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Abstract (Portuguese) 

O presente projeto foi desenvolvido no Departamento de Física e Engenharia 

Óptica do Rose-Hulman Institute of Technology, em Terre Haute, estado de Indiana, 

Estados Unidos da América. O instituto é um parceiro do Smart Lighting Engineering 

Research Center (SLERC - Centro de Pesquisa em Iluminação Inteligente), um dos 

centros de excelência do National Science Foundation (NSC – Fundação Nacional 

de Ciência dos Estados Unidos), liderado pelo Rensselaer Polytechnic Institute 

(RPI), de Nova Iorque.  

Motivados pelos recentes descobrimentos sobre o impacto da iluminação 

artificial, onipresente no cotidiano do homem moderno, na saúde humana, 

notadamente sobre os ritmos circadianos, buscamos desenvolver nesse projeto um 

sistema que seja capaz de fornecer luz com cor controlável.  

O objetivo desse sistema é facilitar os estudos sendo feitos sobre os efeitos 

que a cor da iluminação tem sobre a saúde e o humor do ser humano. Este projeto 

também busca comprovar que tal obetivo pode ser alcançado com tecnologias que 

já possuam um custo relativamente baixo, que permita que no futuro o conceito seja 

aplicado a sistemas de iluminação ordinários.  

Para isso, usaremos lampadas construídas com tecnologia baseada em LEDs 

(Diodos Emissores de Luz), que possui várias vantagens como maior eficiência 

energética e tamanho reduzido, além de ser a mais apropriada para o controle de 

cor.  

Diferentemente do que tem sido feito em projetos semelhantes, utilizaremos 

controladores dinamicos em malha fechada para garantir que a cor da luz emitida se 

mantenha dentro das especificações, mesmo com a presença de perturbações, 

como a luz solar. 
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Abstract  

One of the many radical changes that took place in the last century was the 

spread of artificial lighting. This enabled society to carry out activities that were 

previously restricted to day time and open environments, such as social and 

economic, indoors and throughout night. Recent discoveries, however, have shown 

that the exposure to artificial light for abnormal periods may have negative impacts 

on health. One of the fields that have drawn the attention is how color of light plays a 

role on human health and mood, notably on the circadian rhythms.  

This project aims to develop a system that is able to source light with 

controllable color and study the best ways to achieve that, using LEDs lamps, which, 

in addition to being suitable to such control, have many other advantages, mainly 

higher energy efficacy. 

It was developed in the context of the Smart Lighting Engineering Research 

Center (SLERC), a center of excellence of the US National Science Foundation, led 

by Rensselaer Polytechnic Institute (RPI). It is dedicated to “The holistic integration of 

advanced light sources, sensors, and adaptive control architectures”. Student and 

faculty at Rose-Hulman are participating in smart lighting research as an outreach 

partner with the SLERC. 

The final concept innovates by performing the light control using dynamic 

closed loop controller, instead of lookup tables, strategy that has been used in similar 

projects. It also must be composed of inexpensive technologies. 
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1. Introduction 

Humans are diurnal beings. We had to face many challenges that came as the 

sunlight faded and the night arose since the very beginning of our history. Unlike 

some other animals, humans’ visual system is not well suitable with low levels of 

light. Mankind found its first way to fight against night’s darkness mastering the 

control of fire, what happened around 400,000 years ago [1]. From this time until the 

XIX Century the way we produced light was always from flame produces burning 

some sort of combustible material, such as wood or oil. 

The paradigm just started to change with the introduction of electricity. In the 

first decade of the XIX Century, the English scientist Humphrey Davy was the first to 

use electricity to generate light, using the carbon electric arc. The incandescent bulb 

that we are familiar with was invented several decades later by the American Thomas 

Alva Edison, around the 1880’s.   

 

1.1: Electric lighting 

The development of electric light sources, which are cleaner, less expensive 

and more convenient, eventually led to their virtual omnipresence. Nevertheless, 

besides the numerous benefits that came with the spreading of artificial lighting, there 

are many drawbacks from its use that have just recently been properly taken into 

account. Factors such as energy efficiency and space conservation are growing 

concerns, since lighting accounts for approximately 20% of the end-user total 

electrical energy consumption in the United States [2].  

The average lighting system efficacy has increased roughly three times 

between 1960 and 2005 [3].  However, as we see in Figure 1, by 2006 incandescent 

bulbs were responsible for approximately half of the artificial light produced in 

residential buildings around the world.  
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Figure 1: Estimated light production by user sector and lamp type (2005) [3] 

This means that the same technology has been used for more than a century 

as the main source of electrical light in residences. It is a concern since it is a very 

inefficient source of light, since only approximately 5% of the electrical energy is 

converted into light.  

In fact, many technologies were developed to improve lighting efficiency and 

quality. In addition to efficacy (lumens/Watt), there are other aspects that are taken 

into account to evaluate and compare different light source technologies, such as 

light quality (which includes CCT and CRI), turn-on time, life-time and aging. Table 1 

shows a comparison between some different lighting technologies. 

Table 1: Comparison of different lighting technologies [4] 
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1.2: Light-Emitting Diode 

In the quest for better lighting technologies, LEDs (Light Emitting Diodes) 

appear as an option that combines many desired characteristics. It is a solid-state 

semiconductor that emits light when a current is passed through it, by 

electroluminescence principle [5]. Whereas the efficiency of conventional 

incandescent and fluorescent lights is limited by fundamental factors that cannot be 

overcome, the efficiency of solid-state sources is limited only by human creativity and 

imagination [6]. In fact, with today’s technology, the efficacy of LED light sources can 

reach 10 times the efficacy of incandescent [7]. 

Some of the superior characteristics of the LED light sources are [8]: 

 Higher efficacy:  

 Directional light 

 Low profile / compact size 

  Breakage and vibration resistance 

 Improved performance in cold temperatures 

 Life unaffected by rapid cycling 

 Instant on / no warm up time 

 No IR or UV emissions 

The so-called first wave of solid-state lighting is the attempt to develop 

technologies to overcome difficulties from the use of LED light sources, in order to 

take advantage of its benefits. The main problems that have been addressed are: 

 Drop in efficiency that is observed in higher current levels 

 Temperature dependence of the light emission 

 The quality of light, since most cool-white LEDs have spectra that differ 

significantly from a black body radiator 

 Higher initial costs 

The progress has been so successful that the US Department of Energy has 

estimated that LED technology has the potential to produce yearly energy savings of 

190 terawatt-hours by 2030. It is the equivalent of 24 large (1,000 MW) power plants, 

or the reduction of 25% of present energy consumption for lighting [9]. 
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Nevertheless, while the first-wave has focused on changing the status-quo of 

lighting to LEDs, mainly because of the energy savings, the so-called second-wave 

of solid-state lighting, or Smart-Lighting, has approached what LED lighting systems 

can do to improve quality of life. The studies include applications within areas such 

as industry, health, communication and comfort [10]. 

