
UNIVERSIDADE FEDERAL DE SANTA CATARINA
INFORMÁTICA E ESTATÍSTICA

Tháıs Bardini Idalino

USING COMBINATORIAL GROUP TESTING TO SOLVE
INTEGRITY ISSUES

Florianópolis

2015

Tháıs Bardini Idalino

USING COMBINATORIAL GROUP TESTING TO SOLVE
INTEGRITY ISSUES

dissertação submetida ao Programa de
Pós-Graduação em Ciência da Com-
putação para a obtenção do Grau de
Mestre em Ciência da Computação.
Orientador: Prof. Ricardo Felipe Custódio,
Dr.
Universidade Federal de Santa Cata-
rina
Coorientadora: Profa. Lucia Rosana
Moura, Dra.
University of Ottawa, Canadá

Florianópolis

2015

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Idalino, Thaís Bardini
 Using combinatorial group testing to solve integrity
issues / Thaís Bardini Idalino ; orientador, Ricardo Felipe
Custódio ; coorientadora, Lucia Rosana Moura. -
Florianópolis, SC, 2015.
 85 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico. Programa de Pós-Graduação em
Ciência da Computação.

 Inclui referências

 1. Ciência da Computação. 2. Garantia parcial de
integridade. 3. Testes combinatórios de grupo. 4. Agregação
de assinaturas. 5. Verificação de assinaturas em lotes. I.
Custódio, Ricardo Felipe. II. Moura, Lucia Rosana. III.
Universidade Federal de Santa Catarina. Programa de Pós-
Graduação em Ciência da Computação. IV. Título.

Tháıs Bardini Idalino

USING COMBINATORIAL GROUP TESTING TO SOLVE
INTEGRITY ISSUES

Esta dissertação foi julgada aprovada para a obtenção do T́ıtulo
de “Mestre em Ciência da Computação”, e aprovada em sua forma final
pelo Programa de Pós-Graduação em Ciência da Computação.

Florianópolis, 1o de junho 2015.

Prof. Ronaldo dos Santos Mello, Dr.
Coordenador do Programa

Prof. Ricardo Felipe Custódio, Dr.
Universidade Federal de Santa Catarina

Orientador

Profa. Lucia Rosana Moura, Dra.
University of Ottawa, Canadá

Coorientadora

Banca Examinadora:

Prof. Julio César López Hernández, Dr.
Universidade Estadual de Campinas

Profa. Jerusa Marchi, Dra.
Universidade Federal de Santa Catarina

Profa. Carina Friedrich Dorneles, Dra.
Universidade Federal de Santa Catarina

Dedico este trabalho aos meus pais, fami-
liares e amigos.

AGRADECIMENTOS

Gostaria de agradecer aqui a todos que, de uma forma ou de
outra, foram fundamentais nessa etapa da minha vida.

Primeiramente, gostaria de agradecer o apoio fundamental dos
meus pais, avós e demais familiares. Vocês me ensinaram a ser quem
eu sou hoje e tudo o que conquistei até agora é reflexo dessa educação.
Suas palavras de conforto e encorajamento foram indispensáveis para
a finalização desse trabalho, muito obrigada por tudo.

Gostaria também de agradecer ao Felipe por estar ao meu lado
sempre, nos momentos de alegria e de angústia e por me ajudar a vencer
cada desafio encontrado no caminho. Seu companheirismo e paciência
foram fundamentais no decorrer de mais essa etapa.

Um agradecimento especial também às minhas amigas, que sem-
pre me ouviram nos momentos de desespero e apresentaram palavras de
conforto e confiança. Obrigada por sempre acreditar e torcer por mim,
nossas tardes de sábado sempre serão lembradas com muito carinho.

Não poderia esquecer de todos os amigos que fiz no LabSEC.
Vocês contribúıram não só com esse trabalho, mas também com todas
as outras etapas vencidas e conhecimentos obtidos nesses quase cinco
anos de laboratório.

Por fim, agradeço ao meu Orientador Ricardo Custódio, Coori-
entadora Lucia Moura e colaborador Daniel Panario. Vocês me aju-
daram e guiaram durante o desenvolvimento desse trabalho, além de
proporcionar diversas outras oportunidades.

RESUMO

O uso de documentos eletrônicos para compartilhar informações é de
fundamental importância, assim como a garantia de integridade e au-
tenticidade dos mesmos. Para provar que alguém é dono ou concorda
com o conteúdo de um documento em papel, essa pessoa precisa as-
siná-lo. Se o documento foi modificado após a assinatura, geralmente
é posśıvel localizar essas modificações através de rasuras. Existem
técnicas similares em documentos digitais, conhecidas como assinatu-
ras digitais, porém, propriedades como as de identificar as modificações
são perdidas.
Ao determinar quais partes de um documento foram modificadas, o
receptor da mensagem seria capaz de verificar se essas modificações
ocorreram em partes importantes, irrelevantes ou até esperadas do do-
cumento. Em algumas aplicações, uma quantidade limitada de mo-
dificações são permitidas mas é necessário manter o controle do local
em que elas ocorreram, como em formulários eletrônicos. Em outras
aplicações modificações não são permitidas, mas é importante poder
acessar partes das informações que tem integridade garantida ou até
mesmo utilizar a localização das modificações para investigação.
Neste trabalho é considerado o problema de garantia parcial de integri-
dade e autenticidade de dados assinados. Dois cenários são estudados:
o primeiro está relacionado com a localização de modificações em um
documento assinado e o segundo está relacionado com a localização de
assinaturas inválidas em um conjunto de dados assinados individual-
mente.
No primeiro cenário é proposto um esquema de assinatura digital capaz
de detectar e localizar modificações num documento. O documento a
ser assinado é primeiramente dividido em n blocos, tendo em conta
um limite d para a quantidade máxima de blocos modificados que o
esquema de assinatura consegue localizar. São propostos algoritmos
eficientes para as etapas de assinatura e verificação, resultando em uma
assinatura de tamanho razoavelmente compacto. Por exemplo, para d
fixo, são adicionados O(log n) hashes ao tamanho de uma assinatura
tradicional, ao mesmo tempo permitindo a identificação de até d blocos
modificados.
No cenário de localização de assinaturas inválidas em um conjunto de
dados assinados individualmente é introduzido o conceito de ńıveis de
agregação de assinatura. Com esse método o verificador pode distin-

guir os dados válidos dos inválidos, em contraste com a agregação de
assinaturas tradicional, na qual até mesmo um único dado modificado
invalidaria todo o conjunto de dados. Além disso, o número de assi-
naturas transmitidas é muito menor que num método de verificação
em lotes, que requer o envio de todas as assinaturas individualmente.
Nesse cenário é estudada uma aplicação em bancos de dados terceiri-
zados, onde cada tupla armazenada é individualmente assinada. Como
resultado de uma consulta ao banco de dados, são retornadas n tuplas
e um conjunto de t assinaturas agregadas pelo servidor (com t muito
menor que n). Quem realizou a consulta executa até t verificações de
assinatura de maneira a verificar a integridade das n tuplas. Mesmo
que algumas dessas tuplas sejam inválidas, pode-se identificar exata-
mente quais são as tuplas válidas. São propostos algoritmos eficientes
para agregar, verificar as assinaturas e identificar as tuplas modifica-
das.
Os dois esquemas propostos são baseados em testes combinatórios de
grupo e matrizes cover-free. Nesse contexto são apresentadas cons-
truções detalhadas de matrizes cover-free presentes na literatura e a
aplicação das mesmas nos esquemas propostos. Finalmente, são apre-
sentadas análises de complexidade e resultados experimentais desses
esquemas, comprovando a sua eficiência.

Palavras-chave: Assinaturas digitais. Garantia parcial de integri-
dade. Localização de modificações. Testes combinatórios de grupo.
Famı́lias cover-free. Agregação de Assinaturas. Verificação em lotes.
Bancos de dados terceirizados.

ABSTRACT

We consider the problem of partially ensuring the integrity and authen-
ticity of signed data. Two scenarios are considered: the first is related
to locating modifications in a signed document, and the second is rela-
ted to locating invalid signatures in a set of individually signed data.
In the first scenario we propose a digital signature scheme capable of
locating modifications in a document. We divide the document to be
signed into n blocks and assume a threshold d for the maximum amount
of modified blocks that the signature scheme can locate. We propose
efficient algorithms for signature and verification steps which provide a
reasonably compact signature size. For instance, for fixed d we increase
the size of a traditional signature by adding a factor of O(log n)hashes,
while providing the identification of up to d modified blocks.
In the scenario of locating invalid signatures in a set of individually
signed data we introduce the concept of levels of signature aggrega-
tion. With this method the verifier can distinguish the valid data from
the invalid ones, in contrast to traditional aggregation, where even a
single invalid piece of data would invalidate the whole set. Moreover,
the number of signatures transmitted is much smaller than in a batch
verification method, which requires sending all the signatures indivi-
dually. We consider an application in outsourced databases in which
every tuple stored is individually signed. As a result from a query in
the database, we return n tuples and a set of t signatures aggregated by
the database server (with t much smaller than n). The querier performs
t signature verifications in order to verify the integrity of all n tuples.
Even if some of the tuples were modified, we can identify exactly which
ones are valid. We provide efficient algorithms to aggregate, verify and
identify the modified tuples.
Both schemes are based on nonadaptive combinatorial group testing
and cover-free matrices.

Keywords: Digital signatures. Partial data integrity. Modification
localization. Combinatorial group testing. Cover-free families. Aggre-
gation of signatures. Batch verification. Outsourced databases.

LISTA DE TABELAS

Tabela 1 Values of t and w for each CFF construction. 48

Tabela 2 Comparison between methods with blocks of size 8192
bytes and d = 1. 57

Tabela 3 Comparison between methods with blocks of size 1024
bytes and d = 1. 57

Tabela 4 Comparison between methods with blocks of size 8192
bytes and d = 2. 57

Tabela 5 Comparison between methods with blocks of size 1024
bytes and d = 2. 57

Tabela 6 Comparison between methods with blocks of size 8192
bytes and d = 3. 58

Tabela 7 Comparison between methods with blocks of size 1024
bytes and d = 3. 58

Tabela 8 Comparison between methods with blocks of size 8192
bytes and d = 10. 58

Tabela 9 Comparison between methods with blocks of size 1024
bytes and d = 10. 58

Tabela 10 Number t of aggregations for given d, n. 71

Tabela 11 Comparisons between condensed-RSA, level-d and level-
n signature aggregation. 72

Tabela 12 Comparison between condensed-RSA and level-d signa-
ture aggregation. 73

LISTA DE ABREVIATURAS E SIGLAS

MAC Message Authentication Code . 27

RSA Rivest, Shamir, and Adleman public-key cryptosystem . 29

CFF Cover-Free family . 39

MOLS Mutually orthogonal Latin squares . 42

MLSS Modification Location Signature Scheme 49

SQL Structured Query Language . 65

HMAC Keyed-hash message authentication code 65

CGT Combinatorial group testing . 68

SUMÁRIO

1 INTRODUCTION . 19
1.1 OBJECTIVES . 21
1.1.1 General Objectives . 21
1.1.2 Specific Objectives . 21
1.2 LIMITATIONS . 22
1.3 JUSTIFICATION . 22
1.4 METHODOLOGY . 23
1.5 SCIENTIFIC CONTRIBUTIONS . 24
1.6 OUTLINE . 24
2 BASIC CONCEPTS IN SECURITY AND RE-

LATED WORK. 27
2.1 INFORMATION SECURITY CONCEPTS 27
2.2 DIGITAL SIGNATURE . 29
2.3 SIGNATURE AGGREGATION . 30
2.4 BATCH VERIFICATION . 33
2.5 THE CASE OF INVALID SIGNATURES 35
2.6 OTHER RELATED WORKS . 36
3 COMBINATORIAL GROUP TESTING. 39
3.1 CFF MATRIX CONSTRUCTIONS 41
3.1.1 The optimal construction for d = 1 41
3.1.2 A construction with (d + 1)

√
n tests 42

3.1.3 A construction with (d + 1)2 lnn tests 45
3.1.4 Using the best constructions for d and n 47
4 LOCATION OF MODIFICATIONS IN SIGNED

DOCUMENTS . 49
4.1 INTRODUCTION . 49
4.2 DEFINITION OF THE PROBLEM AND RELATED WORK 50
4.3 METHOD AND ALGORITHMS . 51
4.4 CORRECTNESS AND COMPLEXITY 54
4.5 EXPERIMENTAL RESULTS . 56
4.6 A VARIATION OF MLSS TO REDUCE THE SIGNA-

TURE SIZE . 59
4.7 DIVISION IN BLOCKS AND BLOCK SIZES 61
4.8 FINAL CONSIDERATIONS . 62
5 LEVEL-D SIGNATURE AGGREGATION FOR

OUTSOURCED DATABASES 63
5.1 INTRODUCTION . 63

5.2 DEFINITION OF THE PROBLEM AND RELATED WORK 65
5.3 PROPOSED METHOD AND ALGORITHMS 68
5.3.1 Algorithms . 69
5.4 ANALYSIS . 71
5.5 TRADEOFF BETWEEN AGGREGATION AND BATCH

VERIFICATION . 72
5.6 FINAL CONSIDERATIONS . 75
6 FINAL CONSIDERATIONS 77

Bibliography . 81

19

1 INTRODUCTION

The use of electronic media for sharing information is a key fac-
tor in communication and service provision. In particular, the Internet
provides a large dissemination of digital information, as well as the
storage of data in outsourced servers. However, besides all the conve-
nience and facility we can achieve, it has also increased our concern
about assuring the security of the shared and stored information since
sometimes we cannot have control on who can access, copy or modify
all these data.

These data are often represented in the form of electronic docu-
ments, which are a set of binary digits generated by a computer or any
media or device for any electronic processing. Electronic documents
follow no format or readability requirements except when retrieved for
human-use. Just as paper documents, these electronic documents can
be digitally signed. So, you can verify some security attributes of these
documents, such as authorship, agreement with the content and inte-
grity. To facilitate understanding, it is useful to draw an analogy of
these security properties between paper documents and electronic do-
cuments. For instance, to show that a person is the owner or agree with
the content of a document in paper, she just has to sign it in the tradi-
tional way. If this document was modified after the signature process,
then it is usually possible to locate the modifications through erasures
on paper. In electronic documents there are similar procedures, known
as digital signatures, where with a few calculations it is possible to sign
a document and prove its origin and integrity. However, the property
of locating which parts of the document have been modified is lost.
Digital signature schemes will detect if modifications were done in a
signed document, but do not offer information on where exactly those
modifications occurred. In this context, even a single bit change would
invalidate the whole document.

The guarantee of security in documents and messages sent th-
rough a data communication network is essential, but it can be even
more delicate when storing data in outsourced servers, where the ser-
ver itself is not reliable. In this context, instead of single documents,
we sometimes have a large set of independently signed documents (as
we can see in Step 1 of Figure 1). Consequently, we need mechanisms
to decrease the amount of signatures sent through network (Step 2 of
Figure 1) and speed up the verification process (Step 3 of Figure 1).
In the literature, we can find methods of aggregation of signatures and

20

batch verification that aim to improve the verification of several signa-
tures in a more efficient way. The former provides a single signature
by aggregating all the signatures into one before sending to the veri-
fier, decreasing the number of signatures transmitted. However, if the
verification fails there is not enough information to identify the faulty
ones (ZAVERUCHA; STINSON, 2009). With the latter one, we send the
signatures individually and aggregate them only during the verifica-
tion, allowing the identification of faulty signatures if necessary but
generating a considerable communication overhead.

data1

sign σ1

data2

sign σ2

data3

sign σ3

data4

sign σ4

data5

sign σ5

data6

sign σ6

data1 data3

data2 data4

data5

data6

data1 data3

data2 data4

data5

data6

verify(,)

Server Client

1 2 3
Figure 1: Relation between client and server with several signed data.

In this work we propose two new signature schemes in order to
solve the problems above. The first scheme is called Modification Loca-
tion Signature Scheme (MLSS) and aims to guarantee partial integrity
of data. It considers a document divided into blocks and employs com-
binatorial group testing to determine if they were modified, and if they
have been, to identify which of them have been modified. We propose
efficient algorithms for signing and verification, resulting in a compact
signature size, and present experimental results to show its efficiency.

