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ABSTRACT

Nowadays, many real-time applications are very complex and as the com-
plexity and the requirements of those applications become more demand-
ing, more hardware processing capacity is necessary. The correct func-
tioning of real-time systems depends not only on the logically correct re-
sponse, but also on the time when it is produced. General purpose proces-
sor design fails to deliver analyzability due to their non-deterministic be-
havior caused by the use of cache memories, dynamic branch prediction,
speculative execution and out-of-order pipelines. In this thesis, we design
and evaluate the performance of VLIW (Very Long Instruction Word) ar-
chitectures for real-time systems with an in-order pipeline considering
WCET (Worst-case Execution Time) performance. Techniques on ob-
taining the WCET of VLIW machines are also considered and we make
a quantification on how important are hardware techniques such as static
branch prediction, predication, pipeline speed of complex operations such
as memory access and multiplication for high-performance real-time sys-
tems. The memory hierarchy is out of scope of this thesis and we used
a classic deterministic structure formed by a direct mapped instruction
cache and a data scratchpad memory. A VLIW prototype was imple-
mented in VHDL from scratch considering the HP VLIW ST231 ISA.
We also show some compiler insights and we use a representative subset
of the Mälardalen’s WCET benchmarks for validation and performance
quantification. Supporting our objective to investigate and evaluate hard-
ware features which reconcile determinism and performance, we made
the following contributions: design space investigation and evaluation re-
garding VLIW processors, complete WCET analysis for the proposed de-
sign, complete VHDL design and timing characterization, detailed branch
architecture, low-overhead full-predication system for VLIW processors.

Keywords: Real time systems, Very Long Instruction Word (VLIW) pro-
cessor, Worst-Case Execution Time (WCET) Analysis.





RESUMO EXPANDIDO

CONSIDERAÇÕES SOBRE PROJETO DE PROCESSADORES
VLIW PARA SISTEMAS DE TEMPO REAL

Palavras-chave: Sistemas de tempo real, processadores VLIW (Very-
Long Instruction Word), análise de pior tempo de computação (WCET
– Worst-case Execution Time)

Introdução

Atualmente, aplicações de tempo estão tornando-se cada vez mais
complexas e, conforme os requisitos destes sistemas aumentam, maior é a
demanda por capacidade de processamento. Contudo, o correto funciona-
mento destas aplicações não está em função somente da correta resposta
lógica, mas também no tempo que ela é produzida.

Nos últimos anos, houve uma quantidade significativa de pesquisas
voltadas a arquiteturas de processadores temporalmente previsíveis com
o intuito de utilizá-los em sistemas de tempo real. Como o principal ob-
jetivo de projeto de processadores de propósito geral tem-se mantido na
melhora do desempenho de caso médio, a utilização destes em sistemas de
tempo real tornou-se consideravelmente complexa devido à necessidade
de análises para obtenção de parâmetros temporais.

Sistemas de tempo real são geralmente modelados por um conjunto
de tarefas onde cada uma possui seu pior tempo de execução (WCET –
Worst-case Execution Time), período e prazo (deadline) e estes parâme-
tros são utilizados em testes de escalonabilidade formais. Em conjunto
com um algoritmo de escalonamento de tarefas, é formado um problema
de escalonabilidade onde o objetivo é verificar se todas as tarefas cum-
prem seus deadlines: o tempo de resposta de uma tarefa deve sempre
ser menor ou igual ao seu respectivo deadline. Obter o pior tempo de
computação tem se mostrado complexo e dependente de parâmetros re-
lacionados ao hardware como arquitetura do processador e da memória.
Obter o WCET eficientemente e com precisão é necessário tanto para o
mais simples quanto ao mais complexo teste de escalonabilidade.



As principais abordagens para obter o WCET são medições, análises
estáticas e análises híbridas. A prática mais comum na indústria é o uso
de medições executando o sistema no hardware alvo. Nas análises estáti-
cas, não há execução mas a estimação do WCET é realizada utilizando-se
de um modelo matemático constituído pelo o binário da tarefa e caracte-
rísticas da plataforma alvo. No caso das análises híbridas, são combina-
das análises estáticas com medições. Independentemente da abordagem,
ferramentas de análise WCET fornecem uma estimativa do tempo de exe-
cução de um código que deverá ser igual ou maior que WCET real. Apli-
cações complexas são difíceis de analisar por qualquer abordagem (GUS-
TAFSSON, 2008). Análises estáticas podem gerar problemas complexos
não escaláveis geralmente relacionados ao hardawre, enquanto medições
necessitam de casos de uso que não necessariamente produzem o WCET
de uma aplicação. Para amenizar o problema relacionado a estimação do
WCET, tem-se mostrado interesse em arquiteturas projetadas especifica-
mente para sistemas de tempo real, como os trabalhos de (SCHOEBERL
et al., 2011), (LIU et al., 2012) e (SCHOEBERL et al., 2015)

Nesta tese, investiga-se uma arquitetura de processador VLIW –
Very-Long Instruction Word especificamente projetada para sistemas de
tempo real considerando sua análise do pior tempo de computação (WCET
– Worst-case Execution Time). Técnicas para obtenção do WCET para
máquinas VLIW são consideradas e quantifica-se a importância de técni-
cas de hardware como previsor de fluxo estático, predicação, bem como
velocidade do processador para instruções complexas como acesso a me-
mória e multiplicação. A arquitetura de memória não faz parte do escopo
deste trabalho e para tal utilizamos uma estrutura determinista formada
por uma memória cache com mapeamento direto para instruções e uma
memória de rascunho (scratchpad) para dados. Nós também considera-
mos a implementação em VHDL do protótipo para inferir suas caracterís-
ticas temporais mantendo compatibilidade com o conjunto de instruções
(ISA) HP VLIW ST231. Em termos de avaliação, foi utilizado um con-
junto representativo de código exemplos da Universidade de Mälardalen
que é amplamente utilizado em avaliações de sistemas de tempo-real.



Objetivos

O objetivo desta tese é investigar características de arquitetura de
processadores que levam a um projeto determinista mas também que con-
sideram o desempenho de pior caso (redução do WCET). A tese a ser
demonstrada é que é possível utilizar elementos de hardware que aumen-
tam o desempenho mas que são previsíveis o suficiente para garantir uma
análise estática eficiente e precisa. Para demonstrar previsibilidade, é in-
teressante demonstrar as técnicas de análise envolvidas na obtenção de
WCET de tarefas. Portanto, a construção de uma ferramenta de WCET
assim como os aspectos envolvidos na modelagem do hardware também
são assuntos cobertos neste trabalho.

Entre os elementos arquiteturais considerados, têm-se:

∙ Pipeline:

Pipeline é uma técnica que permite que operações complexas sejam
organizadas em outras mais simples com o objetivo de aumentar de-
sempenho. No caso de processadores deterministas, pipelines são
necessários mas as instruções devem ser executadas em ordem. Pi-
pelines com execução fora de ordem permitem um alto desempenho
de caso médio mas prejudicam a análise de WCET devido a anoma-
lias temporais (LUNDQVIST; STENSTROM, 1999).

∙ Paralelismo entre instruções:

Nos processadores modernos, o termo superescalar é utilizado quando
mais de uma instrução é executada em cada estágio de pipeline. Este
projeto supera a limitação de desempenho (throughput) de apenas
uma instrução executada por ciclo de máquina. No caso de proces-
sadores para sistemas de tempo-real, a execução de múltiplas ins-
truções por estágio de pipeline também pode ser utilizado utilizando
um projeto Very Long Instruction Word (VLIW) (FISHER; FARA-
BOSHI; YOUNG, 2005). Máquinas VLIW são mais adequadas para
sistemas de tempo real pois o escalonamento de instruções é deter-
minado pelo compilador e não em tempo de execução. Isso simpli-
fica a análise estática, pois escalonamento dinâmico de instruções



não precisa ser modelado.

∙ Primeiro nível do sub-sistema de memória:

O sub-sistema de memória é um assunto relevante em vários traba-
lhos (REINEKE et al., 2011). Há diversas abordagens e algumas
delas requerem modificações complexas no compilador ou no hard-
ware (SCHOEBERL et al., 2011). Neste trabalho, nós tratamos da
previsibilidade do sub-sistema de memória utilizando uma memória
cache de instruções com mapeamento direto bem como uma memó-
ria de rascunho (scratchpad) para dados. Memórias de rascunho são
similares às caches mas seu conteúdo é gerenciado explicitamente
pelo software.

∙ Previsão de fluxo:

Modificações no controle de fluxo de um programa são realizadas
por instruções especiais chamadas branches. Elas são utilizadas para
estruturas com condicionamentos (if ), laços (for e while) e geral-
mente degradam o desempenho do pipeline devido a ciclos de para-
das (stalls). Uma maneira de reduzir esta limitação é o uso de previ-
sores de fluxo. Há os previsores dinâmicos e os estáticos. Os dinâ-
micos prejudicam a previsibilidade enquanto os estáticos possuem
características interessantes para sistemas de tempo real (BURGUI-
ERE; ROCHANGE; SAINRAT, 2005). Nós consideraremos os pre-
visores estáticos, demonstrando sua importância em termos de de-
sempenho bem como a metodologia para considerá-los na análise
WCET.

∙ Predicação:

Predicação é uma técnica na qual instruções são condicionalmente
executadas baseando-se em um registrador Booleano. É diferente
dos branches pois não há qualquer modificação no fluxo do pro-
grama para ignorar instruções. Há dois tipos de predicação: com-
pleta e parcial. Predicação completa permite que instruções sejam
executadas ou ignoradas diretamente conforme o valor de um re-
gistrador Booleano (esta predicação é comumente empregada nos
processadores ARM). No caso da predicação parcial, instruções não



são ignoradas mas dois valores podem ser selecionados utilizando
um tipo especial de instrução (select). Predicação é uma técnica im-
portante para reduzir caminhos em um programa induzindo o para-
digma da programação de caminho único (Single-path programming
paradigm) (PUSCHNER, 2005). Nós suportamos ambos os tipos de
predicação e a versão completa é reestruturada para reduzir o im-
pacto no hardware.

∙ Instruções aritméticas complexas:

Há várias instruções aritméticas complexas como divisão e multipli-
cação que diminuem o desempenho do processador. Frequentemente
estas instruções são suportadas apenas por software, principalmente
a divisão. Neste trabalho, tanto divisão quanto multiplicação por
hardware são implementadas para que tenham previsibilidade inde-
pendentemente de seus parâmetros de entrada.

Contribuições

Dentre as contribuições deste trabalho, nós podemos citar: inves-
tigação sobre o espaço de projeto, avaliação de desempenho através de
conjunto representativo de códigos exemplos, detalhamento completo da
análise estática, implementação VHDL, caracterização temporal de cada
componente de hardware, detalhamento da arquitetura de controle de
fluxo e um sistema de predicação completo de baixo impacto para pro-
cessadores VLIW.

Realizou-se uma avaliação extensiva das técnicas apontadas acima
considerando os benefícios em termos de desempenho de pior caso. Notou-
se que uma avaliação tão ampla nunca havia sido considerada nos traba-
lhos relacionados pois nestes são focados objetivos específicos como sub-
sistema de memória, multi-threading ou multi-core. Nossa avaliação pode
guiar novas linhas de pesquisas relacionadas com sistemas de tempo real.

Foram também abordadas todas as análises necessárias para estimar
o WCET de programas compilados para o processador considerado neste
trabalho, incluindo cache, modelagem do pipeline e busca do pior cami-



nho do programa. Uma descrição completa de uma análise WCET para
processadores VLIW também não foi abordada nos trabalhos relaciona-
dos.

Todos os detalhes da arquitetura de controle de fluxo são descri-
tos, incluindo a metodologia para modelagem durante a análise WCET.
Também ampliamos o ISA para suportar previsão de desvio estático, bem
como os benefícios de usar ou não esta tecnologia em sistemas de tempo
real.

Quanto ao sistema de predicação completo, foi proposto um sistema
que adiciona baixa sobrecarga nos caminhos de dados de hardware e na
sua lógica de atalhos (forwarding logic). O sistema proposto diminui o
uso de instruções de controle de fluxo, bem como permite a utilizaçao
de técnicas de desenrolamento de laços (loop unrolling). No entanto, a
predicação sozinha não é suficiente para aumentar o desempenho e pre-
visibilidade e seu uso pode aumentar o tempo de execução (WCET). De-
vido a isso, propõe-se o uso de uma abordagem híbrida com suporte de
hardware para predicação e previsão estática de fluxo. Isto leva a uma
redução significativa do pior tempo de computação e permite otimizações
durante a compilação que pode selecionar a técnica apropriada para cada
estrutura.

Conclusão

Neste trabalho considerou-se elementos arquiteturais de processa-
dores que beneficiam a análise estática mas também contribuem para o
aumento do desempenho, principalmente para o pior caso de execução.

Como sistemas modernos impõem maiores requisitos funcionais,
processadores de maior desempenho são necessários. Portanto, é neces-
sário analisar os pontos fortes das técnicas de hardware usadas em pro-
cessadores modernos, por exemplo paralelismo temporal e espacial na
execução de instruções, previsão de desvios e predição, e para adaptá-los
para aplicações em tempo real. Algumas destas técnicas exigem modifica-
ções, devido à alta complexidade do hardware, enquanto outros precisam
de um comportamento temporal bem definido. Para atingir esses objeti-



vos, foram propostas novas abordagens, a fim de melhorar a eficiência e
a escalabilidade da análise temporal, especialmente a análise de tempo de
execução do pior caso. Mostrou-se que o projeto de processadores deve
aumentar o nível de importância do determinismo.

Foi possível verificar através dos testes de desempenho que as técni-
cas abordadas aumentaram o desempenho em todos os programas consi-
derados. Além disso, mostrou-se detalhadamente as técnicas necessárias
para realizar análise estática obtendo assim o WCET para todos progra-
mas testados.

A implementação VHDL do processador mostrou-se desafiadora
mas contribuiu significativamente para a caracterização temporal de cada
elemento de hardware.
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1 INTRODUCTION

Real-time computer systems are defined as those subject to tem-
poral requirements. They are relevant for diverse applications such
as aviation, spacecrafts, automotive electronics and diverse industrial
plants. Future real-time applications will require processors with higher
performance and they must satisfy strict timing constraints for their
correct functioning.

General-purpose processors usually are designed to perform the
common case fast and the uncommon case correct (SCHOEBERL,
2009b). This design philosophy leads to machines optimized for average-
case performance, which is not necessarily suitable for real-time sys-
tems. In order to verify strict timing constraints, we need to obtain
the computation time or Worst-Case Execution Time (WCET) of every
task of the systems. It has a considerable complexity and it depends
on hardware features such as processor and memory architecture.

The Worst-case execution time problem, well described in Wil-
helm et al. (2008), can be summarized by Figure 1. It is a timing dis-
tribution of the possible application execution time. There are two well
defined limits: the BCET (Best-case execution time) and the WCET.
The greater the difference between them, the worst is the predictability
of a system. Since there is hardware complexity in modern systems,
the BCET and the WCET cannot be calculated precisely, giving us
the lower and the upper timing bounds. There is also a common indus-
try practice of making measurements to obtain the system execution
time. Measurements are generally not safe for strict timing constrained
systems.

Modern processors use pipeline, various levels of data and in-
struction caches, dynamic branch prediction, out-of-order and specula-
tive execution and fined-grained multithreading (instructions of various
threads are dynamically executed in the processor pipeline). It can be
incredibly difficult to model the software timing behavior when ex-
ecuting on a processor which uses such techniques for WCET timing
analysis. The purpose of such timing analysis is to provide a safe worst-
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Figure 1 – The worst-case execution time problem (WILHELM et al.,
2008).

case execution time bound but it should not be extremely pessimistic
for practical use.

Future real-time systems need processors designed for predictabil-
ity instead of investing a lot of effort in temporal analysis (SCHOE-
BERL, 2009b), (EDWARDS; LEE, 2007),(SCHOEBERL et al., 2011).
But predictability alone is not enough. In such case, we would be em-
ploying 1980’s processors where instruction timing is entirely known in
datasheets. Real-time processors should have predictability and still a
reasonable WCET performance. The purpose of a real-time architec-
ture is to increase the worst-case performance (decrease the WCET)
and simplify system analysis. This is the object of study of this thesis.

1.1 BASIC CONCEPTS AND MOTIVATION

Real-time systems are classified considering the criticality of
their timing requirements. There are soft real-time systems and hard
real-time systems (LIU, 2000). If timing requirements are not com-
pletely met in soft real-time systems, the quality of service is jeopar-
dized like video streaming for instance. For hard real-time systems,
timing requirements must always be met. Those systems are found
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in critical applications like aviation or space systems where temporal
failures could lead to catastrophic consequences.

Real-time systems are modeled by tasks which are abstractions of
works competing for resources. Tasks are comprised by timing parame-
ters like WCET (C), maximum activation frequency or period (T ) and
deadline (D). The feasibility of a system is verified through schedu-
lability analysis where it is ensured that all deadlines are respected.
There is a lot of scheduling approaches for real-time systems (DAVIS;
BURNS, 2011) and knowledge of the tasks WCET is always a concern.

The importance of obtaining the WCET of each task for system
analysis is not a new problem. The question is how to estimate this
fundamental parameter for systems where they are not only restricted
to strict timing constraints but reasonable WCET performance is also
required. This is the main motivation of this work where we will investi-
gate processor architecture features capable of guaranteeing timing pre-
dictability, timing composability and increasing WCET performance.

1.1.1 Timing anomalies

The term anomaly denotes a deviation of the expected behavior
from the real behavior. A timing anomaly is the unexpected deviation
of real hardware behavior compared with the model used during tempo-
ral analysis (WENZEL et al., 2005). Predictions from models become
wrong and this could lead to erroneous calculation results by WCET
analysis methods. Thus, the concept of timing anomalies rather relates
to WCET analysis and does not denote malicious behavior during ex-
ecution.

WCET analysis is commonly performed in many phases. One
phase is responsible for the processor hardware modeling and it com-
putes upper bounds for program code snippets called basic blocks. The
timing of each block is usually calculated independently from the others
and it must consider an initial state. Due to lack of state information
(the processor model may contain simplifications), it is assumed the
worst behavior of hardware components (e.g. cache misses). Due to
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timing anomalies, assuming local worst case not necessarily means that
the worst computation time is calculated. Figure 2 illustrates an ex-
ample of timing anomaly. A cache hit in code snippet “a” triggers a
prefetch. This prefetch evicts the contents of snippet “b” and the ex-
ecution of a→ b takes 8 cycles. On the other side, if there is a miss
in “a” , there is no eviction of “b” and the execution of a→ b takes 5
cycles. This simple example demonstrates that local worst case of “a”
does not necessarily produces the global worst case of a→ b execution
due to a simple 3-cycle prefetch.

cycle

Cache MISS in a

Cache HIT in a

0 1 2 3 4 5 6 7 8

prefetch evicts cache contents of b

Figure 2 – Example of timing anomaly. Adapted from (WENZEL et al.,
2005).

Timing anomalies are common for dynamic scheduling in out-
of-order processors (LUNDQVIST; STENSTROM, 1999). There are
methods to analyze this type of architecture but usually they lead to
overestimations or extremely complex approaches. Sometimes proces-
sor features (like dynamic branch prediction) must be disabled to guar-
antee a feasible WCET calculation.

1.1.2 Timing predictability

A real-time system is not necessarily a high-performance system.
A common error is to assume that a task has to run on a fast proces-
sor to meet its deadline. Fast processors usually improve average-case
performance but can easily jeopardize the WCET analysis due to pre-
dictability issues.

To make sure that all tasks of the system meet their respec-
tive deadlines, it is necessary to determine the WCET of each one.
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This is possible if the hardware is time predictable or time analyzable.
This two concepts are formalized in (GRUND; REINEKE; WILHELM,
2011). Predictability is not a Boolean property. It should be expressed
by ranges allowing the comparison of systems, i.e., system X is more
predictable than Y . Moreover it considers some level of accuracy and
the maximum level is obtained when the system can be exactly pre-
dicted. Analyzability is how the system timing is modeled and it indi-
cates the capacity of this modeling to predict timing properties.

There are other predictability definitions as the one described in
(THIELE; WILHELM, 2004). They use the difference between the real
(exact) WCET and the estimated upper bound. Later, in (KIRNER;
PUSCHNER, 2010), they used the range between real BCET and real
WCET where a lower range implies a better predictability and BCET
equals to WCET is the maximum achievable predictability.

Predictability definitions/quantifications that use exact values
of WCET/BCET may be impractical because they actually cannot be
known, only estimated (SCHOEBERL, 2012). Systems should be com-
pared considering three basic aspects: hardware, compiler and WCET
analysis tool. The relevance of two of them can be characterized as fol-
lows. A task τ has 1000 WCET cycles running on processor A, but 800
WCET cycles running on processor B (considering hypothetically both
exact WCET values). Clearly, if we know those exact WCET values,
processor B is better than A. Unfortunately, the WCET estimation is
performed by a tool Sa for processor A and another tool Sb for processor
B and their estimated upper bounds are 1100 cycles and 1300 cycles
for A and B respectively. Now processor A is better. If predictability
is estimated by WCET real

WCET bound for instance, PA = 0.91 and PB = 0.61, A is
more predictable than B and the tool Sa is also better. An efficiency
problem arises if tool Sa takes one day and tool Sb takes minutes to
estimate the WCET of task τ .

As we can see, the notion of predictability should capture whether
a specified property of a system can be predicted by an optimal anal-
ysis and to what level of precision (GRUND; REINEKE; WILHELM,
2011)
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1.1.3 Timing composabilty

The complexity and the level of the requirements of real-time
systems are reasonable nowadays. It is necessary to analyse the sys-
tem to verify if timing requirements are met. But as described in
(PUSCHNER; KIRNER; PETTIT, 2009), there is a lack of methods
and tools to effectively reason about the timing of software. It is dif-
ficult for real-time software systems to be constructed hierarchically
from components while still guaranteeing timing properties. To achieve
a hierarchical construction, system components should be both com-
posable and compositional from the timing perspective. Composability
focuses on preservation of properties of an individual component when
it is integrated in an application and compositionality is the ability of
deducing global properties of the composed system from properties of
its constituent modules (MARTÍNEZ; CUEVAS; DRAKE, 2012). Be-
sides compositionality and composability, other properties should be
present (PUSCHNER; KIRNER; PETTIT, 2009) to achieve a com-
posable timing analysis: support for hierarchical development process,
predictability, scalability and performance.

Most hardware architectures used today can not provide the
properties listed by (PUSCHNER; KIRNER; PETTIT, 2009). Re-
garding composability, real-time tasks executing on the same hardware
compete for resources whose access times are state-dependent such as
data cache memories and branch buffers (used in branch prediction).
The state of these resources depends on the data addresses and on
the access history. We can see that state depends on spatial and tem-
poral aspects and, of course, the update strategy because both cache
and branch buffers have space limitations. The use of those hardware
mechanisms degrade composability because the property of an individ-
ual module or task is not preserved when it is integrated with other
tasks. The lack of composability when using branch prediction and
data cache memories degrades scalability as well because branch pre-
diction interferes with cache contents. WCET analysis must consider
both branch directions when the analysis cannot anticipate the outcome
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of the prediction.
Composability and predictability are also greatly affected in the

presence of timing anomalies. Timing anomalies related to WCET
analyses were first described by (LUNDQVIST; STENSTROM, 1999).
A timing anomaly is a situation where the local worst case does not
contribute to the global worst case, i.e., a cache miss, though increasing
the execution time, results in shorter global execution time. The first
condition to avoid timing anomalies is the use of in-order resources
(LUNDQVIST; STENSTROM, 1999) what is not common in today
hardware architectures. Timing anomalies jeopardize the composabil-
ity because we cannot divide WCET calculation in subproblems. Pre-
dictability is also affected because simplifications on the analyses will
not produce results with a reasonable accuracy margin.

In order to guarantee a composable timing analysis, state-of-
the-art processor technologies such as dynamic branch prediction and
cache memories with out-of-order pipelines should be avoided. Yet, as
stated by (PUSCHNER; KIRNER; PETTIT, 2009), strategies adopted
in real-time architectures should not lead to significant performance
losses when compared to state-of-the-art technologies.

1.2 THESIS OBJECTIVE

The objective of this thesis is to investigate various processor
architecture features that lead to a predictable design with reasonable
WCET performance. The thesis to be demonstrated is that it is possi-
ble to assemble together hardware elements that increase performance
but are predictable enough to ensure efficient and precise analyses. As
described in the previous section, one of the first steps to demonstrate
predictability is by obtaining the WCET. The construction of a WCET
analysis tool as well as aspects involved with the hardware are also sub-
jects of this work.

Among the architectural elements that are covered, we have:

∙ Processor pipeline:



38 Chapter 1. Introduction

Pipelining is a technique where complex operations are organized
into sequential simpler ones to increase throughput. In the case
of predictable processor design, pipelines are necessary but in-
structions should be executed in-order. Pipelines with out-of-
order execution allow high average-case performance but jeop-
ardize WCET analysis due to timing anomalies (LUNDQVIST;
STENSTROM, 1999).

∙ Instruction parallelism:

In modern processor design, the concept of superscalar is exten-
sively used where more than one instruction is executed in each
pipeline stage. This design overcomes the limitation of standard
pipelines where the maximum throughput is one instruction per
cycle. In the case of real-time processors, multiple instructions
could also be executed in each pipeline stage using the Very Long
Instruction Word (VLIW) design philosophy (FISHER; FARA-
BOSHI; YOUNG, 2005). VLIW machines are better for real-time
systems because instruction scheduling is fixed and defined offline
during compilation time and, that enhances the analyzability. No
hardware for instruction scheduling have to be modeled in VLIW
design.

∙ First level of the memory subsystem:

Memory subsystems designed for real-time systems are the sub-
ject of various recent works (REINEKE et al., 2011). There are
several approaches and some of them require complex modifica-
tions in the compiler and/or overload the hardware (SCHOE-
BERL et al., 2011). In this work, we will address the memory
predictability issues using a direct-mapped instruction cache and
a scratchpad memory for data. Scratchpad memories are simi-
lar to caches but their contents must be managed explicitly by
software.

