

 

Figure 49 - Virtual Gyro X Output 

 

 In the table below there is a comparison between the RMS values of the 

outputs provided by single gyroscopes and the one provided by the virtual 

gyroscope. 
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Gyroscope 

Output 

Gyroscope 1 

RMS 

Gyroscope 2 

RMS 

Gyroscope 3 

RMS 

Virtual Gyroscope 

RMS 

X 0.03631 0.03613 0.03685 0.02193 

Y 0.03120 0.03157 0.03111 0.02233 

Z 0.03956 0.03987 0.03992 0.02691 

 

The following reduction factors were achieved by using three gyroscopes into 

the virtual gyroscope concept: 

 

Gyroscope 

Output 

Reduction 

Factor 

X 1.6612 

Y 1.4014 

Z 1.4784 
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 Extended Kalman Filter Data Fusion Algorithm Chapter 9:

Implementation 

In order to estimate the current attitude of the system an extended Kalman 

filter algorithm was implemented. The algorithm combines the data from the different 

sensors and provides an estimate for the current attitude. 

9.1: Predict Phase Implementation 

The gyroscopes sensors are used to predict the state of the measurement 

until a new measurement from the clinometers or the magnetometer is available. The 

angular rates provided by the gyroscopes are relative to their own body reference 

frame, thus a conversion is needed to provide attitude estimation in relation to an 

inertial frame of reference. For this convention, Euler angles are used to this 

conversion. The Euler rotation angles use the ZYX convention. Then, the rotation 

matrix can be expressed as: 

 

Where c(.) and s(.) denote cosin and sin functions, respectively. 

The Euler angular rates can be then expressed, according to [ 17 ], as:  

  

Where w1, w2 and w3 are the angular velocities in relation to the gyroscope 

body frame reference. The biases drift are negligible, therefore, are assumed to be 

zero. 
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A simple linear integration, then, was used to predict the state until a new 

measurement is available. 

  ;    ;  

Since the gyroscopes are significantly faster than the other sensors in the 

system, the state is propagated several times until an update occurs. 

In order obtain a linear model for the extended Kalman filter algorithm, the 

model is linearized around its current estimate. 

 

The higher terms are ignored, since it is assumed that  value is close to the 

linearization point [ 12 ]. Expanding this equation to all the angles and considering 

the partial derivatives will lead to the following matrix: 

 

Where Ts is the sampling time and M is defined as: 

 

 

The matrix M is given, by applying the partial derivatives, by: 

 

The observation matrix is defined as: 
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The predicted error covariance can be calculated by: 

 

Where the process noise matrix Qk was defined as: 

 

Where σi is the noise associated to the prediction process leaded by the 

gyroscopes. This variance can be estimated by using the gyroscope angle random 

walk value which is about 0.03 deg/sec0.5. Considering a time between samples of 

about 0.01 seconds, the variance is estimated to have a value of 0.003 degrees. 

Thus the matrix Q is defined as: 

 

9.2: Update Phase Implementation 

In the update phase, the values of the angles provided by the clinometer and 

magnetometer are combined with the a priori estimate provided by the gyroscopes, in 

order to estimate the current attitude. The sensors noise matrix R is defined as:  

 

Where   and  are the standard deviation from the clinometers and  is 

the standard deviation value of the magnetometer. These values are estimated, 

according to the analysis made in section 7.1, to be: 

 ;   and . 

The innovation covariance matrix and the Kalman gain are respectively, 

calculated by: 
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 The a posteriori covariance matrix and the a posteriori state are, respectively, 

given by: 

 

 

 

9.3: Extended Kalman Filter Results  

In Figure 50, a single output from the Kalman X,Y,Z function is shown. The 

orientation state is predicted by the gyroscopes until a new measurement is 

available. In the figure below Kalman filter updates occurs every 10 time units. 

 

Figure 50 - Extended Kalman Filter result over the X axis 

A standard deviation of about 0.005 degrees was achieved by combining a set 

of 3 uncorrelated MEMS gyroscopes and clinometers over the X and Y axes.  
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 Power Budget Chapter 10:

In this chapter, the power budget of the system is going to be discussed. The 

following power estimations were based in calculations, observations and in 

components specifications. The budget was divided into three parts: Instruments, 

Voltage Regulators and Heaters. Each of these parts is going to be discussed 

separately: 

10.1: Instruments 

The instruments include all the system sensors, the acquisition board and the 

controllers. The estimated power consumption for these elements is shown in the 

table below: 

 

The flight computer (Beagle Board xM) is the element that requires most of the 

power followed by the Analog Acquisition Board (PsyncADC) and the Star Tracking 

Camera. The flight computer has a peak of 2 amperes when booting and the camera 

demands a peak current of 1.5 amperes when taking pictures. The instruments total 

average power is estimated to be 11.55 W, with a peak of 31.01 W. 

10.2: Voltage Regulators 

Voltage regulators have a good significance on the system power budget 

since they dissipate a big amount of power. The power dissipated by each regulator 

was estimated by taking into account the voltage drop and the current passing 

through the regulator, by applying the following relation: 
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The estimated power dissipation for the voltage regulators is showed in the 

table below. 

 

 The average power dissipated by the voltage regulators is estimated to be 

16.044 W with a peak power of 45.72 W. 

 

10.3: Heaters 

Heaters are some of the most power demanding components. They help on 

stabilizing the temperature during harsh flight conditions in order to maintain the 

sensors in normal operation modes. The power required for them was based in 

thermal calculations, which are not in the scope of this project. The table below 

shows the power required by the heating system. 

 

The total power estimated for the system has an average of 92.40 W and a peak 

power of 206.33 W. 
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 Conclusions Chapter 11:

In this project, a relative low-cost attitude determination system for high 

altitude scientific balloons has been developed by taking advantage of different 

sensors capabilities and performances in a hierarchical manner. Using multiple 

inexpensive MEMS gyroscopes has proven to increase significantly the precision of 

the system. Furthermore, an attitude precision in the order of arc seconds was 

achieved by combining sensors through an Extended Kalman Filter Algorithm. In the 

future, high-correlated MEMS gyroscopes can be used along with a study of their 

covariance, which has the potential to increase dramatically the precision of the 

system.   
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