The second scheme introduces the concept of levels of signature
aggregation applied to scenarios where the verification of a large quan-
tity of independently signed data is needed. We consider this method
in a real scenario of outsourced databases, where the tuples are in-
dependently signed. With this method, the querier can analyze the
query results and distinguish the valid tuples from the invalid ones, in

21

contrast to traditional aggregation, where even a single invalid tuple
would invalidate the whole query. The method provides a trade-off
between signature aggregation and batch verification, where less signa-
tures are sent through the network without losing the ability to identify
the faulty signatures. Both presented schemes are based on nonadap-
tive combinatorial group testing and cover-free families.

1.1 OBJECTIVES

1.1.1 General Objectives

The general objective of this work is to propose signature sche-
mes that provide more information on which part of the data has been
modified, on one hand, finding the location where changes occurred,
and on the other hand, guaranteeing which parts of the data are inte-
gral. The first specific contribution of this work is a signature scheme
able to allow changes in electronic documents without invalidating the
signature of the document as a whole. Moreover, it is possible to detect
which parts have been changed and which were not. The second spe-
cific contribution of this work is a solution for a trade-off between the
techniques of aggregation of signatures and batch verification, applied
in scenarios where a large amount of signature verifications are nee-
ded. In both problems we use nonadaptive combinatorial group testing
algorithms to generate and verify the digital signatures.

1.1.2 Specific Objectives

1. Propose a new method to identify modifications in signed docu-
ments with the following objectives:

• To propose a new signature algorithm with artifacts (the
signature itself) that can be used to verify the individual
integrity of different parts of the document;

• to identify the modified blocks of a document in an efficient
way;

• to evaluate the efficiency of the method;

• to propose methods to divide the document into blocks, con-
sidering different applications.

22

2. Propose a method to verify and locate invalid signatures in a large
amount of individually signed data, decreasing the bandwidth
overhead and the verification time:

• Propose algorithms to aggregate different signatures without
losing the ability to identify the invalid ones;

• compare the proposed algorithms with the traditional tech-
niques of aggregation of signatures and batch verification;

• consider a real scenario where the method can be applied;

• evaluate the efficiency of the method.

1.2 LIMITATIONS

In this work we focus on guaranteeing integrity of data, and
since we use asymmetric key algorithms, we also provide authenticity
and non-repudiation. This guarantees are achieved by verifying the sig-
nature as described in Chapters 4 and 5. We do not consider any other
security guarantee, such as privacy, authorization and completeness,
but this could be achieved by adding the desired algorithm in specific
parts of our methods.

1.3 JUSTIFICATION

It is desirable that the receiver of a signed document or a set
of signed data be able to check their signature with the least effort.
In addition, if part of the data does not match its signature, it is also
desirable to determine which parts of the data have been modified and
which parts are integral.

Nowadays, digital signature algorithms allows the verification of
integrity, authenticity and non-repudiation in signed documents. Howe-
ver, they are not designed to allow the location of modified portions
of a document. Additionally, in order to verify several digital signatu-
res simultaneously there are methods of aggregation of signatures and
batch verification. With the former it is possible to send less data th-
rough the network, but only with batch verification it is possible to
identify the invalid signatures in order to not invalidate the entire set
of messages/signatures.

This work is motivated by the hypothesis that it is possible to
localize modifications in a signed document, increasing the standard

23

signature size by a small factor and not increasing the cost of verifying
the signature of a document in terms of cryptographic processing. We
show that it is possible to construct the signature, verify and localize
the modifications with combinatorial group testing algorithms. We also
demonstrate that it is possible to verify several aggregated signatures
simultaneously without losing the ability of identifying the invalid ones.
In this way, it is possible to solve the trade-off between aggregation of
signatures and batch verification in order to enjoy the benefits of both
methods.

In order to approach these problems, it is necessary to carefully
design methods to locate modifications while sending a small amount
of information through network and keeping the signature verification
process efficient.

1.4 METHODOLOGY

In order to achieve the goals of this work, we first studied papers,
books and theses related to digital signatures, aggregation of signatures,
batch verification, and identification of invalid signatures in a batch.
We also studied possible applications, such as database integrity, big
data, cloud computing and forensics. Additionally, we studied group
testing algorithms, in particular the generation of cover-free matrices
and their use to verify signatures. Then, we selected the most relevant
works in order to identify the problems and build our solutions.

By studying the problems and related works, we built a scheme
capable of locating modifications on signed documents. We presented
algorithms to generate and verify the signatures, their proofs of correct-
ness and their complexity. The complexity analysis provides a general
comparison in terms of hash computations and cryptographic operati-
ons. In order to have a more tangible time comparison, we give some
experimental results. We quantify the running time that the algorithm
would take based on openssl using the RSA signature and verification
algorithms (Chapter 4).

In the context of identifying invalid signatures in a set of sig-
ned data, we introduce the concept of level of aggregation building on
the existing ideas of aggregation of signatures and batch verification.
We identify that this technique would be suitable to an application on
outsourced databases. We partially aggregate and verify the signatu-
res, proving its efficiency by comparing the number of operations of
the proposed algorithms with the ones found in the literature for this

24

specific application (Chapter 5).

1.5 SCIENTIFIC CONTRIBUTIONS

The Modification Location Signature Scheme proposed in Chap-
ter 4 presents a scheme to efficiently localize modifications in signed
documents. It was published as an article in Information Processing
Letters (IPL):

Idalino, T. B., Moura, L., Custodio, R.F., Panario, D., “Lo-
cating modifications in signed data for partial data integrity”. Infor-
mation Processing Letters, Published online in march 2015. Available
in: http://dx.doi.org/10.1016/j.ipl.2015.02.014.

This work was also presented as a student talk at the Third Inter-
national Conference on Cryptology and Information Security in Latin
America, held in Florianópolis, Brazil from September 17 to September
19.

The Level-d signature aggregation scheme presented in Chap-
ter 5 provides a scheme to partially aggregate digital signatures without
losing the ability to identify the invalid ones. In this context, an appli-
cation in an outsourced database scenario is considered. This scheme
is part of a paper in preparation for publication.

1.6 OUTLINE

This work is organized as follows. In Chapter 2, we present basic
concepts related to information security and prior works related to ag-
gregation of signatures, batch verification and other related works. In
Chapter 3, we introduce combinatorial group test and three cover-free
matrix constructions, with detailed information about the use of each
one. In Chapter 4, we address the problem of locating modifications in
signed documents, presenting our first main contribution, experimental
results and comparison between our method and traditional schemes.
In Chapter 5, we present our second main contribution, the level-d
aggregation scheme. We also present comparisons between previous
methods and the proposed one and show the solution of the trade-off
between aggregation and batch verification. Finally, Chapter 6 inclu-
des the final considerations and suggestions for future work. We want
to reinforce that, since two different methods for different applicati-

25

ons were proposed, their analysis are individually presented in their
respective chapters.

26

27

2 BASIC CONCEPTS IN SECURITY AND RELATED
WORK

2.1 INFORMATION SECURITY CONCEPTS

Information security is an old concern that has been improved
over the years. Its main goals are related to the guarantee of integrity,
authenticity and non-repudiation (with a few naming variations in the
literature). Assuring data integrity means that the receiver of a message
needs mechanisms to verify that it was not modified by an unauthorized
party, such as an intruder; authenticity is related to the guarantee
that the information received came from the expected origin; and non-
repudiation assures that the sender of a message can not deny later that
he/she sent the message (MARTIN, 2012; SCHNEIER, 1996; MENEZES;

VANSTONE; OORSCHOT, 1996). In this work our main concern is the
integrity of data, so we will present this concept in more details next.

Data integrity consists in ensuring accuracy and consistency of
data. According to Schneier (SCHNEIER, 1996), the person who receives
a message needs to be able to verify if it was not modified. Martin
(MARTIN, 2012) presents four different levels of data integrity. The
first level protects against accidental errors, which can occur from noise
in the communication channel. Examples of mechanisms to ensure the
data integrity are error-correcting codes and the use of check sums. The
second level of data integrity protects against simple manipulations,
which are related to accidental errors when the data are changed in
a predicted way. Hash functions are mechanisms used to verify the
integrity in this case. Active attacks are in the third level, where the
mechanisms must prevent an attacker from creating a valid integrity
digest from a message manipulated by them. To solve this problem,
usually it is required an authentication of the origin of the data. The
most widely used cryptographic mechanism against these types of errors
is the Message Authentication Code (MAC) (WEGMAN; CARTER, 1981).
The fourth level of data integrity protects against repudiation attacks
that occurs when the creator denies the responsibility on creating the
integrity digest of the data. In this case we use digital signatures, which
provide integrity and can be verified by third parties.

The mechanism most commonly used to ensure the integrity of
data is the hash function (or digest). This function maps texts of arbi-
trary size into fixed-size text and in theory it should be easy to compute
but hard to invert (PRENEEL, 2010). Hash functions are cryptographic

28

primitives that have many important and varied uses, such as to pro-
vide data integrity, generate pseudorandom numbers, construct digital
signatures, and others.

Martin (MARTIN, 2012) presents some practical and security pro-
perties that a hash function should have. The first practical property
consists in, regardless of the amount of data that is provided as an
input for the hash function, it must return as a result a fixed size data.
Usually, the result of the function (known as “hash”) is much smal-
ler than the entry data. The second practical property requires that a
hash function should be very easy to compute (computed in polynomial
time).

The security properties presented by Martin (MARTIN, 2012) are
pre-image, second pre-image and collision resistance. These properties
are illustrated in Figure 2 (adapted from Martin (MARTIN, 2012), page
191). The first entails that it should be hard (in computational effici-
ency) to invert a hash function. For example, given the output z, it
should be hard to find an input x where hash(x) = z. The second pre-
image resistance is similar to the previous one. Here, given an input
x and its hash z, it should be hard to find another input x′ that has
the same hash z. The collision resistance states that it should be hard
to find two different inputs x e x′ that result in the same hash z. The
difference between the second pre-image and the collision resistance is
that in the first one the input and its hash are known, and on the
second one just the hash is known.

A hash function by itself cannot guarantee data integrity, since
an attacker can simply modify the original message and recalculate the
hash. To solve this problem we can use Message Authentication Co-
des (MACs) (WEGMAN; CARTER, 1981). It consists in two algorithms
(Sign and Verify) and a secret key k previously chosen by sender and
receiver. It relies on symmetric encryption, where the same key k is
used to encrypt and decrypt the messages. Given a message m, the
signer computes σ = Sign(k,m) and produces a tag σ. The receiver
accepts the pair (m,σ) as valid if Verify(k,m, σ) is true. If m was
modified during the communication, σ can not be recreated by a third
party, since only the sender and receiver know k.

A MAC can not protect against repudiation attacks due to the
fact that senders and receivers share the same secret key k, not allowing
to identify which of them created the tag. In order to identify exac-
tly which part created the integrity digest of a message, a mechanism
similar to a handwritten signature is necessary, known as digital signa-
ture. With digital signatures it is possible to guarantee the integrity,

29

Hash

Hash

Hash

x? z

z

z

x

x'?

Hash

Hash

z

z

x?

x'?

Pre-image

Second
Pre-image

Collision

Figure 2: Security properties of a hash function.

authenticity and non-repudiation (MARTIN, 2012). This mechanism is
presented in detail in the next section.

2.2 DIGITAL SIGNATURE

The first notion of a digital signature scheme emerged in 1976,
with the key distribution algorithm of Diffie and Hellman (DIFFIE;

HELLMAN, 1976). A famous practical implementation of a digital sig-
nature scheme was presented by Rivest, Shamir and Adleman in 1978
(RIVEST; SHAMIR; ADLEMAN, 1978), known as RSA algorithm, enabling
the sending of signed messages in order to guarantee the authenticity,
integrity and non repudiation of the data after signed. It uses asym-
metric encryption, also known as public-key encryption, which requires
a pair of keys: one public and one private. To send a signed electronic
message the sender generates a public and a private key and generates
the signature by encrypting the hash of the message with his private
key. Anyone can use the corresponding public key to verify the signa-
ture, but since only the signer has the private key, only him could have

30

generated the signature.
In more detail, the RSA algorithm (RIVEST; SHAMIR; ADLEMAN,

1978) works as follows. First, we need to choose two prime numbers p
and q and calculate n as their product n = pq, the value n is public
while p and q are secret. Prime numbers must be large enough such
that it is difficult, from a computational point of view, to factor their
product. Second, we choose an integer e such is relatively prime with
(p− 1)(q − 1) and determine d as the multiplicative inverse of e, such
that de ≡ 1 (mod (p−1)(q−1)). We can say that the public key is the
pair (e, n) and the private key is (d, n). Considering m a message to
be send through the network and m′ the message received on the other
side. The signature of m can be calculated by c = hash(m)d mod n
and the pair (m, c) is sent to the verifier. At the other end we receive
(m′, c), and in order to verify the signature we only need to verify if
hash(m′) = ce mod n.

There are several important digital signature methods, as the
well know El-Gamal (ELGAMAL, 1985), DSA (KERRY; GALLAGHER,
2013) and ECDSA (JOHNSON; MENEZES, 1999), or methods based on
trapdoor permutation (BELLARE; ROGAWAY, 1993) and bilinear maps
(BONEH; LYNN; SHACHAM, 2001), which we will not see in details here.

Digital signatures have been used in several applications that
need to verify a large quantity of signatures in a more efficient way
than verifying each individual signature. A few examples are outsour-
ced databases, where each entry (or a subset) is signed; a sensor network
where each sensor need to send several signed messages; vehicular com-
munication, among others. To satisfy this requirement, there are te-
chniques to aggregate signatures and execute batch verification, which
we detail in next sections.

2.3 SIGNATURE AGGREGATION

Various methods in the literature propose the aggregation of di-
gital signature as a solution to send less data through the network and
improve the verification steps (BONEH et al., 2003; MYKLETUN; NARA-

SIMHA; TSUDIK, 2006). Instead of sending n signatures, the methods
combine these signatures into one without losing the ability to verify the
integrity of the corresponding data. On the verification side, instead of
verifying n signatures individually, only one verification is needed. It is
only possible to aggregate the signatures as long as it has the so-called
homomorphism property.

31

Homomorphic encryption is a technique proposed by Rivest et
al. (RIVEST; ADLEMAN; DERTOUZOS, 1978). It is an encryption method
that allows calculations to be performed on encrypted data, which crea-
tes an encrypted result that, when decrypted, corresponds to the results
of operations as if they had been made directly in plaintext. Consider
some operator �, messages m1 and m2, and an encryption function
e(·). We say that an encryption scheme has the homomorphic property
if the following is true: e(m1 �m2) ≡ e(m1)� e(m2). In other words,
we obtain the same result if we first apply the operation on the mes-
sages and then encrypt the result, or if we first encrypt the messages
separately and then apply the operation.

The concept of aggregation of signatures emerged with Boneh
et al. (BONEH et al., 2003). They show that given n signatures gene-
rated individually, from n distinct messages and users, it is possible
to aggregate all these signatures in a single signature. This decreases
the amount of signature data to be transmitted over the network to the
recipient of the documents. In addition, the recipient can verify the sig-
nature of n documents in a single signature verification operation. The
algorithm proposed by Boneh et al. (BONEH et al., 2003) is based on
the Co-Gap Diffie-Hellman digital signature algorithm, using bilinear
maps to allow the signatures aggregation (see (BONEH et al., 2003) for
more details). The aggregation can be executed by a third party who
knows all the signatures, public keys and messages, and can convince
the verifier that each signer signed their corresponding message. As a
result, we compress the n signatures into one with the size of a tradi-
tional signature. Its verification is given in linear time (n signatures),
but if all of them are signed by the same key, it is possible to further
improve the verification process. One issue that may be a challenge
with this method is that the aggregation can be done by anyone, not
necessarily by one of the signers of the messages, and not even a person
of confidence of them.

Lysyanskaya et al. (LYSYANSKAYA et al., 2004) present a sequen-
tial aggregate signature scheme in which the set of signers is arranged
in a specific order. Thus, the aggregation of signatures is made in a
sequential and incremental way, becoming ideal to use in certificate
chains. The algorithms to generate keys, sign and verify the signatures
are based on full-domain signatures, in which are applied to trapdoor
permutation families. These families present some permutation proper-
ties that make it possible to sign, verify and aggregate the signatures.
The authors present methods to generalize the scheme and use it with
RSA, treating it as a permutation family. However, there are some

32

limitations, as an example we need to restrict the values of the keys
and replace operations that do not apply to RSA (see (LYSYANSKAYA

et al., 2004) for more details). The size of the final aggregated signature
is equal to a traditional signature.