∙ Branch prediction:
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Branches are instructions that perform conditional control-flow
modifications. They are used for if, for and while structures and
they usually decrease pipeline performance adding stall cycles to
the pipeline. One way to overcome this limitation is the use of
branch prediction. There are dynamic branch predictions and
static branch predictions. The use of dynamic branch predictions
jeopardizes predictability and the static ones provide interesting
WCET performance (BURGUIERE; ROCHANGE; SAINRAT,
2005). We support static branch prediction demonstrating its
importance in terms of performance and we provide methods for
correct WCET analyzability.

∙ Predication:

Predication is a technique where instructions are conditionally ex-
ecuted based on a Boolean register. It is different from branches
because there is not any control flow modification to execute or
ignore instructions. There are two types of predication: partial
and full. Full predication allows instructions to be executed or
ignored directly based on a Boolean register (this type of predi-
cation is common in ARM architectures). In case of partial pred-
ication, instructions cannot be ignored through a Boolean oper-
ator but two values can be selected using special select instruc-
tions. Predication is an important technique to reduce program
paths through inducing to the single-path programming paradigm
(PUSCHNER, 2005). We support both partial and full predica-
tion but the latter is simplified to improve WCET analysis with-
out jeopardizing performance.

∙ Complex arithmetic instructions:

There are complex arithmetic instructions like division and mul-
tiplication that impose considerable overhead to the processor
pipeline. Frequently, those instructions are only supported via
software, mainly division. In this work we support both hard-
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ware division and multiplication and they are implemented to
have constant timing independently of their input parameters.

We conduct a study of the impact on the WCET performance
of those processor features that are typically disabled or not fully ex-
plored in real-time applications. Such features include the use of static
scheduling VLIW processor with wide fetch, the importance of static
branch prediction, the performance of complex instructions (memory,
multiplications, division) and the use of predication.

Increasing the performance of real-time processors while preserv-
ing analyzability is a relevant subject. For that purpose, we analyze
the WCET performance of the deterministic four-issue Very Long In-
struction Word (VLIW) processor prototype describing its features and
its timing characteristics. This prototype is implemented in VHDL us-
ing an Altera Cyclone IV GX (EP4CGX150DF31C7) in a DE2i-150
development board.

Besides the VHDL prototype, there are other products of this
thesis like the implementation of the hardware modeling of the WCET
analysis tool and cycle accurate software simulator. Both WCET anal-
ysis tool and the simulator are written in C++. In order to have a
compiler for the architecture and to provide a customizable environ-
ment to research real-time compiler capabilities, a new code generator
back-end for LLVM (LATTNER; ADVE, 2004) was implemented but
it is out of the scope of this thesis.

In terms of test cases, we used representative examples of Mälar-
dalen WCET benchmarks (GUSTAFSSON et al., 2010) which are com-
monly used for WCET evaluations.

1.3 CONTRIBUTIONS

Regarding our main contributions to real-time processor archi-
tectures, we can highlight:

∙ Design space investigation and evaluation:
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We made a complete evaluation of the proposed techniques and
we highlighted their performance benefits.

∙ Complete WCET analysis for the proposed design:

We present all necessary analyses to perform WCET estimations
of programs compiled for the design proposed in this thesis. Such
analyses include cache modeling, pipeline modeling and worst-
case path search. An integrated environment between WCET
and compiler is utilized to enhance WCET estimation.

∙ Complete VHDL design and timing characterization:

We describe the implementation of the researched approaches re-
garding our deterministic real-time processor. We describe the
timing of each module and their VHDL implementation, which
are necessary for WCET modeling and estimation.

∙ Detailed branch architecture:

All details of the branch architecture are described including our
methodology to model it during WCET analyses. We also ex-
tended the ISA to support static branch prediction and estimated
the performance benefits of using or not this technology in real-
time systems.

∙ Low overhead full predication system for VLIW processors:

We propose a low-overhead full-predication system without adding
overhead to the hardware data paths or its forwarding logic. The
proposed predication system enhances the support of the single
path execution as well as loop unrolling techniques.

1.4 TEXT ORGANIZATION

This thesis is organized in eight chapters including the Introduc-
tion which covers some basic concepts about predictability considera-
tions, our main motivation and the thesis objective.
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Chapter 2 describes techniques employed in modern processors
and how they affect hardware predictability. Pipeline principles, in- and
out-of-order execution, branch prediction and predication are topics in
the scope of this chapter.

Chapter 3 presents a list of related researches with their main
contribution and objectives.

Chapter 4 is the core of this thesis. We describe the thesis ratio-
nale and the problem defining our target system and its requirements.
We discuss design decisions for the proposed architecture comparing
them with the related researches and we highlight our contributions.

Chapter 5 presents the VHDL hardware implementation of the
design. This chapter is important because the implementation is the
architecture realization of the proposed design. With this realization, we
can infer hardware complexity of each component and the timing of the
processor. The timing behavior is important for the WCET estimation
which is covered in Chapter 6. This particular chapter describes how
we propose to analyze the processor using composability. Instruction
cache modeling, pipeline analysis and worst-case path search are topics
in the scope of this chapter.

Chapter 7 describes our evaluation methodology. We assess the
impact of architecture techniques upon WCET performance. The main
idea is to quantitatively show WCET performance gains considering
features employed in our design such as wide instruction fetching, la-
tency of memory operations, static branch prediction and predication.

Finally, Chapter 8 presents our final remarks and suggestions for
future work.
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2 PROCESSORS AND PREDICTABILITY CONSIDERATIONS

In this chapter we briefly describe some important processor as-
pects that will be used throughout this thesis. We also consider the
impact of using those techniques in the design of a processor suitable
for future real-time systems.

The design and specification of a microprocessor include its In-
struction Set Architecture (ISA). It specifies what instructions the pro-
cessor can execute. The hardware implementation is characterized by a
Hardware Description Language (HDL) and it describes simple Boolean
logic (logic gates), registers and more complex structures such as de-
coders and multiplexers. Entire functional modules such as adder and
multiplier circuits can be developed with these HDL structures.

Literature usually defines three abstraction levels (SHEN et al.,
2005) for computer architectures: architecture, implementation and re-
alization. The architecture specifies the ISA and defines the fundamen-
tal processor behavior. All software must be encoded using such ISA.
Some examples of ISA are MIPS32, AMD x86_64, ARM e ST200. The
implementation specifies the project of the architecture, known as mi-
croarchitecture. The implementation is responsible for pipeline, cache
memories and branch prediction specifications. The realization of a
processor implementation is the physical encapsulation. In the case
of microprocessors, this encapsulation is the chip. Realizations can
vary depending on operating frequency, cache memory capacity, buses,
lithography and packing. Realization also impacts on attributes as die
size, power and reliability.

The ISA also defines a contract between the software and the
hardware. This contract leads to an independent software and hard-
ware development. Programs encoded using a particular ISA can be
executed on different implementations with different levels of perfor-
mance.
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2.1 PIPELINE PRINCIPLES

Pipelining is a powerful technique to increase performance with-
out massive hardware replication. Its main purpose is to increase the
processor throughput with a low hardware increment. Throughput is
the amount of instructions performed per unit of time – Instructions
per cycle (IPC) . If a processor performs one instruction per unit of
time, its throughput is 1/D where D is the instruction’s latency. When
using a pipeline, the processor subsystem is decomposed between sev-
eral multiple simple stages adding a memory (buffer) between each of
those stages. The original instruction is now composed of k stages and
a new instruction can be initialized immediately after the previous one
reaches the second stage. Instead of issuing an instruction after D units
of time, the processor issues a new one after D/k units of time and the
instructions are overlapped along the pipeline stages.

The performance improvement is ideally proportional to the pipe-
line length. However, there are physical limitations that reduce the
number of feasible pipeline stages. In general, the limit of how a syn-
chronous system can be divided into stages is associated with the mini-
mum time required for the circuit operation: the uncertainty associated
on using high frequencies and the distribution of circuit delays. Besides
physical limitations, there is a cost and performance ratio that deter-
mines the optimal number of pipeline stages for a processor (SHEN et
al., 2005) since hardware needs to be added for each added pipeline
stage.

There are three basic challenges on using pipelines:

∙ Pipeline stages should be balanced to provide uniform sub-computa-
tions with same latency.

∙ Instructions should be unified to provide identical sub-computations
using all stages.

∙ Instructions should be independent to reduce pipeline stalls.
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Uniform sub-computations with the same latency reduce internal
pipeline fragmentation. It is difficult to provide perfect and balanced
stages and the pipeline operating frequency will be associated with the
stage with higher latency. Processors also execute different types of
instructions and not all of them will require all stages to execute. Since
usually it is not possible to unify all sub-computations for all types
of instructions, some degree of external fragmentation will exist and
instructions need to pass every pipeline stage even if a particular stage
is not required. If all computations were independent, a pipeline could
operate in a continuous stream and it achieves to maximum throughput.
Unfortunately, processor instructions are not fully independent and the
result of one instruction could be required for the computation of the
next one. If there is no hardware mechanism to forward this result to
the next instruction, the pipeline must stall to guarantee instruction
semantics.

One generic 5-stage pipeline is naturally formed by one basic
instruction cycle divided into the next five generic sub-computations:

1. Fetching (F).

2. Decoding (D).

3. Executing (E).

4. Memory accessing (M).

5. Results writing back (WB).

This generic pipeline begins with an instruction being fetched
from memory. Next, it is decoded to determine which type of work will
be performed and one or more operators are fetched from the processor
registers. As soon as the operators are available, the decoded instruc-
tion is executed and the cycle ends by writing back the result in the
memory or in the registers. During these five generic sub-computations,
some exceptions can occur by changing the machine state and they are
not explicitly specified in the instruction. The complexity and latency
of each stage varies significantly depending on the processor’s ISA.



46 Chapter 2. Processors and predictability considerations

Considering a modern RISC processor, the generic 5-stage pipeline
executes three basic instructions classes:

1. Arithmetic and logical instructions (add, sub, shift) – performed
by an ALU (Arithmetic Logical Unit);

2. Memory instructions (load/store): performed by a memory unit
that moves data between register and memory;

3. Control flow instructions (branch, calls and jumps): performed
by a branch unit that manipulates the control flow.

Arithmetic instructions are restricted only to processor register
operands. Only memory instructions access the memory. These restric-
tions form a load/store RISC architecture. Control flow instructions
are used to manipulate the control flow to support function calls/re-
turns as well as loop, if-then-else and while structures. They usually
use relative addressing and the calculation of target address uses the
program counter (PC) as reference.

Tables 1, 2 and 3 present instruction details related to the three
basic instruction classes and the 5-stage generic pipeline (SHEN et al.,
2005). Although they share sub-computation, they require different
resources leading to idle stages.

Table 1 – Arithmetic instructions specification.

Stage Task

F Memory instruction access
D Decode and read registers
E Perform calculation
M

WB Write data into registers
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Table 2 – Memory instructions specification.

Stage Load Store

F Memory instruction access
D Decode and read registers
E Generate memory address

(base + offset)
M Access data memory

WB
Write data
into registers

Table 3 – Control flow instructions specifications.

Stage Unconditional Conditional

F Memory instruction access
D Decode and read registers
E Generate target address
M Evaluate condition

WB Write back new PC If true, write back new PC

2.1.1 Minimizing pipeline stalls

A computer program is an assembly instruction stream. Shen et
al. (2005) define an instruction as a function i : T ← S1 op S2, where
D(i) = {S1,S2} is its domain and I(i) = {T} is its image. S1 and S2 are
source operands (e.g. registers) and T is the destination (e.g. register).
The relation between the domain and the image is defined by operator
op. Let these be two instructions i and j where i precedes j. Instruction
j could be dependent on i if one of the following three conditions of
Equations 2.1, 2.2 and 2.3 holds.



48 Chapter 2. Processors and predictability considerations

I(i)∩D( j) ̸= /0 (2.1)

I( j)∩D(i) ̸= /0 (2.2)

I(i)∩ I( j) ̸= /0 (2.3)

The condition of Equation 2.1 happens when an instruction j
needs an operand belonging to instruction’s i image. This is a read-
after-write (RAW) or true dependency and it denotes that j must not ex-
ecute until i completes. Equation 2.4 shows this situation using generic
assembly instructions. Instruction i writes to register R3 which is im-
mediately read by j.

i : R3← R1 op R2

j : R5← R3 op R4 (2.4)

The condition of Equation 2.2 happens when an instruction j
writes into an operand of i. This is a write-after-read (WAR) or anti-
data dependency and it denotes that j must not execute before i or
i will operate using a wrong operand value. Equation 2.5 exemplifies
this dependency in which register R1 is read by i and it is immediately
written by j.

i : R3← R1 op R2

j : R1← R4 op R5 (2.5)

The third condition, Equation 2.3, happens when both instruc-
tions i and j write into the same register. This is write-after-write
(WAW) or output dependency and it denotes that an instruction j
must not complete before i. Equation 2.6 shows this dependency where
both instructions i and j write into register R3.

i : R3← R1 op R2

j : R3← R6 op R7 (2.6)
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All above dependencies must be respected to ensure correct pro-
gram semantics. Pipelines could easily break instruction semantics and
there must be mechanisms for identifying and resolving them. A po-
tential dependency violation is known as a pipeline hazard.

D:

E:

M:

WB:

F:

D

E

M

F

WB

ALU Load Store Branch

Arithmetic
execution

Registers
write back

Address generation

Memory
read

Instruction fetch

Instruction decoding and register reading

Memory 
write

PC
update

Branch
evaluation

PC update

Figure 3 – Generic 5-stage pipeline representation.

Observing our generic 5-stage pipeline represented in Figure 3,
not all hazards are automatically resolved. Considering the registers,
they are read in stage D and written in stage WB. The output depen-
dency is respected since writes are always sequential and only executed
by stage WB. The anti-data dependency is also respected because every
instruction i reads its operand before an instruction j writes into it.
However, true dependency is not respected. If two instructions i and j
are directly sequential and true dependent, when j reaches the stage D,
i is still executing in stage E and, therefore, j must hold until i reaches
stage WB.

There are also control dependencies involving program control
flow semantics in our generic 5-stage pipeline. A control flow hazard is a
true dependency on the program counter (PC). Control flow instructions
write into PC and stage F reads and updates its value every cycle. If
a conditional control flow is executed, it could update the PC with
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the target address on true condition or the next linear address could
be fetched on false. Since the control flow instructions update the PC
only in the stage WB, there is a true dependency violation because PC
is read before WB updates the new address.

A simple way to resolve pipeline hazards is to prevent instruc-
tions progression until the dependent instruction leaves the critical
pipeline stage. This could be done by an interlock hardware mech-
anism which identifies dependency violations and stalls the pipeline or
by the compiler with instruction reordering (better instruction schedul-
ing) and/or adding “no operation” instructions. Table 4 shows the nec-
essary stall cycles for each type of instruction to guarantee instruction
semantics.

Table 4 – Maximum necessary stall cycles for dependency resolution.

Instruction type
ALU Memory Flow

Registers Ri/R j Ri/R j PC
Write stage (i) WB (5) WB (5) WB (5)
Read stage ( j) D (2) D (2) F (1)
Latency 3 cycles 3 cycles 4 cycles

We can see that adding stalls to prevent pipeline hazards sub-
stantially decreases the overall processor performance. Another feasible
solution is to include hardware to build forwarding paths that forwards
newer results to the necessary pipeline stage. On using forwarding
paths, hardware mechanisms detect possible dependencies and multi-
plexers are added to units inputs to use newer values. For instance,
stalls of two arithmetic sequential true dependent instructions are re-
moved since the result of the first is ready in stage M and it is forwarded
to stage W. Table 5 shows the updated stall values if we add this hard-
ware to our 5-stage generic pipeline.

Most of dependency resolution stalls could be removed by using
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Table 5 – Maximum necessary stall cycles for dependency resolution with
forward paths.

Instruction type
ALU Memory Flow

Registers Ri/R j Ri/R j PC
Write stage (i) WB (5) WB (5) WB (5)
Read stage ( j) D (2) D (2) F (1)
Forward output E, M, WB M, WB
Forward input ALU ALU F
Latency 0 cycles 1 cycle 4 cycles

forward paths, specially for ALU instructions. Memory to ALU stalls
could not be totally removed since memory reads are executed in stage
M and its value is not ready when a truly dependent instruction is
already in stage E. The most critical situation is related to control
flow instructions. The fetch stage reads the PC at the beginning of
the pipeline stage and control flow instructions update it only at stage
WB. It cannot be forwarded since it will never be updated before new
instructions are fetched. One way to reduce control flow latency is using
branch prediction but it could decrease predictability and it will be
discussed in a further section. Figure 4 displays the data-flow overview
when using our generic 5-stage pipeline with forward paths.
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Figure 4 – Generic 5-stage pipeline with forward paths.
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2.2 MULTIPLE INSTRUCTION FETCHING

Pipelines described in the previous section reach a theoretical
k speed-up factor where k is the number of stages. Their maximum
throughput could also reach about 1 instruction per cycle (IPC). In-
stead of dividing the work in k simpler stages, we can reach this per-
formance replicating the work with k copies allowing a different type of
instruction level parallelism (ILP). Standard pipelines provide temporal
parallelism while allowing multiple instruction execution give us spatial
parallelism. If temporal and spatial parallelism are combined, proces-
sors could reach more than one instruction per cycle. Pipelining allied
with wider instruction fetch constitute superscalar and VLIW (Very
Long Instruction Word) machines. Both types of machines provide
higher ILP and the basic difference between them is related to instruc-
tion scheduling. In superscalar machines, the hardware is responsible
for instruction scheduling while in VLIW machines, instructions are
statically scheduled by the compiler.

Figure 5 shows a dual-issue pipeline where the execution stage
E is composed of different types of execution units. This machine
can, for instance, execute at the same time one ALU and one memory
instruction. In this design, each functional unit can be customized to a
particular instruction resulting in a more efficient hardware. Each type
of instruction has its own latency and uses all stages of its functional
unit. If the intra-instruction dependencies are resolved before being
forwarded to the functional units, there will be no pipeline stalls. This
scheme allows distributed and independent control of each sub-pipeline
execution. Replicated units such as ALUs can be added to this design
allowing dual arithmetic instruction execution.

2.2.1 Out-of-order execution

If out-of-order execution is allowed in the execution stage of a
diversified pipeline, we constitute a superscalar machine with a dynamic
pipeline. This is one of the most successful designs and this is the type
of machine used in general purpose applications such as smartphones,
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Figure 5 – Diversified pipeline example: Mx are memory sub-stages, FPx

are floating-point stages and BRx are branch stages.

desktop computers and laptops. Figure 6 shows an example of this
design.

Dynamic pipelines have two special buffers (dispatch and re-
order) and a hardware instruction scheduler. Instructions are fetched
and decoded in a multi-issue fashion and the hardware scheduler is
responsible for instruction assignment in the correct execution sub-
pipeline. Instruction dependencies are also checked and when there are
stall generating instructions, independent ones are issued into the exe-
cution stage. After all dependencies are resolved, stalled instructions in
the dispatch buffer are executed. In the pipeline end, there is a reorder
buffer to guarantee correct semantic order.

Superscalar processors are complex machines intended to extract
the maximum performance abstracting latency details during the com-
pilation phase. These abstractions also provide better code compatibil-
ity allowing different processor implementations and realizations to be
binary compatible. Complex hardware is necessary to provide out-of-
order execution and more details of this design is presented in Shen et
al. (2005). However, out-of-order execution leads to timing anomalies
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Figure 6 – Dynamic pipeline example: Mx are memory sub-stages, FPx

are floating-point stages and BRx are branch stages.

and the high hardware complexity leads to unbounded states during
WCET analysis.

2.2.2 In-order execution

Multiple instruction fetching with in-order execution and with-
out hardware instruction scheduling leads to a VLIW (Very Long In-
struction Word) design. The VLIW philosophy exposes the hardware
not only at the ISA level but also at Instruction Level Parallelism (ILP).
Superscalar machines extracted ILP using hardware features rearrang-
ing operations not directly specified in the code. VLIW processors do
not perform any instruction scheduling and ILP must be provided by
the compiler. Instruction rearranging (scheduling) is performed offline
during compilation and the processor executes instructions exactly as
defined by the compiler. The main idea is not to let the hardware do
things that cannot be seen in programming, to reduce processor com-
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Table 6 – Basic differences between VLIW and Superescalar designs
(FISHER; FARABOSHI; YOUNG, 2005).

Superescalar VLIW

Instruction
flow

Multiple scalar opera-
tions are fetched

Instructions are fetched
sequentially but with
multiple operations

Scheduling Hardware dynamic
scheduler

Compiler static sched-
uler

Fetch width Hardware dynamically
determines the number
of fetched instructions

Compiler determines
statically the number of
fetched instructions

Instruction
ordering

Dynamic fetching al-
lowing out-of-order and
in-order execution

Static fetching with
only in-order execution

Implications Superescalar design is
related to microarchi-
tecture techniques

VLIW is an architec-
tural technique. Hard-
ware details are ex-
posed to the compiler

plexity, to have only simple instructions and to increase predictability
when needed. Table 6 shows basic differences between superscalar and
VLIW designs.

VLIW designs are not commonly used in general purpose com-
puting but they are very popular in embedded applications. Several
DSPs (Digital Signal Processors) like Texas Instrument C6x, Agere/-
Motorola StarCore, Suns’s MAJC, Fujitsu’s FR-V, STss HP/ST Lx
(ST200), Philips’ Trimedia, Silicon Hive Avispa, Tensilica Xtensa Lx
and Analog Devices TigerShark are VLIW processors. Intel’s Itanium
architecture for servers also uses this design philosophy.

VLIW compilers are more sophisticated since they must perform
operations usually executed by the superscalar hardware. A superscalar
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control unit avoids sophisticated compilers. The fact that all ILP ex-
traction is done by the hardware every time an instruction is fetched
by the processor control unit shows that this work could be easily done
by the compiler. The code reordering after out-of-order execution is
relatively trivial and compilers can handle it easily and they can evolve
faster than a new processor construction.

Considering real-time systems, VLIW is a very interesting solu-
tion since hardware modeling is considerably less complex, in-order exe-
cution avoids timing anomalies and higher performance can be achieved
using multi-issue instruction fetching.

2.3 BRANCH PREDICTION

Conditional control flow instructions are usually responsible for
if and loop program constructions and, unfortunately, they break the
ideal pipeline flow reducing performance. Since control flow dependen-
cies cannot be forwarded, as showed in Section 2.1, branch prediction
techniques are commonly used to reduce this performance loss.

Instead of stalling the pipeline until the branch condition is
evaluated and the target address computed, both are speculated and
pipeline continues to execute a speculated path. This additional hard-
ware is the branch predictor and it is responsible for condition/target
address speculation and the recovery if the wrong path is taken.

General purpose modern processors use advanced history based
branch predictors. This type of dynamic predictor registers previously
branch directions as taken (T) or not taken (N) and their addresses as
well. To predict the path of the next branch, this history is considered.
History based predictors are very effective and they can predict 99% of
branch directions (SHEN et al., 2005). Figure 7 illustrates the behavior
of a two-bit predictor. Two-bit states and target addresses for each
branch are registered into hardware buffers known as Branch Target
Buffers (BTB) and they are essentially fully-associative caches.

Hardware elements which use execution history to increase per-
formance are not very suitable for real-time systems. They are difficult
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Figure 7 – Example of a two-bit branch predictor (SHEN et al., 2005).

to model in the WCET analysis and can lead to timing anomalies. In-
stead of using history-based, the use of static branch prediction is more
interesting for real-time processors and they affect WCET more pos-
itively than dynamic ones (BURGUIERE; ROCHANGE; SAINRAT,
2005).

In processors with static branch predictors, the compiler could
choose a static branch direction for each branch. If the common di-
rection of each branch can not be determined, a default one must be
used. The most common approach is to use the not taken direction as
default, because this has less penalty in the case of a missprediction.
If a branch is predicted as not taken and the condition is evaluated
to false, no penalty occurs, because the fall-through path, which is the
correct one, has already been taken by the processor pipeline. However,
if this same condition is evaluated to true, the fall-through path must
be flushed from the pipeline and the program flow must be resumed
along the correct path (branch target). On the other hand, if a branch
is predicted as taken, and the branch target address is determined, its
path is executed until the resolution of the condition. If the condition
is evaluated to true, we possibly have only the penalty of the cycles
needed for the address calculation. But, if the condition is evaluated
to false, the taken path must be flushed and the execution must be
resumed along the fall-through path.
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2.4 PREDICATION

Predication is an architecture technique that helps the compiler
to convert control dependencies into data dependencies. By using pred-
icates, individual instructions can be deactivated by the Boolean value
without any program flow operation. This leads to conditional execu-
tion or guarded execution (FISHER; FARABOSHI; YOUNG, 2005).

This is a powerful technology specially for real-time systems be-
cause it gives the compiler the ability to reduce branch instructions
and avoid branch prediction side effects and possible pipeline hazards.
Many modern processors use this technique and its use will be illus-
trated by the simple C language code in Table 7. There are two types
of predication: full and partial. In full predication, an additional bit
guard (px) is read for each instruction and if it is false, this particular
instruction is ignored. In partial predication, the processor’s ISA sup-
ports a select or conditional move and a particular value is moved to
its destination based on the bit guard. Table 7 shows the conditional
code showed previously in normal mode (with branch), partial and full
predication modes.

In the normal execution, the instruction at Line 1 makes the
comparison (cmpgt: compare greater than) assuming that variable x
is in register r5 and the result is stored at the bit register p1. br f
performs a branch to L1 if p1 is false (brf: branch if false). We can
note that the multiplication at Line 4 is ignored using a control flow in-
struction. Observing the full-predication execution, there is no control
flow operation and the multiplication (mull) is automatically ignored if
p1 is false. In the partial-predication, the multiplication is always exe-
cuted at line 1 but its result is only considered if the select instruction
(slct) at Line 4 moves the result to register r3 if p1 is true.