The focus of our project is to enable the study of the impact that light has on human’s 

health and how smart light sources can improve well-being. 
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1.3: Effects of lighting on humans 

Many aspects of human physiology and behavior are controlled by processes 

that have a circadian rhythm, i.e., that have a cycle of approximately 24 hours. 

Circadian clocks play a crucial role in the survival of organisms by appropriately 

scheduling their activity in the cyclic natural environment [11]. Examples of such 

processes are sleep–wake cycles, alertness and performance patterns, core body 

temperature rhythms, and the production of hormones such as melatonin and cortisol 

[12]. In order to maintain the synchronicity with the environment, this internal clock 

has to be able to be reset. The major environmental factor that resets these rhythms 

in humans (and mammals) is the light–dark cycle generated by the rotation of the 

Earth [12].  We can see in Figure 2 an overview of the biological phenomena linked 

to the circadian rhythms, in their normal synchronized cycle. 

 

Figure 2: Overview of biological circadian clock in humans. 

An evidence of how the day/night cycle affects humans is the Seasonal 

Affective Disorder, also known as winter blues, is the result of an over-production of 

melatonin, due to a lack of light.  This disorder  effect occurs in regions farther from 

the equator, when days become shorter by fall equinox and through wintertime. A 

non-negligible percentage of people say they feel more depressed, have less energy, 

and find it difficult to wake up [13]. 

In fact, with scant exception, terrestrial organisms have evolved under 

predictable daily cycles owing to the Earth’s rotation. The advantage conferred on 
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organisms that anticipate such environmental cycles has driven the evolution of 

endogenous circadian rhythms that tune internal physiology to external conditions 

[14]. 

However, modern human is living under radically different lighting reality since 

the advent of the electrical light. Nowadays, social and economic activities are not as 

restricted to daytime as they were in the past. Exposure to artificial light at night 

(LAN) has surged in prevalence during the past 50 years, coinciding with rising rates 

of depression [15]. 

Because much of the daytime work force in the industrialized world is exposed 

to dim office lighting instead of bright sunlight, and because at night we are often 

exposed to bright lights with blue wavelengths instead of natural darkness, some 

researchers believe that adequate human circadian entrainment does not take place 

[16]. Dr. Mark S. Rea [17] highlights some findings about the effect of lighting on 

human health: 

 Light can alleviate seasonal depression [18] 

 Light can increase the length and quality of sleep [19] 

 Light can consolidate sleep/activity patterns in Alzheimer’s Disease 

patients [20] 

 Light can improve performance of night-shift workers [21] [22] 

 Light can improve weight gain in premature infants [23] [24] 

 Light activation of the circadian system is affected by a newly discovered 

photoreceptive mechanism in the eye [25] [26] 

 Light regulates melatonin [27], which has been shown to reduce breast 

cancer growth [28] [29] 

 Light has a direct impact on cortical brain activity [30] 

In addition to these extensive evidences, the discovery of a new class of cells 

in the retina, which are thought to be circadian rather than visual receptors, led many 

researchers to draw their attention to the influence of spectrum, intensity and 

duration of light on biological responses. However, the range of spectra that influence 

the multiple circadian systems is yet to be explored [31]. 
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1.4: Objective 

As mentioned by Eve A. Edelstein et al [31], the recent discoveries are leading 

many researchers to study the influence of color of light in human outcomes. In order 

to carry out such studies, it is necessary a lighting technology that allows the output 

of light with different colors, i.e., spectra.  

Differently than any other technology, it is possible to produce LEDs that emit 

light with diverse dominant wave-lengths (colors), by using different semiconductors 

materials.  

The main objective of this project is to design a system that is able to provide 

a large and continuous range of controlled colors of light from LED sources. It may 

be used in many applications where a controlled color is needed, firstly within studies 

on the effect of light color on health and eventually in lighting of hospitals, airplane 

cabins, offices, industries and homes. The cost of equipment that is needed to 

accomplish this goal is also a major concern to be taken into account, since the 

concept is to be used as common light source. 

The system has also to be flexible, i.e., must allow the user to change some 

variables to test performance of different configurations. For instance, control 

strategies, LED and detector model. 

As it will be explained, this controlled range of colors of light may only be 

achieved by a closed-loop control of multi-color LED sources. In addition, utilizing 

control options of LED sources, eliminating negative aging, temperature and light 

color shifts, generating long-term stability and reducing potential future maintenance 

costs [32]. 
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2. Color Science 

Before we proceed to the description of the project, it is important to briefly 

introduce some of the concepts on color of light. 

2.1: What is color 

Color only exists in our mind. It is a visual perceptual property that depends on 

the interaction of light with the human eye light receptors. The color we perceive is a 

result of how the spectrum of light (distribution of light power versus wavelength) 

excites the eye receivers. Therefore, to understand color we must take a look at the 

two components: the spectra of light and the eye receivers. 

Light is the visible part of the electromagnetic spectrum. Light is often 

described as consisting of waves. Each wave is described by its wavelength. This 

amounts to a mere slice of the massive electromagnetic spectrum. Although we can’t 

see them, we use many of the invisible waves beyond the visible spectrum in other 

ways—from short-wavelength x-rays to the broad wavelengths that are picked up by 

our radios and televisions. 

Our eyes have light sensors that are sensitive to the visible spectrum’s 

wavelengths. When light waves strike these sensors, the sensors send signals to the 

brain. Then, these signals are perceived by the brain as a particular color […]. 

Passing a beam of white light through a prism disperses the light so that we 

can see how our eyes respond to each individual wavelength. This experiment 

demonstrates that different wavelengths cause us to see different colors. We can 

recognize the visible spectrum’s dominant regions of red, orange, yellow, green, 

blue, indigo, and violet; and the “rainbow” of other colors blending seamlessly in 

between (Figure 3).  
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Figure 3: Light wavelengths and colors 

However, we rarely see all wavelengths at once (pure white light), or just one 

wavelength at once. Most colors that we observe are actually a combination of light 

with many different wavelengths components [33]. 

The sensors in the eyes that are responsible for the perception of color are 

namely the rods and cones. The response of the rods become saturated under 

normal levels of luminance (photopic vision), therefore normal color perception is 

mediated by the response of the cones. However, the rods perform an important role 

at low light levels (when we see scale of gray instead of colors).  