Lu et al. (LU et al., 2012) show a scheme to sequentially aggregate
signatures that is provably secure, in which the verifier does not need
to know the order of the aggregated signatures. They use bilinear maps
to construct the signatures and its aggregation, where the signatures
are smaller than in Lysyanskaya et al (LYSYANSKAYA et al., 2004) and
the verification process is faster than in Boneh et al. scheme (BONEH

et al., 2003).
Neven (NEVEN, 2008), on the other hand, presents a scheme

where the goal is to decrease not only the signature size, but also the
size of all the data that are sent through the network. He observes that
the methods previously presented do not offer freedom on choosing the
cryptographic parameters. Boneh et al. (BONEH et al., 2003) and Lu
et al. (LU et al., 2012), as an example, require that all the signers use
the same elliptic-curve groups. Lysyanskaya et al. (LYSYANSKAYA et

al., 2004) require the signers to be arranged in such a way that their
keys are in ascending order, which is the opposite of what we need in a
real certificate chain (since the first key, from the Certificate Authority,
is usually bigger than the final users keys). Neven also uses trapdoor
permutations and, comparing to previous work, presents a better effici-
ency to generate and verify the signatures, in addition to a bandwidth
overhead of only 160 bits.

Katz and Lindell (KATZ; LINDELL, 2008) propose an aggregation
scheme using MACs for authenticated communication on mobile ad-
hoc networks. In this scenario, there is a root node responsible for
communication with the base station, and internal nodes that want to
communicate. The communication will involve a big quantity of bits
since each node forward the data and MACs of its children upwards
until the root is reached. To solve this drawback, they aggregate all
the MACs of the messages sent to all the nodes. Therefore, the central
station can, through one final MAC, verify all the messages from all
the nodes, decreasing the amount of data passed from node to node, by
recalculating the MACs, concatenating and verifying them only once.
There is no improvement in the verification process, but the amount of
data sent from node to node decreases significantly.

Yavuz and Ning (YAVUZ; NING, 2009) propose a computationally
efficient signature scheme with public verifiability. This scheme is im-
plemented in a network of wireless sensors used, for example, in military

33

applications. In this environment, it is not always possible the imme-
diate communication of the sensor with its receptor and sometimes, it
can takes a long period of time. Then, these sensors accumulate data
and, if compromised, their keys can be used to forge messages. The-
refore, it is necessary to guarantee the integrity of information stored
before the compromising. In order to achieve this, Yavuz and Ning
(YAVUZ; NING, 2009) propose schemes based on forward security and
aggregation of signatures. Forward security guarantees that the data
were stored before the compromising, and they use aggregation to ag-
gregate all the signatures generated by the sensors in order to improve
the verification. They use MACs as cryptographic primitives, ensuring
computational efficiency.

In the context of outsourced databases, Mykletun et al. (MYKLE-

TUN; NARASIMHA; TSUDIK, 2006) propose the condensed-RSA signature
scheme in order to improve the bandwidth and verification of the signed
database entries. In this scheme, each database entry mi is signed by
applying a cryptographic hash function, and then using the owner’s se-
cret key (sk) with standard RSA encryption: σi = hash(mi)

sk (mod l).
When a query is executed, the server returns n entries and only one
aggregated signature generated as follows (this is possible only because
of the RSA multiplicatively homomorphic property): σ ≡

∏n
i=1 σi

(mod l). On the querier side, the verification is also improved by the
aggregation, since only one decryption (using public key pk) is requi-
red for the verification: σpk ≡

∏n
i=1 hash(mi) (mod l), in place of n

standard RSA decryptions needed in the verifications: σpki ≡ hash(mi)
(mod l), 1 ≤ i ≤ n.

2.4 BATCH VERIFICATION

Batch verification is another method that aims to reduce the
computational complexity in systems that require many simultaneous
signature verifications. It was introduced by Fiat (FIAT, 1989) using
RSA signatures, where it achieves its goal by reducing the total num-
ber of exponentiations needed during the verification process. The
difference between this method and the previous one is that the ag-
gregation of the signatures in a batch verification is performed by the
verifier and all the signatures are individually sent to him.

Another batch verification method is presented by Harn (HARN,
1998a), that aims to verify several DSA signatures quickly. In the tra-

34

ditional way, each DSA verification requires two modular exponentiati-
ons, so, to verify n signatures we need 2n exponentiations. The method
presented by Harn requires only 2 operations to verify n signatures, but
if the verification fails it is necessary to verify each signature individu-
ally to locate the invalid ones within the batch. Harn also presents a
batch verification method based on RSA signatures (HARN, 1998b), in
which a set of signatures from one signer are multiplied to improve the
verification process. Since all the signatures are signed by the same
key, it is possible to multiply them due to the RSA multiplicatively
homomorphic property: (

∏n
i=1 σi)

e ≡
∏n
i=1 hash(mi) (mod l).

Bellare et al. (BELLARE; GARAY; RABIN, 1998) present three
probabilistic methods to speed up the calculus of several modular ex-
ponentiations in cyclic groups during the verification of signatures is-
sued by different signers. These methods are called random subset test,
small exponents test and bucket test. They also present an alternative
to RSA signature verifications called screening. In this case, given a
set of messages and respective signatures to be verified, with only one
exponentiation (instead of n), it is possible to verify all the signatures.
This is a really efficient alternative, but if the signer has already signed
in the past any message mi ∈ M , the test may accept an actual sig-
nature σi even if it is not valid anymore for the message mi. In other
words, the method can identify only if at some moment the signer al-
ready signed the messages in M . According to Zaverucha and Stinson
(ZAVERUCHA; STINSON, 2009), several batch verification schemes today
are based in methods presented by Bellare et al. (BELLARE; GARAY;

RABIN, 1998).
Camenisch et al. (CAMENISCH; HOHENBERGER; PEDERSEN, 2011)

present a method based in Bellare et al. (BELLARE; GARAY; RABIN,
1998) in which, besides speeding up the verification process, the sig-
natures are generated with a reduced size, decreasing the amount of
data sent through the network. Ferrara et al. (FERRARA et al., 2009)
show how to batch verify different types of signature (as identity-based
and ring signatures). They compare algorithms of batch verification
and individual verification, showing that the former is really more ef-
ficient than the latter, even though performing extra operations (as
multiplications) in order to execute a batch verification.

35

2.5 THE CASE OF INVALID SIGNATURES

According to Malina (MALINA; HAJNY; ZEMAN, 2013), invalid
signatures cause a loss of efficiency in the verification process because
they invalidate the entire set of signatures. Generally, to verify a batch,
condensed or aggregated signature, the verifier has to multiply the mes-
sages’ hashes and compare with the signature(s) received. If the com-
parison does not match, it means that there exists at least one invalid
signature among the set of signatures. In order to not invalidate all the
set of signatures it is necessary to precisely identify the faulty ones. This
could only be done if the verifier of the signature has access to all the sig-
natures individually, which is possible with batch verification but not
with aggregated signatures (MYKLETUN; NARASIMHA; TSUDIK, 2006;
ZAVERUCHA; STINSON, 2009). We can observe a trade-off between the
two presented methods: by using aggregation we decrease the amount
of data sent through the network, but only with batch verification we
can identify all the faulty signatures.

Considering the case when we have all the signatures to compare,
the easiest way is to verify each signature individually, which is obvi-
ously not efficient if there are hundreds of messages (and consequently
signatures). Several studies have proposed methods using divide-and-
conquer, identification codes, binary search, exponent testing among
others. Divide-and-conquer methods were first introduced by Pastus-
zak et. al (PASTUSZAK et al., 2000) and improved by Law and Matt
(LAW; MATT, 2007). Here, a set of signatures is recursively divided
in half, until the invalid signatures are found. This method was im-
plemented and evaluated by Ferrara et al. (FERRARA et al., 2009) and
improved by Matt (MATT, 2009) in the cases where the number of inva-
lid signatures is large. Zaverucha and Stinson (ZAVERUCHA; STINSON,
2009) are the first to observe that the problem of finding invalid signa-
tures in a batch is a special case of a group testing problem, associating
previous methods with existing group testing algorithms.

In this work, taking into consideration the trade-off between
aggregation and batch verification and the importance of both, we pro-
pose new methods where a reasonable amount of data is transmitted
while allowing the verification and identification of invalid signatures
and document portions. The proposed methods are all based on nona-
daptive combinatorial group testing.

36

2.6 OTHER RELATED WORKS

A few researchers have shown interest in locating modifications
in different types of documents. Barreto (BARRETO, 2003), for exam-
ple, use topological watermarks to detect and locate modifications in
images. He also presents some possible attacks in the existent water-
mark methods and propose a hash chaining scheme that is resistant to
these attacks.

Lytle et al. (LYTLE et al., 2012) show an example of the impor-
tance in locating modifications in some specific parts of a document.
They present the case where some applications, as word processors or
spreadsheets, allow data operations with customized codes (such as ma-
cros). These codes can be considered a security risk, since malicious
codes can be introduced into the document and executed when the do-
cument is opened. They propose to sign the portion of document where
the executable code is and verify the signature before executing it.

Goodrich et al. (GOODRICH; ATALLAH; TAMASSIA, 2005) pro-
pose a nonadative combinatorial group testing construction and use it
combined with message authentication codes (MACs) to build sche-
mes for data forensics marking. In this scheme, they combine the data
using the group testing structure and calculate their authentication va-
lues using MACs (see more details about group testing in Chapter 3).
In order to avoid the storage of the authentication values, they encode
these bits in the data structure itself, proposing solutions for binary
trees, lists, arrays and hash tables. Later this authentication values can
be used to identify, among the n pieces of data from the data struc-
ture, the modified ones and this information can be used in forensic
investigations.

Crescenzo (CRESCENZO; JIANG; SAFAVI-NAINI, 2009) proposes
the notion of corruption-localizing hashing applied to software reliabi-
lity and virus detection. It is useful in the first application for the cases
where the download of a software fails, since by localizing the corrup-
ted or missing blocks we know exactly what needs to be retransmitted;
in the second application it can be used to detect undesired changes
in files due to virus infection. Bonis and Crescenzo later improved
this idea (BONIS; CRESCENZO, 2011a, 2011b) by proposing localizing
codes based on combinatorial group testing techniques, which present
some similarities with our method presented in Chapter 4. However,
we want to remark that our algorithms were proposed completely in-
dependently from theirs before we were aware of their work. Indeed
our schemes are applied in distinct applications, and here we focus on

37

offering mechanisms to localize corruptions using the document digital
signature.

38

39

3 COMBINATORIAL GROUP TESTING

The history of group testing began in the World War II, 1942.
The origin is usually credited to Robert Dorfman, although there are
some doubts about this. The original idea was created to verify blood
samples, among millions of people, in order to identify a few cases of
syphilis in an economic way (DU; HWANG, 2000). Usually, to verify if
n people have the disease, it would be necessary to perform n blood
tests. The proposed technique indicates that, after collecting all the
individual blood samples, they are pooled in t groups of n’ elements.
The groups are tested by mixing the blood samples, instead of testing
each sample individually. If none of the n’ elements in group ti have
the disease, the test applied in this group will be “negative”(or “pass”).
Otherwise, if one or more samples are infected with the disease, the
test applied in their group will be “positive”(or “fail”). Then, the n’
elements from the positive tested group ti must be tested again, to
determine which of them are infected.

The purpose of group testing is to identify d defective elements
from a set of n elements pooled into t groups where t < n. The groups
are tested, instead of all elements individually. There are two types
of group testing algorithms: adaptive and nonadaptive. In adaptive
group testing, the results of the previous tests are used to determine
subsequent tests, so, the tests are executed sequentially. In nonadaptive
group testing, all the tests are specified ahead of time, which allows
them to be run in parallel (for more information see the book by Du and
Hwang (DU; HWANG, 2000)). In our method we need to use nonadaptive
group testing, as we will explain in later chapters.

Among the nonadaptive methods, there is the one based on
Cover-Free family (CFF) matrix representation. This representation
was first introduced in Kautz and Singleton (KAUTZ; SINGLETON, 1964)
with the name of nonrandom binary superimposed codes, used in sto-
rage and communication systems. Years later, various definitions were
created and generalized (STINSON; WEI, 2002), (ERDöS; FRANKL; FU-

REDI, 1985), and today Cover-Free Families can also be found with
the terms binary superimposed codes (KAUTZ; SINGLETON, 1964) and
disjunct matrices (DU; HWANG, 2000), and its definition is presented
bellow.

Definition 1. A d-cover-free family, denoted d-CFF(t, n) is a t × n
binary matrix M with n ≥ d + 1, such that for any set of column

40

indexes C with |C| = d and any column c 6∈ C, the following property
holds: there exists a row i satisfying Mi,c = 1 and Mi,j = 0 for all
j ∈ C.

We form the tests according to the rows of matrix M , i.e. for
each 1 ≤ i ≤ t, test i consists of exactly the items j for which Mi,j = 1.
As stated in the next proposition, the properties of cover-free families
assure that if the number of defectives is at most d then it is possible
to determine the non-defective items from the passing tests. Then, we
can conclude that all the other items are defective.

Proposition 1. ((DU; HWANG, 2000), Section 7.1) Consider a d-
CFF(t, n) matrix M and its associated t-tuple T of test results. Let
P = {j ∈ {1, . . . , n} : ∃i such that Ti = “pass” and Mi,j = 1} and
let I = {1, . . . , n} \ P . If |I| ≤ d then I is the set of defective items;
otherwise, there are more than d defectives and I contains the set of
defective items (and possibly a few other items).

Proof. The proof of this proposition follows directly from Definition 1.
If there are at most d defective items, any non-defective item c must
be in a test without any of the defective ones, and so it will be in the
set P ; all the other items that are not in P are consequently defective.
If |I| > d we can conclude there are more than d defective items and
the only ones we can guarantee that are not defective are the ones in
P .

An example of the application of a CFF matrix is given in Fi-
gure 3. In this example, 10 elements are tested by verifying 5 tests
combining the elements prescribed by the matrix for each of the tests.
This matrix is 1-cover-free but is not 2-cover-free. Any single defec-
tive element can be identified from the results of the verification; for
example if the invalid element is the 9th one, only tests 3 and 5 will
fail; tests 1, 2, 4 will pass, which is sufficient to determine that the
other elements are valid. On the other hand, if 2 elements are invalid,
since the matrix is not 2-cover-free we are not always able to determine
exactly the set of invalid elements. If for example, elements 3 and 4
are invalid, tests 1, 4, 5 fail; tests 2 and 3 show that elements 1, 2, 5,
6, 7, 8 and 9 are valid and the returned set is I = {3, 4, 10}. This set
has cardinality larger than d = 1, so the verifier knows it contains all
invalid elements; but may contain valid ones; indeed the valid element
10 is included here.

We give next a few useful explicit constructions of cover-free
families found in the literature.

41

element index: 1 2 3 4 5 6 7 8 9 10
test 1: 1 1 1 1 0 0 0 0 0 0
test 2: 1 0 0 0 1 1 1 0 0 0
test 3: 0 1 0 0 1 0 0 1 1 0
test 4: 0 0 1 0 0 1 0 1 0 1
test 5: 0 0 0 1 0 0 1 0 1 1

Figure 3: 1-cover-free matrix example.

3.1 CFF MATRIX CONSTRUCTIONS

Given d and n, we wish to find a d-CFF(t, n) for the smallest
possible t, which we call t(d, n). In Section 3.1.1 we present the optimal
construction for d = 1. In Sections 3.1.2 and 3.1.3 we present two
constructions for general d. The constructions presented here are well
known in the literature; however, we provide more detailed proofs of
this results. In Section 3.1.4 we show how to select the best construction
for specific relative values of d and n.