There are several works like (MAHLKE et al., 1995; CHOI et
al., 2001) considering the predication for general purpose processors
and Intel’s Intanium has a very aggressive predication system. Be-
sides helping to reduce control flow instructions, the average-case per-
formance could be easily jeopardized because in both partial and full
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Table 7 – Comparison between branch code, full and partial predication
(HP ST200 ISA – Apendix A).

if (x > 0) x is r5; p1 stores comparison result
c = a * b; c is r3; a is r1; b is r2

V[0] = c; V[0] is (r0 + 0)

Branch code Full predication Partial predication

1 cmpgt p1, r5, 0 cmpgt p1, r5, 0 mull r4, r1, r2
2 cmpgt p1, r5, 0
3 brf p1, L1 (p1) mull r3, r1, r2
4 mull r3, r1, r2 slct p1, r3, r4
5
6 L1:
7 stw r3, r0, 0 stw r3, r0, 0 stw r3, r0, 0

predication modes, instructions could be executed even if they do not
belong to a given path. This situation is very well illustrated by the
partial predication in Table 7 where a multiplication is always executed
regardless of the path.

Considering the compiler, predication could also lead to better
instruction scheduling because larger blocks of code could be produced.
Normally it executes a pass known as if conversion that converts nor-
mal branch to predicated code. The predication system also allows an
advanced compiler optimization called software pipelining (FISHER;
FARABOSHI; YOUNG, 2005; GROSSMAN, 2000).

Full predication seems to be more flexible and easier to imple-
ment during if conversion but it needs special instruction encoding and
increases considerably the forward paths, especially in multi-issue pro-
cessors. The predicated mul instruction illustrated earlier must read
three input operands (one predicate and two multiplication coefficients)
and write one operand. This additional predicate operand must be read
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every time an instruction is decoded and 3 bits of instruction encoding
are lost if seven predicates are supported. The partial system, mean-
while, needs only subtle ISA modifications adding few special condi-
tional move instructions.

In the case of real-time systems, predication is important because
it increases the code predictably and leads to programs with fewer paths
(GEYER et al., 2013). The performance loss of the average case is also
not an issue because real-time systems need performance of the worst-
case scenario and fewer differences of the best-case, average-case and
worst-case times lead to higher predictability.

2.5 CACHE MEMORIES

Cache memories are generally used to minimize the gap between
processor and memory performances. Usually, main memory is slower
than the processor so a fast cache is placed between them where most
recent data is stored promoting faster access.

A cache memory is characterized by its capacity, line size and
associativity. Capacity is the caches’ total number of bytes; line size is
the quantity of bytes transferred from memory to cache when a cache
miss occurs. A cache could have n = capacity

line. size lines. Caches are much
smaller than main memory and associativity consists of the mapping
of various main memory addresses to cache lines. A direct-mapped
cache has unitary associativity, where a specific main memory address
is always mapped to the same cache line. If associativity is two, a main
memory address is mapped to 2 different cache lines. When associativ-
ity is not unitary some sort of replacement policy must exist to decide
which line will have data eviction. There are basically three policies
implemented in the cache design: FIFO (first in, first out), LRU (Least
Recently Used) and random.

Considering cache misses, there are three main causes:

∙ Compulsory misses or cold cache: they happen when there is
the first reference to a particular memory address. These are
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fundamental misses and they cannot be completely avoided by
any technique.

∙ Capacity misses: they happen when there is no space left in the
cache to store a particular memory block. Increasing the cache
size can eliminate some or all of the capacity misses.

∙ Conflict misses: they happen due to imperfect allocation and
mapping of memory blocks to cache lines. Changes in associativ-
ity or indexing function can improve conflict misses.

Various cache levels could also be used in processor design with
different sizes and associativities. However, these complex cache de-
signs are not suitable for real-time processors because they can easily
forbid WCET analysis due to complex cache interference and no deter-
ministic data eviction (SCHOEBERL, 2009b). Shared instruction and
data caches should also be avoided. During worst-case cache analysis,
accessed memory addresses must be predicted. Data from the instruc-
tion memory are easier to determine if the call tree is known. However,
dynamically allocated data (heap) are difficult to predict statically be-
cause such addresses are only available at runtime. Without knowing
the address, a single access can influence all cache sets. Predictable
eviction policies like LRU are also more suitable for real-time applica-
tions.

2.6 SCRATCHPAD MEMORY

Scratchpad memories are designed with the same technology of
cache memories, but they do not implement hardware data manage-
ment. On using scratchpads, the compiler must explicitly manage data
memory using static or dynamic allocation. When exposing the mem-
ory hierarchy with scratchpads, more work must be done by the com-
piler. However, timing of memory accesses depends only on which and
how many memory blocks are accessed and additional latencies or un-
known states provided by the hardware controller are non-existent. The
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predictability associated with utilizing scratchpads is very interesting
for real-time applications. Since hardware controllers are non-existent,
this additional area can be used in order to increase scratchpad size.

Scratchpads and main memory address spaces are usually unified
and transfers between them are performed by Direct Memory Access
(DMA) protocols (BANAKAR et al., 2002). The difference between
an access to the main memory and to the scratchpad is only their
addresses. Furthermore, there is not any hardware coherence protocol
between memories. If necessary, such coherence must be developed in
software.

There are various methods of performing data management for
scratchpads for real-time systems including analysis for preemptive
multitasking (WHITHAM et al., 2012). There are additional approaches
that favor static partitioning of the scratchpad among real-time tasks
(WHITHAM; AUDSLEY, 2010).

2.7 CHIP MULTITHREADING

Chip multithreading is another technique to increase processor
performance. Typically, fine-grained multithreading is implemented
where instructions of different threads are overlapped in the processor
pipeline. The execution stage with various units is shared among mul-
tithreading fetch units and instructions of diverse threads are executed
in parallel. Since different execution contexts are necessary, general
purpose registers and state registers are replicated by the number of
supported hardware threads. If there is some resource contention, like
a single memory unit for instance, threads are typically stalled until
this resource is available. This is the basic principle of Intel’s Hyper-
threading technology and a dual multithreading system behaves like a
dual core system for the operating system.

Fine-grained multithreading is possible for real-time systems if
the hardware thread scheduler and resource contention protocols are
well defined and predictable. Round-robin scheduler and Timed Divi-
sion Access (TDM) protocol are usually employed. Multithreading can
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also remove pipeline dependencies. If we have a five-stage pipeline with
five hardware threads, it is possible to remove all forward logic since
for each pipeline stage there will be a different thread instruction exe-
cuting and pipeline dependencies never occur. This is the fundamental
idea of the work of Liu et al. (2012). However, if the number of acti-
vated threads is less than the number of hardware threads available,
the number of instructions per cycle is severely penalized. Considering
a scenario with only one activated thread and five hardware threads,
the number of instructions per cycle is only 0.2 since a newer instruc-
tion can only be issued after the old one is completed. Memory access
for multithreading systems should also be special to remove or decrease
thread interference.

Some works like Schoeberl (2009b) criticize chip multithreading
for real-time systems since its analysis is more complex and the repli-
cated hardware could be used for chip multiprocessing.

2.8 CHIP MULTIPROCESSING

Most modern computer systems available today use processors
with a single chip and multiple cores. Commonly these cores share a
single main memory and they are developed with complex and large
shared caches. Memory consistency between cores is usually managed
by hardware and there are complex internal chip networks to support
data transfer and consistency between all cores.

Real-time systems with chip multiprocessing are also viable and
this is a tendency as the complexity of these systems grows. Unfor-
tunately, the technology employed in general purpose computing does
not apply for real-time systems because it increases average-case perfor-
mance but predictability proprieties are lost. Shared caches and com-
plex hardware networks make the WCET analysis unfeasible. There
are several works like Schoeberl et al. (2015) dealing with multipro-
cessor designs for real time. In most approaches Timed Division Ac-
cess (TDM) protocols are accompanied by real-time networks and data
transfer between cores is explicitly managed.
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2.9 SUMMARY

In this chapter, we briefly surveyed some relevant processor as-
pects and their relation to real-time systems. These aspects are impor-
tant for the subsequent chapters and some of them ensure predictability
and performance while others can severely jeopardize WCET analysis
capabilities. Table 8 shows a comparison of techniques used by general
purpose processors and their alternative for real-time systems.

Future real-time applications will need performance and a pre-
dictable pipeline is necessary to provide instruction temporal paral-
lelism. When using pipelines, it is equally important to explore and
optimize their number of stages, hazard resolution and avoid unneces-
sary stall cycles to keep the pipeline filled with useful work.

Spatial parallelism is also necessary and it is the natural evo-
lution of the standard pipeline. Fetching multiple instructions and
executing them out of order when possible is a common technique em-
ployed in modern processors. Unfortunately, this leads to time anoma-
lies and should be avoided for real-time systems. Spatial parallelism can
be achieved by using various simple processors, multiple threads execu-
tion or with a VLIW design. The first approach must deal mainly with
deterministic inter-processor communications and shared resources like
main memory. The second must employ deterministic thread sched-
ulers and also deals with shared resources. The last one can achieve
high performance with a powerful compiler. In the case of the VLIW
approach, it is possible to design systems of multiple threads but chip
multiprocessing is more feasible because multithreading support needs
critical hardware replication like the register file and this is commonly
a very large and critical component in VLIW processors.
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Table 8 – Comparison of techniques for general-purpose and real-time
processors

Feature General purpose Real time

Pipeline Long with out-of order
execution

Simple with in-order
execution

Caches Complex with various
levels, shared and com-
plex associativities

Separate caches or
scratchpad memory

Branch Dynamic predictors Static or non predictors
Superscalability Multi-issue and out-of-

order
Various simple cores
or in-order multi issue
(VLIW)

Chip multi-
threading

Lots of hardware
threads competing for
shared resources

Avoid, use multiple
cores or threads with
interleaved pipeline

Chip multipro-
cessors

Shared caches with
core inter-interference

Separated caches
or scratchpads with
predictable core com-
munication
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3 RELATED WORK

The design of deterministic computer architectures for real-time
systems is very relevant and there are several works in this research
field. Since high-performance general-purpose processors are not suit-
able, it is desired to have new predictable architectures enhancing the
WCET analyzability while not ignoring more stringent performance
requirements. The main concern is related to WCET analysis.

In this chapter we survey related work on predictable architec-
tures. Compiler techniques, timing analysis techniques and architec-
tural techniques are all important for the predictability of computer
architectures. However, we focus mainly on architectural techniques
for hard real-time systems only to limit the scope of this survey. We
can also note that all the predictability considerations described in
Chapter 2 are considered for all related works.

3.1 THE KOMODO APPROACH

Uhrig, Mische and Ungerer (2007) propose a multithreaded Java
processor with an integrated real-time scheduler named Komodo. It
is an IP core for Altera’s System-on-Programmable-Chip environment
1 having a five-stage pipeline: instruction fetch, instruction decode,
operand fetch, execute and stack cache.

Komodo executes Java applications directly without a Java Vir-
tual Machine or an operating system. Reducing those software lay-
ers increases real-time capability and predictability that is very dif-
ficult when a virtual machine or operating system has to be stati-
cally analyzed. The main purpose of the Komodo approach is to ver-
ify the suitability of hardware multithreading for real-time event han-
dling in combination with appropriate real-time scheduling techniques
(KREUZINGER et al., 2003). They support the following hardware
schedulers: Fixed Priority Preemptive (FPP), Earliest Deadline First

1 https://www.altera.com/products/design-software/fpga-design/quartus-ii/quartus-ii-
subscription-edition/qts-qsys.html
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(EDF), Least Laxity First (LLF) and Guarantee Percentage (GP).
Java threads are invoked as Interrupt Service Threads (ISTs)

instead of the Interrupt Service Routines (ISRs) of conventional pro-
cessors with zero-cycle context switching overhead. A real-time garbage
collector is also included in this approach and it executes within its own
hardware thread slot at the same time of other application threads.

In terms of data memory, they used an operand stack of 2k-entry
stack cache integrated within the pipeline and it is shared between all
hardware thread slots. Also, memories are overclocked to guarantee sin-
gle cycle pipeline access avoiding threads interference and predictable
timing. Static Random Memories (SRAM) should be clocked as a fac-
tor of two but dynamic ones (DRAM) require a higher factor. The
instruction memory is simple using a scratchpad RAM, cache or com-
bined (scratch and cache). When configured with a scratch RAM, it is
used for the most important trap routines and all other instructions are
fetched out of the memory. Cache is a small 128 byte direct mapped
instruction cache and all instructions including the trap routines are
fetched out of the main memory or the cache. The combined method
includes a scratchpad memory for traps and cache for applications.
Traps are not cacheable.

Measurements were made in Uhrig, Mische and Ungerer (2007)
to evaluate the performance of the whole Java system and the resource
requirements but WCET obtaining was out of the scope of their work.
A frequency of 33 MHz was achieved implementing Komodo with four
threads in a Altera’s Cyclone II EP2C35F484C7 FPGA. Their evalua-
tions and conclusions showed a very low pipeline utilization for single
threaded applications (33%) but it could reach 92% when using four
threads.

3.1.1 Real-time jamuth

Based on Komodo, jamuth (Java multithreaded) was introduced
in Uhrig and Wiese (2007). It is also an IP core for Altera’s System-
on-Programmable-Chip environment but three additional units were



3.2. The JOP Java processor 69

introduced: evaluation unit, java timer and Interrupt controller (IRQ).
The first is responsible for debugging, timer is used for Java temporal
methods and IRQ is responsible for peripheral components and thread
wake-ups.

The memory interface of jamuth was also changed and now con-
nected to external buses, in this case, the Altera’s Qsys interconnect 2

and can no longer support single cycle access. Due to this change, in-
structions are now fetched from three different sources: external mem-
ory, instruction cache and scratchpad memory. Real-time threads and a
garbage collector are allocated to the scratchpad. The internal thread
scheduler is simplified and supports only Fixed Priority Preemptive
(FPP) and Guarantee Percentage (GP) schedulers.

In terms of evaluation, measurements were made in Uhrig and
Wiese (2007) to evaluate pipeline utilization and the garbage collector
using different Java benchmarks and various memory configurations.
WCET obtaining is also not considered in their work.

3.2 THE JOP JAVA PROCESSOR

JOP is a small Java processor for embedded real-time systems
introduced by Schoeberl (2008) and it stands for Java Optimized Proces-
sor. While Komodo is intended to investigate the suitability of hard-
ware multithreading, JOP is single threaded and it is optimized for
embedded Java systems.

This processor is a stack computer using its own instruction set.
Java bytecodes are translated into single or sequences of microcode
instructions. It has three microcode pipeline stages: microcode fetch,
decode and execute. Another stage is necessary for bytecode fetch. A
typical JOP configuration contains the JOP core, a memory interface
and IO devices.

What makes JOP very noteworthy is its cache architecture. In-
structions are fetched from a special method cache (SCHOEBERL,
2004). Also, no conventional register file is required and Java byte-

2 http://quartushelp.altera.com/13.1/mergedProjects/system/qsys/qsys_about_sys_interconnect.htm
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codes operate directly in a runtime special stack cache (SCHOEBERL,
2005).

The idea of the method cache is to store complete methods where
a main memory transaction is only performed on a miss during method
invocation or method return. It is organized in blocks and their replace-
ment depends on the methods call tree, instead of instruction addresses.
The average-case performance of the method cache is similar to a direct-
mapped cache and Schoeberl (2008) argue that it is easier to analyze
during WCET computation.

The stack cache operates inside the processor pipeline using a
dual-ported memory and it also includes the stack management. The
stack is a heavily accessed memory region and it is organized in two
levels. The two top elements are implemented as registers and the lower
level as an on-chip memory. Hardware controls data between these two
levels but data management between the on-chip memory and the main
memory are subjected to microcode control. It occurs when there is a
method invocation, method return or thread switch.

The simplicity of JOP yields to tight WCET bounds as described
in Schoeberl et al. (2010). In this work, they describe a tool for WCET
analysis considering JOP and several experiments where benchmarks
are conducted.

3.3 THE MCGREP PROCESSOR

MCGREP is a re-configurable processor for real-time systems
and it stands for Microprogrammed Coarse Grained Re-configurable
Processor (WHITHAM; AUDSLEY, 2006).

It has a two-stage pipeline where most opcodes execute in one
machine cycle and longer opcodes stall the pipeline. Memories and I/O
devices are connected by a single bus and there are no caches. Essen-
tially MCGREP works as a simple processor but the re-configurable
part permits application specific operations to be encoded as single
instructions to increase performance.
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They use the gcc compiler with OpenRisc ISA 3 and a microcode
compiler to generate application-specific instructions. Differently from
other approaches, MCGREP adds a new option for predictable proces-
sor where it achieves performance by accelerating application-specific
functions using reconfigurable logic.

Whitham and Audsley (2006) demonstrate the timing of several
operations but evaluations are performed using instructions per cycles
instead of WCET timing.

3.4 THE PRET ARCHITECTURE

PRET stands for precision timed machine and its main purpose
is repeatable timing instead of time predictability (LIU; REINEKE;
LEE, 2010). Repeatable timing gives an exact timing of each processor
instruction regardless of any dependencies.

Liu et al. (2012) implements PRET using a subset of the ARMv4
ISA and an in-order, single-issue five-stage pipeline with thread inter-
leaving. It is a multithreaded architecture as Komodo, but they use a
thread-interleaved pipeline to increase the performance using a round-
robin thread scheduling policy to reduce the context-switch overhead
to zero and to maintain repeatable timing for all hardware threads.

There is an unique hardware thread executing in each pipeline
stage. This minimizes instruction dependencies and inter-pipeline stage
forward logic. They also do not use caches, only scratchpad memories
explicitly controlled by software.

PRET also introduces timing instructions to the ISA level added
to the co-processor instructions slots: get_ time, delay_until, excep-
tion_on_expire and deactivate_exception. Get_ time is used to obtain
the current clock value, delay_until is used to postpone thread execution
until an input timestamp, exception_on_expire and deactivate_exception
controls exception generation using timing values. Those instructions
are used for deadline checking or timing checking for a given code snip-
pet.

3 https://sourceware.org/cgen/gen-doc/openrisc.html
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This architecture avoids resource conflicts at the memory inter-
face using bank privatization in Dynamic Random Access Memories
(DRAM) as described in Reineke et al. (2011). In this work they intro-
duce repeatable DRAM controller where refresh cycles are not sched-
uled by the memory controller. Banks are refreshed individually in case
the application is not accessing memory. For instance, control flow in-
structions send refresh commands to the private bank of its current
thread slots.

3.5 THE PATMOS APPROACH

Schoeberl et al. (2011) describe a VLIW processor named Pat-
mos. It is a statically scheduled, dual-issue RISC processor that is
optimized for real-time systems. Patmos has two five-stage pipelines
and a register file shared among them. This architecture is also fully
predicated. They could execute up two instructions per cycle with
exception of branches and memory access that leads to pipeline stalls.

Patmos follows the same memory architecture as JOP (SCHOE-
BERL, 2008) with specialized caches: cache for functions (method
cache), cache for stack, cache for data and a general purpose scratchpad
memory. Each cache is specialized considering data and configuration.
For instance, the stack cache has direct-mapped configuration and the
data cache has a highly associative configuration. Memory loads are
executed in phases: the result of a memory load is stored in a dedicated
register that it is read later by a special instruction. Each data cache
is also accessed by a different type of memory instruction.

The programming model of Patmos is more complex than that
of traditional processors. The compiler must explicitly select memory
instructions to access different caches and two instructions are required
for memory loads. Greater effort spent in the software development
could improve predictability. All instruction delays are explicitly visible
at the ISA-level and there are no variable timing instructions except for
cache accesses. Schoeberl et al. (2011) argue also that various caches
could also improve the analyzability resulting in a less pessimist WCET
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estimation.
Patmos is evaluated with a Xilinx Virtex 5 FPGA. The primary

purpose of Patmos is its use in the T-CREST (SCHOEBERL et al.,
2015) project where they propose novel solutions for multi-core archi-
tectures designed for real-time applications.

3.6 THE CARCORE PROCESSOR

The CarCore processor (MISCHE et al., 2010) is based on the
Infineon’s TriCore microcontrollers4 which target the automotive indus-
try like gasoline and diesel engine control systems. TriCore combines
a load-store architecture with DSP (Digital Signal Processor) instruc-
tions forming a very large instructions set (700 instructions) (MISCHE
et al., 2010). It consists of three different in-order pipelines with four
stages and instructions are statically assigned to each pipeline (static
scheduled). One pipeline executes integer instructions, another takes
care of special loop instructions and the third executes memory oper-
ations. If three of these instructions are issued in order into a stream,
they are executed in parallel even if they are data-dependent. Two of
those pipelines have their own register file with 16 registers.

The main purpose of the CarCore is to have multithreading capa-
bility like the Komodo approach (UHRIG; MISCHE; UNGERER, 2007)
but with a two layer hardware scheduler. The first layer is responsible
for thread instructions issue considering instructions with higher prior-
ity. Pipeline stages with stall slots generated by control flow or memory
instructions are filled with instructions from other active threads. The
purpose of this layer is to keep the pipeline utilization as high as possi-
ble. The second layer is the thread manager and it analyzes scheduling
information like deadline, priorities and thread slots. It determines
which thread is the next to be scheduled.

CarCore uses three hardware thread scheduling techniques: Dom-
inant Time Slicing (DTS), Periodic Instruction Quantum (PIQ) and

4 http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-
microcontroller/channel.html?channel=ff80808112ab681d0112ab6b64b50805
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Round Robin Slicing (RRS). DTS is used for hard real-time tasks where
all DTS threads are executed for a predefined number of pipeline cycles
and only a single DTS thread is executed at each time. PIQ threads
are soft real-time threads and they are executed for as many instruc-
tions as defined by a scheduling parameter. RRS is employed for non
real-time tasks and these threads are scheduled via round robin after
all DTS and PIQ are executed.

3.7 MULTICORE SOLUTIONS

Multicore architectures for real-time systems usually imply some
of the previous cited approaches interconnected via some real-time
network-on-chip. Network-on-chips and multicore memory hierarchy
are not the subject of this thesis but there are two relevant approaches:
Merasa (UNGERER et al., 2010) and T-CREST (SCHOEBERL et al.,
2015) projects.

3.7.1 The Merasa project

Ungerer et al. (2010) describe the Merasa architecture. The main
focus of this project is to develop a multicore processor design for hard
real-time embedded systems and analysis tools.

Merasa connects modified versions of CarCore (MISCHE et al.,
2010) processors. The number of cores is configurable and varies from
one to eight and they are connected by a system bus to the memory
interface and to a central dynamically partitioned cache. This cache has
multiple banks and is also connected to the memory interface. Typically
each cache bank is allocated to a different core. The interconnection of
the system is a bus and it is scheduled by a hybrid priority and time
slice (TDM – Time Division Multiplexing) algorithm.

Differently from CarCore, Merasa cores execute only one hard
real-time and various soft real-time threads but there is no dynamic
thread swapping. Soft real-time thread access to the cache is not fully
integrated due to cache interference among hard real-time threads.



3.8. Summary 75

Ungerer et al. (2010) also present a quad core FPGA prototype
synthesized in an Altera Stratix II EP2S180F1020C3 device running
around 25Mhz.

3.7.2 The T-CREST project

The T-CREST project considers design techniques from the mul-
ticore processor level regarding cores, memory, network-on-chip (SCHOE-
BERL et al., 2015) and the analysis tools.

The platform is composed by Patmos (SCHOEBERL et al.,
2011) processor cores interconnected by two network-on-chip. One
networks-on-chip provides messaging passing between core nodes and
the other provides access to the shared external memory. Patmos cores
use caches but there is not any kind of hardware support for cache
coherence. Processor communication via shared memory is allowed
but coherence must be implemented by software. The interconnect
network use packet switching and source routing and supports asyn-
chronous message passing across point-to-point virtual circuits. It is
implemented using DMA-driven block transfers from the local proces-
sor scratchpad into remote scratchpad processor nodes. Network vir-
tual circuits are implemented using TDM (time division multiplexing)
of the resources.

Instead of using benchmarks to evaluate the system, they use
industry test cases based on avionics and railway applications.

3.8 SUMMARY

In this chapter, we surveyed various related projects. In many of
them, the focus is on hardware multithreading while others concentrate
on the memory hierarchy. Table 9 summarizes the described projects.

Real-time hardware multithreading allows higher pipeline uti-
lization and promotes deterministic thread execution. There are thread-
interleaved approaches as the PRET architecture and sophisticated
hardware thread scheduling approaches like Komodo and CarCore. Be-
sides some advantages, hardware multithreading is a complex system



76 Chapter 3. Related work

and additional hardware elements like the register file must be repli-
cated. Schoeberl (2009b) argues that the additional hardware could be
employed to chip multiprocessing instead of chip multithreading.

Patmos and JOP use a unique cache system where several spe-
cialized caches are proposed. It requires effort on the part of software
development, but it can enhance the analyzability of the system. The
compiler must explicitly select memory instructions to access different
caches and two instructions are required for memory loads.

We can note that all related works have a main objective regard-
ing determinism and differently of them, our work is concentrated in
the investigation of a VLIW processor for hard real-time applications.
There are many design space investigations and it is not clear how they
impact on the WCET performance. Among them, we can highlight:
pipeline dependencies resolution, full predication for 4-issue VLIW pro-
cessor, branch architecture and all of these features are considered in
the WCET analysis tool.



3.8. Summary 77

Table 9 – Summary of related project objectives

Project Main objective

Komodo
Java processor: feasibility of real-time hard-
ware multithreading

JOP
Java processor: cache architecture (method,
stack, ...)