There are three types of cones, which are referred to as the short-wavelength 

sensitive cones (S-cone), the middle-wavelength sensitive cones (M-cones) and the 

long-wavelength sensitive cones (L-cones). Each one of these types has different 

spectral sensitivity regarding the wavelengths, as we see in Figure 4.  
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Figure 4: Spectral response of cones 

Therefore, as a result of the human trichromatic nature of color vision, the 

same color can be perceived from many different spectra. For instance, most 

computer displays reproduce the spectral color orange as a combination of red and 

green light, instead of the pure orange wavelength. It appears orange because the 

red and green are mixed in the right proportions to allow the eyes’ cones to respond 

consistently to the spectral distribution of orange. This phenomenon is called color 

metamerism.  

2.2: Tristimulus values 

The trichromatic nature of human color vision is mathematically formulated by 

CIE to give tristimulus values X, Y, and Z. The CIE method of colorimetric 

specification is based on the rules of color matching by additive color mixture. The 

principles of additive color mixing are known as the Grassmann’s laws of color 

mixtures [34]: 

(1) Three independent variables are necessary and sufficient for specifying a 

color mixture. 

(2) Stimuli, evoking the same color appearance, produce identical results in 

additive color mixtures, regardless of their spectral compositions. 

(3) If one component of a color mixture changes, the color of the mixture 

changes in a corresponding manner. 
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The basic CIE color space is CIE XYZ. It is based on the visual capabilities of 

a Standard Observer, a hypothetical viewer derived from the CIE’s extensive 

research of human vision. They used the collective results to create “color-matching 

functions” and a “universal color space” that represents the average human’s range 

of visible colors. The color matching functions are the values of each light primary—

red, green, and blue—that must be present in order for the average human visual 

system to perceive all the colors of the visible spectrum. The coordinates X, Y, and Z 

were assigned to the three primaries. 

The tristimulus values for a color with a spectral power distribution  ( ) are 

given in terms of the standard observer by: 

   ∫  (  ) ̅( )  
   

   

             ∫  (  ) ̅( )            
   

   

   ∫  (  ) ̅( )  
   

   

 

Where  ̅( )  ̅( ) and  ̅( ) are the color matching functions, specified by CIE 

as in Figure 5. 

 

Figure 5: CIE 1931 color matching functions 

Since the human eye has three types of color sensors, a full plot of all visible 

colors is a three-dimensional figure. However, the concept of color can be divided 

into two parts: brightness and chromaticity. For example, the color white is a bright 

color, while the color grey is considered to be a less bright version of that same 

white. In other words, the chromaticity of white and grey are the same while their 

brightness differs. 
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The CIE XYZ color space was deliberately designed so that the Y parameter 

was a measure of the brightness or luminance of a color. The chromaticity of a color 

was then specified by the two derived parameters x and y, two of the three 

normalized values which are functions of all three tristimulus values X, Y, and Z: 

   
 

     
                      

 

     
               

 

     
       

 

These values lead to the chromaticity diagram in Figure 6, which relates the 

values of x and y to the respective chromaticity. The outer curved boundary is the 

spectral (or monochromatic) locus, with wavelengths shown in nanometers. The 

colors are represented by brightly saturated colors. It is important to notice that 

different perceived colors may lead to the same point in this diagram, since it does 

not take into account the luminosity. 

 

Figure 6: CIE chromaticity diagram 

An important conclusion from this discussion is that any color within the visible 

gamut can be achieved by combining three independent components. Since light is 

additive, usually the three fundamental components (or primary colors) are referred 

to be red, green and blue. In contrast, paints and filters have subtractive behavior, 

which is why many mention yellow, magenta and cyan as primaries.  
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Figure 7: Additive characteristic of light (left) and subtractive characteristic of 

paints and filters (right) 
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3. The conceptual model 

In order to achieve the goal of the project, which is building a system which is 

capable of providing light with a controlled color using LED and other inexpensive 

components, we must be able to: 

 Provide light with different colors within a given gamut, i.e., a range of XYZ 

values 

 Measure the color of light 

 Allow the user to set the color operation point, in a given color standard 

 Adjust the light color in order to achieve the desired operation point 

With this in mind, the conceptual system that we want to build is described in 

Figure 8. 

 

Figure 8: Conceptual model 

3.1: User Interface 

The system must have an interface to enable the user to set the desired color 

of the light. However, defining a color is not as easy as it may seem. As we saw, 

there are multiple ways to describe it. In fact, this must be done in a standard that the 

user can understand easily. CIE XYZ values will be useful in the calculations, but are 

not intuitive. A standard that is more intuitive is the RGB one, which has been largely 

used in determining color in the computational systems. It is desirable that the user 

interfaces is able to display the color set and being detected. It also needs to 

communicate with the controller subsystem, which includes translating the user 

commands into variables that the controller can work with. 
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3.2: Controller 

The controller is the subsystem responsible to determine the value of the 

variable of control necessary at each given moment, in order to drive the system to 

source light with the color which was set by the user. 

It will receive data from the detector and process it to determine the value of 

the variable of control. The nature of these variables will depend on which technology 

we will use, but it may be current or voltage.  

It is also desirable that the user is able to define and modify the parameters of 

the controller, in order to test different control strategies. 

3.3: Light Source 

The main constrain of this project is the use of LEDs as light course, due to 

the advantages from it use that were described in previous chapters. This LED-based 

source must be able to provide light with different colors. As discussed, this can be 

achieved by combining at least the three primary colors of light: red, green and blue. 

Notice that the control on the final color will depend on how the intensity of these 

three components is varied. Therefore, characteristic such as linearity and wide 

range of operation are desirable. 

3.4: Color Detector 

Regarding color measurement, being able to determine the tristimulus values 

is sufficient to describe any color. Therefore, it is not necessary that we obtain the 

whole spectrum profile of the light being detected to determine its. It is important that 

the detectors have a fast response and linear behavior. It is also necessary that it 

can communicate with the controller, i.e., provide readings that are suitable to 

reading by the technology that will be chosen as controller. 
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4. The Implementation 

To implement the conceptual model described in the last chapter, the following 

system was designed.  

 

Figure 9: System model 

4.1: The LED 

The LED used is a high-brightness Cree® XLamp® MC-E Color LED (Figure 

10). It is made out of four LEDs: one red, one green, one blue and one white.  