3.1.1 The optimal construction for d = 1

In this section we give a CFF matrix construction for d = 1 with
minimum t. Let us consider the vectors corresponding to the columns
of the CFF matrix. Given a subset S ⊂ {1, . . . , t}, the characteristic
vector of S is a vector xS ∈ {0, 1}t such that

(xS)i =

{
1 if i ∈ S
0 otherwise

The columns of the matrix can be seen as the characteristic vec-
tors of subsets of {1, . . . , t}. The definition of 1−CFF matrix is equi-
valent to requiring that no column “is contained”in another column.
More precisely, considering the subsets whose characteristic vectors are
the columns of the matrix, no such subset is contained in any other. A
collection of sets such that no set is contained in any other set is said
to have the Sperner property. In other words, our problem is equivalent
to finding the minimum t such that there exists a collection of subsets
of a t-set with the Sperner property and with at least n such subsets.

42

Sperner theorem provides precise information to solve this pro-
blem.

Theorem 1. (SPERNER, 1928) Let A be a collection of subsets of
{1, . . . , t} such that A1 6⊆ A2 for all A1, A2 ∈ A. Then |A| ≤

(
t
bt/2c

)
.

Moreover, equality holds when A is the collection of all the bt/2c-subsets
of {1, . . . , t}.

Corollary 1. Given n and d = 1, the smallest number t of tests possible
in a 1− CFF (t, n) matrix is t(1, n) = min{t :

(
t
bt/2c

)
≥ n}.

Using Stirling formula, it is possible to approximate the value of
t(1, n), as given in the next proposition.

Proposition 2. t(1, n) ∼ log2 n as n→∞.

In conclusion, to build a CFF matrix with minimum number of
rows t, for given n and d = 1 we use the following steps:

1. Calculate t = t(1, n) = min{t :
(

t
bt/2c

)
≥ n}.

2. List n distinct bt/2c-subsets of {1, . . . , t} and use their characte-
ristic vectors as the columns of the matrix.

As an example, for n = 10 we obtain t(1, 10) = 5 and use all the
2-subsets of {1, 2, 3, 4, 5}:

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}

yielding the matrix in Figure 3.

3.1.2 A construction with (d + 1)
√
n tests

Pastuszak et al. (PASTUSZAK; PIEPRZYK; SEBERRY, 2000) cons-
truct matrices with the cover-free property from mutually orthogonal
Latin squares (MOLS), which we present here. A Latin square of order
s is an s×s matrix with s different elements (or symbols) in which each
element occurs only once in each row and column. Two Latin squares
are orthogonal (MOLS) if their ordered pairs of elements occur exactly
once in each cell when we superimpose both squares. A set of mutually
orthogonal Latin squares (MOLS) is a set of Latin square such that
any two squares are orthogonal.

The construction of the CFF matrix works as follows. Conside-
ring d mutually orthogonal Latin squares of order s: L = {L1, . . . , Ld}

43

Id

L1

L2

L3

} a
} b
} c
} d

} a
} b
} c
} d
} a
} b
} c
} d

1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4

 1 2 3 4

row

column

L1=

L2=

L3=

Figure 4: Example of matrix constructed using PPS, adapted from
(PASTUSZAK; PIEPRZYK; SEBERRY, 2000).

and its elements x = {x1, x2, . . . , xs}. Our matrix M is composed by
smaller s × s submatrices M i,j , for 0 ≤ i ≤ d and 1 ≤ j ≤ s. The
row M0,j , 1 ≤ j ≤ s, is composed by s × s identity matrices. Each
matrix M i,j represents the positions of all elements x at column j of
the Latin square Li, for 1 ≤ i ≤ d and 1 ≤ j ≤ s (see an example in
Figure 4). Each row e of M i,j corresponds to element xe, 1 ≤ e ≤ s,
and each column f of M i,j corresponds to row f of Li, 1 ≤ f ≤ s; more
precisely, the construction of each matrix Mi,j is given by:

(M i,j)e,f =

{
1, if (Li)f,j = xe

0, otherwise.

At the end we will have a CFF matrix with a special property
that allows the gradual increment of d, reusing the previous tests if the
first guess of d was not correct. In this way, the first (d + 1)s tests
are executed and as d increases, s new tests (rows of the matrix) are
executed, where the possible values of d are d = 1, 2, . . . , s− 1.

Now we give some results in order to show that the matrix M is
cover-free. In the rest of this section, we will abuse notation and use the
same notation c for a column of M and for the subset of {1, . . . , (d+1)s}
that has this column as its characteristic vector. In this way, we can

44

talk about the intersection of two columns.

Lemma 1. Given any distinct columns c1 and c2, then |c1 ∩ c2| ≤ 1.

Proof. Let us index a column ci of M by (fi, ji) where ci comes from
column ji and row fi of the Latin squares. So, c1 = (f1, j1) and
c2 = (f2, j2). We separate the proof into the following cases.

Case 1: j1 = j2
We claim that |c1 ∩ c2| = 0. Indeed, if we had non-empty intersections,
it would mean that some of the Latin squares Li have the same element
xe repeated in the same column j1, which is not possible due to the
definition of Latin squares.

Case 2: f1 = f2

We claim that |c1∩ c2| = 1. Indeed, the intersection comes from matri-
ces M0,j1 and M0,j2 in position (f1, f1). If we had intersection larger
than one, it would mean that some of the Latin squares have the same
element xe repeated in the same row f1.

Case 3: f1 6= f2, j1 6= j2
We claim that |c1 ∩ c2| = 1. Indeed, if we had intersection larger than
one, it would mean that, besides the element xe in positions (Li)f1,j1
and (Li)f2,j2 (the first intersection) of the Latin square Li, we would
also have element xe′ in positions (Lj)f1,j1 and (Lj)f2,j2 of Latin square
Lj . This would force the pair (xe, xe′) to appear twice in the superim-
position of Li and Lj , contradicting the fact that they are orthogonal.

Theorem 2. (PASTUSZAK; PIEPRZYK; SEBERRY, 2000) The (d+1)s×
s2 matrix M is cover-free.

Proof. In order to guarantee that the matrix M is cover-free, we need
to show that any column c is not covered by the union of any other set
of d columns C = {c1, . . . , cd}. By Lemma 1, we have |c ∩ ci| ≤ 1, for
1 ≤ i ≤ d, which implies

|c∩ (c1 ∪ . . .∪ cd)| ≤ |c∩ c1|+ |c∩ c2|+ . . .+ |c∩ cd| ≤ 1 + . . .+ 1 = d.

To show that the matrix is cover free, it is enough to prove that
the cardinality of c is greater than d. Since each M i,j has precisely one
1 per column, each column of M has precisely d + 1 ones, completing
the proof.

45

Now we states this results in terms of number of elements n.

Corollary 2. Let n = s2. Then, the construction of matrix M yields
a d-CFF((d+ 1)

√
n, n).

3.1.3 A construction with (d + 1)2 lnn tests

In this section, we present a construction of a strongly selective
family (SSF) based in Error Correcting Codes (ECC) with large dis-
tances given, by Porat and Rothschild (PORAT; ROTHSCHILD, 2011).
As we will see in this section, SFF matrices yield CFF matrices. An
error-correcting code C consists of qk codewords of length m over an
alphabet of q letters and have minimum Hamming distance D = δm,
0 < δ ≤ 1, which represents the minimum number of positions that two
codewords differ, and can be denoted as (m, k, δm)q − ECC. A linear
code is an error-correcting code over the alphabet Fq, and they have a
m× k generator matrix G that generates the codewords by combining
the words as C = {Gy|y ∈ Fkq}. A family F is composed by subsets
of {1, . . . , n} and it is known as strongly selective (n, d)−SSF if any of
its elements is selected out of a small subset. That is, an element x is
selected out of A by a subset B if A ∩ B = {x}. A family of subsets
F is strongly selective if each element in every subset A ⊆ {1, . . . n}
with |A| = d is selected by a subset of F . SSFs and CFFs are closely
related: an (n, d + 1)−SSF with t subsets is a d-CFF(t, n), as shown
later in Theorem 4.

The idea behind the method is that given a set of codewords
from the ECC and another codeword w, there will be positions in w
that differs from all the set of codewords. In other words, we can
isolate a codeword from the others by the differing positions, which is
similar to a CFF where any column is not covered by up to d other
columns (representing the invalid elements). It is possible to construct
a (d + 1)2 lnn × n CFF matrix in O((d + 1)n lnn) time based on the
following construction.

Consider C = {w1, . . . , wn} an (m, logq n, δm)q−ECC with δ < 1.
The SSF will be constructed from the codewords that have the same
letter v in the same position p. More specifically, for each letter v and
for each position p, sp,v = {i ∈ {1, . . . , n}|wi[p] = v} and F(C) =
{sp,v|p ∈ {1, . . . ,m} and v ∈ {1, . . . , q}}. At the end we will have
(d+ 1)2 lnn sets of codeword indexes in F(C) that form the SSF, and
each set of indexes will determine the elements presented in each test
of the CFF.

46

Theorem 3. (PORAT; ROTHSCHILD, 2011) The constructed F(C) is
an (n, 1

1−δ)-SSF.

Proof. Let d = 1
1−δ . In order to prove that F(C) is SSF, we need to

show that given any set of d codewords {wi1 , . . . , wid}, word wi1 is
selected from {wi1 , . . . , wid} by F(C). We know that for any j 6= 1, the
maximum number of positions p ∈ {1, . . . ,m} where wi1 [p] = wij [p]
is (1 − δ)m. This is because the minimum distance between any two
codewords of this ECC is, following its construction, δm, and if this
is the number of positions in which the two codewords of length m
differ, these words can have at most m− δm = (1− δ)m positions with
the same letter. Therefore, the number of positions where wi1 [p] ∈
{wi2 [p] . . . , wid [p]} is at most (d − 1)(1 − δ)m. Since d = 1

1−δ , we can
see that (d−1)(1− δ)m < m, and consequently there exist at least one
position where wi1 [p] 6∈ {wi2 [p] . . . , wid [p]}. In other words, there is a
subset sp,v where i1 ∈ sp,wi1

[p] while all the other ij-s are not, which
means that i1 is selected by sp,wi1

[p], which is one of the sets that form
F(C).

Theorem 4. (PORAT; ROTHSCHILD, 2011) A (n, d + 1)−SSF is a d-
CFF(t, n).

Proof. The (n, d+1)−SSF is composed by subsets of indexes sp,v, where
each index i ∈ {1, . . . , n} represents a codeword wi. The strongly-
selective property guarantees that given any subset A ⊆ {1, . . . , n}
with |A| = d+ 1, each codeword c of A is selected out by some subset
B of the SSF, where A ∩ B = {c}. Consider that each column of the
CFF is represented by a codeword wi and each row of the CFF is a
characteristic vector of each subset sp,v. In order to guarantee that
(n, d+ 1)−SSF is a d-CFF(t, n), we need to show that any column c is
not covered by the union of any other set of d columns C = {c1, . . . , cd}.
If we consider A = C ∪ {c} as a set of d + 1 columns, by the strongly
selective property we guarantee that exists a subset B of the SSF that
selects c, A ∩ B = {c} which implies that C ∩ B = ∅ and c belongs to
B.

In order to construct a d-CFF(t,n), with t = (d+1)2 lnn, we will
construct an (n, d+1)-SSF with the same t. Consider anm×k generator
matrix G of a linear code and a minimum distance δm. To build such
a linear code, we need to assure that the distance (or weight) of each
codeword x = Gy satisfies ω(x) ≥ δm. For any generator matrix G, we
define a goal function goal(G). For a boolean condition B, let χ be an

47

Algorithm 1 Algorithm that computes a d-CFF(t, n) with t = Θ((d+
1)2 lnn)

Input: n, d
Choose q to be a prime power such that q ∈ [2(d+ 1), 4(d+ 1));
k = logq n; δ = d

d+1 ;

m = k
1−Hq(δ)

, where Hq(δ) = δ logq
q−1
δ + (1− δ) logq

1
1−δ ;

Initialize G as an m× k matrix;
foreach i ∈ {1, . . . ,m}

foreach j ∈ {1, . . . , k}
Choose a value for G[i, j] in Fq in order to minimize the
expected value of goal(G) given all the values of j chosen so

far;
Output: The binary mq × n matrix corresponding to the linear code
generated by G.

indicator of this condition, that is χ(B) = 1 if B is true and χ(B) = 0 if
B is false. We define the goal function goal(G) =

∑
y∈Fk

q 6=0 χ(ω(Gy) <

δm). Note that if goal(G) = 0, then the linear code has minimum
distance at least δm.

One possible algorithm to build such a code consists of repeate-
dly choosing the entries of G randomly until we achieve goal(G) = 0.
Porat and Rothschild (PORAT; ROTHSCHILD, 2011) derandomizes this
probabilistic algorithm by determining the entries of G one by one,
while trying to minimize goal(G) as given in Algorithm 1. They prove
that the algorithm will result in a code with goal(G) = 0 and with this
code it is possible to construct an SSF in time θ((d+ 1)n log n).

3.1.4 Using the best constructions for d and n

To use a d-CFF(t, n) matrix that is efficient for our applications
we need to minimize t which both determines the number of aggregated
signatures required and the speed of the verification, as will be seen in
the next chapters. Another important variable is the number w of 1’s
in the matrix, as the speed of encoding and decoding is also affected
by it. We summarize below the existing constructions that are used to
obtain the upper bounds on number t of tests and number w of 1’s in
the CFF matrix. Here we consider as S1 the construction generated by
Sperner’s theorem (Section 3.1.1), PPS the construction by Pastuszak
et al. (Section 3.1.2), PR the construction by Porat and Rothschild

48

(Section 3.1.3) and In the use of the identity matrix.

Table 1: Values of t and w for each CFF construction.

methods t w

S1 ∼ log2 n ∼ b log2 n
2 cn

PR (d+ 1)2 lnn (d+1)
2 n lnn

PPS (d+ 1)
√
n n(d+ 1)

In n n

The values of t comes from the number of rows of each construc-
tion.

For d = 1, Sperner theorem gives t = min{s :
(

s
bs/2c

)
≥ n} and

t→ log2 n as n→∞. Since each column of the matrix has bt/2c ones

and the matrix has n columns, we obtain w ≈ b t2cn ≈ b
log2 n

2 cn.
We obtain the values w and t for construction PR as follows. We

know that each column of the matrix has m ones, since it represents a
codeword with length m, and we have n columns. So, the total number
w of ones in the matrix is w = mn. We also know that t = mq and
q ≥ 2(d+ 1). Considering this, we have:

w = mn =
t

q
n ≤ (d+ 1)2 lnn

n

2(d+ 1)
=

(d+ 1)

2
n lnn

The values of w and t in construction PPS come directly from
Definition 3 in (PASTUSZAK; PIEPRZYK; SEBERRY, 2000), where since
we have (d + 1) ones per column and a total of n columns, it gives us
a matrix with a total of n(d+ 1) ones.

We now have a criteria to select among the various existing cons-
tructions of CFF matrices, depending on the relative values of d and
n, in order to obtain the smallest t. The next two chapters, propose
methods that require the generation of CFF matrices given here.

49

4 LOCATION OF MODIFICATIONS IN SIGNED
DOCUMENTS

The content of this chapter is based on an article published in
Information Processing Letters (IDALINO et al., 2015).

4.1 INTRODUCTION

Digital signature schemes can detect if modifications were done
in a signed document, but do not offer information on where exac-
tly those modifications occurred. In this context, even a single bit
change would invalidate the whole document. In the present chapter,
we provide a general Modification Location Signature Scheme, which
determines which parts of the document were modified, thus ensuring
partial data integrity.

Partial data integrity is useful in several scenarios. First, we may
need to ensure the integrity of specific parts of a document. For exam-
ple, in fillable forms the owner may need to assure that the document
is official, while some parts are expected to be modified. Second, in a
data forensics investigation of a crime, the investigator could have more
clues on who is the attacker by knowing what exactly was modified (GO-

ODRICH; ATALLAH; TAMASSIA, 2005). Third, assuring that part of the
data is intact can improve the efficiency of a computer system. For
example, in a large database, the modification of some of its records
would not invalidate the whole database, avoiding total disruption of
service.

One can also see partial data integrity as a solution for guaran-
teeing privacy protection, where the extraction of selected portions of
a signed document is to be shared with another party (content extrac-
tion signature (STEINFELD; BULL; ZHENG, 2002), redactable signature
(JOHNSON et al., 2002)). Our signature scheme capable of locating mo-
difications can be used in this application by substituting the removed
parts by “blank”symbols. The original signature can be used to gua-
rantee the integrity of the non-removed parts.