MCGREP
Reconfigurable architecture: application-
specific instructions

PRET
Precision timed machine: thread-interleaved
pipeline

Patmos
Dual VLIW: memory architecture (method
cache, stack cache, data cache, scratchpad)

CarCore
Heterogeneous pipeline: hardware multithread-
ing with different hardware scheduling algo-
rithm

Merasa
Multicore: CarCore processors interconnected
by bus

T-CREST
Multicore: PATMOS processor interconnected
by dual network-on-chip

Our work

VLIW processor design space investigation:
predication, branch architecture, pipeline
dependencies resolution and their WCET
analysis
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4 THESIS RATIONALE AND DESIGN DECISIONS

The analysis of real-time systems is a challenging task and re-
quires the union of numerous techniques. Typically the problem is
divided into two main areas: scheduling analysis and temporal analysis
of individual tasks.

Scheduling analysis is responsible for verifying the system fea-
sibility as a scheduling problem: we want to verify if a task set can
execute properly respecting the individual deadline of each task.

The formulation of the scheduling problem will always depend
on the temporal system parameters. Obtaining these parameters is the
responsibility of the task’s individual temporal analysis. Some of these
parameters are dependent on what we want to control or sample using
a real-time system, like the activation frequency or task period (T ).
However, a key parameter is the Worst-Case Execution Time (WCET)
of each task – (C). Every scheduling analysis depends on the WCET.
The focus of this work is on the temporal analysis of individual tasks,
more specifically, on researching deterministic hardware techniques to
improve the WCET analysis but also increase processor performance.

As noted briefly in the previous chapters, in recent years con-
siderable research effort has been done on providing time-predictable
architectures for real-time systems. Since general-purpose processors
usually focus on average-case performance (SCHOEBERL et al., 2015),
analyzing real-time systems and obtaining WCET using those proces-
sors became very complex. Real-time applications are becoming in-
creasingly more complex requiring more processing power with em-
bedded systems providing more and more “desktop-like” functionality.
However, the use of standard processor design choices to improve per-
formance is usually not possible for real-time systems because it greatly
jeopardizes determinism proprieties.

In this chapter, we describe the target problem and the thesis
rationale. We will present the target systems, their requirements and
discuss design decisions for the proposed architecture comparing them
with the related researches.
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4.1 TARGET SYSTEMS AND REQUIREMENTS

Currently the use of microprocessors is ubiquitous. They are
widely embedded in general consumer goods (cameras, TVs, videogame
consoles, robots), automotive market (navigation, vision), aviation and
communication (cell phones, routers). Another market for microproces-
sors is the personal computer (PC) as the main processor. Because of
the versatility of a PC, its processor is usually called a general-purpose
processor and the user can reprogram it and extend its functionality
with new software using complex and big applications. In the case of
embedded computing systems, they are encapsulated in a device and
generally are not intended to reprogramming by the user. Moreover,
embedded processors, which are the focus of this work, must comply
with various non-functional requirements:

∙ Instead of running functions as quickly as possible, embedded
applications often must respect the real-time requirements (com-
pliance with deadlines).

∙ Embedded devices, especially powered by batteries, have energy
restrictions.

∙ Instead of binary compatibility, source compatibility is more im-
portant.

Safety standards for embedded applications (DO-178B, DO-178C,
IEC-61508, ISO-26262, EN-50125, etc.) require identifying potential
functional and non-functional hazards and we must demonstrate that
the software complies with safety goals. Testing with intensive mea-
surements is tedious and also typically not safe. It is often impossible
to prove that the worst-case conditions have actually been taken into
account. As DO-178B succinctly puts it, “testing, in general, cannot
show the absence of errors”.

Despite the differences between general purpose and embedded
computing, the addition of new functionality such as audio/video pro-
cessing, networking, security, automation and control, among others,
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increases the need for more advanced processors for embedded appli-
cations. However, deterministic hardware is necessary when the appli-
cation has hard real-time requirements.

In terms of target systems and requirements, we will focus:

∙ Target systems: embedded systems.

∙ Low-level requirements: hard real-time. The proposed design
must be time predictable allowing safe and precise WCET estima-
tions. We must design techniques to obtain worst-case behavior
and timing of every used hardware component.

∙ High-level requirements: the architecture should use an ISA –
Instruction Set Architecture – that allows the use of a modern
C compiler. It should provide clear and well defined instruction
encoding, adequate set of arithmetic instructions, typical memory
access instruction with base plus offset addressing mode and allow
the use of function calling/returning.

4.2 THESIS OBJECTIVE

The general objective of this thesis is to investigate various pro-
cessor architecture features that lead to predictable designs with rea-
sonable WCET performance. The thesis to be demonstrated is that it
is possible to assemble together hardware elements that increase per-
formance but are predictable enough to ensure precise and efficient
temporal analyses. In order to improve them, especially the worst-case
execution time analysis, the design of processors should increase the
level of importance of the determinism.

Therefore, it is necessary to analyze the strengths of hardware
techniques used in state-of-the-art processors, for example temporal
and spatial parallelism (pipeline), branch prediction and predication,
and to align them to real-time applications. Some of these techniques
require modifications due to high hardware complexity while others
need a well-defined timing behavior. In order to achieve these goals,
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we propose new approaches considering the following items which are
described in the next sections:

∙ Target architecture definition: based on the predictability con-
siderations, what is a good target architecture model?

∙ Predication: how predication could be improved without jeopar-
dizing pipeline performance due to overheads in the encoding and
data paths?

∙ Branch prediction: how much performance is gained by using
branch prediction? How we define its timing behavior?

∙ Pipeline dependencies: which are the main sources of dependen-
cies and how to deal with them?

∙ High latency operations: how much performance is lost with high
latency operations like memory access, multiplication and divi-
sion? How to deal with it?

Besides the approaches exposed above, one of the most impor-
tant tasks of this thesis is to propose a WCET analysis for the pro-
posed architecture. This analyzer and Mälardalen WCET benchmarks
(GUSTAFSSON et al., 2010) are used to make evaluations regarding
determinism and performance.

4.3 ARCHITECTURE

After having laid the ground work for predictability considera-
tions of processors, related research, our target class of system and its
requirements, we noticed that there are basically two main approaches
for real-time computer architectures: chip multithreading and VLIW
– Very Long Instruction Word processors, since superscalabilty and
out-of-order execution are not adequate.

Chip multithreading permits several threads to share pipeline re-
sources possibly increasing performance and pipeline utilization. How-
ever, it requires some critical components (such as the register file) to
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be replicated for the number of threads because the hardware needs
different execution contexts. Multithreading as a thread interleaved
pipeline (used in PRET) could also remove data dependencies between
pipeline stages because in each different pipeline stage there is a differ-
ent thread executing. Using this technique, in (LIU et al., 2012), it is
argued that they do not use forwarding logic and use round-robin for
fine-grained thread scheduling. If there is no forwarding logic between
stages and less than 4 threads, some sort of stalling should occur. On
the other hand, the use of round-robin thread scheduling impacts the
response time of the task set: fetching the next instruction for a thread
must wait the fetch for all other threads, i.e., if we have 4 threads and
a pipeline with 4 stages, after 4 cycles another instruction is fetched
for a particular thread.

In contrast to chip multithreading, VLIW machines increase
single-threading performance where instructions are executed in the
pipeline in temporal and spatial parallelism, i.e., more than one oper-
ation in each pipeline stage. To do so, execution units like arithmetic
units are replicated, being this a common practice in state-of-the-art
processors. Differently from those processors, VLIW instructions are
statically scheduled during compilation, which is very interesting be-
cause it is defined offline and does not depend on hardware fetch states.
VLIW typically uses less power comparing to superscalar out-of-order
designs since less hardware is required for instruction scheduling. Com-
pared to PRET, VLIW also needs forwarding logic and, with more
parallel execution units, this forwarding logic becomes more complex.
But according to (FISHER; FARABOSHI; YOUNG, 2005), 4-issue for-
warding logic is perfectly feasible, even in soft-core implementations.
As noted before, in (SCHOEBERL et al., 2011) they presented a VLIW
dual-fetch processor optimized for real-time applications named Pat-
mos. Compared to state-of-the-art and commercial VLIW processors,
Patmos is relatively simple: dual issue and five stage pipeline. The ma-
jor difference of Patmos is its memory architecture, which has different
cache memories for each segment: stack, heap, instruction, etc. Ac-
cess to different data caches in Patmos uses different ISA instructions.
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The use of different caches for different kinds of data could simplify
the WCET analysis. However, the programming model is also affected,
particularly the compiler if there are distinct memory instructions to
use. Patmos also supports fully predicated instructions to promote the
single-path programming paradigm (PUSCHNER, 2005).

A comparison between single and multithreading is not the pur-
pose of this thesis, since both have suitable applications. Our focus is
placed on the VLIW approach. The research of real-time computer ar-
chitectures is challenging and involves many aspects, not all problems
were resolved by recent published papers and, to continue research-
ing, a customizable platform is necessary. Besides being predictable, a
real-time processor should have a reasonable worst-case performance.
State-of-the-art processors are superscalar since they fetch and execute
more than one instruction per cycle. VLIW could be used to do so in
a real-time platform.

Our first contribution to the state of the art is the investigation
of the design space of VLIW processors for hard real-time applications.
It is already known that VLIW approaches are more adequate for real-
time applications but static instruction scheduling alone is not enough
to guarantee determinism. VLIW requires some sort of instruction en-
coding since parallel operations are scheduled together by the compiler.
Instruction encoding could be as simple as adding nops to empty op-
erations slots or as complex as CISC encoding with variable operation
delimitation. The use of a simple encoding jeopardizes performance
since it adds instruction memory overhead and a complex encoding
jeopardizes determinism since pre-fetch buffers could be necessary in
the pipeline front-end. There are many other design space investiga-
tions and they will be described in the following sections. We can also
highlight: pipeline dependencies resolution, full predication for 4-issue
VLIW processors, branch architecture and the first level of the memory
subsystem.

We can also note that the only recent work that directly applies
VLIW for real-time systems is Patmos. Its primary focus is the memory
architecture and it was used later in the T-CREST multi-core project.
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The WCET estimation of Patmos is not clearly described since it uses a
prototype of aiT 1 proprietary software. We make a second contribution
since every hardware aspect we used in the processor is clearly described
in the WCET analysis tool.

4.4 DESIGN DECISIONS

After we defined VLIW as the target architecture, this section
describes our new approaches and answer the questions raised earlier.
We also consider important decisions like Instruction Set Architecture
(ISA), instruction encoding, compiler and memory architecture, since
a processor can not work without them.

4.4.1 Instruction set and encoding

We adopted a subset of the HP VLIW ST231 instruction set with
customized special instructions. By using this instruction set, we rely
on a vast VLIW documentation, a compiler and cycle accurate simula-
tor. This documentation and tools are presented in Fisher, Faraboshi
and Young (2005) covering the VLIW architecture in a way similar to
Patterson and Hennessy (2007) covering the MIPS architecture. Both
compiler and simulator are called VEX – VLIW EXample 2. They are
proprietary and their source code is not available but we can use them
as a baseline since the VLIW approach of these tools does not consider
real-time aspects and WCET analysis. The VEX compiler is based on
the Multiflow C compiler with global trace instruction scheduling and
it is highly optimized for VLIW processors.

4.4.1.1 Instruction bundle encoding

In a VLIW machine, an instruction or instruction bundle is com-
prised of operations or syllables. Considering a 4-issue fetch unit, an
instruction can be composed of one, two, three, four operations or many

1 http://www.absint.com/ait/
2 http://www.hpl.hp.com/downloads/vex/
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operations depending of the architecture width. The operations are al-
ways dispatched in fixed slots generating a static instruction scheduling.
Operations are typically RISC instructions and instruction bundles are
sets of operations which are executed in parallel by the processor.

In terms of instruction encoding, we could have:

∙ Simple nop encoding: nops – no operation – are scheduled in
empty execution slots when the compiler cannot find suitable par-
allelizable operations. This is the most simple instruction bundle
encoding but greatly increases the memory overhead since wide
fetch machines could have lots of nops in unparallelizable code.

∙ Fixed-overhead encoding: Bit masks are pretended to all instruc-
tions to specify the mapping between parts of the instructions
and execution slots. This is a simple approach but shorter in-
structions will have more overhead due to the prepending mask
bits. This also increases the memory overhead for wide machines
with unparallelizable code.

∙ Distributed encoding: It is a variable-overhead method of encod-
ing VLIW instructions by explicitly inserting a stop bit to delimit
the end of the current instruction. It is not necessary to encode
nops when there are not parallel operations to execute. The over-
head of this encoding is only one bit per operation.

∙ Template-based encoding: A number of bits per instruction (or
group of operations) designates the types of operations in the in-
struction and the boundaries between parallelizable operations.
It is similar to fixed-overhead encoding but templates indicate
chains and sequences. The limited set of legal template values
needs additional compiler support, and some nop instructions
may still to be encoded when the available templates do not match
the generated code.

We adopted distributed encoding because it is compatible with
the HP VLIW ST231 ISA, has low overhead on the instruction memory,
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is a simple and efficient decoding strategy and does not need additional
compiler support. Low overhead on the instruction memory is aligned
to the thesis objective since our focus is determinism and a complex
and large memory subsystem jeopardizes the WCET analyses. An ef-
ficient decoder is important because VLIW have high bandwidth in
the pipeline front-end and if pre-fetch buffers are required, they will
jeopardize determinism as well. The use of a simple but efficient en-
coding benefits the compiler back-end support. Compiler support is
not covered in this work but a new code generator back-end for LLVM
(LATTNER; ADVE, 2004) was implemented in parallel with this thesis
development.

The adopted distributed encoding strategy is illustrated in Fig-
ure 8. This Figure shows a 256-bit cache line being decoded by a 4-wide
fetch unit. Operations are 32-bit or 4 bytes long and each slot (S0 to
S3) receives an instruction bundle at every cycle according to their stop
bits. Figure 8 also shows how we avoid additional fetch complexity not
allowing instructions to be encoded in different cache lines. The latest
32-bit operation of a cache line must always have a stop bit. Erroneous
instruction encoding generates a hardware error.
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must be 1

O1
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O2
1

O3
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Figure 8 – Instruction bundle decoding example.
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4.4.1.2 Operation encoding

Table 10 presents a summary of the VLIW ST231 ISA operation
encoding. The encoding is well defined: the format field is used to
identify different classes between integer, special, memory or control
flow operations. The special class is used for selecting instructions and
other special instructions like break point and long immediates. The
opcode field specifies the operation type considering the format classes.
Bits 20..12 are assigned to short immediate, destination or operand 2
registers depending on the operation format and opcode. Bits 11..6 are
assigned to operand 2 or destination registers and it also depends on
the format and opcode. Bits 5..0 are only assigned to register operand
1. More details of the operation encoding can be found in the ST231
Core and Instruction Set Architecture Manual 3.

Table 10 – Operation encoding.

Bits Function Description

31 Stop bit Determines bundle ending

30 Full-predication
Not supported by ST-231, used for
full predication extension

29..28 Format
Operation Format: integer, special,
memory or control flow classes

27..21 Opcode Operation opcode within format class

20..12 Immediate/dest/src2
Short immediate, destination register
or operand 2 register

11..6 dest/scr2 Register operand 2 or destination
5..0 src1 Register operand 1

The VLIW ST231 ISA supports only partial predication: the
hardware supports select instructions in which one value is selected
between two input parameters and one binary selector (predicate). We
believe that partial predication alone generates too much instruction

3 http://lipforge.ens-lyon.fr/docman/view.php/53/26/st231arch.pdf
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memory and compiler overhead. We extended predication capabilities
adding full predication support where blocks of instructions can be
turned off. This feature will be described in Section 4.4.3.

Like the ST231 ISA, we support 9-bit immediate data (encoded
in a single operation) or long 32-bit immediate data (using 64-bit).
Long immediates can be on the left or right of an arithmetic operation
using the special long immediate operation.

Branches and jumps use a 23-bit PC (Program Counter) offset.
The integer offset is encoded using bits 22..0 when using the control-flow
instruction format. Function calls to 32-bit addresses are supported by
a register indirect branch and link instruction.

There is a complete set of compare instructions and they are
flexible: the destination can be a predicate or a general purpose register
and the source can be only register or register/immediate. A total of
64 32-bit registers could be encoded ($r) and 8 1-bit predicates ($br).
The number of predicates can only be increased using a clustered design
because there are no available encoding bits. The complete operation
list is available in Appendix A.

4.4.2 Processor pipeline

We propose a VLIW design featuring with full forwarded exe-
cution stage units to prevent additional stalls from Read after Write
(RAW) data dependencies. It means that any calculation performed
by any unit is forwarded to the unit which needs the data. Figure 9
shows an overview of the adopted pipeline design. Forwarding logic
data paths and the register file are omitted. The black arrows indicate
the data path between the pipeline stages and the execution units. A
64 32-bit register file and a 8 1-bit predicate register file are common
to all execution units.

Our design has 5 stages:

∙ “F” – Cache Buffer: This stage is connected directly to the cache
instruction memory and it represents the pipeline front-end. It
controls the cache memory providing its address and receives stall
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Figure 9 – VLIW processor overview.

signals from the cache or from others pipeline states. It also stores
an entire cache line buffering it to the next pipeline stage.

∙ “B” – Instruction Bundle Decoding: This stage receives a cache line
and decodes instruction bundles into 32-bit operations. Instruc-
tion bundles are encoded using distributed encoding as illustrated
in Figure 8.

∙ “O” – Operation Decoding: This stage is composed of four op-
eration decoders and one branch unit. Each operation decoder
takes a 32-bit operation and decodes it to control signals. These
control signals program the execution units in the next pipeline
stage. During this stage, data from the register files for all four
execution slots are also read. Branches and other control flow
operations are also decoded and pre-executed in this stage in an
individual unit connected to the Slot 0 data path.
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∙ “E” – Execution stage: This stage is responsible for executing
all operations. It has four identical Arithmetic and Logic Units
(ALU), one multiplication and division unit and one unit respon-
sible for memory transactions (LD/ST). The multiplication and
division unit is connected to Slot 0 and Slot 1 data paths as well
as the memory unit. This means that this type of operation must
be scheduled only in those specific slots.

∙ “W” – Write Back: This stage is responsible for writing the exe-
cution stage results to the register file.

There are two basic types of data dependencies in a VLIW design
that must resolved:

1. data dependencies between parallel operations (spatial parallelism):
dependencies between operations in an instruction bundle have
to be resolved by the compiler: if a write and a read occur from
the same register, the current computation uses the old value.

2. data dependencies between pipeline stages (time parallelism): de-
pendencies between pipeline stages usually generates Read-After-
Write (RAW) data dependencies. These dependencies are solved
by hardware with forward paths or by an interlocking mecha-
nism. No arithmetic instruction executed by the ALUs causes
any pipeline stall. However, memory, multiplication and division
operations are resolved by a separate hardware mechanism.

Complex operations such as memory, multiplication and division
require more pipeline sub-stages (typically called phases (SHEN et al.,
2005)) to carry out their calculations. The memory subsystem requires
one stage to perform the address calculation, another one to access
the memory and one more to perform masks to allow byte, half-word
and word access. Multiplication is relatively complex and it needs also
more stages to perform a signed or an unsigned 32-bit multiplication.
Division is a very slow operation and it requires lots of stages to perform
a signed or unsigned division. The number of required sub-stages or
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additional cycles depends on the hardware/FGPA technology and it will
be described in Chapter 5. A 64-bit multiplication result is supported
using specific ST-231 ISA operations. However, the ST-231 ISA is not
compatible with a full division instruction but only with division steps
to enhance software division capabilities. Although division is a slow
operation, we added full division support augmenting the ISA with four
new instructions for integer signed and unsigned division supporting
quotient and remainder results in hardware.

Figure 10 displays a detailed view of the execution units. We
can see that complex operations such as memory, multiplication and
division require more pipeline sub-stages to carry out their calculations
as described in previous paragraph.
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Figure 10 – Detail of execution units stages.

The complex multistage operations increase the pipeline latency
during the execution stage. The quantification of those latencies must
be linked with the implementing FPGA technology. However, we can
notice that those operations will not be as fast as the arithmetic ones.
To meet real-time capabilities they should be executed in order (a typ-
ical superscalar commercial processor usually allows out-of-order exe-
cution inside the execution stage) and so, there will be pipeline stalls
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during their calculations. These stalls could be implemented by the
compiler, like the VLIW ST231, or implemented by hardware. In our
design, we decided to resolve all data dependencies in hardware.

Another typical approach used in VLIW machines is to duplicate
execution units, allowing multiple operations per instruction, to dimin-
ish execution stage latencies. The ST-231, for instance, has 2 inde-
pendent multiplication units which allow up to two multiplications per
bundle and the memory interface, however, permits only one memory
operation per bundle. We go further and extend the memory interface
to allow two memory operations as well and extended the ISA with
additional operations supporting hardware division.

4.4.3 Predication

The HP VLIW ST231 ISA natively supports partial predication
and, in order to support this feature, we only need to implement two
select instructions: slct and slctf. The first one selects when the condi-
tion is true and the other one when it is false. Both instructions have
the following semantics:

∙ slct $r_dest = $br_x, $r_x, $r_y where register $r_dest receives
the value of $r_x if the predicate register $br_x is true or the
value of $r_y if it is false.

∙ slctf $r_dest = $br_x, $r_x, $r_y where register $r_dest receives
the value of $r_x if the predicate register $br_x is false or the
value of $r_y if it is true.

To extend the real-time capabilities of the processor, we pro-
pose a low-overhead full predication mechanism. Considering a 4-issue
machine, a generic full predication support adds considerable levels of
logic to critical paths and degrades the processor clock speed because
predicate operands must be forwarded during all operation execution.
Predicate operands with 3-bits must also be encoded in every instruc-
tion what is not possible considering the HP VLIW ST231 ISA since
there is only one unused bit.
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The low overhead full predication mechanism consists in:

∙ Only one predicate register is used ($br4);

∙ Only one bit is used for predication encoding (bit 30);

∙ Every operation in an instruction bundle can be individually
predicated using this fixed predicate register;

∙ Two operating modes: simple true mode where operations are
executed only if the predicate register value is true; complete
true/false mode where operations are executed on true or false.
The complete mode is activated/deactivated with two new ISA
operations paron/paroff ;

∙ Control flow operations cannot be predicated and they reset to
complete mode. Branch instructions are already conditionally
executed by predicate registers.

The use of only one fixed predicate register reduces the regis-
ter file overhead since only one additional read port is necessary. If
any predicate register could be used, four additional ports would be
necessary to read 4 additional predicates per cycle.

The predication system is activated primarily on using bit 30.
In the simple true mode, if an operation is encoded with bit 30 set,
it will only be executed if the value of predicate register $br4 is true.
This feature is illustrated in Table 11. The comparison operation that
sets the predicate $br4 is in Line 4. Since there is a RAW dependency
between the cmpgt and the predicated mull and it is not possible to
forward the value of $br4 while it is still been calculated, predicated
instructions must wait at least one cycle before the predicate is correctly
read. This RAW dependency could be either resolved by hardware
installing a stall cycle or by software including other instruction before
the predicated code snippet.

The complete true/false mode is activated by beginning the pred-
icated region with paron operation and ending with paroff. This in-
structs the processor that the following operations are in the complete
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Table 11 – Example of simple true mode predication system.

if (x > y)
z = x * y;

h = x + y;

4 cmpgt $br4 = $r1, $r2
5 ;
6 nop nop or useful instruction
7 ;
8 (p) mull $r4 = $r1, $r2 Bit 30 is set, executed if $br4 = true
9 add $r7 = $r1, $r2 Bit 30 is unset, always executed
10 ;

true/false mode. The operation’s bit 30 is used with inverted logic:
when set, the operation is executed only if $br4 is true; when unset
the operation is executed only if $br4 is false. This mode allows the
compiler to parallelize distinct if-then-else paths like the example in
Table 12 without a single branch instruction.

Both predication modes are powerful and they allow the compiler
to avoid control flow instructions. This reduces the amount of basic
blocks and enhances the instruction scheduling capabilities. However,
nested if-then-else structures cannot be fully predicated, since there is
only a single predicate register capable of disabling instruction execu-
tion. This limitation can be overcome by using the full low overhead
and the partial predication together as exemplified by Table 13. We
can see in this example two nested if-then-else structures without using
any branch operation.

4.4.4 Branch prediction

Branch architecture has always generated discussion and research
in computer architectures. Generally speaking, branches or other type



96 Chapter 4. Thesis rationale and design decisions

Table 12 – Example of complete mode predication system.

if (x > -1)
z = a + b;

else
z = a * b;

cmpgt $br4 = $r9, -1
;
paron Activate complete mode
add $r50 = $r0, 0
;
(p) add $r9 = $r9, $r10 Bit 30 = false, execute if $br4 = false
(p) mull $r9 = $r9, $r10 Bit 30 = true, execute if $br4 = true
;
par off Deactivate complete mode
;
goto $r63

of instruction that breaks the pipeline streaming will always degrade
processor performance. One solution to this problem is branch pre-
diction. High-end processors adapt themselves by remembering the
previously taken direction of each conditional branch. This is the solu-
tion of general-purpose processors: they use dynamic predictors imple-
mented in their hardware. However, dynamic branch predictors, as well
as every history-based component, greatly jeopardizes WCET analy-
sis because they use structures called Branch Target Buffers (BTB).
BTBs are essentially full-associative caches which are very difficult to
model during WCET analyses and they can generate timing anoma-
lies or jeopardize timing composability. BTBs have another problem
in the eviction policy because real-time systems require Least Recent
Use (LRU) policy which is nearly implemented by the pseudo-LRU in
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Table 13 – Example of nested if-then-else with full and partial predication
systems.

if ( data[mid].key == x )
up = low - 1;

else
if ( data[mid].key > x )

up = mid - 1;
else

low = mid + 1;

cmpeq $br4, $r18, $r16 (if data[] == x)
;
paron
;
(p) add $r10 = $r9, -1 up = low - 1 if $br4 = true
(p) cmple $br5, $r17, $r16 (if data[] > x) if $br4 = false
(p) add $r50 = $r11, -1 temp0 = mid - 1 if $br4 = false
(p) add $r51 = $r11, 1 temp1 = mid + 1 if $br4 = false
;
(p) slct $r10 = $br5, $r50, $r10 write on up if $br4 = false
(p) slctf $r9 = $br5, $r51, $r9 write on low if $br4 = false
paroff

hardware.
Real-time researchers have recommended the use of predication

without branch prediction or the use of static branch prediction. In
Section 4.4.3 that described our full predication strategy, we showed
an example of an if-then-else structure converted entirely to predica-
tion. Besides keeping the pipeline at maximum stream, predication is
more suitable for balanced paths. We can see in Table 13 that the
“then” path is much smaller than the “else” path but both are always
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executed regardless of the “if” condition. This situation is worse if the
architecture supports only partial predication because high latency in-
structions cannot be deactivated, only their results could be selected
at the end of the conditional code.