 

Figure 10: Cree XLamp LED 

Each LED has a maximum drive current of 750 mA and a maximum power of 

9.5 Watts. The spectrum of each of the LEDs can be found in the Figure 11. Different 

colors of light are obtained by mixing the RGB colors in different proportions. The 

white component may be used to achieve other lighting levels. However, the white 

LED will be driven to simulate disturbance. 



 

25 

 

 

Figure 11: Spectral power distribution of the LEDs 

4.1.1: Temperature dependence 

LEDs have relatively high temperature sensitivity (Figure 12), i.e., the 

luminosity level and the spectral characteristic change depending on the 

temperature. It causes the color of the output light to change over time due to the 

heat dissipation, mainly when using high current values. In this context, closed-loop 

color control has the benefit of being able to readjust the LEDs current in order to 

bring the color back to the right value, regardless of time of usage or current level. 

 

Figure 12: Temperature influence on the emission of light of the LED 

4.1.2: Approaching the non-linearity 

LEDs are diodes, and for this reason the relationship between the voltage and 

current is not linear (Figure 13), instead have a logarithmic behavior. Since the 
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intensity of light emitted has a quasi-linear relation with current (Figure 14), the 

relation between voltage and luminosity is also very non-linear.  

 

Figure 13: Electrical characteristics of each LED die (junction temperature = 

25 ˚C) 

 

Figure 14: Relative intensity vs. current of each LED die (junction temperature 

= 25˚C) 

As we will see ahead, the systems we have available requires us to drive the 

LEDs based on voltage signals. Therefore, this non-linearity would affect us directly, 

potentially making it very hard to control the intensity of light of each LED die and, as 

consequence, the color.  

However, a widely used strategy to overcome this problem is the use of pulse-

width modulation (PWM) to dim LEDs in a smooth, linear way. PWM works well with 

LEDs since they turn on and off in microseconds. A pulse waveform driving an LED 

at a frequency of several kilohertz appears to be flicker-free. Varying the pulse's duty 

cycle from a few percent to over 90 percent raises the LED's apparent brightness 
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while keeping the actual current and voltage the same [35], as it is shown in Figure 

15. 

 

Figure 15: Comparison between PWM and analog signals 

According to Simon Baker [36], besides the advantage of linearity between the 

driving signal (duty cycle) and intensity of light, using PWM the current can be forced 

to hold a constant value during the duty cycle, meaning that the characteristics that 

influence the color, such as temperature, remain the same, facilitating its control. 

Therefore, in this project we will use PWM signals to drive the LEDs. 

4.2: Driver circuit 

The driver circuit is responsible to properly control the source of power to each 

one of the 4 LEDs, based on the signal coming from the controller. 

4.2.1: Control signals 

The control signals will come from an I/O board BNC 2120, manufactured by 

National Instruments. This board has only two PWM outputs and two analog outputs, 

while at least three, ideally four independent PWM signals are needed.  
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Figure 16: BNC 2120 I/O board 

The solution we chose was to include an Arduino Leonardo as a bridge that 

translates the analog signals into PWM. The Arduino Leonardo has the four PWM 

channels that we need, with programmable resolution from 2 to 16 Bits. 

 

Figure 17: Arduino Leonardo 

Other parameter of our design is the frequency we will use for the PWM 

signals. It cannot be too low, which can cause that the flashing of the LEDs are 

perceptible; nor too high, which can cause undesirable non-linear behaviors due to 

the fact that the small times associated to rising and falling times become 

considerable when compared to the period of the PWM wave. We chose a frequency 

of 5 KHz, which showed to be a good compromise solution.  

As we will discuss in the future work section, the Arduino may embed the 

controller and the interface in the future, playing the role of the computer and 

allowing this system to become portable and considerably less expensive.   
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4.2.2: Energy sourcing 

Since the LEDs may consume up to 3 Watts, it is not possible to feed them 

directly with the controller signals, since the BNC board and the Arduino are not able 

to supply such a high value. Therefore, we need a separate energy source of 5 Volts 

and a transistor to work as an amplifier for each one of the four channels (Red, 

Green, Blue and White LEDs). Since we are working with PWM signals, we have the 

additional advantage of being able to use the transistor in its saturated mode, i.e., as 

a switch. It prevents the signals from any non-linearity that the inclusion of the 

transistor could bring. The schematic in Figure 18 shows one of the four circuits that 

are used to convert the lower-power PWM signals from the BNC board and the 

Arduino into higher-power PWM ones to feed the LEDs. Notice that the internal 

resistances are high enough to keep us from including a resistance in series with the 

LED.  

 

Figure 18: Sourcing-control circuit 

4.3: Sensor 

No control system can be better than its measurement capacity. Therefore, it 

is very important that the system is able to measure the controlled variables correctly 

in order to control them. In our case, we need to measure the color of the light with 

inexpensive sensors, i.e., it would not be suitable having a spectrometer, which may 

be very expensive, as sensor.  

As it was already discussed, it is possible to determine the color of light by 

recognizing the intensity of red, green and blue light (relating them to XYZ 

coordinates). Supported by this principle, we used a RGB sensor from Hamamatsu 

(model S9702 - Figure 19). It consists of three photodiodes with filters in front of 
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them, which just let a certain range of wavelengths pass through it and reach the 

respective photodiode, which in turn will generate a current that is proportional to the 

intensity of incident light. 

 

Figure 19: S9702 RGB Photodetector by Hamamatsu® 

The response of each die of the sensor to light is shown in Figure 20.  The 

peak sensitivity occur in the blue (λp=460 nm), green (λp=540 nm) and red (λp=620 

nm) regions of the spectrum. The similarity of this response to the XYZ color 

matching functions (Figure 5) is a very important factor in measuring the color 

properly. In fact, this model was chosen because of its response and price. 

 

Figure 20: Spectral response of the S9702 RGB 

4.3.1: Use mode 

A photodiode is a two-electrode, radiation-sensitive junction formed in a 

semiconductive material. [...] Each incident photon produces electron-hole pairs in 

the depletion region resulting in a measurable signal current. The photodiode can be 

operated either with zero bias in the photovoltaic mode where the photodiode is 
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actually generating the electric potential supplied to the load. In a biased mode, the 

photoconductive mode, the reverse current is proportional to the irradiation [37].  

For all practical purposes, we always use biasing because it dramatically 

improves the response of a photodiode [38]. The reason is that the flow of free 

charge carriers (what produces current) is enhanced by the external voltage (reverse 

bias) applied. The only drawback is the very low level of current that is provided by a 

diode in its reverse-bias mode. This may be overcome by connecting a high-value 

resistance in series, which will provide an amplified voltage signal. The value of this 

resistance is a trade-off between the amplification we obtain for the signal and for the 

noise. After testing some, we chose a value of 10 MΩ. 