The Modification Location Signature Scheme (MLSS) proposed
in this paper employs combinatorial group testing to determine which
blocks of a document contain modifications and which ones are intact.
This work is closely related to the work of Zaverucha and Stinson (ZA-

VERUCHA; STINSON, 2009) who propose the use of group testing to

50

identify modified documents in batch. However, while in (ZAVERUCHA;

STINSON, 2009) group testing is used on the verifier’s end to speed up
the batch verification algorithm, in our approach it is used both at the
signer’s and verifier’s end, which greatly improves the signature size
over the trivial idea of treating each block of a document as an inde-
pendent signed document. This trivial idea would require n signatures
for a document divided into n blocks, which would not be efficient,
while for the cases of interest here we would have the size of a signa-
ture multiplied by a factor of O(log n) instead (see Theorem 5 and the
discussion that follows it). While MLSS is applicable to any type of
document (text, pictures, videos or a mix), the type of document may
influence the way one divides it (see Section 4.7).

4.2 DEFINITION OF THE PROBLEM AND RELATED WORK

Following a general definition (ZAVERUCHA; STINSON, 2009), a
signature scheme is specified by algorithms (Gen, Sign, Verify).
Gen(k) receives a security parameter k and outputs a pair of keys
(sk, pk), a secret key used for signing and a public key used for verifica-
tion, respectively. Sign(sk,m) outputs a signature σ on the message m
using the secret key sk. Verify(pk, σ,m) outputs 1, using the public
key pk, if σ is a valid signature of m, and 0 otherwise.

We propose a general digital signature scheme for signing a docu-
ment divided into blocks providing, in the case of modifications on the
document after signing, the extra capability of locating which blocks
have been modified.

Definition 2. Modification Location Signature Scheme (MLSS):
Let B = (B1, . . . , Bn) be a document divided into n blocks. MLSS-
Gen(k) receives a security parameter k and outputs a pair of keys
(sk, pk). MLSS-Sign(sk, B) outputs a signature σ on B using the se-
cret key sk. MLSS-Verify(pk, σ, B) outputs 1 if, using the public key
pk, σ is a valid signature of B, it outputs 0 if σ has been modified
or is not authentic, and otherwise (B has been modified) outputs extra
information on the location of the modifications in B.

Here we present an approach, which is based on combinatorial
group testing, to solve the challenge stated in Definition 2. Zaverucha
and Stinson (ZAVERUCHA; STINSON, 2009) observe that finding invalid
signatures in a batch is a group testing problem, and propose the use
of group testing methods to improve the efficiency of the batch verifi-
cation algorithm. In (ZAVERUCHA; STINSON, 2009), by exploring the

51

best known group testing algorithms, they show how to run t signature
verifications to verify a batch of n signed documents, where t is subs-
tantially smaller than n; in their case, adaptive and nonadaptive group
testing can be used. We use a similar idea to improve the verification
algorithm but, while in (ZAVERUCHA; STINSON, 2009) group testing is
used on the verifier’s end to speed up the batch verification algorithm,
in our approach it is used both at the signer’s and verifier’s end in order
to minimize the signature size.

We produce t digests, each one involving a subset of the n blocks
of the document (t much smaller than n, see Theorem 5 and the dis-
cussion that follows it). This tuple of digests is signed and sent with
the document, allowing the verifier to determine the blocks that were
modified. This approach requires nonadaptive group testing, since the
digests must be prepared at the signer’s end independently of where
modifications may occur. In this case, we need an upper bound d on
the number of modified blocks; this threshold value d needs to be chosen
carefully to keep control on the size t. Notice that MLSS is applicable
to any type of document (text, pictures, videos or a mix), but the type
of document may influence the way one divides it (see Section 4.7). We
consider that the security of the method relies on the security of the
signature algorithms and hash functions used.

4.3 METHOD AND ALGORITHMS

In our scheme, both signer and verifier use the same t×n matrix
for a d-cover-free family via a call to a deterministic function MLSS-
CFF(d, n), which can use constructions presented in Proposition 4,
given in Section 4.4. We add a parameter d in our algorithm, built on a
given (traditional) signature scheme (Gen, Sign, Verify). Algorithm
MLSS-Gen(k) consists of a simple call to Gen(k).

Considering a document divided into blocks B = (B1, B2, .., Bn),
algorithm MLSS-Sign works as follows. Let h1, h2, . . . , hn be the result
of a public hashing algorithm h(·) applied on blocks B1, B2, . . . , Bn,
respectively. The tests, given by each row i of the matrix, indicate
which block hashes hj of the document are to be concatenated to form
a test Ti which is a digest of these concatenated hashes. Another digest
h∗ = h(B) is calculated from B yielding T = (T1, T2, . . . , Tt, h

∗). The
signature of B is given by σ = (T, σ′), where σ′ = Sign(sk, T). We
note that T needs to be part of the signature since otherwise we would
not be able to identify the modified blocks, as we present next.

52

At the receiver end, the MLSS-Verify algorithm verifies if σ
is a valid signature by verifying T with σ′. If so, then it compares h∗

with the hash of the received document B′. If they match, the docu-
ment was not modified; otherwise, the algorithm locates the modified
blocks as follows. Using the same method as the sender, it computes
(T ′1, T

′
2, . . . , T

′
t) from B′. The set of indexes i where T ′i 6= Ti indica-

tes which tests have failed and using group testing, it deduces exactly
which blocks Bj have been modified. This process is depicted in Fi-
gure 5. Algorithm MLSS-Verify also allows a faster verification that
does not locate the modified blocks, much as a standard verification
algorithm; this option is applied by setting the boolean location para-
meter lc to false. The signature and verification algorithms are given
next.

Document

test1
test2
test3

1-CFF(4,6) Matrix

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 1 2 3 4 5 6

test4

h(h1||h2||h3)
h(h1||h4||h5)
h(h2||h4||h6)
h(h3||h5||h6)

Verification

T'1
T'2
T'3
T'4

≟

h(h1||h2||h3)
h(h1||h4||h5)
h(h2||h4||h6)
h(h3||h5||h6)

Signature
T1

T2
T3
T4

B1

B2

B3

B4

B5

B6

h(B)h*
sign(sk, T)σ’

2) h* ≟ h(B') no

1) σ’ OK?
3)

Figure 5: MLSS signature and verification scheme.

MLSS-Sign(sk, B, d)
Input: secret key sk, document B = (B1, B2, . . . , Bn), modification
threshold d.
Output: a signature σ.

1. Use n and d to determine t and the d-CFF(t, n) matrix M to be
used:

53

M = MLSS-CFF(d, n).

2. Let hj ← h(Bj), 1 ≤ j ≤ n. Use (h1, h2, . . . , hn) and M to
compute T1, . . . , Tt, as follows: for each row 1 ≤ i ≤ t compute
ci, which is the concatenation of the hashes hj for j such that
Mi,j = 1, and let Ti = h(ci). Calculate h∗ = h(B) and set
T = (T1, T2, . . . , Tt, h

∗).

3. Compute σ′ = Sign(sk, T) and output σ = (T, σ′).

The verification algorithm has three possible outcomes: signa-
ture has been modified (output 0); signature and document were not
modified (output 1); signature was not modified and document has
been modified (output I as the set of modified block indices, if lc =
true; output 2, otherwise).

MLSS-Verify(pk, σ, B
′, d, lc)

Input: public key pk, signature σ, document B′ = (B′1, B
′
2, . . . , B

′
n),

modification threshold d, boolean location parameter lc.
Output: 0, 1, 2 or I, corresponding to the outcomes above explained.

1. Verify σ: Let σ = (T, σ′) and T = (T1, T2, . . . , Tt, h
∗). If

Verify(pk, T, σ
′) = 0 then output 0 and exit.

2. Compute h∗∗ ← h(B′). If h∗ = h∗∗ then output 1 and exit.

3. If lc = false, then output 2 and exit.

4. Use n and d to determine the d-CFF(t, n) matrix M to be used:
M = MLSS-CFF(d, n).

5. Use the same process as Step 2 of MLSS-Sign to compute T ′ =
(T ′1, . . . , T

′
t) from B′ using M and h(·).

6. Compare T and T ′ and record the discrepancies (failing tests):
F = {i ∈ {1, . . . , t} : Ti 6= T ′i}.

7. Use group testing to determine the modified blocks:
Initialize I = {1, . . . , n};
for each i 6∈ F, 1 ≤ i ≤ t, do

for each j ∈ I such that Mi,j = 1 do I ← I \ {j};
output I.

Remark 1. If the number of modified blocks is larger than d, then the
algorithm outputs a set I, with |I| > d, that contains all the modified
blocks and possibly some more. However, any block that is not in I was
not modified.

54

4.4 CORRECTNESS AND COMPLEXITY

Proposition 3. Consider a document and its signature generated by
MLSS-Sign. Then, algorithm MLSS-Verify correctly verifies the sig-
nature according to the three possible outcomes. In particular, if the sig-
nature is valid and there are up to d modifications, then I is precisely
the set of indices of these modified blocks.

Proof. Steps 1 and 2 of MLSS-Verify identify the case of invalid
signature and the case of valid signature with unmodified document,
respectively. The next steps deal with the case of valid signature and
modified document. Depending on the boolean parameter lc, the algo-
rithm exits at Step 3 or move on to locate the modified blocks. Steps
4 to 6 perform the hash concatenations dictated by matrix M to re-
produce the creation of tests (T ′1, . . . , T

′
t) from B′. The correctness

of Step 7 of MLSS-Verify follows directly from the properties of a
cover-free family, and the assumption that the hash function used has
the desired property (no collisions). A matching test Ti = T ′i guaran-
tees that all the blocks that are concatenated to produce Ti have not
been modified. If the total number of modified blocks is at most d,
then every unmodified block Bj is part of some matching test Ti, and
the remaining blocks are precisely the modified blocks.

We now analyze the algorithms and compare them with tradi-
tional signature schemes. Denote by comp(x) the cost of comparing x
bits. Let b be the size of B in bits, w be the number of 1’s on the CFF
matrix M , and t be the number of rows in M . Denote by costCFF (d, n)
the cost of computing function MLSS-CFF(d, n).

Theorem 5. Consider MLSS-Sign and MLSS-Verify algorithms.
Assume that the cost (running time) of computing the hash function
h, denoted by costh, is a linear function on the input size, and let
hout denote the number of bits of the output of h. Assume algorithm
Sign (Verify) first applies function h on its input message and then
applies a signature method (verification method) with cost denoted by
costsign(hout) (costverify(hout)). Then,

1. The size of the signature σ produced by MLSS-Sign is (t+1)hout+
|σ′| while the size produced by a traditional signature method is
|σ′|.

2. The running time of MLSS-Sign is costh(2b+ (w+ t+ 1)hout) +
costsign(hout)+ costCFF (d, n), while the running time of Sign is

55

costh(b) + costsign(hout).

3. The running time of MLSS-Verify when the signature is inva-
lid (output 0), or the document has not been modified (output 1)
is costh(b + (t + 1)hout) + costverify(hout) + comp(hout) (this is

also the cost when lc = false); when the document has been modi-
fied but the signature has not and lc = true, the running time of
MLSS-Verify is costh(2b+ (w+ t+ 1)hout) + costverify(hout) +

costCFF (d, n)+ comp((t + 1)hout) + c.w, where c is a constant.
The running time of Verify is costh(b) + costverify(hout).

Proof. The size of the signature σ comes directly from its form, com-
posed by t+ 1 hashes T and the signature σ′. In Step 1, MLSS-Sign
computes the matrix M ; in Step 2 it computes n hashes with total in-
put size b, followed by t hashes of total input size w ·hout plus a hash of
the entire document with input size b; and in Step 3 we have assumed
that Sign applies a hash on T , which has size (t + 1)hout. Hence, the
linearity of costh yields costh(2b + (w + t + 1)hout) for hash compu-
tations plus the cost of signing a message of size hout and computing
matrix M . If we apply algorithm Sign directly to the message B we
have costh(b) + costsign(hout), instead.

In MLSS-Verify, Step 1 yields the cost of Verify of an input of size
(t+ 1)hout, and Step 2 uses a hash of the whole document plus a com-
parison of hout bits, giving costh(b+ (t+ 1) · hout) + costverify(hout) +

comp(hout). In the case of blocks that have been modified with a
valid signature and lc = true, the cost incurred by Steps 4 to 6 is
costh(b+w ·hout) + comp(t ·hout) + costCFF (d, n). Step 7 can be done
in time linear with w.

We now discuss practical implications of Theorem 5. The most
significant cost in digital signature algorithms is related to the use
of cryptographic functions. If we compare our algorithms with the
traditional ones, we note that this cost remains the same, while most of
our extra cost comes from additional hash computations. In Section 4.5,
we give a detailed comparison of these algorithms based on a standard
digital signature method. As an illustration, for a document divided
into n = 256 blocks with 1024 bytes per block and d = 10, the running
time of MLSS-Sign (the calculation of costh and costsign) is 4.8561
ms, while a traditional Sign costs 2.8804 ms. If the document is not
modified or the signature is invalid or lc = false, the running time
of MLSS-Verify is 1.5246 ms while Verify is 1.4934 ms. If there
are modifications but the signature is valid and lc = true, we locate

56

d = 10 modified blocks using a total running time of 3.4691 ms. More
experiments are provided in Section 4.5.

We note that the signature σ generated by MLSS-Sign has an
additional size of (t+1)hout bits. In order to keep |σ| as small as possible
we need to minimize t, the number of rows in the CFF matrix. To ob-
tain a small enough t, we consider constructions of Sperner (SPERNER,
1928) (S1), Porat and Rothschild (PORAT; ROTHSCHILD, 2011) (PR),
Pastuszak et al. (PASTUSZAK; PIEPRZYK; SEBERRY, 2000) (PPS), as
well as using identity matrix In; we use the relatively better t given
d and n to choose one construction among these, as given in Proposi-
tion 4. A small t is also important to reduce the extra computation
costs for signing and verifying; moreover, given t it is desirable to choose
a CFF matrix with the smallest w.

Proposition 4. Let d, n be integers, and let t be the number of rows
and w be the number of ones of the CFF matrix given by function
MLSS-CFF(d, n). Then the table below gives the values of t and w, for
each the four constructions specified.

ranges of d, n t w

d = 1, for all n: use S1 ∼ log2 n ∼ b log2 n
2 cn

d ∈ [2,
√
n

lnn): use PR (d+ 1)2 lnn (d+1)
2 n lnn

d ∈ [
√
n

lnn ,
√
n− 1): use PPS (d+ 1)

√
n n(d+ 1)

d ≥
√
n− 1: use In n n

Proof. The values of t and w are derived in Section 3.1.4.

4.5 EXPERIMENTAL RESULTS

Here we provide some experiments using a standard digital sig-
nature (SHA256 with RSA 2048 bits) and openssl. We quantify the
cost of computing costh, while ignoring other less relevant linear costs
(comp(.), c · w) and the cost of CFF matrix computation, which could
be preprocessed for specific applications. Indeed, we experimentally
verify1 that hash computations behave in openssl as a linear func-
tion of the input size (which is linear in t and w), approximately as
5.52 × 10−9x + 3.819 × 10−7, agreeing with the assumptions of Theo-
rem 5.

In the following tables we give running times obtained experi-
mentally for a set of chosen values of the document size b, the number

1in an iMac 2.7 GHz Intel Core i5 with 6 MB on-chip L3 cache.

57

of blocks n and the number of tests t, where the costs are given in
milliseconds and the document size b in bytes. In the tables below,
“MLSS-S” refers to the running time of MLSS-Sign, “MLSS-V.1”
refers to the running time of MLSS-Verify when there is no modi-
fications or the signature is invalid or lc = false, while “MLSS-V.2”
gives MLSS-Verify running time when modifications occurred and lc
= true. Different tables use block sizes of 1024 and 8192 bytes.