Observing these situations, we propose a real-time architecture
that supports our low-overhead full-predication mechanism described
in Section 4.4.3 and a static branch prediction. With this hybrid ap-
proach, WCET-oriented compiler optimizations could be used to select
predication, select the appropriate direction for static branch prediction
or use both techniques for nested if-then-else structures. Branch pre-
diction benefits the performance of loop structures as well. Our static
branch prediction methodology is not a new one. The contribution of
this section to the state of the art is to show design methodologies and
how this technique is analyzed in the WCET tool. WCET analysis
technique for branch prediction is described in Chapter 6 considering
the branch behavior exposed below.

The default behavior of our branch unit is the use of a static “not
taken” branch direction where the processor front-end keeps always de-
coding linear addresses. Figure 11 illustrates the “not taken” pipeline
behavior. We can see that there is no overhead when a branch is not
taken. Pipeline stages follow the same representation as described by
Figure 9 where “F” represents “Cache Buffer”, “B” represents the “Bun-
dle decoding”, “O” represents the “Operation decoding”, “E” represents
the execution stage and “W” the Write back.

cycle

61: cmpgt $br0 = $r9, $r10

62: br $br0, 26

63: add $r11 = $r10, $r11

64: ldw $r8 = 16[$r12]

0 1 2 3 4 5 6 7 8

Figure 11 – Pipeline behavior of a “not taken” branch.

Since the HP VLIW ST231 ISA does not have any static branch
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prediction support, we added a new special instruction that allows the
compiler to indicate whether a given path is more likely to be executed.
That instruction is called branch preload or preld at ISA level. When a
branch is more likely to be taken, a preld instruction can be scheduled
in a previous bundle. The scheduling overhead of the preld instruc-
tion/operation is almost zero when it is scheduled in a free slot in an
existing bundle. The common position of a preld operation is 2 cycles
before a branch operation. The preld instruction works by anticipating
the calculation of the branch target address, forcing the branch ahead
to follow a taken behavior. In this way, the preld instruction emulates
the existence of an entry in a branch target buffer (BTB) relative to the
next branch. If such a preld instruction does not exist for a determined
branch, it has a not taken or fall-through behavior as described earlier.
Figure 12 illustrates the simplified behavior of the pipeline during a
“taken” branch with a preld instruction. At cycle 3, the preld instructs
the fetch unit to prepare for a jump and the new cache data is ready at
cycle 4. Following the pipeline diagram, if the branch condition is true,
the cache transaction is already performed and the processor continues
to execute at cycle 5. As we can see, placing a preld operation enables
the compiler to change the direction of the branch then decreasing the
branch penalty. Figure 12 is a simplification of the pipeline behavior
and we can see that a “taken branch” has 2 penalty cycles (“lost” ar-
rows). Considering a data dependency between instruction 61 (cmpgt)
and 62 (br) which generates a stall, the “taken” branch overhead is only
1 cycle.

Direct control flow operations like calls, gotos and branches with-
out preload always take 4 cycles. This is the time for the architecture
realization to flush “Operation decoding – O” and “Execution – E”
pipeline stages, reprogram the cache and fetch the target address. This
behavior is illustrated by Figure 13. At cycle 5, the branch condition
is evaluated and if it is true, the fetch unit prepares for a jump and
the new cache data is ready at cycle 6. As the default fetch behavior
is keeping fetching linear instructions, the job done at cycles 3 and 4
is lost. The partially executed instruction (ldw $r23 = 10[$r10]) is
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cycle

61: cmpgt $br0 = $r9, $r10

62: br $br0, 26

89: sub $r8 = $r16, $r12

 60: preld 28

0 1 2 3 4 5 6 7 8 9 10

branch cond. validation = true

new cache address here

88: add $r23 = $r10, 4763: ldw $r23 = 10[$r10]

lost

new cache data here

Figure 12 – Pipeline behavior of a “taken” directed branch.

flushed and the new instruction at the new address begins its execu-
tion at cycle 7. Figure 13 illustrates a branch instruction, but calls and
gotos follow the same behavior.

cycle

61: cmpgt $br0 = $r9, $r10

62: br $br0, 26

89: sub $r8 = $r16, $r12

60: add $r5 = $r50, $r21

0 1 2 3 4 5 6 7 8 9 10 11 12

new cache address here
new cache data here

88: add $r23 = $r10, 4763: ldw $r23 = 10[$r10]

lost flushed

Figure 13 – Pipeline behavior of a “taken” branch without direction
change or other direct control flow operations.

As we can see, the timing of branch operations is slightly different
because it depends on the branch prediction direction and the condition
validation. A “fall-through branch” does not have any overhead if there
is a not taken direction. A “taken branch” has 1 cycle overhead if there
is a taken direction. Although, if there is misprediction when a branch
is “not taken”, the fetch acts like a direct control flow operations and it
takes 4 cycles to execute as illustrated by Figure 13. The worst effect
happens when there is a “taken” direction (with preld operation) but



4.4. Design decisions 101

the correct path is not to take the branch. The recovery process is
illustrated by Figure 14. At cycle 3, the preld instructs the fetch unit
to fetch the new cache address. The branch evaluation is false, at cycle
5, and the recovery process begins at cycle 6 using the old linear cache
address. The cache data is ready at cycle 7 and the execution of the
correct instructions resumes at cycle 8.

cycle

61: cmpgt $br0 = $r9, $r10

62: br $br0, 26

64: mull $r14 = $r16, $r12

 60: preld 28

0 1 2 3 4 5 6 7 8 9 10

new cache address here

branch cond. validation = false

88: add $r23 = $r10, 4763: ldw $r23 = 10[$r10]

lost

new cache data here

recover cache address here
recover cache data here

flushed

11 12

Figure 14 – Pipeline behavior of a mispredicted direction.

The timing of the branch unit depends on the processor front-end
implementation and will be described in the next chapter. Commercial
processors could easily be faster. Nevertheless, the most import char-
acteristic is the very well defined timing behavior of the control flow
system, particularly for real-time applications. Besides we can see the
“taken” branch direction is fairly worse than the “not taken” one. The
support of both directions is important and it brings considerable re-
sults. Considering a loop which iterates 100 times: if there is a “not
taken” direction, it will have about 400 cycles of overhead because it
will mispredict the branch every iteration. With a taken direction with
only 1 cycle overhead per iteration, there are only about 100 cycles of
overhead.

4.4.5 First level of the memory subsystem

A fast and low-latency memory subsystem is important for any
computer architecture. High-end processors typically use various levels
of associative caches to provide fast access to the memory subsystem.
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However, the use of this approach is not recommended for real-time
systems as discussed in Chapter 2 because it jeopardizes WCET anal-
yses.

Recent real-time literature has recommended the use of direct-
mapped caches, scratchpad memories or an approach used by Patmos
and introduced in Schoeberl (2009a). This approach proposes the use
of different caches for different data areas. It is not the purpose of our
work to propose a new real-time memory architecture. For the first
level of the memory subsystem, we use:

∙ instruction memory: direct-mapped cache.

∙ data memory: scratchpad.

Considering the memory subsystem, we contribute with two in-
vestigations. First, we investigate how to connect this cache to VLIW
pipeline front-end and mainly how the latency of this memory is con-
sidered during the WCET analysis. Second, the use of a typical mem-
ory access instruction with base plus offset addressing mode introduces
additional latency on the memory instructions, specially for a VLIW
processor because they have several parallel data paths. We provide a
performance study about using single or multi-port scratchpad access
to diminish the memory latency.

4.4.5.1 Instruction cache

The memory interface connected to the pipeline front-end must
supply enough data to keep the 4-issue pipeline busy. In VLIW ter-
minology, instructions are composed of operations and our four-issue
machine executes up to four operations per cycle forming a 128-bit
instruction word.

Since the main focus of this work is not the memory subsys-
tem, any instruction-memory configuration could be used including a
scratchpad instruction memory or the method cache presented by PAT-
MOS (SCHOEBERL et al., 2011). We used a simple 32-lines of 256-bit
block directed-mapped cache in order to provide sufficient bandwidth
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to the pipeline, respect real-time capabilities and to simplify the worst-
case execution time analysis. The most important contribution is the
cache WCET analysis described in Chapter 6.

4.4.5.2 Data memory interface

The data memory interface was designed to access a scratchpad
memory since we are not considering a complex memory architecture
in order to keep a deterministic design.

We considered a unified 32-bit memory address space. Addresses
0 to 0x3FFFFFFF (1GiB) are mapped to the instruction memory,
0x40000000 to 0x403FFFFF (4MiB) to the scratchpad memory and
0x80000000 to 0xFFFFFFFF (2 GiB) to external SDRAM memory.
Address space between scratchpad and external SDRAM could be used
for IO. Data movement between memories (ROM/scratchpad and SD-
RAM/ scratchpad) is planned to be done via DMA (Direct Memory
Access) operations and direct access using memory instructions is only
available for the scratchpad memory. A real-time memory controller
with a DMA unit is not in the scope of this thesis but it is fully de-
scribed in the work of Reineke et al. (2011).

We support base plus offset memory addressing with the follow-
ing semantics:

∙ load $rx = immediate_offset [register_base]: loads data from mem-
ory with address [ register_base + immediate_offset ] to register
$rx.

∙ store immediate_offset [register_base] = $rx: stores the value of
register $rx to memory with address [ register_base + immedi-
ate_offset ].

We target an access to the scratchpad of one cycle, but the en-
tire memory instruction transaction is actually a multi-stage operation
with more cycles in order to support base plus offset and byte access
modes. Memory instructions specification generally determines 2 stages
to perform a memory transaction. One stage is necessary to calculate
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the address and another to read the data memory. If these two stages
are imposed to all processor instructions (likewise the “M” stage in
MIPS), there is a pipeline fragmentation since one stage is only neces-
sary for memory instructions and it is unused for arithmetic instruc-
tions. In our design, we prefer not to add any pipeline fragmentation to
arithmetic instructions, so we do not have any unused pipeline stage.
Multi-cycle instructions, however, could violate Read-after-Write de-
pendencies. The most common approach for VLIW processors is to
resolve this by the compiler adding nops and enhancing the instruction
scheduling by advancing multicycle operations. We propose stalling the
pipeline but allowing two memory operations per bundle using a dual
port scratchpad. Figure 15 shows a diagram of the memory interface.
ROM and SDRAM accesses are planned to be via DMA operations.
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Figure 15 – Memory unit logic diagram.

Using dual-port access to the scratchpad memory does not add
any WCET complexity because both memory accesses are executed at
the same time. The benefit on performance is described in Chapter 7.
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4.4.6 Compiler support

In order to have a compiler for the architecture and to provide a
customizable environment to research real-time compiler capabilities,
a new code generator back-end for LLVM (LATTNER; ADVE, 2004)
was implemented and it makes part of a different thesis. In this Section
we only provide an overview of the back-end.

LLVM is a compiler infrastructure targeted to be modular and
extensible. As compiler front-end we used Clang4, which supports C-
like languages.

Since the processor has a substantial number of registers, it is
possible to reduce the access to memory data in a compiled program. A
substantial source of memory operations are the accesses to local vari-
ables that are allocated in the procedure stack. Most of the variables
that are originally allocated in the stack can be promoted to permanent
register variables. This promotion of stack to register variables is done
by a pass called PromoteMemoryToRegisterPass, which already exists
in LLVM, and is enabled by the back-end. The execution of this pass
reduces significantly the number of memory access of programs, due to
the fact that the Clang front-end always allocates local variables in the
stack.

Considering instruction ordering to expose ILP to the proces-
sor, we used the default VLIW scheduler. This algorithm performs
top-down list scheduling locally in each basic block. As input data,
the scheduling process uses a simplified description of the processor
resources (represented as a hazard recognizer) and a machine code ba-
sic block to be scheduled. Instruction scheduling is performed before
the register allocation process, so the output of this phase is not a
complete machine code representation. There is no global instruction
scheduler for VLIW architectures in LLVM. Global instruction sched-
ulers can explore ILP across basic block boundaries, resulting in better
performance when compared with the local ones. Examples of global
schedulers are Superblock Scheduling (HWU et al., 1993) and Trace

4 http://clang.llvm.org/
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Scheduling (FISHER; MEMBER, 1981).
The instruction or operation scheduling only affects the instruc-

tion ordering before the register allocation. After the register alloca-
tion, with all auxiliary code generated (function prologs and epilogs
and register spilling code), it is necessary to group operations in in-
struction bundles. This process is done in a pass implemented in the
back-end called packetizer. The packetizer pass operates individually
on each basic block, analyzing data dependencies between operations
to decide whether a operation placement in a determined bundle does
not violate the program semantics. The following data dependencies
are considered by the packetizer:

∙ Data: Often called true data dependency, this dependency occurs
if an operation sets a register that is read by another operation.
If such dependency exists, the two operations must be placed in
different bundles. Table 14 shows an example of an assembly code
where there is a data dependency between two operations: shru
writes in $r18 and sth immediately reads it.

Table 14 – Example of data dependency between operations.

add $r11 = $r19, $r10 $r11 = $r19 + $r10
shru $r18 = $r18, 11 $r18 = $r18 << 11
add $r9 = $r9, 1 $r9 = $r9 + 1
;
sth 2[$r10] = $r18 mem[$r10 + 2] = $r18
;

∙ Output: This type of dependency exists between operations that
set the same register. If such dependency exists, the two oper-
ations must also be placed in different bundles, considering the
original order.
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∙ Anti-dependency: This type of dependency occurs when an op-
eration sets a register that is read by a previous operation. Such
type of dependency is ignored by the packetizer because it does
not affect the semantics of a program when executed in the pro-
cessor. Ignoring anti-dependencies significantly improves the ILP
of programs. Table 15 shows an example of an assembly code
where there is an anti-dependency between two operations: $r10
is read by sth and immediately written by shr. Since $r10 is not
updated in the same cycle it is read by shr, this dependency can
be ignored.

Table 15 – Operation packing considering anti-dependencies, and ignor-
ing them.

With anti-dependencies
Without anti-
dependencies

Description

sth 0[$r10] = $r19 sth 0[$r10] = $r19 mem[$r10] = $r19
add $r16 = $r16, 2 add $r16 = $r16, 2 $r16 = $r16 + 2
; shr $r10 = $r18, 18 $r10 = $r10 >> 18
shr $r10 = $r18, 18 add $r8 = $r8, 1 $r8 = $r8 + 1
add $r8 = $r8, 1 ;
;

The packetizer pass also assumes some specific situations, like
two memory operands per bundle and only one branch/call instruction
per bundle.

In order to respect the cache alignment restrictions of the pro-
cessor, another pass was implemented in the back-end. This pass aligns
bundles aiming to always have a stop bit at the end of a cache line.
This alignment is done by inserting nops (no operation) into previous
bundles, to shift a determined misaligned bundle to a new cache line.
Table 16 shows a sequence of misaligned bundles before and after the
alignment pass. In this example, we consider that the initial address
of the first basic block is aligned with a cache line.
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Table 16 – Instruction alignment in basic blocks.

Misaligned bundle
sequence

Aligned bundle se-
quence

Description

shl $r16 = $r8, 2 shl $r16 = $r8, 2 $r16 = $r8 << 2
; ;
add $r17 = $r16, $r9 add $r17 = $r16, $r9 $r17 = $r16 + $r9
add $r8 = $r8, 1 add $r8 = $r8, 1 $r8 = $r8 + 1
; nop alignment nop

//misaligned bundle ;
ldw $r17 = 0[$r17] ldw $r17 = 0[$r17] $r17 = mem[$r17]
add $r16 = $r16, $r10 add $r16 = $r16, $r10 $r16 = $r16 + $r10
; ;
stw 0[$r16] = $r17 stw 0[$r16] = $r17 mem[$r16] = $r17
; nop alignment nop

;

LLVM does not support predication in its intermediate represen-
tation (IR), although select instructions for partial predication are sup-
ported. Partial predication is supported generically by a set of passes
that perform if conversions and control flow simplifications. These
transformations are guided by generic cost-benefit functions, which
convert conservatively only the obvious and simple cases, e.g. cases
where the benefit is certainly high. If an architecture needs aggressive
code predication, it must implement its own predication support at
the back-end side of the compiler, as done by Jordan, Kim and Krall
(2013).

Considering the WCET support, the code generator provides
useful data about the low-level structure of the compiled program, such
as the control flow graphs and loop bounds, for instance. These data
are also a compiler product in conjunction with the compiled program
(the object code) and both are used by the WCET tool (Chapter 6) to
calculate the WCET of a program.
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4.5 SUMMARY

We started this Chapter discussing the challenging task of ana-
lyzing real-time systems, specially due to the motivation of obtaining
safe and more precise WCET estimations. There are different hardware
requirements between general-purpose and real-time systems although
both of them need constant performance enhancements.

Regarding our objective to improve performance and determin-
ism, we exposed several processor architecture features that lead to
predictable design but also increases the WCET performance. We have
secured our low-level requirements focusing on hard real-time systems
but also not forgetting the high-level requirements allowing our design
to be applicable to modern systems using a modern ISA and a modern
compiler back-end.

We discussed the design decisions through an architecture over-
view. We focus on a real-time processor architecture using a 4-issue
VLIW design with 32-bit RISC operations using HP ST231 ISA. We
support both types of predication as well as static branch prediction
with well-defined behavior. Table 17 presents a synthesis of real-time
processor features considering the standard ST231, PATMOS, PRET
and the prototype described in this thesis.

Regarding our contributions for real-time processor architectures,
we can highlight:

∙ Low-overhead full-predication system for VLIW processors.

∙ Detailed branch architecture.

∙ VHDL design and timing characteristic.

∙ Complete WCET analysis for the proposed design.

∙ Design space investigation and evaluation.

5 ARMv4 supports full predication, but there is no mention in (LIU et al., 2012) about PRET
hardware support.
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Feature ST-231 PATMOS PRET This thesis

ISA ST-200 MIPS like ARMv4
ST231
Subset

Instruc.
Mem.

Associative
Cache

Method
Cache

Scratchpad
Direct-
Mapped
Cache

Data
Mem.

Associative
Cache

Semantic
Caches

Scratchpad Scratchpad

Predication Partial Full Full 5 Partial and
Full

Pipeline 8-stage 3-stage 5-stage 5-stage
Multi-

threading
No No Yes No

Depen.
resol.

Compiler Compiler
No

resolution
Hardware

Issue
width

4 2 1 4

Table 17 – Pipeline features comparison

In the next chapters, we will focus on the timing of the pro-
posed design and later its evaluation in terms of WCET performance.
The timing is defined in Chapter 5, which describes the VHDL im-
plementation of the processor. The implementation is necessary to
infer the timing of each module for WCET modeling and estimation.
The WCET analysis is described in Chapter 6, including analyses of
the instruction cache, pipeline and the worst-case path search. The
evaluation of techniques proposed here will be described in Chapter 7,
highlighting their performance benefits.
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5 VHDL IMPLEMENTATION AND TIMING CHARACTERIS-
TICS

In this chapter, we describe the implementation of our determin-
istic real-time processor. We describe the timing of each module and
their VHDL implementation which are necessary for WCET modeling
and estimation.

The processor designed in this thesis is a 4-wide fetch VLIW
microprocessor with 32-bit RISC operations. In order to assess the
design, we made a VHDL FPGA implementation on an Altera Cyclone
IV GX (EP4CGX150DF31C7) in a DE2i-150 development board. As
any soft core, the maximum reachable clock speed relies on the FPGA
device family, quality of the synthesis tool and VHDL programming
quality. We target and reach a clock speed of 100Mhz. In terms of
comparison, Altera’s own optimized soft processor (NIOS II – single
fetch) runs at 160MHZ on Cyclone IV GX.

We repeat in Figure 16 an overview of the proposed VLIW
pipeline previously depicted in Figure 9 . Memories and forwarding
logic data paths are omitted and the black arrows show the data path
between the pipeline stages and the execution units. The core has
four arithmetic units, two multiplication units, one division unit, one
memory unit and one branch unit. With this data path, up to four
arithmetic operations can be executed in parallel, one branch opera-
tion with up to three arithmetic operations, two multiplications with
two arithmetic operations, one memory with up to three arithmetic
operations or any other combination respecting the data path.

5.1 INSTRUCTION CACHE

The VHDL cache implementation has two main data interfaces
as depicted by Figure 17. The mem_* interface is used to connect the
cache to a VHDL ROM (Read Only Memory) component which stores
the compiled program. This ROM could also be changed to an external
flash memory or a SDRAM with fewer modifications. The stall_out,
cache_data_rdy, abort and data_out signals compose the second main
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Figure 16 – VLIW processor overview (reproduced from Figure 9).

interface and they make the synchronous connection to the pipeline
front-end.

cache

abort

clk

mem_clk

reset

address[22..0]

mem_data_in[31..0]

cache_data_rdy

mem_enable_out

mem_clk_en_out

stall_out

mem_addr_out[31..0]

data_out[255..0]

Figure 17 – Cache VHDL component.

The input address signal is controlled by the pipeline front-end
and instructs the cache to provide the necessary 256-bit data (an en-
tire cache line) at that address. Internally the address is bit-divided



5.1. Instruction cache 113

according to Table 18.

Table 18 – Cache address fields

Field Address bits Description

Block offset [0..2] 3 bits to index each 32-bit word
Index [3..7] 5 bits to index each cache line
Tag [8..22] 15 bits tag memory addresses

Cache tags and memory blocks are stored using two SRAM
(Static Random Access Memory) components. The first is a 32x256
bit matrix (32 lines of 256 bits) to store the memory blocks (8 32-bit
words). The 256-bit cache line width is the maximum width allowed by
the Altera Synthesis to infer RAM blocks. The second is a 32x15 bit
matrix to store the tag information for each cached block. A 32x1 bit
register matrix is also necessary to store the validity or live bit. These
bits are used to mark a cache line as valid or invalid.

The cache controller and behavior are illustrated by the Finite
State Machine (FSM) in Figure 18. The cache is constructed using
synchronous components (registers and RAMs) and they are synchro-
nized by the rising edge of the processor main clock. Each FSM edge
transition is indeed a clock cycle.

hit

miss

i_mem != rdy

Figure 18 – Cache states and behavior.

The first and the main state of the cache is C_COMP_TAG.
In this state, hits or misses are checked dividing the input address into
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index and tag and performing reads in tag and memory blocks SRAMs.
The valid bit register matrix is also read in this state. There is a hit if
the valid bit is true and the requested tag is the same as the stored one.
Since all information (data blocks, tag and valid bit) is simultaneously
accessed, a 256-bit cache line are immediately available. Cached data
blocks are accessed like a simple synchronous SRAM: data is ready one
cycle after the address is requested.

In case of a miss, a ROM transaction is necessary. The state
changes to C_RD_BLOCK and a stall signal is set and it stalls the
pipeline front-end. The latency of this state depends on the speed of
the instruction memory. When C_RD_BLOCK is reached, this state
initializes the ROM controller FSM as depicted in Figure 19. As soon
as the cache controller starts the ROM controller, it accesses the ROM
memory in state ACC_1 manipulating control bits and generating the
correct ROM addresses. Since the ROM is also synchronous, nine cycles
are necessary to read eight words. Those words are also concatenated
to build a 256-bit word requiring another cycle to register the result.
The entire ROM transaction takes ten instruction memory cycles.

start

blocks < 8

done

Figure 19 – ROM controller behavior.

When the ROM controller finishes, the cache FSM proceeds to
C_ MEM_END. This state prepares the internal memories to receive
the new data and tag. After that, a new cache line is stored, data is
available and the stall signal is unset. If the ROM is clocked at the
same the processor main clock, a cache miss takes 15 cycles: 10 for
ROM transaction plus 5 for internal controllers, SRAM transactions
and registers.
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5.2 PIPELINE FRONT-END

The pipeline front-end fetches an entire 256-bit cache line from
the instruction cache or eight 32-bit operations. Considering a 4-issue
fetch unit, an instruction can have one, two, three or four operations.
The operations are always dispatched in fixed slots (S0 to S3), as shown
in Figure 16. Instructions are encoded using distributed encoding. It
is a variable-overhead method of encoding VLIW instructions by ex-
plicitly inserting a stop bit (Bit 31) to delimit the end of the current
instruction. It is not necessary to encode 32-bit nops when there are
not four parallel operations to execute.

The front-end is built using two pipeline stages: the “Cache
buffer” and “Instruction bundle decoding”. The “Cache Buffer” stage
controls the instruction cache address and fetches an entire cache line.
After a cache line is fetched, “Ins. Bundle Decoding” detects the stop
bits and dispatches up to four operations in four execution slots. Due
to distributed encoding, there is no “nop” overhead if the compiler can-
not find four parallel operations. There is a basic alignment restriction
to make bundle decoding faster and more predictable: one instruction
cannot be in different cache lines, so the remaining 32-bit operation of
a cache line must always have a stop bit. Figure 8 shows an example
of instructions of a cache line being decoded and dispatched.