Therefore, in this project, we used the reverse biased mode. 

 

Figure 21: Reverse-biased photodiodes 

4.4: The detector circuit 

The current signals that are generated by the three photodiodes in the RGB 

sensor generate voltage signals across the series resistances. These signals have to 

be sent back to the computer. This communication is carried out by the BNC 2120 

I/O board. 

In order to avoid distortion of the signal, which may appear when the I/O board 

performs the sampling of the analog signal (known as aliasing); it is necessary to 

filter the analog signal before it is converted into digital. In addition, we have another 

important reason to pass the analog signal through a low-pass filter. Since we are 

driving the LEDs with PWM signals, even though our eyes cannot perceive the light 
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flashing, the photo-detectors do. To obtain a smooth curve that simulates the 

perception of our eyes, we need to eliminate the effect of this flashing. 

Therefore, three passive low-pass filters were designed, as shown in the 

schematics in Figure 22. We chose passive filters since our signals will be read by a 

high-impedance device, so we do not need an active filter that would require 

additional power supply.  

 

Figure 22: Detector circuit 

The R and C values were determined taking into account that the cut-off 

frequency has to be less than 5 KHz, therefore we are using C = 1uF and R = 1KΩ, 

which gives a time constant τ=1 ms, which is dominant when compared to the time 

constant of the photodiodes, which are specified to be less than 1 µs. Therefore, the 

sampling time of all readings was set to be 5 times faster, therefore 0.2 ms, or a 

sample frequency of 5 KHz. 

4.5: Calibration and color conversion 

The photodiodes will generate current, which will be passed through a circuit 

and be read by the I/O board as a voltage signal that is proportional to the intensity.  

However, in order to determine the actual color in terms of standard 

coordinates, we need to calibrate the detector, i.e., find the relation between the 

voltages that are read and the corresponding color. In order to do that, we need an 

instrument that is capable of determining the color coordinates as a reference.  

The instrument we used was the spectrometer Black Comet, manufactured by 

StellarNet®. This instrument is capable of measuring the spectral power distribution 
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of the incident light. As discussed earlier, it is possible to determine the XYZ color 

coordinates from the spectral power distribution of the light using the color matching 

functions.  

Once having a system that determines the XYZ color coordinates, we may 

perform a number of experiments where we apply different colors of light and 

observe how the voltage of each photodiode and the coordinates read by the 

spectrometer evolve. Eventually, we will have two three-dimensional time series: the 

XYZ color coordinates (which we will call A) and the voltages of each photodiode 

(which we will call B). With this in hand, we want to find the relation between them, so 

in the future we can determine A from B, i.e., determine the XYZ color coordinates 

using the photodiodes instead of the expensive and slow spectrometer.  

Therefore, at any instant in time i we will have: 

    (
 
 
 
)           (

  
  
  

) 

The relation between them can be approximated by linear regressions, also 

known as linear least squares fittings. Multiple linear regression attempts to model 

the relationship between two or more explanatory variables and a response variable 

by fitting a linear equation to observed data. In our case, we want to find the β in the 

following relation that minimizes the error ε for a set of data: 
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In such a way that at any given time i we have: 
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Notice that   is not i dependent. 

Using the ordinary least squares technique, we can use the following 

technique to estimate β: 

  (   )     

Once we estimate β, we can remove the spectrometer from the system and 

estimate  ̂  ̂      ̂ for any instant in time i: 
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However, it is important to notice that the relation   may change if some 

conditions change. For example, if we move the detector or the light source, the 

relation will change and thus the XYZ estimated. Therefore, it is important that this 

process is possible to be done automatically, once having the spectrometer 

connected. Both automatic calibration and color interpretation are done by the 

software we developed. 

It is important to mention that most computational components work with a 

different standard than the XYZ coordinates, which is not very intuitive. The most 

widely used is the RGB system, which specifies values for Red, Green and Blue in a 

scale of integer numbers from 0 to 255, providing more than 15 million possible color 

combinations [39]. There are many RGB color space, and we will use the color 

space, which was proposed by Hewlett-Packard and Microsoft. 

This sRGB coordinates (R G B) can be approximated from the XYZ 

coordinates the following conversion [40]: 

(

    
    
    

)  (
                                
                            
                              

)(
 
 
 
)  

      (     )
 
    

      (     )
 
    

      (     )
 
    



 

35 

 

 

The standard sRGB system produces colors that are within the following 

region of the chromaticity diagram (Figure 23), or gamut: 

 

Figure 23: sRGB color gamut 

4.6: Controller 

The controller subsystem is the responsible for calculating what currents have 

to be supplied to each one of the three LEDs in order to match the color coordinates 

that are read by the detector subsystem to the ones input by the user.  

The controller used as base is a PI, i.e., a PID without the derivative action, 

whose equation follows bellow: 

 

Where MV(t) is the control action (or the Manipulated Variable), e(t) is the 

error,     is the proportional gain,     is the integral time, and     is the derivative time 

(set to zero in a PI). 

The proportional term produces an output value that is proportional to the 

current error value (related to present error). The integral in a PID controller is 
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proportional to the sum of the instantaneous error over time (related to past error). 

The derivative action is calculated by determining the slope of the error (related to a 

prediction of the future error). 

In addition, it is important to highlight that null steady-state error is only 

possible when integral action is included and that including derivative action might 

amplify the noise. 

Since rise time is not a major issue in our system, due to its original fast 

response times, we decided to use a PI with conservative gains. This creates minimal 

overshoot, eliminates the steady-state error, and does not amplify the noise. The 

resulting block diagram is shown in Figure 24, where PV is the process variable, SP 

is the set-point and Ki is the ratio Kp/Ti.  

 

Figure 24: Generic PI block diagram 

The transfer function C(s) that relates the error e(s) and the manipulated 

variable MV(s) is given by: 

  ( )

 ( )
  ( )    

(     )

   
  

However, we cannot forget that we are dealing with a multiple-input multiple-

output system: we have three manipulated variables, i.e., outputs (duty cycle of the 

red, green and blue LEDs) and three control variables, i.e., inputs ( ̂  ̂      ̂). We 

could try to deal with them as three independent single-input single-output systems. 

However, the performance of such approach is subject to how independent the 

systems actually are, i.e., how coupled they are.  

In fact, after testing the independence of the variables, we obtained the 

following map of gains, i.e., how each manipulated variable affect each process 
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variable. It was obtained by changing the intensity of one LED at a time and 

observing how each of the photodiodes responds in steady state.  