Table 2: Comparison between methods with blocks of size 8192 bytes
and d = 1.

b n t w Sign MLSS-S Verify MLSS-V.1 MLSS-V.2
16,384 2 2 2 1.5238 1.6151 0.1368 0.1373 0.2281
65,536 8 5 20 1.7951 2.1614 0.4081 0.4092 0.7744

262,144 32 7 112 2.8804 4.3486 1.4934 1.4948 2.9616
1,048,576 128 10 640 7.2215 13.1246 5.8345 5.8364 11.7376

Table 3: Comparison between methods with blocks of size 1024 bytes
and d = 1.

b n t w Sign MLSS-S Verify MLSS-V.1 MLSS-V.2
16,384 16 6 48 1.5238 1.6239 0.1368 0.1380 0.2369
65,536 64 8 256 1.7951 2.2037 0.4081 0.4097 0.8167

262,144 256 11 1408 2.8804 4.5782 1.4934 1.4955 3.1912
1,048,576 1024 13 6656 7.2215 14.1878 5.8345 5.8369 12.8008

Table 4: Comparison between methods with blocks of size 8192 bytes
and d = 2.

b n t w Sign MLSS-S Verify MLSS-V.1 MLSS-V.2
16,384 2 2 2 1.5238 1.6151 0.1368 0.1373 0.2281
65,536 8 8 8 1.7951 2.1599 0.4081 0.4097 0.7729

262,144 32 16 96 2.8804 4.3475 1.4934 1.4965 2.9605
1,048,576 128 33 384 7.2215 13.0836 5.8345 5.8406 11.6966

Table 5: Comparison between methods with blocks of size 1024 bytes
and d = 2.

b n t w Sign MLSS-S Verify MLSS-V.1 MLSS-V.2
16,384 16 12 48 1.5238 1.6250 0.1368 0.1391 0.2380
65,536 64 24 192 1.7951 2.1952 0.4081 0.4125 0.8082

262,144 256 48 768 2.8804 4.4717 1.4934 1.5020 3.0847
1,048,576 1024 62 10646 7.2215 14.9014 5.8345 5.8457 13.5144

As we can see in Tables 2 to 9, the running time of MLSS-Sign
is on average the double of a traditional Sign for the biggest docu-

58

Table 6: Comparison between methods with blocks of size 8192 bytes
and d = 3.

b n t w Sign MLSS-S Verify MLSS-V.1 MLSS-V.2
16,384 2 2 2 1.5238 1.6151 0.1368 0.1373 0.2281
65,536 8 8 8 1.7951 2.1599 0.4081 0.4097 0.7729

262,144 32 22 128 2.8804 4.3542 1.4934 1.4975 2.9672
1,048,576 128 45 512 7.2215 13.1082 5.8345 5.8426 11.7212

Table 7: Comparison between methods with blocks of size 1024 bytes
and d = 3.

b n t w Sign MLSS-S Verify MLSS-V.1 MLSS-V.2
16,384 16 16 16 1.5238 1.6200 0.1368 0.1398 0.2330
65,536 64 32 256 1.7951 2.2079 0.4081 0.4139 0.8209

262,144 256 64 1024 2.8804 4.5198 1.4934 1.5048 3.1328
1,048,576 1024 110 14195 7.2215 15.5369 5.8345 5.8542 14.1499

Table 8: Comparison between methods with blocks of size 8192 bytes
and d = 10.

b n t w Sign MLSS-S Verify MLSS-V.1 MLSS-V.2
16,384 2 2 2 1.5238 1.6151 0.1368 0.1373 0.2281
65,536 8 8 8 1.7951 2.1599 0.4081 0.4097 0.7729

262,144 32 32 32 2.8804 4.3389 1.4934 1.4992 2.9519
1,048,576 128 124 1408 7.2215 13.2805 5.8345 5.8566 11.8935

Table 9: Comparison between methods with blocks of size 1024 bytes
and d = 10.

b n t w Sign MLSS-S Verify MLSS-V.1 MLSS-V.2
16,384 16 16 16 1.5238 1.6200 0.1368 0.1398 0.2330
65,536 64 64 64 1.7951 2.1796 0.4081 0.4196 0.7926

262,144 256 176 2816 2.8804 4.8561 1.4934 1.5246 3.4691
1,048,576 1024 352 11264 7.2215 15.0616 5.8345 5.8968 13.6746

ments. Otherwise, for the smaller documents, the running time can be
similar to Sign (see columns Sign and MLSS-S). If the document is
not modified or if the verifier is not interested in locating the modifica-
tions, the cost of MLSS-Verify is basically the same as a regular RSA
Verify for all sizes of documents or values of d (see columns Verify
and MLSS-V.1 for different values of d). Finally, the cost to locate
d modifications with MLSS-V.2 remain the double of Verify even
when the size of the document and the value of d increase for block
sizes of 8192 bytes. For documents divided into more blocks (blocks of
size 1024 bytes), the cost of MLSS-V.2 can be a little more than the

59

double, specially in the cases where the values of b and d are large (see
columns Verify and MLSS-V.2 for different values of d).

In conclusion, for the values considered we observe a moderate
increase in the running time of MLSS-Sign and MLSS-Verify with
respect to Sign and Verify, and this increase is highest when n and
d are larger. For the documents with n = 1024 the increase was by a
factor between 2 and 2.5 when d varies from 1 to 10. We also remark
that while this increase of time is always incurred for MLSS-Sign, it
is not incurred in MLSS-Verify if no modifications occurred or if the
verifier does not wish to locate modifications (lc=false).

4.6 A VARIATION OF MLSS TO REDUCE THE SIGNATURE SIZE

Here we propose a variation of the MLSS scheme that was not
included in (IDALINO et al., 2015).

In order to send even less data through network, we suggest a few
modifications in the previous scheme. First we want to avoid sending
t extra hashes, specially for the cases where the document was not
modified or when the verifier is not interested in locating modifications,
because in these cases the t hashes will not be used. In order to solve
this problem we suggest to send only one hash of (T1, . . . , Tt), instead
of t hashes, just in order to verify σ′. Then, if the verifier still needs to
localize the modifications, he can order later the t hashes separately.
Before calculating T ′ and comparing with T , the verifier first verifies if
the t hashes received where not modified by checking its hashes with
ht (which was previously verified in σ′). If the t hashes are intact, they
can be used to locate the modified blocks as we can see in Figure 6.

60

h(h1||h2||h3)
h(h1||h4||h5)
h(h2||h4||h6)
h(h3||h5||h6)

T'1
T'2
T'3
T'4

≟

h(T1||T2||T3||T4)ht
h(B)h*

sign(sk, h*, ht)σ’ 2) h* ≟ h(B')
no

1) σ’ OK?

4)

h(h1||h2||h3)
h(h1||h4||h5)
h(h2||h4||h6)
h(h3||h5||h6)

T1
T2
T3
T4

Sender Verifier

3) ht ≟ h(T1,T2,T3,T4)

yes

Figure 6: MLSS variation.

Theorem 6. Considering this new variation of MLSS, the complexity
behaves as follows:

1. The size of the signature produced by MLSS-Sign for the cases
where the document was not modified or lc = false is 2×hout+|σ′|.
If the document was modified and lc = true we need to send t extra
hashes, with a total size of (t+ 2)hout + |σ′|

2. The running time of MLSS-Sign is
costh(2b+ (w + t+ 2)hout) + costsign(hout) + costCFF (d, n).

3. The running time of MLSS-Verify when the signature is in-
valid (output 0), or the document has not been modified (output
1) is costh(b + 2× hout) + costverify(hout) + comp(hout) (this is

also the cost when lc = false); when the document has been modi-
fied but the signature has not and lc = true, the running time of
MLSS-Verify is costh(2b+ (w+ t+ 2)hout) + costverify(hout) +

costCFF (d, n)+ comp((t+ 2)hout) + c.w, where c is a constant.

61

Proof. The size of the signature presents t − 1 less hashes than the
previously proposed method since we now send only two extra hashes
with σ′ (ht and h∗). In MLSS-Sign we still computes n hashes with
total input size b, followed by t hashes of total input size w · hout plus
a hash of the entire document with input size b. Now we additionally
calculate a hash ht = h(T1, . . . , Tt) with input size of t · hout. At the
end, Sign applies a hash on ht and h∗, which has size 2 · hout. In
MLSS-Verify, when the document is not modified or lc = false we
verify the signature σ′ by calculating a hash on ht and h∗ with an input
of size 2 · hout, plus a hash of the whole document plus a comparison
of hout bits. In the case of blocks that have been modified with a valid
signature and lc = true, we additionally need to verify the t received
hashes with ht by calculating a hash with input size t · hout, then we
calculate n hashes from the n blocks with input size b, plus t hashes
of total input size w · hout and t + 1 comparisons, which gives us the
costh(2b+ (w + t+ 2)hout) and comp((t+ 2)hout).

With this modification we have an extra hout in costh for MLSS-
Sign and MLSS-Verify (if lc = true), but if the document was not
modified or lc = false, we need to send t− 1 less hashes and (t− 1)hout
less hash calculations (or costh input). Additionally, this modification
allows the possibility of choosing the location granularity. If we ima-
gine a static document that will be send to several verifiers, the owner
can store some versions of matrices and T ’s, taking into consideration
different sizes of blocks and consequently different accuracies in the
results. Then, the verifier who realized that the document was modi-
fied can order an specific granularity and receive more or less hashes
depending on the choice. If the application can support more hash cal-
culations, comparisons and bandwidth, its verifier can order a bigger t
and consequently a more accurate location.

4.7 DIVISION IN BLOCKS AND BLOCK SIZES

An issue that needs to be considered is the scheme to divide the
document into n blocks. Sender and receiver must use the same block
organization, and we require that this organization must be preserved.
For instance, dividing a text into blocks of the same size makes it
hard to support modifications, as one bit inserted into block 1 would
prevent us to keep track of where the other blocks are. Therefore,
information on block structure must be included with the document
(e.g. a description header) and legitimate modifications should be done

62

using a system that is “block aware”.
We suggest two possible solutions to the problem of dividing the

document into blocks. A first solution is to use special delimiters to
separate blocks (e.g. tags on an XML document, or reserved characters
on a text) or a description header that indicates where each block starts.
A second solution is to use the own data organization to separate blocks
(e.g. the records of a database). We could also use the semantics of the
data to separate blocks for a specific application (e.g. sections of a
document).

A second issue to be considered is the block size, which depends
on the application needs and computational capabilities. The extreme
values of block size may not be suitable. Block size equal to b (n = 1)
means no ability to locate modifications, while very small block size
makes n and t too large, rendering the scheme inefficient. We can
observe the effect of number of blocks on running time for different
values of d in Tables 2 to 9.

4.8 FINAL CONSIDERATIONS

In this chapter we propose a general Modification Location Sig-
nature Scheme (MLSS), where we decouple the verification of the sig-
nature from the possible modifications in the document. Our method
is the first to address the issue of locating modified blocks. This is
accomplished with some additional costs in hash computations but no
additional costs in the cryptographic functions involved (Sign and Ve-
rify).

63

5 LEVEL-D SIGNATURE AGGREGATION FOR
OUTSOURCED DATABASES

The content of this chapter is based on a preprint of our paper
with the same title as this chapter.

5.1 INTRODUCTION

In an outsourced database scenario, the data owners use a third-
party service provider to manage their data. The outsourced database
clients can store, update and query their data without worrying about
installation and maintenance of the database.

There are three models of outsourced databases: unified client
model, multiquerier model and multiowner model. The former consists
in a database that is used by a single user, i.e., the data owner; in a
multiquerier model other clients (queriers) besides the owner can access
the data; and in a multiowner model, in addition to multiple queriers,
the database has also several owners (MYKLETUN; NARASIMHA; TSU-

DIK, 2006). In this work, we consider a multiquerier model where all
the data retrieved from a query belongs to the same owner. We also
use the term “querier”or “client”as a single person or even a more ge-
neral abstraction, such as an entity or company. Figure 7 depicts the
considered model.

Querier1

Queriern

Owner

retrieve

retri
eve

store

Figure 7: Multiquerier outsourced database model.

Although the data owners trust the maintenance of their data to
an outsourced server, they (and all the clients who access their data)
need mechanisms to guarantee the integrity and authenticity of these
data, since they are stored in servers that can be untrusted or do not

64

process/store the data in a proper manner. Moreover, the data are
accessed using an insecure communication channel and may be modified
before reaching the querier. So we need to assure the tuples integrity in
order to guarantee that they were not modified, and assure the tuples
authenticity in order to authenticate the source of the data (in this
case, their owners).

As presented in Mykletun et al. (MYKLETUN; NARASIMHA; TSU-

DIK, 2006), there are tree possible choices for the granularity of inte-
grity: at the table level, tuple (or row) level and attribute (or column)
level. The first refers to create one integrity check for the entire table,
and in consequence this entire table need to be queried in order to ve-
rify even one single tuple integrity/authenticity, which is inefficient or
even impractical. On the other extreme, if we create integrity checks
at the level of attributes, it would result in a large overhead in terms
of signature computation and verification for the owner and in terms
of storage for the server. So, it is believed that a good compromise
between this two extremes is to create integrity checks at the level of
tuples.

In order to provide data integrity and authenticity, we need to
choose an ideal solution to apply in a multiquerier model. One can see
symmetric encryption schemes as an option for this application, since
they are more efficient than the asymmetric ones. However, if we use
any symmetric encryption scheme (such as MACs) in an outsourced
database, only those who have access to the symmetric secret key, such
as the owner of the data, are able to verify the integrity of the data.
In multiquerier outsourced databases, other clients besides the owners
must access the data and verify its integrity, so this would be a good
solution for the unified client model, but not for the multiquerier model.

The use of asymmetric encryption (or more specifically, digital
signatures) is ideal for a multiquerier outsourced database. In this
scenario, the data owner has a key pair, he/she signs a tuple using the
private key and the signature is stored with the tuple into the database.
The public key is used by anyone who has access to this data in order
to verify its signature. From now on, when we say that we are verifying
the integrity we are automatically referring to authenticity too, since
we use digital signature schemes and with a digital signature we can
provide both.

Some computational aspects need to be taken into consideration
to build a scheme of this nature. Mykletun et al. (MYKLETUN; NA-

RASIMHA; TSUDIK, 2006) consider the following overhead sources that
need to be minimized: the owner computation; the server storage and

65

computation; and the querier bandwidth and computation. Since the
owner stores data with less frequency than queriers access them and the
server storage nowadays is not a critical problem, in this work we fo-
cus on minimizing server computation, querier bandwidth, and querier
computation.

Since we are considering the integrity check at the tuple level,
we focus on SQL queries that give tuples as a result, not addressing the
ones that return, for example, arithmetical results instead. Although
the main focus of this work is to guarantee authenticity and integrity,
some applications may require confidentiality and completeness, which
are beyond the scope of this work. However, we assume that if the users
want to keep their data private, they can store it encrypted on condition
that it is still possible to query the data remotely. Moreover, Narasimha
and Tsudik (NARASIMHA; TSUDIK, 2005) extend the work of Mykletun
et al. (MYKLETUN; NARASIMHA; TSUDIK, 2006) in order to assure that
the database returned all the possible tuples (completeness) by linking
the tuples in order to create signature chains. The modification is only
at the signature generation process to generate the chain, and some
extra tuples are returned in order to verify it. We observe that it is
possible to apply their method in our algorithms to additionally provide
completeness.

In summary, we focus on verifying the integrity and authenticity
of individually signed tuples returned from a multiquerier outsourced
database. In this context, we aim to minimize the server computation,
querier bandwidth, and querier computation. We note that the security
of the method relies on the security of the signature algorithms used.

5.2 DEFINITION OF THE PROBLEM AND RELATED WORK

Symmetric and asymmetric encryption are used in several ap-
plications and some of them need to manage a large amount of data,
as is the case in outsourced databases and sensor networks. Since the
integrity verification process can be expensive, applications that have
to verify a large number of integrity checks need methods to improve
this process. There are methods that aim to send less data through the
network and/or improve the verification steps. Some of them use cryp-
tographic hash functions, such as the ones based on HMACs (KATZ;

LINDELL, 2008; YAVUZ; NING, 2009), and others use asymmetric en-
cryption (BONEH et al., 2003; FIAT, 1989; MYKLETUN; NARASIMHA;

TSUDIK, 2006). As stated in Section 5.1, in this work we focus on using

66

asymmetric encryption (digital signatures) to provide authenticity and
integrity checks.