The two pipeline stages, “Instruction bundle decoding” and “Cache
buffer”, are depicted in Figures 20 and 21, respectively. In the VHDL
component hierarchy, they are part of a large “Fetch” component.

ins_decoder

addr_ld

clk

enable

preld

reset

addr_in[22..0]

bundle_in[255..0]

error

slot_0[31..0]

slot_1[31..0]

slot_2[31..0]

slot_3[31..0]

recover[22..0]

next_address[22..0]

Figure 20 – Instruction bundle decoder VHDL component.
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The instruction decoder is in charge of decoding instruction into
32-bit operations inspecting the stop-bits. It receives a full previous
registered cache line and its address and divides it into operations as
described in Figure 8. Empty slots are reset. The instruction decoder
is a synchronous component and is capable of decoding one instruction
per cycle. This decoder must also support synchronous load to support
control flow instructions since they can move to any address (any cache
word offset).

cache_buffer

branch_in

cache_data_rdy

cache_stall

clk

dep_stall

f_error

goto_in

halt

jump_reg_in

mem_stall

pre_jr

preld_en

reset

next_pc[22..0]

cache_data[255..0]

link_reg[22..0]

b_address[22..0]

goto_addr[22..0]

preload_addr[22..0]

exec_slot_mask[3..0]

recover[22..0]

cache_abort

decode_en

decode_ld

decode_ld_sel

decode_preld_en

decode_reset

delay_dep

next_pc_reg[22..0]

bundle_out[255..0]

b_address_reg[22..0]

n_ctrl_flow[31..0]

cache_address[22..0]

Figure 21 – Cache buffer component.

The “Cache buffer” component, depicted in Figure 21, is a more
complex component since it deals with all stall sources like cache misses,
pipeline dependency resolutions and stalls coming from the execution
stage. Since this unit controls the pipeline front-end, it receives all stall
signals and stops the pipeline while their signals are valid. It must also
generate the correct signals and update the cache address when control
flow instructions are executed.
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Figure 22 shows the behavior/controller of the pipeline front-
end. The main state is B_L (Bundle Loading), where instructions are
decoded and executed in stream mode. In this state, stall signals are
monitored. Stalls make the FSM to progress to stall states like STALL
and EX_STALL. The first one is a cache stall and the second one is a
stall generated by the execution unit.

Different types of control flow instructions are controlled by dif-
ferent states: BRANCHIN for conditional branches, GOTOIN for di-
rect jumps (the address is encoded in the operation) and JUMP_REGIN
for indirect jumps (the address comes from the register file). After
these transitions, the FSM progresses to ENC_LOAD where the “In-
struction bundle decoding” is reprogrammed. States named PRELD,
BRANCH_PRED and PRED_ INIT are responsible for branch pre-
diction. The branch behavior and timing will be better described in
the next section. There are also auxiliary states like INIT, INIT_2
and EX_STALL_SYNC_2 which are necessary to enable data to be
correctly registered during the FSM progression. The states HALTED
and ENC_ERROR are reached when the CPU is halted by a halt in-
struction or when there is an error in the instruction decoding (cache
alignment/stop bits missing).

The front-end controller was one of the most challenging parts of
the processor implementation, specially to reduce unnecessary latencies
and to keep a synchronous implementation. Avoiding latches on using
registers enhances the VHDL synthesis but complicates the controller
since data must be registered and available earlier. This behavior is
illustrated by Figure 23. In this figure, there is a wave form of the
pipeline executing a branch. Lines F, B, O, E and WB are the pipeline
stages (Fetch, Bundle decoding, Operation decoding, Execution and
Write-back). F_state is the FSM state and S0 to S3 are the decoded
operation slots. Only Slot 0 is receiving operations in this example:
every instruction has a stop bit. This occurs when the front-end is less
stressed.

At time 515 ns, a branch is signaled. In the next cycle, the
controller sets the new cache address and the cache responds at the
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Figure 22 – Front-end control behavior.

next one. Next, stage F receives the data and programs the instruction
decoder which decodes the instruction, dispatches operation to slot 0
and resets empty slots. We can observe the pipeline filling in lines
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F to WB. Considering timing, we can note that to produce a decoded
operation in slot 0 at 545ns, the cache was programmed at 515ns. When
the fetch operates in full stream mode with 4 operations per cycle,
a cache line address is generated on every cycle and this behavior is
dynamic since instructions may have 1, 2, 3 or 4 operations. The
front-end must control the pipeline considering possible high timing
stall cycles, possible dependencies with one stall cycle, control flow
instructions and dynamic instruction size.

5.3 THE CONTROL-FLOW SYSTEM

The control-flow system is composed by the branch unit and by
the pipeline front-end. The front-end, as indicated earlier, controls
the cache considering its signals, timing and address. It also controls
instruction decoding. The branch unit, on the other side, instructs
the front end when there are control-flow operations, evaluates the
conditions for conditional branches and calculates the correct target
addresses.

The processor branch unit takes care of all control flow oper-
ations including direct, indirect and conditional jumps. They must
always be encoded in the first operation of an instruction: the branch
unit is connected only to Slot S0 data path as shown in Figure 16.
Conditional branch instructions are encoded with a binary predicate
($br) and a 23-bit offset parameter relative to the program counter
(23-bit immediate). Branch conditions are calculated separately from
the branch operation using arithmetic operations. Direct jumps also
use a 23-bit offset parameter relative to the program counter. Indirect
jumps use the address specified in the register without offset.

In order to perform a control-flow operation, the processor must
decode the correct control-flow type, perform the address calculation
and reprogram the pipeline front end. The control-flow system is in
charge of detecting the control-flow type and calculating the target
address. It signals the front end to reprogram the fetch unit providing
the correct target address and the control-flow type. Cache transactions
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and pipeline flushing are performed by the fetch unit (described in
Section 5.2). Figure 24 shows the VHDL component.

control_flow_unit

clk

delay_dep

dep_stall

ex_stall

pred_value

reset

slot_0_in[31..0]

slot_1_in[31..0]

slot_2_in[31..0]

slot_3_in[31..0]

pc[22..0]

branch_en

goto_en

jump_reg_en

preld_en

branch_addr[22..0]

goto_addr[22..0]

preload_addr[22..0]

Figure 24 – Control flow unit component.

This unit is synchronous and receives stall signals like instruction
dependencies (delay_dep and dep_stall) or execution stalls (ex_stall) to
hold the output signals while another unit is stalled. It receives the
program counter (pc) to perform PC relative jumps and slot opera-
tion data (slot_0_in) for control-flow decoding and immediate values.
Slot_1_in to slot_3_in) are used for preld operations because they can
be scheduled in any execution slot.

Each control-flow type has its own output signal: branch_en for
branches, goto_en for direct jumps, jump_reg_en for indirect jumps and
preld_en for branch prediction. There are also different address outputs
to avoid 22-bit multiplexers because the use of synchronous adders
reduces routing issues and increases the maximum operating frequency.
All addresses are simultaneously calculated using independent adders
and their values are used according to the control-flow type.

This unit is also responsible for the logic of conditional branches.
The ISA supports two type of branches: br, branch when the predicate
pred_value is true; brf, branch when the predicate value is false. The
branch type is decoded, the predicate value is read and signal branch_en
is activated accordingly to the branch type and predicate value.
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5.4 REGISTER FILES

The register file is the primary and the fastest data storage area.
In the case of a RISC processor, all processing data must be in the
register file to be manipulated. Essentially, the register file is an array
of registers and it must provide fast and dynamic access.

A register file of a single-fetch processor must provide at least
two read and one write ports. Two read ports are necessary to read
instruction operands while a write port is utilized to write processing
results. In the case of pipelined processors, those ports are accessed in
every clock cycle since operands are read in earlier pipeline stages and
the result of further instruction is stored in the write-back phase.

For VLIW processors, the register file is even more complex. A
4-issue machine needs to read eight operands (two for each slot) and
write four results at every cycle. This gives a total of twelve dynamic
access ports. Those ports should also provide simultaneous access to
every register address and forward a fresh result to a reading port if a
write occurs at the same cycle. Multi-ported register files are typically
constructed with expensive specialized SRAMs (Static RAMs) since
conventional SRAMs provide only two ports.

In the context of this thesis, two register files are necessary with
the following characteristics:

∙ General purpose register file:

– 8 read ports.

– 4 write ports.

– 64 general purpose 32-bit registers (6 address bits).

– Internal forward unit (writes are immediately forwarded to
read ports).

∙ Predicates register file:

– 4 read ports.

– 1 fixed read port for full predication ($br4).



5.4. Register files 123

– 8 1-bit predicate/branch registers (3 address bits).

– Internal forward unit (writes are immediately forwarded to
read ports).

There are many ways to implement a register file in FPGA. Using
only combinational logic (register/latches) does not produce an efficient
design. As FPGAs have lots of memory blocks, it is better to use
them to store register file data. Unfortunately FPGA RAM blocks
usually have just 2 ports: 1 for reading and 1 for writing. Therefore,
to efficiently implement a register file, we need to replicate the memory
blocks and track the most recent copy. For instance, if we have 4 write
ports, we have 4 copies of the registers. The problem is how to track
the most recent value in a read operation.

There are two recent works, (LAFOREST; STEFFAN, 2010) and
(LAFOREST et al., 2012), that show how to efficiently track the most
recent copy. The first one uses a structure called Live Value Table
(LVT) that stores the write port number in a write operation and this
value is used to multiplex the recent value in a read operation (all copies
of the register file are read at the same time). LVT is implemented using
only logic elements because it needs the same number of write and read
ports as the register file but it needs much fewer hardware resources
than a whole register file implemented with logic elements.

In the second work (LAFOREST et al., 2012), they use XOR
operations to track the most recent copy. Bitwise XOR is commutative,
associative and it has 3 interesting properties: A⊕0 = A, B⊕B = 0 and
A⊕B⊕B = A. In this implementation, a value that has to be written
in a bank is first XORED with all other replicated banks. On a read,
the register file returns the most recent value using the same XOR
operation doing XOR of all replicated banks and returning the most
recent one. The drawback of the XOR design is that each write requires
reading, since we must store the write value XOR the old value of that
location from the other bank. This increases the number of FPGA
memories required to implement the design and the register file must
be clocked twice as fast as the pipeline. The LVT design uses more logic
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elements while the XOR design uses more FPGA memories. In our
implementation we chose the LVT design because its implementation
is more modular compared to the XOR design.

lvt

clk

port0_w_en

port1_w_en

port2_w_en

port3_w_en

reset

port0_w_addr[5..0]

port1_w_addr[5..0]

port2_w_addr[5..0]

port3_w_addr[5..0]

port0_a_rd_addr[5..0]

port0_b_rd_addr[5..0]

port1_a_rd_addr[5..0]

port1_b_rd_addr[5..0]

port2_a_rd_addr[5..0]

port2_b_rd_addr[5..0]

port3_a_rd_addr[5..0]

port3_b_rd_addr[5..0]

port0_a_rd[1..0]

port0_b_rd[1..0]

port1_a_rd[1..0]

port1_b_rd[1..0]

port2_a_rd[1..0]

port2_b_rd[1..0]

port3_a_rd[1..0]

port3_b_rd[1..0]

forward
mux_for_p0_a

data0x[31..0]

data1x[31..0]

data2x[31..0]

data3x[31..0]

data4x[31..0]

sel[2..0]

read_port_0_a

internal
forward

logic

others
write ports

ramblock - 0...3

clock

wren

data[31..0]

rdaddress[5..0]

wraddress[5..0]

q[31..0]

lvt_mux_p0_a

data0x[31..0]

data1x[31..0]

data2x[31..0]

data3x[31..0]

sel[1..0]

result[31..0]

There are 4 ramblocks
for each reading port

Figure 25 – Logic diagram for one read port.

A simplified register file internal diagram is depicted in Figure
25. There are 4 independent write ports generating 4 different data
copies of particular register. These copies are stored using RAM blocks
(64 lines of 32-bit – 64 32-bit registers). The LVT structure records
the most recent copy and selects it using multiplexer lvt_mux_p0_a.
After the most recent copy is selected, another multiplex is required.
Since the Cyclone IV RAM blocks do not forward fresher data during
a simultaneous read/write (they output only the older value or “don’t
care” value), the multiplexer selects newer data coming from other write
ports. This logic is not presented here but it only checks if a read and
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write occur simultaneously and selects the correct/newer data. The
LVT manages a total of 32 RAM blocks: 8 read ports with 4 write
ports require 32 copies of the registers.

In order to improve the register file implementation since LVT
uses too much memory and bitwise XORs requires a pipelined register
file, we can use temporary register attached to each functional unit.
This technique was used in (SANTOS; AZEVEDO; ARAUJO, 2006)
and present interesting results. Temporary registers in each functional
unit minimize the pressure over the global register file and could also
reduce the overall number of register file ports. On choosing this tech-
nique, we also must optimize the register allocation in the compiler.

5.5 PREDICATION SUPPORT

Typically, supporting full predication adds considerable levels of
logic to critical processor data paths (FISHER; FARABOSHI; YOUNG,
2005), specially in instruction encoding and forwarding paths. How-
ever, the proposed method uses an available encoding bit and does not
add logic to the forwarding paths since only dual paths with only one
predicate is considered. Besides being simple, it does not diminish the
predication capabilities.

Like other registers, predicate register $br4 is read immediately
after a VLIW instruction is decoded into S0 to S3 operation slots during
the “Operation Decoding – O” pipeline stage. Since $br4 must be read
in every cycle, an additional fixed address read port is added to the
predicate register file. Adding this new port to this register file has a
low impact since there are only 8 1-bit registers and its read address
is fixed. Compared to the general purpose register file which has 12
32-bit ports, the predicate register file is considerably simpler having 9
1-bit ports (5 read ports and 4 write ports).

After the operations are decoded and before they are executed
by the arithmetic and memory units, they are registered in a inter-
stage pipeline buffer as illustrated in Figure 26. The deactivation logic
is executed by the “OD - EX - Buffer”. This buffer is a synchronous
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Figure 26 – Pipeline inter-stage responsible for the predication logic.

unit and it already receives all necessary signals to deactivate execution
units considering the bit 30 and the value of the $br4 register.

In the simple predicate mode, the execution of a particular x slot
is deactivated if:

slot_x.bit[30]∧¬$br4 = true (5.1)

Control signals are reset and the execution unit does not perform
any calculation if bit 30 is true and the predicate $br4 is false.

In the case of complete mode, the instruction paron sets a regis-
ter in the “OD - EX - Buffer”: par_on_o f f . This register, operation bit
30 and predicate $br4 reset execution unit control signals performing
the following logic:

par_on_o f f ∧ (slot_x.bit[30]⊕$br4) = true (5.2)

This logic deactivates the operation if complete mode is activated
when the value of bit 30 and $br4 are different (XOR logic port). If
bit 30 is false, operations are executed if $br4 is false, but ignored if
it is true. If bit 30 is true, operations are executed if $br4 is true, but
ignored if it is false.
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As we can see, the deactivation logic of the predication systems
is performed using simple “AND” and “XOR” logic ports added to the
“OD - EX - Buffer”. The logic added to implement the predication
systems does not jeopardize the operating frequency of the prototype
since simple registers were reset and the critical data path considering
32-bit words and multiplexers of the forwarding logic were preserved.

5.6 PIPELINE INTERLOCK

An interlock mechanism is necessary when there are instruction
dependencies that are not resolved by a forwarding logic due to hard-
ware complexity or when the requested data is not yet available when
a read is performed. The proposed VLIW design has full forwarded ex-
ecution stage units to avoid stalls from Read after Write (RAW) data
dependencies. This means that any calculation performed by any unit
is forwarded to the unit which needs the data. Unfortunately, there are
two dependencies in the control flow unit which cannot be resolved by
forwarding logic regarding branch and direct jump instructions. Both
cases are illustrated in Table 19 and Figure 27 illustrates the pipeline
behavior of the arithmetic one.

Table 19 – Example of interlock cases.

RAW for $br0 between arithmetic (cmpne) and branch (brf) instructions

cmpgt $br0, $r18, $r16 write on $br0
;
brf $br0, $BB4_1 read on $br0

RAW for $lr between memory load (ldw) and goto instructions

ldw $lr = 20[$sp] write on $lr
;
goto $lr read on $lr
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cycle

61: cmpgt $br0 = $r18, $r16

62: br $br0, $BB4_1

0 1 2 3 4 5 6

cmpgt is still executing
while br needs the value 
of $br0

61: cmpgt $br0 = $r18, $r16

62: br $br0, $BB4_1

one cycle stall

Figure 27 – Pipeline behavior of interlock RAW dependency.

The interlock is a hardware protection and it is only activated
when those instructions are executed subsequently. In both cases, there
is a stall cycle which can be avoided when the compiler schedules a non
dependent instruction before the control-flow one.

The interlock is implemented comparing control signals between
“Execution” (E) and the “Operation Decoding” (O) stages. The com-
plete logic is described in Algorithm 1.

The RAW branch interlock compares the predicate register (br−
branch_reg), read for the branch operation during the “O” stage, with
the predicate register destination written during the “E” stage. When
there is subsequent read and write, the signal branch_wb_en will be
true as well as the destination and read branch register addresses will
be equal. In this case, the signal ctrl_ f low_stall instructs the pipeline
front end to stop. Since the “E” stage continues to execute, as soon as
the arithmetic instruction follows to the next pipeline stage, interlock
logic will be false and the front-end resumes the pipeline execution.
We only consider a reading register in the slot_0 because control-flow
operations are only scheduled in the slot_0 data path.

The RAW goto interlock works like the branch one. First, it
checks whether there is a goto operation in slot_0 and then it checks if
the goto operation reads the same register address of the memory load
operation (mem_reg_dest). The goto interlock has only two statements
because memory operations are only scheduled in slot_0 and slot_1.



5.7. Arithmetic and Logic units 129

Algorithm 1 Interlock logic
1: {Activated when slot_0 has a branch control flow instruction}
2: if O.slot_0.branch_op = true then
3: {Write in br in Slot_0}
4: if O.slot_0.branch_reg = E.slot_0.branch_dest ∧E.slot_0.branch_wb_en = true then
5: ctrl_ f low_stall := true
6: end if
7: {Write in br in Slot_1}
8: if O.slot_0.branch_reg = E.slot_1.branch_dest ∧E.slot_1.branch_wb_en = true then
9: ctrl_ f low_stall := true

10: end if
11: {Write in br in Slot_2}
12: if O.slot_0.branch_reg = E.slot_2.branch_dest ∧E.slot_2.branch_wb_en = true then
13: ctrl_ f low_stall := true
14: end if
15: {Write in br in Slot_3}
16: if O.slot_0.branch_reg = E.slot_3.branch_dest ∧E.slot_3.branch_wb_en = true then
17: ctrl_ f low_stall := true
18: end if
19: end if
20: {Activated when slot_0 has a goto to register}
21: if O.slot_0.goto_op = true then
22: if O.slot_0.goto_reg = E.slot_0.mem_reg_dest ∧E.slot_0.mem_reg_wb_en = true then
23: ctrl_ f low_stall := true
24: end if
25: if O.slot_0.goto_reg = E.slot_0.mem_reg_dest ∧E.slot_0.mem_reg_wb_en = true then
26: ctrl_ f low_stall := true
27: end if
28: end if

5.7 ARITHMETIC AND LOGIC UNITS

The arithmetic and logic units (ALUs) perform all arithmetic
and logic functions supported by the processor ISA excluding multi-
plication and division. Those two operations are implemented in a
different unit due to their additional complexity. Processor ALUs are
typically fast and they should perform calculations in one cycle. In the
case of this VLIW processor, there are four symmetric ALUs and they
are fully-forwarded. All RAW dependencies are resolved by hardware
and they never cause any processor stall.

ALUs are reprogrammed components. They receive two input
sources, one input function selector, one output result and one carry-
out result as depicted by Figure 28.

ALU implementation in VHDL is straightforward because all
arithmetic and logic functions are typically supported by the FPGA
tool. The challenging part is the implementation of the full forwarding
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alu

src1_in[31..0]

func_0[5..0]

carry_cmp

alu_out[31..0]src2_in[31..0]

Figure 28 – Arithmetic and logic unit diagram.

logic keeping the ALUs with one cycle latency.
In order to achieve the desired timing requirements, all ALUs are

implemented synchronously and together in a single VHDL component.
This component contains all four ALUs, all necessary forwarding logic
and multiplexers. The synthesis tool should also be instructed to keep
all those components together and locked in a specific FPGA region.
Figure 29 shows a simplified diagram of a single ALU with forwarding
multiplexers with all available input sources.
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Figure 29 – Forward logic multiplexers for one ALU.

The complete arithmetic execution stage with four fully-forwarded
ALUs has:
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∙ Four ALUs (Figure 28).

∙ Eight multiplexes with 9 ports – one for each ALU input source.

∙ Eight forward logic (Algorithm 2) – one for each ALU input
source.

The forwarding logic is implemented comparing control signals
between “Execution” (E) and the “Operation Decoding” (O) stages.
The logic for one ALU input source (src1) is described in Algorithm 2.
All other ALUs and their input sources have similar logic to select the
appropriate ALU input value.

Algorithm 2 Forward logic for a single ALU input
1: src1_mux_sel := reg_ f ile {default selection}
2:
3: if O.slot_0.src1_reg = E.slot_0.dest_dest ∧E.slot_0.reg_wb_en = true then
4: src1_mux_sel := alu0_val {forward from alu 0}
5: end if
6: if O.slot_0.src1_reg = E.slot_1.dest_dest ∧E.slot_1.reg_wb_en = true then
7: src1_mux_sel := alu1_val {forward from alu 1}
8: end if
9: if O.slot_0.src1_reg = E.slot_2.dest_dest ∧E.slot_2.reg_wb_en = true then

10: src1_mux_sel := alu2_val {forward from alu 2}
11: end if
12: if O.slot_0.src1_reg = E.slot_3.dest_dest ∧E.slot_3.reg_wb_en = true then
13: src1_mux_sel := alu3_val {forward from alu 3}
14: end if
15: if O.slot_0.src1_reg = E.slot_0.mem_reg_dest ∧E.slot_0.mem_reg_wb_en = true then
16: src1_mux_sel := mem0_val {forward from mem 0 unit}
17: end if
18: if O.slot_0.src1_reg = E.slot_1.mem_reg_dest ∧E.slot_1.mem_reg_wb_en = true then
19: src1_mux_sel := mem1_val {forward from mem 1 unit}
20: end if
21: if O.slot_0.src1_reg = E.slot_0.mul_reg_dest ∧E.slot_0.mul_reg_wb_en = true then
22: src1_mux_sel := mul0_val {forward from mul_div 0 unit}
23: end if
24: if O.slot_0.src1_reg = E.slot_1.mul_reg_dest ∧E.slot_1.mul_reg_wb_en = true then
25: src1_mux_sel := mul1_val {forward from mul_div 1 unit}
26: end if

The forwarding logic compares a source register, read for an
arithmetic operation during the “O” stage, with a destination register
written during the “E” stage. When there is subsequent read and write,
the signal reg_wb_en will be true as well as the destination and read
register addresses will be equal. In this case, the signal src1_mux_sel
selects the correct updated value that is registered in the pipeline buffer
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but not yet written in the register file. This logic enables Read-After-
Write dependency resolution without pipeline stalls.

5.8 DATA MEMORY INTERFACE

The memory unit is controlled by the Finite State Machine
(FSM) illustrated by Figure 30. This FSM is designed to access the
scratchpad, it is also constructed using synchronous components and
synchronized by the rising edge of the processor main clock. Each FSM
edge transition is a clock cycle.

IDLE ADDR_DONE

SP_W

SP_R

Figure 30 – Memory unit states and behavior

During the IDLE state, two adders are always calculating two
effective memory addresses. They use the base and offset values pro-
vided by the “OD-Ex Buffer”. This state also generates the stall signal
to the pipeline front end when a memory operation is issued to the
memory unit.

When there is a store operation, the ADDR_DONE state calcu-
lates the “byte enable” masks to be issued to the scratchpad memory
to provide byte, half-word (16-bit) or word (32-bit) writes to the spe-
cific address and the specific write signal to be issued to the scratchpad
memory. This state also generates error if the memory address is not
correctly aligned. An alignment error occurs when the effective address
is not a multiple of four for word access (e f f _addr mod 4 ̸= 0) or it
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is not a multiple of two for half-word access (e f f _addr mod 2 ̸= 0).
The effective scratchpad write occurs during the SP_W state using the
truncated word address (addresses issued to the scratchpad memory
are always multiple of four) and the “byte enable” mask specifies which
bytes are written. The SP_W states also resets the stall signal and the
pipeline resumes execution in the next cycle.

When there is a load operation, the ADDR_DONE state im-
mediately makes a 32-bit access to the scratchpad memory using the
truncated word address. This state also generates an error if the mem-
ory address is not correctly aligned. During the SP_R state, byte and
half-word masks are applied accordingly and 32-bit signal extension is
also performed for signed memory loads. The SP_R state also resets
the stall signal and the pipeline resumes execution in the next cycle.

Like the arithmetic units, the memory unit needs forwarding
logic to resolve RAW dependencies. Figure 31 shows the diagram of
the address adder and its input parameters. The multiplexer selector
uses similar logic as the arithmetic forward shown in Algorithm 2.
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Figure 31 – Memory effective address calculation with forward.

5.9 MULTIPLICATION AND DIVISION UNIT

The multiplication and division unit provides a hardware imple-
mentation of these two arithmetic operations. The ST-231 ISA has
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a large set with 17 types of multiplications but it is not compatible
with full division operations. It only supports division steps where a
complete division with quotient and remain results of integer divisions
must be assisted by software using loops or compiler library calls.