Table 2: Map of static gains Input/Output 

 

The correlation between them is observed to reach up to 10%, which indicates 

that an actual SISO control design could perform better. This behavior may be 

explained by the difference between the spectral distribution of each LED die and 

each one of the filters spectral response. 

Therefore, we implemented a PI controller that takes into account the cross-

relation between the input and output variables. It is done by applying the same PI on 

the signals and then merging them with a weighting matrix that tries to lighten the 

correlation effects, or decouple the variables. This effect is achieved by the following 

control law. Let     ,       and     be the output signal to the red, green and blue 

LED dies respectively, in duty cycle;        and     be the CIE XYZ coordinates 

obtained from the RGB set-point values specified by the user;  ̂,  ̂ and  ̂ be the XYZ 

coordinates estimated from the photodiodes readings; and     the estimated static 

model. 

(

    
    
    

)      
     ( )  (

     ̂

     ̂

     ̂

) 

However, notice that the output signals are duty cycles hence limited to vary 

within 0 and 1. The saturation of the manipulated variables may cause an effect 

known as integrator windup.  

When a set-point change is applied, the control variable might attain the 

actuator limit during the transient response. In this case the system operates as in 

the open-loop case, since the actuator is at its maximum (or minimum) limit, 

independently of the process output value. The control error decreases more slowly 

as in the ideal case (where there is no saturation limits) and therefore the integral 

term becomes large (it winds up). Thus, even when the value of the process variable 

R_read 2.5914 0.1127 0.0138 R_out

G_read = 0.003 0.2729 0.0289 * G_out

B_read 0.0697 0.2509 4.1283 B_out
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attains that of the reference signal, the controller still saturates due to the integral 

term and this generally leads to large overshoots and settling times [41]. Another 

situation that will be common in our application is that the set-point color coordinates 

are out of the gamut that can be achieved by the LEDs. In this case, the LED will 

saturate (either completely turned on or off), thus the error will not decrease and the 

integrative component will become larger indefinitely. When the set-point is brought 

back within the range, the integrative term will still be so large that it may take a 

considerable amount of time before the system compensate it and reaches the 

desired value. 

To overcome this problem, we used the so-called Back-Calculation and 

Tracking strategy, which work as follows: when the output saturates, the integral term 

in the controller is recomputed so that its new value gives an output at the saturation 

limit. The block diagram of a generic PI with this anti-windup strategy is shown in 

Figure 25. 

 

Figure 25: Generic PI controller with anti-windup 

The system has an extra feedback path that is generated by measuring the 

actual actuator output and forming an error signal (  ) as the difference between the 

output of the controller ( ) and the actuator output ( ). Signal    is fed to the input of 

the integrator through gain     . The signal is zero when there is no saturation. Thus, 

it will not have any effect on the normal operation when the actuator does not 

saturate. When the actuator saturates, the signal    is different from zero. 
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The rate at which the controller output is reset is governed by the feedback 

gain, 1/Tt, where Tt can be interpreted as the time constant, which determines how 

quickly the integral is reset. We call this the tracking time constant [42]. 

Small values […] chosen for Tt decrease the saturation time of the controller 

output and also the settling time of the process. In that case, the process response 

will be slow and will not produce an overshoot. Big values […] chosen for  Tt  provide 

a long saturation time at the controller output and it will also produce over-shoots in 

the system response; that is, the system response will be fast but with an over-shoot 

[43]. 

We will address the implementation of the controller in Figure 25 when we 

analyze the software, which will emulate a discrete version of it. 

We can see that the map of gain is a component of the control law. Since the 

map is also susceptible to change, it would also be important to perform 

automatically the experiment that maps the correlation between inputs and outputs. 

This feature is also performed by the software. 

Finally, it is important to mention that the parameters            must be 

possible to be set by the user.  
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5. The Software 

Complex software had to be developed to serve as the interface through the 

user will input color set points and parameters, such as the controller ones, and 

observe the status of system variables, such as color being detected. In addition, at 

this point we identified many other features that it must include, such as: 

 Operation of the spectrometer and color conversions 

 Automatic calibration of the detectors 

 Automatic estimation of static model 

 Execute the control law 

To achieve these and other features, we developed the software in LabView®.  

5.1: Interface 

To better explain the functioning of our software program, we start by 

analyzing the front panel of it, which is shown in Figure 26: 

   

Figure 26: Software front panel 
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The group I encompasses the following components: 

 

Figure 27: Software front panel components, group I 

 Out (duty cycle): Control cluster that contains the fields where the output 

signal to each LED is specified, either by the program or by any other part 

of the software. It is given in terms of Duty Cycle, from 0 to 1. 

 In (V): Indicator cluster which displays the raw values that are being read 

from the BNC board, before any conversion, thus in Volts. 

 XYZ Calc: Indicator cluster that displays the XYZ coordinates being read, 

which is obtained from the voltages. 

 RGB Calc: Indicator cluster that displays the RGB coordinates obtained 

from the calculated XYZ values using approximate sRGB color space. 

 Read Color: Color box indicator to display on the screen the color being 

detected, based on the RGB Calc values 

 Reset graph: Button to reset the coordinates time-series graph 

 OFF: Button to set all LED outputs to 0. 

The group II encompasses the following components: 
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Figure 28: Software front panel components, group II 

 Set Point: Cluster control where the color set point is input. It must be done 

in RGB coordinates. 

 Set Color: Component that displays the color set. It also may be used to 

select the color using the interface in Figure 29. 

 

Figure 29: Interface to set color 

 Close Loop: Switch to turn on and off the closed loop control of the color. 

 PID Parameters: Cluster control where the controller parameters 

(proportional gain Kc, integral time Ti and derivative time Td) can be 

specified. Changing Td does not have impact, since we use a PI. 
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 Modeling Start: Button to trigger the automatic calculation of the static 

model. 

 Static Model: Indicator matrix that contains the static model that was 

calculated and is being used. 

The group III includes the following components: 

 

Figure 30: Software front panel components, group III 

 XYZ SP: Chart that displays the time series values of the  ̂ ̂ ̂ coordinates 

that are estimated from the detectors’ readings and the XYZ coordinates 

read by the spectrometer. 

 Spectrum: Chart that displays the spectral power distribution of the light 

being detected, provided by the spectrometer (when it is connected). 

 Chromaticity: Chart that displays the CIE chromaticity diagram, specifying 

the chromaticity point of the detected color, given by the xy values 

provided by the spectrometer. 
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The group IV includes the following components: 

 

Figure 31: Software front panel components, group IV 

 Tune: Button that triggers the automatic calibration of the photodiodes. 