Various methods in the literature propose the aggregation of di-
gital signature as a solution to send less data through the network and
improve the verification steps (BONEH et al., 2003; MYKLETUN; NARA-

SIMHA; TSUDIK, 2006). Instead of sending n signatures with the n
pieces of signed data, the methods combine these signatures into one
without losing the ability to verify the integrity of the corresponding
data. On the verification side, instead of verifying n signatures indi-
vidually, only one verification is needed. It is possible to aggregate
different types of signature, as long as they have the so-called homo-
morphism property (presented in Section 2.3).

In the context of outsourced databases, Mykletun et al. (MYKLE-

TUN; NARASIMHA; TSUDIK, 2006) analyze the application of three well
known signature schemes (BGLS (BONEH et al., 2003), DSA (KERRY;

GALLAGHER, 2013) and RSA (RIVEST; SHAMIR; ADLEMAN, 1978)) and
their aggregation. The BGLS aggregation scheme proposed by Boneh et
al. (BONEH et al., 2003) is applicable to all the three outsourced database
models (unified client, multiquerier, and multiowner). This method mi-
nimizes the bandwidth by aggregating all the signatures into one, but
it can become too expensive on the verification side (MYKLETUN; NA-

RASIMHA; TSUDIK, 2006). Additionally, early aggregation schemes for
DSA signatures presented security issues (BOYD; PAVLOVSKI, 2000).
Some more secure methods for aggregating DSA signatures were intro-
duced, in which the verification costs decrease at the expense of sending
more data through the network (BELLARE; GARAY; RABIN, 1998; NAC-

CACHE et al., 1994). However, if we consider the multiquerier model
where only one signer (and one private key) is involved, the aggrega-
tion of RSA signatures provides better results than BGLS in terms of
querier computation, since the computation of bilinear maps is more
expensive than modular exponentiation. In contrast with DSA aggre-
gation schemes, the RSA aggregation presents better results for both
querier computation and bandwidth.

In order to minimize the querier bandwidth, specially when the
amount of signatures returned are considerably large, Mykletun et
al. (MYKLETUN; NARASIMHA; TSUDIK, 2006) apply an aggregation of
RSA signatures to be sent to the querier (condensed-RSA). Their method
is also useful for decreasing the querier and server computation, since
the querier needs to perform less cryptographic operations and the ser-
ver only needs to aggregate the signatures (see the end of Section 2.3
for more details). However, if the querier receives even a single tuple

67

with an invalid signature, the integrity of the whole query is compromi-
sed. This is not desirable in situations where the integrity of a subset
of a query result is still quite valuable information, specially in large
query results, since some modified records invalidate the entire queried
data. In order to not invalidate all the set of aggregated signatures
it is necessary to precisely identify the faulty ones. This could only
be done in all situations if the verifier of the signature has access to
all the signatures individually, which is possible with batch verification
but not with aggregated signatures (MYKLETUN; NARASIMHA; TSUDIK,
2006; ZAVERUCHA; STINSON, 2009).

In fact, we observe a trade-off between the two presented meth-
ods: by using aggregation it is possible to decrease the amount of data
sent through the network, but only with batch verification we can iden-
tify all the faulty signatures. In this work, we consider a more flexible
scheme that guarantees integrity and authenticity within the query re-
sults, identifying which entries have invalid signatures while transmit-
ting a reasonable amount of data. We introduce the concept of level
of aggregation, which assumes a maximum number of expected modi-
fied tuples and, consequently, the amount of aggregations the method
needs to execute in order to identify them. We accomplish this by com-
bining signature aggregation and combinatorial group testing, closely
relating this work to (MYKLETUN; NARASIMHA; TSUDIK, 2006),(ZAVE-

RUCHA; STINSON, 2009), and the MLSS method previously presented
in Chapter 4. Here we define Level-d Signature Aggregation Scheme as
a method, which produces a few aggregated signatures, that under the
assumption of not more than d invalid signatures, allows the identifi-
cation of all invalid signatures. This method is based on combinatorial
group testing, which is discussed in Chapter 3.

One could also consider Merkle Hash Trees as a possible solu-
tion for decreasing the amount of signatures from a query result and
identifying the invalid tuples. A Merkle Hash Tree is an authenticated
data structure that is used to authenticate a set of values x1, . . . , xn.
The hash of these values are considered the tree leaves and the inter-
nal nodes are formed by its children’s hash concatenation, and at the
end the root of the tree is signed, guaranteeing the authenticity check
of all the leaves. On the verification side we can verify xi

′ by using
the concatenated internal hashes there are available, then combining it
with the new h(xi

′) and verifying the root’s signature (MERKLE, 1989).
Devanbu et al. (DEVANBU et al., 2000) propose a solution for multique-
rier outsourced databases using Merkle Hash Trees, but Mykletun et
al. (MYKLETUN; NARASIMHA; TSUDIK, 2006) presents a few problems

68

in their solution for arbitrary querying. First, since only the root is
signed, it would be necessary to precompute and store all the possible
Hash Trees for all the possible queries, requiring a large storage and
previous computation. Another problem comes with tuple updates,
since each update will change the tuple hash and consequently all the
structure of the trees that contains this tuple. So, solutions that do not
involve precomputations and a large storage are ideal, such as the ones
that involve aggregation and batch verification proposed in this work.

5.3 PROPOSED METHOD AND ALGORITHMS

Let us recall our main problem in multiquerier outsourced da-
tabases: when the server returns the results of a query (a set of n
tuples) to the querier, it must also send an assurance of their integrity
and authenticity. This assurance is based on the n signatures stored
together with each of the n-tuples. If the priority of the outsourced
database scheme is to have a small communication overhead and fast
verification time, the server should send a single aggregated signature
of the n original signatures. This is verified at the querier’s end by
a single aggregated signature verification. This is the scheme propo-
sed by Mikletun et al. (MYKLETUN; NARASIMHA; TSUDIK, 2006). The
drawback of this scheme is that a single invalid tuple invalidates all the
query results. On the other hand, if the priority is to have a precise de-
termination of the invalid tuples, then batch verification could be used
at the verifier’s end. However, this implies an increase in costs since
it involves transmitting, together with the n tuples, n signatures in
place of one aggregated signature as well as increasing the verification
time at the querier’s end. When the number n of tuples in the query
result is large, the communication overhead and verification time may
be prohibitive.

Our scheme addresses the trade-off between these two conflicting
objectives. We propose a more flexible scheme in which the querier re-
quests from the server that the query reply comes with level-d signature
aggregation. We call level-0 aggregation the method that combines all
signatures of the n tuples in the query result into one aggregated sig-
nature, done at the server’s end, which corresponds to the scheme pro-
posed in (MYKLETUN; NARASIMHA; TSUDIK, 2006). More generally, a
level-d signature aggregation specifies a maximum number d of invalid
tuples that the system support to be among the n tuples returned by
the query, while still having a precise determination of the set of invalid

69

tuples. Using the CGT approach and a d-CFF(t, n) matrix as descri-
bed in Chapter 3, a set of t-aggregated signatures is sent by the server
and verified by the querier, where t is substantially smaller than n. In
the other extreme, as d becomes large, we are required to have t = n
to achieve level-d signature aggregation. In this case, all n signatures
are sent with the tuples and the querier must verify all of them, which
can be done via a method of batch verification (ZAVERUCHA; STINSON,
2009). In this sense, our method can be seen as an intermediate so-
lution between signature aggregation and batch verification, which is
detailed in Section 5.5.

5.3.1 Algorithms

Before outlining the steps in our proposed scheme, it is impor-
tant to describe the importance of a CFF matrix in the verification
algorithm. When the matrix is a d-cover-free family, we simply use the
tests that pass to determine the non-defective items, and Definition 1
in Chapter 3 guarantees that all non-defective items can be identified
in this way as long as there are at most d defective ones. If this latter
hypothesis is not true, the algorithm is able to detect this fact, and
still returns valuable information, i.e. it returns a set that contains
all the defective items and possibly a few more, which shows that the
items outside this set are not defective. This classical CGT algorithm
(see (DU; HWANG, 2000, Section 7.1)) based on CFF is detailed next,
where it is adapted to the context of the current application. For this
application, the testing algorithm for a set of tuples T is a verification
of the aggregated signature σ∗, obtained by the chosen aggregation
method, which we call AgreggateVerify(T, σ∗).

Algorithm CFFVerify (M,d, (T1, . . . , Tn), (σ1, . . . , σt))
BadTuples = {1, 2, . . . , n}
for each i = 1 to t do

Gi = {j : Mi,j = 1 and 1 ≤ j ≤ n};
TGi = {Tj : j ∈ Gi};
result = AgreggateVerify(TGi, σi);
if (result = true) then BadTuples = BadTuples \Gi;

end for
if size(BadTuples) ≤ d then

return (BadTuples, EXACT);
else return (BadTuples, CONTAINEDHERE);

70

Now we present the aggregation and verification algorithms:

Client sends a query:
The querier sends a query Q and specifies the aggregation level d.

Server replies to the query:

1. The server computes the query Q obtaining the resulting n tuples
(T1, . . . , Tn), as well as their signatures (σ1, . . . , σn).

2. The server employs a deterministic algorithm; let us call it
ComputeCFF(n, d), that returns a d-CFF(t, n) matrix M using
the methods mentioned in Chapter 3.

3. The server performs t different signature aggregations of diffe-
rent subsets of {σ1, . . . , σn}, according to the rows of matrix M ,
producing t aggregated signatures (σ∗1 , . . . , σ

∗
t).

4. The server sends (T1, . . . , Tn) and (σ∗1 , . . . , σ
∗
t) to the client.

Client receives the query results with level-d signature
aggregation:

1. The querier receives (T1, . . . , Tn) and (σ∗1 , . . . , σ
∗
t).

2. The querier uses the same deterministic algorithm as the server,
ComputeCFF(n, d), that returns the d-CFF(t, n) matrix M .

3. The querier runs the verification algorithm:
CFFVerify(M,d, (T1, . . . , Tn), (σ∗1 , . . . , σ

∗
t)),

which returns (BadTuples, Result).

4. The querier computes the set of tuples that are guaranteed to be
valid:
GoodTuples = {1, 2, . . . , n}\BadTuples.

5. If Result=EXACT then the set GoodTuples is complete. Oth-
erwise, the querier may decide to increase d to a value at most
#(BadTuples) and restart the query process.

We remark that the algorithm used for signature aggregation
and verification (Step 3 of both server and client methods) is general,
and could use any of the applicable methods of aggregation described
in Section 2.3. In the next section, we give a more detailed analy-
sis of the performance of this approach when we aggregate signatures
using condensed-RSA, comparing with the approach in (MYKLETUN;

NARASIMHA; TSUDIK, 2006).

71

5.4 ANALYSIS

In Table 10, we give some concrete data to exemplify the quantity
t, that is, the number of aggregated signatures for a level-d scheme for a
query returning n tuples. For d = 1 we use the known optimal method
that minimizes t, while for d ≥ 2, we employ the methods that give the
smaller t, based in the values presented in Table 4 of Chapter 3. For
instance, if a query returns 1 million tuples it needs to provide only 23
aggregated signatures for level-1 and 346 for level-4.

Table 10: Number t of aggregations for given d, n.

d/n 103 104 105 106

1 13 16 20 23
2 63 83 104 125
3 127 148 185 222
4 159 231 288 346
5 190 332 415 498
10 348 1100 1394 1672

Here we analyze the application of the general method presented
in Section 5.3 to the case of condensed-RSA signature scheme. Each of
the t aggregations on the server side is given by the multiplication of the
corresponding tuple signatures. The querier performs t condensed-RSA
verification algorithms, each one consisting of multiplying the hashes
of a specified subset of tuples Ti and comparing the result with the
decrypted version of σi.

Let |σ| be the size of an RSA signature, mult be the cost of
one modular multiplication and exp be the cost of one modular expo-
nentiation. The querier bandwidth requirement is t × |σ|. For level-d
aggregation we use a CFF matrix M with t rows and w ones as dis-
cussed in Chapter 3. On the server side, the aggregation consists of
multiplying the signatures based on M , which means t rounds of signa-
ture multiplications are done involving a total of w signatures. Thus,
the server computation costs (w− t) mult. On the verification end, the
querier needs to decrypt t aggregated signatures, generating a cost of
t exponentiations as well as performing the same aggregations as the
server to compute the tuples’ integrity, which consists on w−t multipli-
cations. Thus, the querier computation consists of t exp +(w− t) mult.
For level-n we have no restrictions on the maximum number of invalid
signatures d that we can identify, but it requires all the n signatures

72

to be sent individually (as in batch verification). At the verification
end it is necessary to combine the n signatures in order to improve the
verification, which gives us n − 1 multiplications of signatures, n − 1
multiplications of hashes and one exponentiation (as seen in (HARN,
1998b)).

Table 11 presents the costs of level-d aggregated RSA signatu-
res, condensed-RSA, and level-n aggregated RSA signatures, comparing
querier bandwidth (QB), server computation (SC), querier computa-
tion (QC), and ability to identify invalid signatures (Identify). The
costs for level-d aggregated RSA depends on t and w. The costs for
level-n only consider the verification of the signatures. If there is any
invalid signature, it is necessary to apply methods as the ones seen in
Section 2.5.

Table 11: Comparisons between condensed-RSA, level-d and level-n
signature aggregation.

QB SC QC Identify
Condensed-RSA |σ| (n− 1) mult (n− 1) mult + 1 exp NO
Level-d sig. agg. t× |σ| (w − t) mult (w − t) mult + t exp YES up to d
Level-n sig. agg. n× |σ| 0 (2(n− 1)) mult + 1 exp YES

To analyze these quantities more precisely, we would like to write
t and w in terms of d and n. As seen in Chapter 3, when d = 1 we
have t ∼ log2 n and w = (t/2) × n. For the case d ≥ 2, various cons-
tructions are possible, but we consider the construction that takes over

as n grows, yielding t = (d + 1)2 lnn and w = (d+1)
2 n lnn. Based on

these values, we produce Table 12, which reveals that our method is
more expensive and by how much. For level-1 aggregation, the query
bandwidth and server computations have their costs multiplied by a
factor of about log n. For level-d aggregation, the bandwidth is multi-

plied by (d+ 1)2 lnn and the server cost is multiplied by (d+1)
2 lnn; the

querier cost has an extra factor of (d+1)
2 lnn for multiplications and of

(d+ 1)2 lnn for exponentiations. Our extra costs are incurred but give
us the ability of identification of invalid signatures.

5.5 TRADEOFF BETWEEN AGGREGATION AND BATCH VERI-
FICATION

Aggregation of signatures provide a small overhead by aggre-
gating all the signatures into one before sending them to the verifier.

73

Table 12: Comparison between condensed-RSA and level-d signature
aggregation.

QB SC QC
Cond. |σ| (n− 1) mult (n− 1) mult + 1 exp

Level-1 log2 n× |σ|
(n−2) log2 n

2
mult

(n−2) log2 n
2

mult +
log2 n exp

Level-d (d+ 1)2 lnn× |σ| (d+ 1)(n
2
− d− 1) lnn mult (d + 1)(n

2
− d − 1) lnn

mult + (d+1)2 lnn exp
Level-n n× |σ| 0 (2(n−1)) mult + 1 exp

On the verification side, if all the signatures are valid, the verification
succeed, but if some signatures are invalid the verifier can not identify
them. This is due to the fact that after aggregating all the signatu-
res together, we can not “disintegrate”them in order to have access to
the signatures individually and identify the invalid ones (MYKLETUN;

NARASIMHA; TSUDIK, 2006; ZAVERUCHA; STINSON, 2009).
When all the signatures are sent individually with their respec-

tive data, batch verification speeds up the verification process by chec-
king all the signatures in one step. This is important specially in the
cases where the verification costs several operations, as modular ex-
ponentiations in the case of RSA (MALINA; HAJNY; ZEMAN, 2013). If
all the signatures are valid the batch verification succeed, but if some
of them are invalid the verification fails and it is necessary to identify
them. By sending each signature separately, batch verification has the
opportunity to locate the invalid signatures (ZAVERUCHA; STINSON,
2009), but it results in a large communication overhead since all the
signatures are sent individually, without any compression.