This unit provides signed and unsigned 32-bit multiplication sup-
porting 2 multiplications per instruction bundle. ST-231 ISA’s 17 types
of multiplications were generalized with 3 different operations: simpli-
fied multiplication (mull) which returns the 32-bit lower bits of a 64-bit
signed result, high order multiplication (mull64h) which returns the 32-
bit higher bits of a 64-bit signed result and unsigned high order mul-
tiplication (mull64hu) which returns the 32-bit higher bits of a 64-bit
unsigned result. Accordingly with the LLVM compiler documentation
(LATTNER; ADVE, 2004) 1, these three operations must be supported
and they are enough to provide signed and unsigned hardware multi-
plications. Further operations could be supported but their use are
subject to compiler back end implementation

Considering the division, we added hardware support increasing
the ISA with four new operations for integer signed and unsigned divi-
sion with quotient and remainder individual results. Only one division
operation is supported per bundle. The supported operations are: div_r
which returns the remainder of a signed 32-bit division, div_q which
returns the quotient of a signed 32-bit division, div_ru which returns
the remainder of a unsigned 32-bit division and div_qu which returns
the quotient of a unsigned 32-bit division. Accordingly with the LLVM
compiler documentation (LATTNER; ADVE, 2004), these operations
must be supported to avoid division implemented by software using
library functions.

The multiplication and division arithmetic operations are per-
formed by six components implemented by the Altera function library.
They are illustrated by Figure 32.

Two individual 32-bit multipliers are required to support signed
and unsigned operations and their result are 64-bit large (mul_64_signed

1 http://llvm.org/
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Figure 32 – Multiplication and division unit components per slot.

and mul_64_unsigned). The total number of multipliers are four: one
signed and one unsigned per slot. Altera’s multipliers are composed by
the association of 9-bit embedded multipliers. Each 32-bit multiplier
uses eight 9-bit embedded ones plus additional control logic. They also
require one cycle to perform the multiplication.

Two individual 32-bit dividers are required to support signed and
unsigned division: div_signed and div_unsigned. Each divider provides
the quotient and the remainder of the operation. The used FPGA
family (Cyclone IV) does not have any embedded component to ac-
celerate division. Besides, Altera’s function library provides divider
components, that are implemented using only standard logic. Dividers
are constructed by the association of adders, making them large and
slow, requiring sixteen cycles to perform an operation with 100 Mhz
as clock cycle. Adding division in both slots jeopardizes the hardware
fitting and the target operating frequency. Division operation could be
accelerated using a floating point unit since floating point division is
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implemented with FPGA embedded specific hardware as the multipli-
ers.

The multiplication and division unit is controlled by a Finite
State Machine (FSM) illustrated by Figure 33. This FSM is intended
to control and to synchronize multiplication and division components.
It is synchronized by the rising edge of the processor main clock and
each FSM edge transition is a clock cycle.

IDLE

REG
if_div == true 

WAITING
is_mull == true

if_div == true 

RESULT

DONE

Figure 33 – Multiplication and division unit states and behavior

The multiplication and division unit waits for an operation at
the IDLE state. As soon as the pipeline buffer signals a multiplication
or a division operation, a stall signal is sent to the pipeline font-end.
When a division is requested, internal signals are registered at the REG
state. When multiplication is requested, IDLE state goes directly to the
WAITING state. At WAITING state, the dividers or multiplicators are
activated using the clken signals and there is no progression until the
operation is concluded. Sixteen cycles are waited for the division and
only one for the multiplication. At the RESULT state, 32-bit low order
or 32-bit high order of the 64-bit result is registered for multiplication
or the remainder or quotient for the division. At the DONE state,
all requested operations are done, the pipeline front-end resumes its
operation and the write-back stage writes the results to the register
file.

Like the arithmetic and the memory units, forwarding logic is
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necessary as well. 9-input multiplexers are placed before dividers and
multiplicators inputs and their selection logic is similar to the previ-
ously described Algorithm 2.

5.10 TIMING CHARACTERISTICS AND FPGA RESOURCE UTI-
LIZATION

The FPGA resource utilization is shown in Table 20 with a clock
speed of 100MHz. The execution stage length description for each
instruction type is shown in Table 21.

We can summaries the timing information required for the WCET
analyzer as follows:

∙ Cycle time: 10ns

∙ Cache miss: 15 cycles.

∙ Interlock latency: 1 cycle, only between arithmetic compares and
conditional branches.

∙ Execution stage latencies: Table 21.

∙ Control-flow latencies:

– Not taken branch: no latency.

– Taken branch: 4 cycles.

– Call, goto: 4 cycles.

– Predicted taken branch: 1 cycle.

– Misspredicted branch: 6 cycles.

5.11 SUMMARY

The instruction cache memory was implemented in the FPGA
using internal RAM blocks. The instruction cache has 32 lines with
256 bits per line forming a 1kb direct-mapped cache memory.
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Table 20 – FPGA resources usage (Cyclone IV GX – EP4CGX15
0DF31C7). Resource usage reported by Quartus II 64-bit V
15.0.0 Build 145 WEB Edition.

FPGA Global Resource Usage / Available %

Total combinat. functions 21,220 / 149,760 14%
Dedicated logic registers 5,017 / 149,760 3%
Total memory bits 1,188,764 / 6,635,520 15%
Emb. 9-bit multiplayers 30 / 720 4%
Total PLLs 1 / 8 13%

Component Usage / Total %

Cache 378 / 21220 1.78%
Fetch 3194 / 21220 15.05%
Oper. decoding 922 / 21220 4.34%
Memory Units 1434 / 21220 6.76%
Mul. and Div. 4297 / 21220 20.25%
Register Files 3658 / 21220 17.24 %
ALUs w/ forw. 7002 / 21220 33.00%
Pipeline Buffers 331 / 21220 1.56%

A VLIW processor with 4-wide fetch unit needs a register file
capable of reading 8 and writing 4 values to the register file each cycle,
which produces 12 data ports. Unfortunately FPGA RAM blocks usu-
ally have just 2 ports: 1 for reading and 1 for writing. Therefore, to
efficiently implement a register file, we need to replicate the memory
blocks and track the most recent copy. To do so we use the work of
(LAFOREST; STEFFAN, 2010) where they use a structure called Live
Value Table (LVT) to track the most recent copy.

The Arithmetic Logic Units (ALU) are capable of executing un-
signed and signed arithmetic, compare and logic operations. The 4
ALUs and their forwarding logic have the most critical data path. A
full forwarded ALU has, at least, 5 possible internal input values: a
value coming from the register file, a more recent value coming from its
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Table 21 – Processor instruction timing

Stages
Instruction Type

Arithmetic Multiply Divide Store Load

E0
Compute

results

Read
operands
and start

Read
operands
and start

Compute
address

Compute
address

E1
Compute

results
Compute

results

Create
store

masks

Access
scratch-

pad

E2
Compute

results
Compute

results

Access
scratch-

pad

Apply
load

masks
and

register
results

E3
Register
results

Compute
results

En
Compute

results

E19
Register
results

Timing 1 cycle 4 cycles 19 cycles 3 cycles 3 cycles

own previous calculation and three more values coming from the other
ALUs. Additional input values are necessary for each execution unit: 2
for two memory operations and 2 for two multiplications and divisions.
Forwarding logic exists for each ALU input selecting the most recent
value based on the operation read and write parameters. Timing for
all ALU operations is only one cycle and it never stalls.

Multiplications were implemented using dedicated FPGA em-
bedded 9-bit multipliers. Multiplications are more sophisticated and



140 Chapter 5. VHDL implementation and timing characteristics

they need 4 stages to complete. Considering the current implementing
technology, the number of substages is equal to the number of cycles. A
division specialized VHDL block uses only combination logic. A single
division requires 19 cycles to target 100Mhz and it is a very large com-
ponent. To implement one hardware signed and one unsigned division
we need as much logic cells as half of the entire arithmetic unit (4 ALU
with all forwarding logic).

The Load/Store unit accesses only the scratchpad memory. Data
access from other memories should be done via DMA operation but this
is not covered in this thesis. A real-time deterministic DRAM controller
is described in the work of (REINEKE et al., 2011). The instruction
memory was implemented using internal FPGA memory with 2 read
ports, one for cache access and one DMA unit. The Scratchpad also
used internal FPGA memory. Both scratchpad and SDRAM operate
at 100Mhz.
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6 WORST-CASE EXECUTION TIME ANALYSIS

The Worst-Case Execution Time is the maximum execution time
of a program considering a specific processor with input data and ini-
tial state well defined. In order to calculate the WCET of programs
running on the VLIW processor described earlier, we implemented a
static WCET analyzer. Such analyzer usually requires some well de-
fined methods such as value analysis, control-flow reconstruction and
data-flow analysis, microarchitecture analysis and finally obtaining the
worst-case execution path (CULLMANN et al., 2010).

The inputs of the WCET analyzer are the compiled object files
(.o) and the annotated control flow graph (.cfg) generated by the com-
piler as illustrated by Figure 34. Extracting the control-flow graph
(CFG) directly at the compiler give us some advantages because we do
not need to reconstruct the CFG from the machine code. This pass is
already performed internally by the compiler.

llvm

linker
wcet

.o
.s.cfg

.c

.hexWCETgraphs
debug

Figure 34 – Data-flow between the compiler and WCET/linker

The steps executed by the WCET analyzer can be summarized
as follows:

∙ Loop detection: loops are not directly described in the CFG,
only their bounds which are automatically detected by the com-
piler or annotated in the program source code. The detection of
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loops uses Tarjan’s algorithm (LENGAUER; TARJAN, 1979) for
identifying strongly connected components in graphs.

∙ Instruction cache analysis: analysis for classification of cache
accesses in always miss, always hit, first miss and conflict.

∙ Pipeline modeling: This pass models the VLIW pipeline behavior
calculating the basic block times, disregarding any cache effects.

∙ Worst-case path search: This phase searches for the worst-case
path and its respective computation time (WCET), considering
the previous analyses. We used Implicit Path Enumeration Tech-
nique – IPET (LI; MALIK, 1995), which produces an optimal
solution, for this purpose.

Since the proposed architecture does not suffer from timing anoma-
lies, we can conduct each analysis in isolation and combine the results
at the path search phase.

Like most WCET analyzers, the implemented one is context sen-
sitive. The analyzer considers the paths by which each node of the CFG
can be reached, and computes the behavior of cache and executions for
each node in each of these contexts. For example, loops may have a dif-
ferent execution time for the first iteration, when instructions must be
loaded in the cache. This behavior can be extracted by cache analysis,
which is the subject of the next section.

6.1 BASIC CONCEPTS

Programs need to be represented mathematically to perform
static analysis. They are composed by a control flow graph, basic
blocks, loops and paths. Aho et al. (2011) defined each one as follows:

Definition 1. (Basic Block – bb) A basic block is a maximal sequence
of instructions, which can be reached only by its first instruction and the
only way out is its last instruction.
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Definition 2. (Control Flow Graph – CFG) A control flow graph is a
directed graph G = (V,E, i), where vertices V represent the basic blocks
and the edges E ⊆V ×V connect two vertices vi and v j if, and only if, v j

is immediately executed after vi. The CFG input vertex is represented by
i and it does not have input edges (̸ ∃v ∈V : (v, i) ∈ E).

Definition 3. (Path) A path through a CFG G = (V,E, i) is a sequence of
basic blocks (v1, ...,vn)∈V , with v1 = i e ∀ j ∈ 1, ...,n−1 : (v j,v j+1)∈ E.

Definition 4. (Loop) A loop is a strongly connected component of a graph
G. Loops are composed of only one header and the header is its entry
point. There may be different edges returning from internal loop vertices
to the header and different loop output edges.

Figure 35 presents an example of CFG. Vertices are labeled
I[S,E], where I is an index number, S is the start address of the basic
block and E its end address. The input vertex is 4 and a loop is formed
by vertices 1 and 2, where 2 is the loop header.

0 [8,13]

2 [17,20]

1 [14,16] 3 [21,24]

5 [3,3]

4 [0,2]

Figure 35 – Control flow graph example.

Two main conditions are important in order to perform WCET
analysis: monotonicity and basic composition.
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Monotonicity means that an instruction with a higher latency
necessarily maintains or increases the time of a sequence of instructions
under analysis. A higher latency instruction should never decrease the
overall execution time because the local worst case should not diminish
the global worst case. In the case of temporal anomalies, this assump-
tion does not hold.

Basic composition means that the WCET values of sub-paths can
be safely composed when calculating the overall WCET. Like mono-
tonicity, the basic composition property is also lost in the presence of
temporal anomalies.

The processor described in this thesis does not present timing
anomalies and so we can assume monotonicity and basic composition.
The purpose of the next analyses is to obtain the individual basic block
timing which it can be expressed by:

tbb = tp +nc.tc +nm.tm (6.1)

Symbol tp is the basic block pipeline timing considering all mul-
tistage operations and nc.tc is the number of cache misses multiplied by
the cache penalty. The processor only accesses the scratchpad mem-
ory and this is already considered as a multistage operation during the
pipeline analysis. An eventual memory penalty (as a DMA transfer)
could be modeled by nm.tm where nm is the number of memory accesses
and tm is the memory access timing.

After the timings of all basic blocks are estimated, the program
execution time is calculated by:

ob j = maximize ∑
∀bbi

xi× ti (6.2)

Symbol xi is the number of times basic block bbi is executed and
ti is the worst execution time of bbi.
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6.2 INSTRUCTION CACHE ANALYSIS

Cache memories are necessary to minimize the gap between pro-
cessor and memory performances. Usually, main memory has a clock
that is slower than the processor, so a fast cache is placed between
them where most recent data is stored, promoting faster access. We
use a direct-mapped instruction cache memory, so some sort of analy-
sis is necessary to model cache misses during WCET analysis. Usually
cache analysis is performed using abstract interpretation as described
in (ALT et al., 1996) but here we used traditional data flow analysis to
compute cache states. Similar analyses are also used in (MUELLER;
WHALLEY, 1995) and (LEE et al., 1998).

A cache memory is characterized by its capacity, line size and
associativity.

Definition 5. (Capacity) Capacity is the cache’s total number of bytes.

Definition 6. (Line or block size) Line size is the quantity of bytes trans-
ferred from memory to cache when a cache miss occurs. A cache should
have n = capacity

line. size lines.

Definition 7. (Associativity) It consists of the mapping of various main
memory addresses to cache lines. A direct-mapped cache has unitary
associativity, where a main memory specific address is always mapped
to the same cache line. If associativity is 2, a main memory address is
mapped to 2 different cache lines. When associativity is not unitary some
sort of replacement policy must exist to decide which line will have data
eviction. The relation n

assoc. defines the number of sets of a cache.

In the context of this work, we will focus only on unitary asso-
ciativity (direct mapping) when one memory block can reside only in a
specific cache line. This feature does not impose a restriction upon the
analysis, but is related to the used direct-mapping configuration in the
hardware. A direct-mapping cache memory is formed by a sequence of
lines L = l1, l2, ln... which store a set of memory blocks M = m1,m2...ms.
A memory block m with address addr is stored in line li following Equa-
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tion 6.3. The operator % represents the modulus or remainder of the
division.

li = addr(m) % n (6.3)

Regarding the presence of the existence of a particular instruc-
tion in the cache, we define:

Definition 8. An instruction could be in the cache if: 1) there was a
transition sequence in which the block corresponding to the instruction
memory had been referenced in previous basic blocks; 2) this memory
block is referenced previously in the same basic block.

Definition 9. (Abstract state) An abstract state of the cache of a basic
block is the subset of all memory blocks that can be cached before execut-
ing the basic block.

Definition 10. (Reachable abstract state) A reachable abstract state is
the subset of all memory blocks that can be reached by CFG transitions.

Definition 11. (Effective abstract state) An effective abstract state of a
basic block is a subset of all memory blocks that can be reached by con-
sidering all the CFG paths to the basic block in analysis.

6.2.1 Reachable and effective abstract state

We can construct the reachable abstract state where we can map
all memory blocks accessed by every basic block. This analysis uses the
same principles of reaching definitions in traditional data flow analysis
and it follows Algorithm 3.

Figure 36 shows an example of data flow applied to cache anal-
ysis. The abstract reachable state (RMBbb(cl) = data) is beside each
output edge. bb is the basic block number, cl is the cache line and
data represents an identifier of the memory data, the memory address
index. Figure 36 also shows which cache line is accessed by a basic
block and its memory address index inside the nodes (l0 = 0 for ba-
sic block 0 and l1 = 1 for basic block 4). It is very easy to know the
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Algorithm 3 Reachable abstract state for every basic block
1: while change do
2: change := false
3: for all i ∈ bb do
4: for all c ∈ cache_blocks do
5: {p: predecessors of i}
6: RMBini(c) :=

⋃
∀p RMBoutp(c)

7:
8: temp:= RMBouti(c)
9:

10: {If this cache block is the last accessed by i}
11: if lasti(c) ̸= /0 then
12: RMBi(c) := lasti(c)
13: else
14: RMBi(c) := RMBini(c)
15: end if
16:
17: if RMBi(c) ̸= temp then
18: change := true
19: end if
20: end for
21: end for
22: end while

cache contents after execution of a basic block, we have only to inspect
the basic block instruction addresses. The RMBs track the possible
state of cache lines after the “execution” of all basic blocks. We know,
for instance, when bb3 executes, cache line 0 should have data which
index is 0 (RMB3(0) = 0) because to reach basic block 3, bb0 must exe-
cute. This same logic follows for RMB3(1) = 1 and RMB3(2) = 0, where
RMB3(1) = 1 comes from bb2 and RMB3(2) = 0 comes from execution
of bb2 itself.

Some conditions must hold when using this analysis to address
cache hits and misses. First, loops must iterate at least once. If this
is not true, we cannot assume a hit in bb4 in Figure 36 because bb2

will never execute and l1 will never receive data index 1 used by bb4.
Secondly, some path checking should be done during the analysis. A
hit could only exist in bb4 if the worst-case path passes at least once
through bb2. In this case we are pessimistic and assume a miss in bb4.
This type of cache analysis could be optimistic if we use only abstract
reachable states without path checking.

Path checking is performed constructing the effective abstract
state using Algorithm 4.
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bb: 0
l0  = 0

bb: 1
l0  = 0

RMB0(0)= 0
RMB0(1)= 1
RMB0(2)= 0

bb: 2
l1  = 1

RMB0(0)= 0
RMB0(1)= 1
RMB0(2)= 0

bb: 4
l1  = 1

RMB0(0)= 0
RMB0(1)= 1
RMB0(2)= 0

bb: 3
l2  = 0

RMB1(0)= 0
RMB1(1)= 1
RMB1(2)= 0

RMB2(0)= 0
RMB2(1)= 1
RMB2(2)= 0

RMB3(0)= 0
RMB3(1)= 1
RMB3(2)= 0

RMB4(0)= 0
RMB4(1)= 1
RMB4(2)= 0

Figure 36 – Cache abstract reachable state example

Algorithm 4 Effective cache state for every basic block
1: for all i ∈ bb do
2: for all c ∈ RMBi(c)∨|RMBi(c)|= 1 do
3:
4: {If this block is accessed by bbi}
5: if lasti(c) ̸= /0 then
6: EMBi(c) := c
7: else
8: {P: paths that leads to i}
9: if c ∈ last j(c) | j ∈ ∀P then

10: EMBi(c) := c
11: end if
12: end if
13: end for
14: end for

Effective abstract cache set EMBi(c) is constructed from reach-
able abstract set RMBi(c). First, on Line 2 it is checked if the set
cardinality is 1 (|RMBi(c)|= 1). If this cache block is accessed by the
basic block, it is added to the abstract set at line 6. Otherwise it is
checked when this memory reference is accessed by all paths leading up
to the basic block in question.
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Considering the example in Figure 36 and the basic block 4,
the algorithm has the following execution in the construction of the
effective abstract state for cache line 1 of basic block 0 (EMB0(1)):

∙ if vertex 0 accessed l1 = 1, we could terminate and it will be
classified as a cache hit;

∙ following vertex 0, we check 3, where there is no access;

∙ following vertex 3, we check 2. In this vertex, l1 = 1 is accessed
and this path search is ended;

∙ following vertex 3, we check 1. There is not a l1 = 1 access and
we continue;

∙ following vertex 1, we check 0. Vertex 0 was already visited. We
can conclude that there is a path where l1 = 1 is not referenced;

∙ l1 = 1 does not belong to the effective abstract state of basic block
0 and therefore there is a cache miss in basic block 4.

6.2.2 Cache accesses classification

We classify all program instructions in “always miss”, “always
hit”, “first miss” and “conflict” after the data flow analysis in conjunction
with path checking – reachable and effective abstract state.

Definition 12. (A_MISS) There is a cache fault every time this instruction
is executed – always miss.

A_MISS classification occurs in compulsory or capacity faults.
For example, a compulsory miss occurs in bb0 in Figure 36 since the first
instruction of the program is not in the cache memory at the beginning
of the program execution. A_Miss is also the correct classification for
the instruction of bb4, since l1 = 1 does not exist in the effective abstract
state of bb0 (predecessor of bb4).

Definition 13. (A_HIT) There is a cache hit every time this instruction is
executed – always hit.
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A_HIT is the class for instructions where: 1) they are not the
basic block first instruction or the first instruction of a cache line; 2)
they are in the cache effective state. In the case of Figure 36, all
instructions of the bb1 can be classified as hits because their cache line
will always be previously accessed by the bb0.

Definition 14. (F_MISS) This classification is related to loops. There is
a cache miss only at the first iteration of the loop – first miss;

In the case of F_MISS, if a loop iterates 100 times, there is a
cache miss only at the first iteration. For the other 99 iterations, there
are cache hits. This classification occurs in the bb2 of Figure 36 for
l1 = 1 since it is not accessed by any predecessor except itself.

Definition 15. (CONFLICT) This classification occurs when there are
multiple reachable paths to a particular basic block and each of these
paths has a different effective cache state, which may cause faults or
misses depending on the path flow.

CONFLICT occurs, for example, in bb3 of Figure 37. If the
execution flow is 0→ 2→ 3, there is a cache hit since l1 = 1 is accessed
in bb2; if the execution flow is 0→ 1→ 3, there is a cache miss since
there are no references to l1 = 1 in predecessor basic blocks.

After instruction classification, we can count the number of faults
(A_MISS) that impact directly on the basic block time. The classes
F_MISS and CONFLICT are used during the path analysis to deter-
mine the program flow that maximizes the execution time.

6.3 PIPELINE MODELING

The objective of this analysis is to determine the execution time
of instructions and basic blocks when executed on the processor pipeline.
This analysis does not consider hardware elements like instruction cache.

Pipelined processors, the execution time of a single instruction
in cycles will be at least to the number of pipeline stages. However, this
time may be higher if any hazard occurs involving data dependencies
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bb: 0
l0 = 0

bb: 1
l0 = 0

RMB0(0)= 0
RMB0(1)= 

bb: 2
l1 = 1

bb: 3
l1 = 1

RMB1(0)= 0
RMB1(1)= 

RMB 2(0)= 0
RMB 2(1)= 1

RMB 3(0)= 0
RMB 3(1)= 1

RMB0(0)= 0
RMB0(1)= 

Figure 37 – CONFLICT classification example.

of previous instructions or multistage operations. Considering that the
used architecture has 5 pipeline stages, it would take 5 cycles for an
instruction to be executed. If there were two simple instructions, the
total time would be 6 cycles, and so forth.

As the used VLIW pipeline is simple and deterministic and it
stalls during multistage operations, its timing modeling can be visual-
ized in Algorithm 5 and summarized by the following steps:

∙ Instructions and operations for every basic block are decoded
following ST231 ISAs and the VLIW bundle encoding.

∙ The basic pipeline timing of each basic block is the number of its
instructions.

∙ Multistage operation timing such as multiplications, division and
memory access and the latency of branches and calls/gotos are
added to the basic pipeline timing.

∙ Pipeline hazards (data dependency between operations) are added
to the basic timing.
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∙ Both paths (activated or not) of full-predicated instructions are
considered. The bit 30 of each operation selects the true/false
paths. The path that leads to a higher execution time is the
basic block time.

The time of an instruction hazard is 1 cycle and all control flow
instructions have 4 cycles added to the basic block timing. The timing
of each multicycle operation is shown in Table 22.

Algorithm 5 Pipeline timing modeling
1: for all i ∈ bb do
2: {t[0] is for predications executed on false(0) and t[1] if for predications executed in true(1)}
3: {This is checked by VLIW operation bit 30}
4: t[0] := 0
5: t[1] := 0
6:
7: tbb := |bundles|
8:
9: for all j ∈ bundlesi do

10: for all k ∈ operations j do
11: if k ∈ multicyles_op then
12: t[BIT _30] := t[k.get_bit(BIT _30)]+multicycle_time(k)
13: end if
14:
15: if k ∈ ctr_ f low_op then
16: {Control flow operations are not conditionally executed by bit 30, both paths have over-

head}
17: t[0] := t[0]+ ctr_ f low_time(k)
18: t[1] := t[1]+ ctr_ f low_time(k)
19: end if
20:
21: if k ∈ hazard(bundlesi−1) then
22: t[BIT _30] := t[k.get_bit(BIT _30)]+hazard_time(k)
23: end if
24: end for
25: end for
26: {Final basic block time computation}
27: tbb := tbb +max(t[0], t[1])+ pipeline_length−1
28: end for

After individual basic block times are obtained and cache anal-
ysis is performed, it is necessary to consider the execution flow. There
are five types of basic block transition considering the branch unit de-
scribed in Chapter 5:

∙ Direct flow: it happens when there is a direct flow between basic
blocks due to linear addresses, for instance, when bbi ends at
address 55 and bbi+1 begins at address 56;
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Table 22 – Additional time for multicycle instruction timing for
multicycle_time(op) function

Type Timing

Multiplication 3
Division 18
Mem. scratchpad 2

∙ Not taken branch: it is similar to a direct flow, but there is a
branch instruction at the basic block ending;

∙ Taken branch: it happens when there is a branch without direc-
tion or a goto/call instruction;

∙ Taken branch with direction: it is a taken branch, but there is a
“taken” direction with a “preld” instruction;

∙ Not taken branch with direction: it happens when a branch is
directed as “taken” but it does not take the branch.