 Dark (Spec): Button that captures the spectrum that will be used as dark 

reference when pressed, from that point on. 

 Waiting time: Control that specifies the time between two consecutive the 

steps of the automatic calibration. 

 Factor: Control that specifies the scaling factor for the calculation of the 

XYZ coordinates from the spectrum provided by the spectrometer. 

 Int Time: Define the integration time of the spectrometer. 

 S->XYZ: Matrix containing the calibration values for the transformation 

between XYZ and  ̂ ̂ ̂. 

 Read Color Spectr: Color box that displays the color being read by the 

spectrometer. 

  Coordinates: Indicator cluster containing the XYZ coordinates obtained 

from the spectrometer and the associated chromaticity xy and RGB 

coordinates, which are obtained from the XYZ values. 

Notice that the groups III and IV are just active when the spectrometer is 

connected, with the exception of the XYZ SP, which displays the estimated values 

 ̂ ̂ ̂ even when the spectrometer is not connected. 
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5.2: Spectrometer operation 

As we saw in the last section, much information is to be obtained from the 

spectrometer. The final goal of this data is allowing the calibration of our detector 

system. The manufacturer StellarNet® provides a software with the spectrometer, 

called SpectraWiz®, which is capable of performing a wide set of analysis on the 

spectral distribution detected by the device. This data comprises many color 

coordinates systems, including the CIE XYZ color space that we are interested in. 

We need this data to be obtained on-line in the LabView program. StellarNet 

provides a toolkit to be used in LabView environment. However, the toolkit just 

provides the raw spectral power distribution, i.e., a sequence of values related to 

power, one for each wavelength, at a given instant in time. It means that we need to 

determine the XYZ color coordinates from this spectral distribution by hand.  

However, this raw data is given in terms of counts per sample for each 

wavelength. In order to apply the color matching functions, we need to have the 

spectrum in terms of Watts per each wavelength. Fortunately, StellarNet provides a 

calibration file, which can be used to convert the power distribution from 

counts/sample into Watts.  

The mathematical process of obtaining XYZ values using the CIE color 

matching functions was discussed in 2.2:Tristimulus values. But before performing 

this calculation, we need to take a dark reference, which is the equivalent of zeroing 

the instrument. That is to be done manually by pressing the Dark (Spec) button when 

the spectrometer is in a dark environment. It will save the spectrum read at that 

instant and subtract it from all the spectra read from this time on.  

Another important parameter that has to be defined is the integration time of 

the spectrometer. This is the amount of time (in milliseconds) that the spectrometer 

records for a single measurement, which can influence the correct measurement. 

Small integration time leads to loss of sensitivity, while large values may cause the 

detector to saturate. The factor that is specified in the front panel may be used to 

compensate the influence of the integration time.  

The spectral distribution resultant from the difference between the raw data 

and the dark reference and converted into Watts is displayed in the chart Spectrum. 
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The XYZ values obtained from the spectral distribution are the ones displayed in the 

Coordinates cluster, as well as the xy and RGB calculated from these values. In turn, 

the color box Read Color Spectr uses the RGB values to display the respective color. 

5.3: Detectors calibration 

An important task that the software carries out is the automatic calibration of 

the detectors, by using the reference data from the spectrometer. The mathematical 

process involved with it was discussed in section 4.5:Calibration and color 

conversion. 

To find the matrix   we need two time series, one containing n values of XYZ 

read by the spectrometer, and other containing n values of (  ,    and,   ), i.e., the 

voltages read from the photodiodes. 

The automatic calibration process starts when the user turns the button Tune 

on. From this time, the system will scan the voltages and the XYZ values and append 

them to a respective array. In order to have a more robust calibration, it is desirable 

that we do it using data from different operation points. Therefore, at every amount of 

time specified by the Waiting Time control in the front panel, a new operation point is 

randomly set, i.e., we randomly change the values of the Out (duty cycle) control. In 

order to not let the transient state influence the calibration, the recording of the 

variables is briefly paused after a change of operation point. 

 This tracking will keep going until the user turns the Tune button off. At the 

end of this process, we will have the two arrays we need to perform the least square 

fitting and find the matrix   that will be used to estimate  ̂ ̂ ̂ from that point on. The 

more data it is obtained, the better the calibration tends to be.   

5.4: Static model estimation 

As discussed in the section 4.6:Controller, we need to estimate the static 

model of the system in order to be able to apply a MIMO control strategy. This 

estimation starts when the user activates the button Modeling Start on the front 

panel. The software is programed to apply a sequence of steps in the output value of 

every LED, one at a time. During this time, the system keeps track of the output 
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variables, as well as of the  ̂ ̂ ̂ coordinates. The recording makes a small pause 

after the application of every step, to keep the transient dynamics form influencing 

the static model. At the end of the routine, we will have two arrays containing the time 

series of these values. The static model is then found in the same way we found the 

relation in the calibration, i.e., by using least squares.  

5.5: Execution of the control law 

The software is also responsible for performing the calculations needed to 

apply the PI anti-windup controller we discussed in 4.6:Controller.  

The calculations to determine the manipulated variables will be done once 

every cycle. It means that we have to replace the continuous models we had by 

discrete versions of them.  

The control law applied by the software is given by: 

 ̂   [ ]     (  [ ]    [   ]  
  
  
  [ ])      [ ]  

  
  
  ̂   [   ] 
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The  ̂   [ ] and  ̂   [ ] are obtained by the same method. The final control 

variable is given by: 
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Where    is the sample time (0.2 ms in our case). The block diagram of the 

complete controller is shown in Figure 32. 
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Figure 32: Controller implementation in LabView 
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6. Experiments and results 

In this chapter, we will first analyze some of the results we obtained from using 

the approaches we chose to address some of the problems that appeared. Finally, 

we will analyze how the system fulfills the overall requirements. 

6.1: PWM vs. Analog 

In the Figure 33 we can observe that the PWM driving strategy produces a 

very linear response for luminosity versus duty cycle. In the other hand, the response 

to analog voltage signals has a very non-linear behavior, including a dead-zone, due 

to the fact that a diode must be polarized with a minimum before it can conduct. 

Since the diode that is subject to PWM signals is always under 0 or 5 Volts, this 

dead-zone does not appear. In fact, the coefficient of determination R2 obtained with 

the PWM response is 0.9997, against 0.8382 of the analog response.  

 

Figure 33: PWM vs. Analog 

6.2: Spectral data processing 

As we discussed in 5.2: Spectrometer operation, our software has to process 

the data from the spectrometer in order to extract useful information, namely the XYZ 

color coordinates. The first challenge was to convert the units of the raw data. The 
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relation between counts/sample and Watts/m² is not just a constant scaling factor, it 

is necessary rather to apply specific calibration factor to each wavelength. The 

calibration curve is shown in Figure 34. 