Consider a general application where several data are signed
(messages, documents, tuples, files, etc.) and need to be sent through
the network and verified at the other side. The level-d aggregation
method proposed in Section 5.3 can solve this trade-off between aggre-
gation and batch verification. In this proposed method we send a small
amount of signatures (t aggregated signatures) while allowing the exact
location of invalid signatures if their number is at most d, contrasting
with batch that can achieve this by sending all the n signatures and
with aggregation that sends only one signature but can not locate the
invalid ones. This is only possible in our method because we aggregate
them using combinatorial group testing constructions, which allows the
identification of invalid signatures with a few tests (t aggregated sig-
nature verifications). If there are no limitations on bandwidth, our
method can also support batch verification by constructing a level-n

74

signature aggregation, where we consider d = n and send all the sig-
natures individually. In this case it is possible to locate all the invalid
signatures by applying a localization method (as the ones seen in Sec-
tion 2.5), since d = n. The comparison of the methods is illustrated
in Figure 8. More details on this comparison, with the number of ope-
rations for specific and general values of d, are given in Tables 11 and
12.

Server Querier

Query
results

Batch
verification

Level-d
aggregation

Aggregation

Accept all

Accept all

Accept all

Reject all

T1
T2

Tn

T1
T2

Tn

T1
T2

Tn

T1
T2

Tn

up to d

Figure 8: Comparison between methods.

75

5.6 FINAL CONSIDERATIONS

In this chapter we consider the problem of ensuring the integrity
and authenticity of tuples outsourced in a multiquerier database. We
allow the querier to select levels of aggregation, being able to identify
the modified tuples if the signatures do not match. This scheme can be
considered a trade-off between the methods of aggregation of signatures
and batch verification, since it provides a way to send a small amount
of signatures through the network without losing the ability to identify
the invalid tuples.

We remark that our method can be applied in conjunction with
any signature scheme that has the homomorphic property, and not
only condensed-RSA. Our method is also applicable for multiowner
outsourced databases, by employing appropriate aggregation methods
that work for that scenario, and clearly for the unified client model.

The ideas presented here are also useful beyond the database sce-
nario, as the proposed method can be used in any application that needs
to aggregate and verify digital signatures. When the communication
bandwidth is a concern, this method provides a trade-off between sig-
nature aggregation and batch verification. Indeed, our approach differs
from the batch verification via group testing discussed in (ZAVERUCHA;

STINSON, 2009), in that more work is required from the sender in order
to reduce the amount of signatures sent to the verifier, while in batch
verification all signatures are sent.

76

77

6 FINAL CONSIDERATIONS

The contribution of this work is the proposal of signature sche-
mes with additional information capable of locating modifications for
the cases where the signature verification does not match. We pro-
pose two different schemes that can partially guaranty the integrity
and authenticity of signed data or a set of individually signed data.

With traditional digital signature schemes we can only have a
boolean answer when checking a document’s signature: the signature
matches the document or it does not. In our first scheme we propose the
Modification Location Signature Scheme (MLSS), which builds the do-
cument signature with some additional information, and it can be used
to locate the exact portion of the document that was modified. In this
scheme, we divide the document into blocks and use nonadaptive com-
binatorial group testing to construct its signature. At the verification
process, if the signature does not match, we can use the information
generated using group testing to exactly locate the modified blocks in
an efficient way.

With MLSS we can allow modifications in some expected por-
tions of signed documents (useful for fillable forms), we can use the
modified parts for investigation (forensics), or even guarantee the in-
tegrity of the remaining portions and use the information contained
there (not modified tuples in a database). However, if the verifier is
not interested in locating the modifications, the algorithm was desig-
ned to respect this choice and verify the signature in a way similar to
traditional algorithms, ignoring the extra information.

We can also see the need of partial integrity in scenarios where we
have several data individually signed that need to be sent and verified.
In order to improve the verification process and save the bandwidth
overhead, we can use mechanisms such as aggregation of signatures
and batch verification. With aggregation we can combine all the n
signatures into one, saving bandwidth, and we can also speed up the
verification process. However, if the verification does not match we
need to invalidate the entire set of data/signatures, since we do not
have enough information to identify the invalid signatures. With batch
verification we send all the data/signatures individually and combine
them at the verifier’s end to speed up the verification process. Here we
do not save bandwidth, but if the verification does not match, we still
have access to all the signatures individually in order to identify the
invalid ones.

78

Taking into consideration the trade-off between these two meth-
ods, we propose a level-d signature aggregation scheme able to compact
the digital signatures into a reasonable size while allowing the identi-
fication of the invalid signatures at the verification process. We use
nonadaptive combinatorial group testing algorithms to generate t ag-
gregated signatures (with t ∼ O(log n)), and we send these t signatures
with the data (instead of sending n signatures with batch verification).
At the other side, we verify the t aggregated signatures and if any of
them do not match, since the aggregation was built using group tes-
ting, we can exactly locate the signature(s) responsible for the failure.
With this scheme we have an intermediate solution between aggrega-
tion and batch verification, since we decrease the amount of signatures
sent through network without losing the ability to identify the invalid
ones.

We consider this scheme in a real scenario of outsourced databa-
ses, where each tuple is individually signed and stored in an untrusted
server. We apply the level-d aggregation on the tuples that are retur-
ned from a query by partially aggregating the tuples signatures. So,
we return less signatures to the verifier and we are still able to loca-
lize the modified tuples if the verification fails. We consider signatures
generated using the RSA algorithm and compare our method with tra-
ditional schemes. However, our method can be used with any signature
algorithm that supports aggregation or batch, as the ones presented in
related works, and not only with RSA.

Both methods are based on nonadaptive combinatorial group
testing, in particular they are designed using matrix constructions that
present the cover-free property. We present detailed discussion about
the best algorithms that can be used to construct these matrixes, and
recommend specific constructions for different parameters used.

In terms of future work, we suggest a few extensions to the MLSS
scheme. The first improvement is to design an specific cover-free ma-
trix to be used in this application, which not only keep t small but
also decreases w, in order to improve the costs with hash calculations.
Another interesting future work is to apply this method to a real sce-
nario of digital documents, such as implementing an application to sign
and verify PDF documents using MLSS.

We also suggest some interesting future work in the level-d ag-
gregation scheme. The first suggestion is to consider the scheme in
other important applications, such as sensor networks. Moreover, it is
important to consider not only RSA, but also different signature al-
gorithms and their applications. Finally, we consider only signatures

79

generated by the same key, an extension of the method to consider
signatures from different signers would also be interesting.

80

81

BIBLIOGRAPHY

BARRETO, P. S. L. M. Criptografia robusta e marcas d’água
frágeis: construção e análise de algoritmos para localizar
alterações em imagens digitais. Tese (Doutorado) —
Universidade de São Paulo, 2003.

BELLARE, M.; GARAY, J. A.; RABIN, T. Fast batch verification for
modular exponentiation and digital signatures. In: . [S.l.]:
Springer-Verlag, 1998. p. 236–250.

BELLARE, M.; ROGAWAY, P. Randon oracles are practical: a
paradigm for designing efficient protocols. p. 62–73, 1993.

BONEH, D. et al. Aggregate and verifiably encrypted signatures from
bilinear maps. In: Proceedings of the 22nd international
conference on Theory and applications of cryptographic
techniques. Berlin, Heidelberg: Springer-Verlag, 2003.
(EUROCRYPT’03), p. 416–432. ISBN 3-540-14039-5. Dispońıvel em:
<http://dl.acm.org/citation.cfm?id=1766171.1766207>.

BONEH, D.; LYNN, B.; SHACHAM, H. Short signatures from the
weil pairing. p. 514–532, 2001.

BONIS, A. D.; CRESCENZO, G. D. Combinatorial group testing for
corruption localizing hashing. In: COCOON. [S.l.]: Springer, 2011.
v. 6842, p. 579–591.

BONIS, A. D.; CRESCENZO, G. D. A group testing approach to
improved corruption localizing hashing. In: . [S.l.: s.n.], 2011. v. 2011,
p. 562.

BOYD, C.; PAVLOVSKI, C. Attacking and repairing batch
verification schemes. p. 58–71, 2000.

CAMENISCH, J.; HOHENBERGER, S.; PEDERSEN, M. Ø. Batch
verification of short signatures. Springer Verlag, 2011.

CRESCENZO, G. D.; JIANG, S.; SAFAVI-NAINI, R.
Corruption-localizing hashing. In: ESORICS. [S.l.]: Springer, 2009.
p. 489–504.

DEVANBU, P. T. et al. Authentic third-party data publication. In: .
[S.l.]: Kluwer, 2000. v. 201, p. 101–112.

82

DIFFIE, W.; HELLMAN, M. E. New directions in cryptography.
IEEE Transactions on Information Theory, v. 22, n. 6, p.
644–654, 1976.

DU, D.-Z.; HWANG, F. K. Combinatorial group testing and its
applications. [S.l.]: World Scientific, 2000.

ELGAMAL, T. A public key cryptosystem and a signature scheme
based on discrete logarithms. In: Advances in Cryptology. [S.l.:
s.n.], 1985, (Lecture Notes in Computer Science). p. 10–18.

ERDöS, P.; FRANKL, P.; FUREDI, Z. Families of finite sets in which
no set is covered by the union of r others. Israel Journal of
Mathematics, v. 51, p. 79–89, 1985.

FERRARA, A. L. et al. Practical short signature batch verification.
In: Proceedings of the The Cryptographers’ Track at the
RSA Conference 2009 on Topics in Cryptology. Berlin,
Heidelberg: [s.n.], 2009. p. 309–324.

FIAT, A. Batch RSA. In: Proceedings on Advances in
Cryptology. New York, NY, USA: Springer-Verlag New York, Inc.,
1989. (CRYPTO ’89), p. 175–185. ISBN 0-387-97317-6.

GOODRICH, M. T.; ATALLAH, M. J.; TAMASSIA, R. Indexing
information for data forensics. In: ACNS. [S.l.: s.n.], 2005. (Lecture
Notes in Computer Science), p. 206–221.

HARN, L. Batch verifying multiple dsa-type digital signatures.
Electronics Letters, v. 34, n. 9, p. 870–871, 1998.

HARN, L. Batch verifying multiple rsa digital signatures.
Electronics Letters, v. 34, n. 12, p. 1219–1220, 1998.

IDALINO, T. B. et al. Locating modifications in signed data for
partial data integrity. Information Processing Letters, 2015.
Dispońıvel em: <http://dx.doi.org/10.1016/j.ipl.2015.02.014>.

JOHNSON, D.; MENEZES, A. The elliptic curve digital
signature algorithm (ECDSA). [S.l.], 1999.

JOHNSON, R. et al. Homomorphic signature schemes. CT-RSA
2002 LNCS, p. 244–262, 2002.

KATZ, J.; LINDELL, Y. Aggregate message authentication codes. In:
Proceedings of CT-RSA, LNCS 4964. [S.l.: s.n.], 2008.

83

KAUTZ, W.; SINGLETON, R. Nonrandom binary superimposed
codes. Information Theory, IEEE Transactions on, v. 10, p.
363–377, 1964. Dispońıvel em:
<http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1053689>.

KERRY, C. F.; GALLAGHER, P. D. FIPS PUB 186-4
FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION Digital Signature Standard (DSS). [S.l.],
2013.

LAW, L.; MATT, B. J. Finding invalid signatures in pairing-based
batches. In: . [S.l.: s.n.], 2007. (Lecture Notes in Computer Science),
p. 34–53. ISBN 978-3-540-77271-2.

LU, S. et al. Sequential aggregate signatures, multisignatures, and
verifiably encrypted signatures without random oracles. In: . [S.l.:
s.n.], 2012.

LYSYANSKAYA, A. et al. Sequential aggregate signatures from
trapdoor permutations. In: Advances in Cryptology,
EUROCRYPT 2004. [S.l.]: Springer-Verlag, 2004. p. 74–90.

A.T. Lytle, B.J. Reich, G. Gupta, M.C. Pohle e M. Tikunova.
Techniques for digital signature formation and verification.
maio 29 2012. US Patent 8,190,902. Dispońıvel em:
<https://www.google.com/patents/US8190902>.

MALINA, L.; HAJNY, J.; ZEMAN, V. Trade-off between signature
aggregation and batch verification. In: 36th International
Conference on Telecommunications and Signal Processing
(TSP), 2013. [S.l.: s.n.], 2013. p. 57 – 61. ISBN 978-1-4799-0402-0.

MARTIN, K. Everyday Cryptography. [S.l.]: Oxford University
Press, 2012. ISBN 978-0-19-969559-1.

MATT, B. J. Identification of multiple invalid signatures in
pairing-based batched signatures. In: Proceedings of the 12th
International Conference on Practice and Theory in Public
Key Cryptography: PKC ’09. Berlin, Heidelberg:
Springer-Verlag, 2009. p. 337–356.

MENEZES, A. J.; VANSTONE, S. A.; OORSCHOT, P. C. V.
Handbook of Applied Cryptography. 1st. ed. Boca Raton, FL,
USA: CRC Press, Inc., 1996. ISBN 0849385237.

84

MERKLE, R. C. A certified digital signature. In: Proceedings on
Advances in Cryptology. [S.l.]: Springer-Verlag New York, Inc.,
1989. p. 218–238.

MYKLETUN, E.; NARASIMHA, M.; TSUDIK, G. Authentication
and integrity in outsourced databases. Trans. Storage, ACM, New
York, NY, USA, v. 2, n. 2, p. 107–138, maio 2006. ISSN 1553-3077.
Dispońıvel em: <http://doi.acm.org/10.1145/1149976.1149977>.

NACCACHE, D. et al. Can dsa be improved? – complexity trade-offs
with the digital signature standard. p. 85–94, 1994.

NARASIMHA, M.; TSUDIK, G. Dsac: Integrity for outsourced
databases with signature aggregation and chaining. ACM
Conference on Information and Knowledge Management, p.
235–236, 2005.

NEVEN, G. Efficient sequential aggregate signed data. In:
EUROCRYPT. [S.l.: s.n.], 2008. p. 52–69.

PASTUSZAK, J. et al. Identification of bad signatures in batches. In:
Public Key Cryptography. [S.l.]: Springer, 2000. (Lecture Notes
in Computer Science, v. 1751), p. 28–45. ISBN 3-540-66967-1.

PASTUSZAK, J.; PIEPRZYK, J.; SEBERRY, J. Codes identifying
bad signature in batches. In: INDOCRYPT. [S.l.]: Springer, 2000.
(Lecture Notes in Computer Science), p. 143–154.

PORAT, E.; ROTHSCHILD, A. Explicit nonadaptive combinatorial
group testing schemes. IEEE Transactions on Information
Theory, p. 7982–7989, 2011.

PRENEEL, B. The first 30 years of cryptographic hash functions and
the NIST SHA-3 competition. In: Proceedings of the 2010
international conference on Topics in Cryptology. Berlin,
Heidelberg: Springer-Verlag, 2010. (CT-RSA’10), p. 1–14. ISBN
3-642-11924-7, 978-3-642-11924-8. Dispońıvel em:
<http://dx.doi.org/10.1007/978-3-642-11925-5 1>.

RIVEST, R.; ADLEMAN, L.; DERTOUZOS, M. On data banks and
privacy homomorphisms. Foundations of Secure Computation, p.
169–177, 1978.

RIVEST, R. L.; SHAMIR, A.; ADLEMAN, L. M. A method for
obtaining digital signatures and public-key cryptosystems. Commun.
ACM, v. 21, n. 2, p. 120–126, 1978.

85

SCHNEIER, B. Applied Cryptography. [S.l.: s.n.], 1996.

SPERNER, E. Ein Satz über Untermengen einer endlichen Menge. p.
544–548, 1928.

STEINFELD, R.; BULL, L.; ZHENG, Y. Content extraction
signatures. p. 285–304, 2002.

STINSON, D. R.; WEI, R. Generalized cover-free families. Discrete
Math, v. 279, p. 463–477, 2002.

WEGMAN, M. N.; CARTER, J. New hash functions and their use in
authentication and set equality. Journal of Computer and
System Sciences, v. 22, n. 3, p. 265 – 279, 1981.

YAVUZ, A. A.; NING, P. Hash-based sequential aggregate and
forward secure signature for unattended wireless sensor networks.
IEEE, Toronto, ON, p. 1–10, 2009.

ZAVERUCHA, G. M.; STINSON, D. R. Group testing and batch
verification. In: KUROSAWA, K. (Ed.). ICITS. [S.l.]: Springer, 2009.
(Lecture Notes in Computer Science, v. 5973), p. 140–157.