 

Figure 34: Calibration curve 

In fact, after multiplying the raw data we have by the calibration curve we 

expect to have a result that is very similar to the readings in Watts performed by the 

SpectraWiz software. In fact, we obtain the results in Figure 35.  
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Figure 35: Comparison between calculated and given irradiance in Watts/m²  

The average error obtained is 1.49%, which is a very good approximation, 

since errors of the same magnitude (up to 2%) may be obtained between two 

consecutive readings of the spectrometer.  

6.3: Color conversion 

Once with the spectral power distribution in hand, we must assure that we can 

determine the right color. We need to obtain RGB values that generate colors similar 

to those being detected. Since the SpectraWiz software does not provide us with this 

sort of coordinates, the way to empirically evaluate the performance is by comparing 

the colors displayed by the color boxes of our front panel to a picture. 
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Figure 36: Comparison between the detected and calculated color 

6.4: Detector calibration 

Besides calculating properly the color coordinates form the spectral power 

distribution, it is necessary that we can properly relate the readings from the 

photodiodes to those of the spectrometer.  

If we just use the red, green and blue LEDs both to calibrate and to test the 

calibration, we obtain the result in Figure 37. 
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Figure 37: Photodiode calibration - without white LED 

If we include the white LED in the calibration process, we obtain the result 

shown in Figure 38. 
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Figure 38: Photodiode calibration - with white LED 

The average errors obtained from both experiments are summarized in Table 

3. 

Table 3: Calibration errors 

 
Error % 

 
X Y Z 

No white 0.888348 1.549034 0.447014 

White 1.02701 8.473944 0.921374 

    

We observe that the Y variable is affected the most when we include the white 

LED in our experiment. Remembering that the Y variable is related to the response to 

green, the fact that the photodetector has a green filter that differs the most from the 

color matching functions explains why the  inclusion of the white LED, which has a 

wider spectrum distribution, deteriorates this component more than the others.  

In the other hand, from the CIE chromaticity diagram we see that the green 

regions are larger than the others. In fact, our perception to changes in chromaticity 

coordinates within the green region is less accurate than it is for the other regions.  
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6.5: Closed loop performance 

After assuring that the system is able to identify the color of light being 

detected in the proper coordinates, we need to analyze the capability the system has 

to achieve the operation state set by the user. 

The PI controller was chosen because of its capability of matching a constant 

reference with null error. As we discussed earlier, the time constants of the LEDs are 

negligible, much lower than those associated to the 5 KHz PWM signals we were 

using to drive them.  The photodiodes have a rise time of 0.1 microseconds.  

Therefore, the dominant time constant in open loop is that of the filter, which is 0.1 

milliseconds. 

To find the parameters of the PI controller, we used the method Ziegler–

Nichols method. It consists of first having a proportional controller inserted in the 

loop, whose value will be increased until the system starts to oscillate. The value of 

the proportional gain at this point is called Ku, and the period of the oscillation 

observed is called Pu. With these values in hand, we find Kp and Ti by: 

   
  
   
                

  
   

 

After performing this experiment, we obtained the results in Figure 39. The 

values found were: 

                                                             

Applying these values to the PI MIMO controller, we obtained the response 

characterized in Figure 40, with a rising time of about 0.3 seconds and null error 

(average of steady state value compared to the reference, disregarding noise). We 

then applied a considerable disturbance, activating the white LED with 0.5 duty cycle. 

In Figure 41 we see that the system rejects the step disturbance in about 0.8 

seconds. 
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Figure 39: Finding the Ziegler-Nichols parameters ku and Pu 

 

Figure 40: Step response - Closed loop 
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Figure 41: Disturbance rejection 

As a rule of thumb, we set the tracking time Tt of the anti-windup term to be 

half of Ti. In order to compare the performance with and without the anti-windup 

calculation, we first set the output to a value outside the range of the LED and after 

an amount of time set it back within the range, to check how fast the system can 

respond. The results with and without anti-windup action are in Figure 42. 
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Figure 42: Comparison of system with and without anti-windup action 

In the first case, after about 11 seconds with the system being saturated, the 

system takes additional 40 seconds to be able to respond to a new reference within 

the actuator range. In the second case, this time comes down to about 1 second, 

even when the time while the actuator was saturated was almost the double. 

6.6: Costs 

One of the objectives of his project was to obtain a solution involving low-cost 

technology. It is not our goal to match any pricing restriction at this point, but show 

that is possible to be achieved in a second moment. To provide a notion on the 

magnitude of prices involved, Table 4 shows the prices of the main components of 

the project. 
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Table 4: Components price 

 

In addition, a central computer and the I/O board was used. However, they 

may be replaced by the Arduino board in a potential future product. 

Component Unity Price (US$) Source

Arduino Leonardo $21.50

http://microcontrollershop.com/product

_info.php?products_id=4931

Cree® XLamp® MC-E Color LED $14.30

http://www.mouser.com/search/refine.a

spx?Ntk=P_MarCom&Ntt=140602409

S9702 RGB Photodetector by Hamamatsu $12.95

http://www.datasheetarchive.com/buy/

S9702.html

Other electronic components - estimated $5.00

TOTAL $53.75
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7. Conclusion and perspectives 

At the end of the project, we were able to demonstrate that the closed loop 

color control may be accomplished with the technologies we proposed.  

 The PWM driving signal showed to be a very useful strategy to operate de 

LEDs in a linear way.  

 The photodetectors we chose demonstrated to be capable of determining 

the color coordinates with an error that is within the range of non-

perception by the standard observer.  

 The PI control, with decoupling and back-calculation anti-windup strategy 

showed to be able to drive the LEDs to achieve any color of light within the 

achievable gamut.  

 The system is capable of adapting itself in order to reject external 

disturbance, such as sun light, within the range of operation of the LEDs. 

 The final estimated price of $ 53.75 is considered to be low for a proof of 

concept, showing the potential of this solution. 

In order to make this solution suitable to wider applications, the developments 

that are still to be done include: 

 Embedding the central software to the Arduino board, which will replace 

the computer and the I/O board and carry out the color conversion, 

controller emulation and interface with the system. The calibration would 

still need to be done with a PC, but this can be done off-line, using a 

different system. 

 Encapsulate the system, in order to make a closed final product. 

 Demonstrate the capacity of the system to emulate any give chromaticity 

cycle, such as the natural sun light, based on color temperature reference 

coordinates. 
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