Each of the five flow transitions is modeled as a different type of
edge of the annotated CFG exported by the compiler. The timing of
each edge is modeled as δ similar to (ENGBLOM; JONSSON, 2002),
as shown in Figure 38 for direct flow transition. In this figure, we want
to get the execution time of a direct flow between basic blocks 1 and
2 with times 8 and 6 cycles respectively. The sum of the execution
times of both blocks is 14 cycles and this does not represent the real
execution time of the flow. The correct execution time is 10 cycles as
shown in Figure 38 due to “an amendment” in the pipeline between
both basic blocks. Thus, during flow analysis and WCET obtaining,
we must subtract δ = 4 cycles for each edge transition between basic
blocks. This correction is applied directly in the problem formulation
using integer linear programming for obtaining the WCET of the entire
program, as we show in the following subsection.
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Figure 38 – Example of timing composition of two successive (linear ad-
dresses) basic blocks

Table 23 shows δ for each type of edge/transition. Direct flow
is δ = 4 cycles as described in Figure 38. When a basic block finishes
off with a branch, call or goto instructions, it always includes 4 penalty
cycles as a multistage operation. Considering the branch behavior,
if the edge is a “not taken branch”, we must remove 4 penalty cycles
(always included) plus 4 cycles to simulate the linear flow effect because
the branch is actually not executed, which is δ = 8 cycles. For taken
branches (and calls and gotos), δ = 4 cycles models 4-penalty cycles.
Similar rationale happens for “taken” and “not taken” edges. δ = 7
cycles for “taken” because there is still one cycle latency for directed
branches and δ = 2 because there are 6 penalty cycles when there is a
missprediction on directed branch.

6.4 WORST-CASE PATH SEARCH

We previously referenced IPET (LI; MALIK, 1995) (OTTOS-
SON; SJöDIN, 1997) as being an efficient technique to search worst-case
paths. In this subsection we present the modeling of linear constraints
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Table 23 – Modeling factor for each type of transition flow

Flow type δ Behavior

Direct flow 4 No penalty
Not taken branch 8 No penalty
Taken branch 4 4 cycles penalty
Taken branch dir. 7 1 cycle penalty
Not taken branch dir. 2 6 cycles penalty

made in the context of the implemented analyzer. The modeling follows
an approach similar to (LI; MALIK, 1995).

We model the optimization problem considering that each basic
block bbi is executed xi times and it has a execution time ti. The
objective function is expressed by:

ob j = maximize ∑
∀bbi

xi× ti (6.4)

Note that, with the approach used to obtain the basic block
times, this estimation becomes pessimistic. This analysis considers the
time from the first instruction of the basic block entering the pipeline
until the exit of the last instruction. However, the execution of suc-
cessive basic blocks is amended within the pipeline and its depends on
branch behavior, as shown in the previous subsection. We can express
this behavior in ILP as a discount of δ (pipeline modeling factor) each
time a basic block is executed as given by:

ob j = maximize ∑
∀bbi

xi× ti− xi×δ (6.5)

Regarding different execution contexts, we can rewrite the previ-
ous equation considering the edges of the CFG, instead of nodes (basic
blocks). The execution time of a basic block xi can be rewritten using
edges instead of nodes. Let be d j_i the edge from basic block bb j to
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basic block bbi, then xi could be expressed by:

xi = ∑
∀bb j→bbi

d j_i (6.6)

Since the execution time ti of a basic block bbi could also in-
crease due to cache misses for different paths, ti is also replaced by t j_i.
Replacing xi and ti, we get the final objective function described by:

ob j = maximize ∑
∀bbi

 ∑
∀bb j→bbi

d j_i× t j_i−d j_i×δ

 (6.7)

For the remainder of this section, we will consider the example
in Figure 39 (a simple C program and its respective CFG). There is
a loop with an if-then-else sentence. The input and output nodes are
explicitly drawn as ellipses and the output node is purely symbolic and
does not represent any real basic block. An edge di_ j ∈ CFG means
that the basic block j can be executed after the execution of the basic
block i.

Regarding the Example of Figure 39, we get WCET objective
function modeling in Table 24 using language MathProg (MAKHORIN,
2008).

Table 24 – Objective function modeling using Language MathProg.

maximize wcet: d7_0*14 - d7_0*4 +
d4_1*9 - d4_1*4 + d5_1*9 - d5_1*4 +
d0_2*9 - d0_2*4 + d1_2*9 - d1_2*4 +
d2_3*9 - d2_3*4 + d3_4*15 - d3_4*4 +
d3_5*15 - d3_5*4 + d2_6*8 - d2_6*4 +
dstart7*7 - dstart7*4 + d6_8*5;
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i n t main ( i n t argc ,
char** a rgv ) {

i n t i = 1 ;
i n t j = 0 ;

f o r ( j = 0 ; j < 5 ; j ++){
i f ( i < 6 ){

i ++;
i +=1;
i +=2;
i +=3;

} e l s e {
i−−;
i −=1;
i −=2;
i −=3;

}
}

}

start

bb: 7
t=7

dstart7

bb: 0
t=14

bb: 2
t=9

d0_2

bb: 1
t=9

d1_2

bb: 3
t=9

d2_3

bb: 6
t=8

d2_6

bb: 4
t=15

d3_4

bb: 5
t=15

d3_5

d4_1 d5_1

bb: 8
t=5

d6_8

d7_0

end

Figure 39 – Example of a C program and its control-flow graph.

6.4.1 ILP Constraints

The WCET objective function defined in Equation 6.7 requires
linear constraints to operate, otherwise it can not converge. The IPET
technique consists of a set of constraints which mainly consider flow
conservation and loop bounding. According to IPET, the following
restrictions shall be applied:

Start and end of execution constraint: all program execution
must have a begin and an end. So the flow must pass exactly once by
the CFG entry and exit nodes, which are represented in the CFG as
dstart and dend respectively. The constraint is modeled by:

dstart = 1 ∧ dend = 1 (6.8)
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Flow conservation constraint: every flow entering a basic block
from a predecessor, should come out from that basic block to a succes-
sor. The flow must be maintained during the execution of the program.
This restriction is modeled by Equation 6.9, which must be valid for
each basic block bbi.

∑
∀bb j→bbi

d j_i− ∑
∀bbi→bbk

di_k = 0 (6.9)

Regarding the Example of Figure 39, we get control-flow conser-
vation restrictions in Table 25 using language MathProg.

Table 25 – Control-flow conservation restrictions using language Math-
Prog.

s.t. xc0: d7_0 - d0_2 = 0;
s.t. xc1: d4_1 + d5_1 - d1_2 = 0;
s.t. xc2: d0_2 + d1_2 - d2_3 - d2_6 = 0;
s.t. xc3: d2_3 - d3_4 - d3_5 = 0;
s.t. xc4: d3_4 - d4_1 = 0;
s.t. xc5: d3_5 - d5_1 = 0;
s.t. xc6: d2_6 - d6_8 = 0;
s.t. xc7: dstart7 - d7_0 = 0;
s.t. xc8: d6_8 - dend8 = 0;

Loop bound constraint: basic blocks should execute according
to the bounds of the loops to which they belong. A basic block can
belong to several loops, provided that they are nested. If a basic block
is the header of a loop, it can execute once more at the end to test the
exit condition. Regarding loop limitation, the constraint of Equation
6.10 must be valid for each basic block bbi with loop bound lbi.

∑
∀bb j→bbi

d j_i <= lbi (6.10)
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Regarding the Example of Figure 39, we get loop restrictions in
Table 26 using language MathProg.

Table 26 – Loop restrictions using language MathProg.

s.t. x0: d7_0 <= 1;
s.t. x1: d4_1 + d5_1 <= 5;
s.t. x2: d0_2 + d1_2 <= 6;
s.t. x3: d2_3 <= 5;
s.t. x4: d3_4 <= 5;
s.t. x5: d3_5 <= 5;
s.t. x6: d2_6 <= 1;
s.t. x7: dstart7 = 1;
s.t. x8: d6_8 <= 1;

Loop execution constraint: as a loop is an auto conservative
connected component, it only shall be considered part of the WCET if
it is effectively executed. A loop is executed when the flow enters its
header. Equation 6.11 ensures this constraint.

∑
∀bb j→bbi

∧bb j /∈loop(bbi)

d j_i× ilbi− ∑
∀bbi→bbk

∧bbk∈loop(bbi)

di_ j = 0 (6.11)

The previous equation must be valid for every basic block bbi

which is loop header. ilbi represents the bound of the loop of which
this basic block is header and loop(bbi) represents the respective loop.

Regarding the Example of Figure 39, we get Conservation re-
strictions in Table 27 using language MathProg.

Table 27 – Conservation restrictions using language MathProg.

s.t. xal2: d0_2*5 - d2_3 = 0;
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Instruction cache constraints: the WCET of a program must
take into account that the flow through certain basic blocks can be
impacted by different cache behaviors. Another factor is that now the
execution of basic blocks is context dependent: a basic block C may
have distinct execution times when reached from predecessors A or B.
To represent this effect we associate weights to edges with the execution
times of basic blocks when reached by these edges.

As an example, consider the CFG of Figure 40 with instruction
cache. Basic block 1 will have one execution time when reached from
basic block 4 and another time when reached from basic block 5, due
to distinct cache states.

From the considered cache states (“always miss”, “always hit”,
“first miss” and “conflict”), only one of them needs special attention in
the IPET model, which is the first miss. First miss occurs only once
for each basic block, each time the loop which contains this basic block
is executed. So, all first misses in a loop occur in the first iteration
of each complete execution of this loop. To address this, the CFG is
expanded into a multigraph, and the first miss modeled as a separate
edge. With a dedicated edge, it is possible to model constraints that
control the occurrence of this event. In a Control Flow Multigraph, an
edge can have one of three types: if there is a first miss between pairs
of basic blocks, then a pair of edges between the two blocks exists, one
representing the first miss d f m (type = f m) and another representing
flows of subsequent iterations (hits) dh (type = h). The third edge type
represents all other situations (always hit, always miss and conflict).
The weights of the edges W (di_ j) represent the cost to execute basic
block j, when preceded by the basic block i, considering cache effects.
In Figure 40, one can see that a first miss will occur in the basic block
4 represented by the thicker edge.

When modeling first misses, we must follow different approaches
for basic blocks that are loop headers and basic blocks that are not.
For loop header, a first miss (if any) will occur only at the outer edge
of the loop. The constraint is modeled by:
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∑
∀bb j→bbi∧bb j /∈loop(bbi)

d j_i ≤ elbi (6.12)

elbi is the bound of the outer loop bbi. For normal basic blocks
the constraint is modeled by Equation 6.13, for each bbi.

∑
∀bb j→bbi

d j_i ≤ elbi (6.13)

start

bb: 7

dstart7

bb: 0

bb: 2

d0_2

bb: 1

d1_2

bb: 3

d2_3fmd2_3h

bb: 6

d2_6

bb: 4

d3_4fm d3_4h

bb: 5

d3_5h d3_5fm

d4_1 d5_1

bb: 8

d6_8

d7_0

end

Figure 40 – Multigraph of the example

Regarding the Example of Figure 39, we get cache restrictions
in Table 28 using language MathProg.

By joining all the previous constrains, we can calculate the WCET.
The solution of the example is shown in Figure 41. For each edge,
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Table 28 – Cache restrictions using language MathProg.

s.t. xcache3: d2_3fm <= 1;
s.t. xcache4: d3_4fm <= 1;
s.t. xcache5: d3_5fm <= 1;

di_ j = n× ti_ j, where i_ j represents the transition from basic block i to
j, n the number of times a flow executes and ti_ j the time of such tran-
sition. One can see that the worst-case execution time for the example
is 421 processor cycles, and the result was obtained in 0.00176 seconds.
The solver used by our tool is GLKP (MAKHORIN, 2008).

WCET CFG > wcet: 421 cycles | backend: GLPK | time: 0.00176 secs

start

bb: 7
total: 19(4.51%)

dstart7=1*19

bb: 0
total: 50(11.9%)

bb: 2
total: 78(18.5%)

d0_2=1*33

bb: 1
total: 93(22.1%)

d1_2=5*9

bb: 3
total: 57(13.5%)

d2_3fm=1*21 d2_3h=4*9

bb: 6
total: 32(7.6%)

d2_6=1*32

bb: 4
total: 39(9.26%)

d3_4fm=1*39 d3_4h=0*15

bb: 5
total: 132(31.4%)

d3_5h=3*27 d3_5fm=1*51

d4_1=1*9 d5_1=4*21

bb: 8
total: 17(4.04%)

d6_8=1*17

d7_0=1*50

end

Figure 41 – WCET final result of example of Figure 39
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6.5 SUMMARY

This chapter presented techniques to perform the WCET analy-
sis for the VLIW processor considered in this thesis. A tool considering
all described aspects was implemented in C++. Since we target per-
formance enhancement on using VLIW machines for real-time systems,
all evaluations performed were obtained through this WCET analysis.

In relation to static analysis, we can notice that it is a task that
demands the union of numerous techniques such as data flow analy-
sis (cache), path analysis (IPET) and modeling of internal processor
components. The more complex is the system in question, more com-
plex are the techniques used. Nevertheless, it is very important that
the system allows monotonicity and basic composition properties. If
these assumptions hold, we can increase the efficiency and precision of
a particular technique, such as cache analysis, and increase the over-
all WCET analysis capabilities. Otherwise, the analysis will become
increasingly complex.





165

7 EVALUATION

In this chapter, we evaluate the impact of several architecture
techniques upon WCET performance. The main idea is to quantita-
tively show WCET performance gains considering features like wider
instructions fetching, multiple memory operations, static branch pre-
diction and predication.

To make WCET evaluations, we used the new code genera-
tor back-end for LLVM (LATTNER; ADVE, 2004) and the described
WCET analyzer to compute the WCET of representative examples of
Mälardalen WCET benchmarks (GUSTAFSSON et al., 2010). Both
LLVM and the WCET framework are implemented in C++ and their
source code are available upon request as well as the processor VHDL
code.

The Mälardalen WCET benchmarks are a set of programs that
have been assembled to make comparison between WCET tools. A
number of WCET analysis tools have emerged in recent years and a
comparison between these tools requires a common set of benchmarks.
The typical evaluation metric is the accuracy of the WCET estimate,
but of equal importance are other properties such as performance and
the ability to handle all code constructs found in real-time systems.
The goal of the Mälardalen WCET benchmarks is to provide an easily
available, tested, and well documented common set of benchmarks in
order to enable comparative evaluations of different algorithms, meth-
ods, and tools.

Table 29 shows a description of used benchmarks excluding those
which use library functions, floating-point calculations and recursion.
Static data are allocated to scratchpad memory during processor boot
process and this time is not included. Some benchmarks are so small
that this may have a non-null impact on performance.

The performance of a program execution on a processor depends
on the compiler capabilities for that specific processor. Besides seman-
tics, a VLIW compiler must also consider other hardware aspects to
enhance performance. We also show how our LLVM code generator
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Table 29 – Mälardalen WCET benchmarks (GUSTAFSSON et al., 2010)

Bench.
name

Description

adpcm Adaptive pulse code modulation algorithm
bs Binary search for the array of 15 integer elements
bsort100 Bubblesort program
cnt Counts non-negative numbers in a matrix
cover Program for testing many paths
crc Cyclic redundancy check computation on 40 bytes of

data
duff Using “Duff’s device” from the Jargon file to copy 43

byte array
edn Finite Impulse Response (FIR) filter calculations
fac Calculates the faculty function
fdct Fast Discrete Cosine Transform
fibcall Simple iterative Fibonacci calculation
insertsort Insertion sort on a reversed array of size 10
janne _com-
plex

Nested loop program

jfdctint Discrete-cosine transformation on a 8x8 pixel block
lcdnum Read ten values, output half to LCD
matmult Matrix multiplication of two 20x20 matrices.
ndes Complex embedded code
ns Search in a multi-dimensional array
nsichneu Simulate an extended Petri Net
prime Calculates whether two numbers are prime

compares with a state-of-the-art VLIW compiler. In this evaluation,
we compare the Mälardalen benchmark performance with measure-
ment/simulations between the VEX system (FISHER; FARABOSHI;
YOUNG, 2005) 1 and our LLVM back-end/VLIW prototype. This

1 http://www.hpl.hp.com/downloads/vex/
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is the only evaluation we use measurements instead of WCET perfor-
mance. Since we do not have access to the framework from other related
researches, some of them are proprietary, we use our own framework in
order to estimate worst-case performance enhancement.

7.1 IMPACT OF THE COMPILER ON THE PERFORMANCE

We used the VEX system (FISHER; FARABOSHI; YOUNG,
2005) which consists of a VLIW compiler (based on the Multiflow C
compiler with global trace instruction scheduling) and a parameterized
cycle accurate simulator to demonstrate that different compilers have
great influence upon performance. VEX is distributed as a binary
package for the Linux operating system and we do not have access to its
source code. Unfortunately we could not adapt the WCET analyzer for
this platform so this is the only section where the results are evaluated
using simulation instead of WCET.

We set VEX in a way as similar as possible to the described
architecture. Cache configuration is identical (1KB direct mapped).
There are the same number of execution units and branch latency is
also identical. The VEX data cache is configured to have null latency
during miss or write back in order to simulate a scratchpad memory
and its allocation during boot. Some benchmarks are so small that
this may have a non-null impact on measured performances. We also
utilized standard compiler optimization flags (-O2) for VEX.

The results of this section regarding the LLVM were obtained by
executing the compiled and linked benchmarks using the synthesizable
VHDL code in ModelSim2 and executing the code on the DE2i-150
board. There is a VHDL module who monitors the performance infor-
mation. Since there is no variation in the benchmark input data, identi-
cal results are obtained executing each benchmark more than once for
both platforms/compilers. In this evaluation, all available hardware
features (predication, branch prediction, etc) are enabled in both VEX
and LLVM.

2 Modelsim is a VHDL simulator from Altera’s Quartus Design Suit http://www.altera.com
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Table 30 – Execution and worst-case performance comparing VEX and
our prototype and WCET absolute values. WCET and Exec.
time in cycles. IPC is Instructions per cycle

Benchmark
Our prototype VEX Rsim = 1−

WCET Exec. time IPC Exec. time IPC tV EX
tLLV M

adpcm 18363 16084 0.47 9916 0.39 38.3%
bs 297 256 0.34 389 0.30 -52.0%
bsort 241139 122752 0.71 50740 1.25 58.7%
cnt 2881 2521 0.49 2698 1.02 -7.0%
cover 4672 4664 0.40 4685 0.52 -0.5%
crc 108340 48198 0.83 20989 1.29 56.5%
duff 2224 1541 0.64 905 0.80 41.3%
edn 132298 128105 0.80 24622 1.45 80.8%
fac 1326 834 0.42 693 0.51 16.9%
fdct 1936 1903 0.89 1036 1.33 45.6%
fibcall 463 459 0.89 310 0.71 32.5%
insertsort 2621 1634 0.48 722 0.88 55.8%
janne-cmplx 3120 597 0.32 503 0.70 15.7%
jfdctint 3769 3736 0.90 4773 1.42 -27.8%
lcdnum 893 457 0.37 477 0.39 -4.4%
matmult 292381 259998 0.60 149604 1.11 42.5%
ndes 142408 134901 0.72 47804 0.82 64.6%
ns 22900 18654 0.71 2464 1.48 86.8%
nsichneu 55732 39513 0.25 30722 0.16 22.2%
prime 34069 20701 0.32 91882 0.47 -343.9%

Table 30 shows the execution time of each Mälardalen bench-
mark with our prototype compiled with LLVM and with VEX com-
piled with its Multiflow based compiler. The WCET column shows the
WCET for all benchmarks regarding our prototype and it represents an
absolute value reference for the graphs of the remainder of this chapter.
Benchmarks resulting in close values between simulation and WCET,
like fibcall, have a more predictable code (e.g. static loop bounds) and
input data that is more likely to produce the worst-case execution time
during simulation/execution.

Regarding the execution time results, we can see that bs ex-
ecutes 52% faster when compiled with LLVM but edn is 81% faster
when compiled with VEX. There is a big discrepancy in prime due to
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the fact that VEX uses an external library to implement division and
we added hardware integer division. We can compare the IPC (Instruc-
tions per cycle) of both platforms/compilers. We can see that VEX is
more effective in terms of operation parallelization where LLVM only
outperforms VEX in 4 benchmarks (adpcm, bs, fibcall and nsichneu).
It is interesting to note that a benchmark with higher IPC does not
necessarily executes in less time. We can see this behavior in jfdctint
and lcdnum where VEX has greater IPC but LLVM has smaller exe-
cution time. This occurs since Multiflow uses loop unrolling and more
aggressive partial predication where calculations of both if-then-else
paths are always executed. It shows also that not all optimizations
used by VEX, which are appropriate for general-purpose applications,
produce good results for real-time applications.

The main goal of Table 30 is to show that there is a huge dif-
ference on the performance of each benchmark considering very similar
machines but with very different compilers. Different machines with
different compilers and optimizations are even harder to compare. Be-
cause of such influence, in the next sections we will focus mainly on
WCET performance with only the LLVM compiler and the improve-
ment obtained through hardware characteristics.

7.2 USE OF PROCESSORS WITH WIDER FETCH

The purpose of this section is to show the importance of a wider
fetch for real-time processors that use in-order pipelines. Since a dis-
cussion about the fetch width optimization, VLIW compiler techniques
and hardware complexity varying the fetch width would be quite long
and out of the scope of this thesis, we compared the same VLIW ma-
chine using single and four-issue fetch widths. This evaluation was
made configuring the compiler to schedule instructions only in Slot 0
emulating a single-fetch machine but keeping all other parameters like
memory configuration, pipeline stages and operational latencies fixed.
Figure 42 shows how much the WCET is reduced by using a multi-issue
machine. This reduction is defined by Equation 7.1. It establishes a
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relation between the WCET of each benchmark execution with single-
operation and four-operation fetching and it demonstrates how fast the
same program is executed considering worst-case conditions.

R f etch = 1−
t f our

tsingle
(7.1)
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Figure 42 – WCET reduction between single-issue and four-issue.

We can see that WCET performance does not depend only on the
hardware fetch width but also on the compiler instruction scheduling
capabilities (as discussed earlier in Section 7.1) and on the possibil-
ity of parallelization of the code at the instruction level. Because of
this, we do not observe a WCET reduction of 75% increasing only the
fetch width. However, the performance of all benchmarks was increased
demonstrating the advantage of using VLIW machines in real-time sys-
tems. Three of the benchmarks (bs, cnt and cover) decreased their
WCET less than 5%, demonstrating poor instruction parallelization.
Others like fdct had 36% of decreased WCET. The fdct – Fast Discrete
Cosine Transform – has many calculations based on integer array el-
ements and it is highly parallelizable: our LLVM compiler produced
an average of 3.20 operations per instruction bundle while bs has only
1.23 operations per instruction bundle. With a state-of-the-art com-
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piler, the performance increase on using a VLIW processor will be even
higher.

7.3 USE OF “TAKEN”/“NOT TAKEN” STATIC BRANCH PREDIC-
TION

Previously we described the branch unit which supports “taken”
and “not-taken” static branch predictions. Figure 43 shows how much
the WCET decreases on using a “taken”/“not taken” solution instead
of only a “not taken” solution. This reduction is defined by Equation
7.2 and it relates the WCET between both “taken” and “not-taken”
(T-NT) enabled and only “not-taken” (NT) enabled. All other hard-
ware features are identically enabled in both WCET computations (two
memory execution units, two multiplication units and predication dis-
abled). We have changed only the direction of branches belonging to
loops and underlined benchmark labels had null WCET decrease. They
require a compiler WCET oriented static branch prediction as show in
(BURGUIERE; ROCHANGE; SAINRAT, 2005) and this is hardware
independent.

Rbranch = 1− tT−NT

tNT
(7.2)

More than half of the benchmarks had WCET reduction when
the hardware supports both “taken” and “not-taken” predictions. The
reduction depends on the code structure and we can notice that up to
12% of reduction could be achieved even without a WCET oriented
static branch prediction. That demonstrates the importance of branch
prediction for high performance real-time systems. It is interesting to
note that the static branch prediction does impact WCET calculation
but could be successfully modeled through different transition flows
(Chapter 6).
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Figure 43 – WCET reduction on using branch prediction. Underlined
ones have null reduction.

7.4 REDUCING EXECUTION STAGE OVERHEAD

As described in Chapter 5, there are operations, like memory
and multiplication, that require multiple execution stages to complete.
We also noted that this overhead is lower when the execution stage sup-
ports multiple operations per instruction. Figure 44 shows the WCET
reduction when supporting dual-memory operations instead of single-
memory operations. The reduction is defined as a WCET relation when
executing each benchmarks with dual and single memory operation per
instruction. It is illustrated by Equation 7.3. All other hardware fea-
tures are identically enabled in both WCET computations (predication
disabled, two multiplication units and full branch prediction enable).

Rmemory = 1− tdual

tsingle
(7.3)

There is considerable performance increase in most of the bench-
marks with a WCET reduction of almost 15% in complex codes like
ndes (lots of bit manipulation, shifts, array and matrix calculations)
and memory intensive algorithms like bsort (bubblesort program). The
overhead of multiple-stage operations is usually reduced with out-of-
order execution which is not interesting for real-time processors. A
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Figure 44 – WCET reduction with dual-ported scratchpad. Underlined
ones have null reduction.

considerable improvement is achievable by supporting the paralleliza-
tion of complex operations. In benchmarks with null improvement,
the compiler could not schedule more than one memory operation per
bundle.

7.5 PREDICATION

Predication can be used to reduce the control flow overhead of
if-then-else and if-then structures. Figure 45 shows the WCET reduc-
tion when using such technique. The reduction is defined as a WCET
relation when executing each benchmark with predication enabled and
disabled. It is illustrated by Equation 7.4. All other hardware features
are identically enabled in both WCET computations (two multiplica-
tion units, two memory units and full branch prediction enabled).

Rpred = 1− tenab

tdisab
(7.4)

Some of the benchmarks had WCET reduction, specially fibcall
and janne-complex where there is considerable control flow overhead
for if-then-else and if-then structures. On other side, the use of pred-
ication increased nsichneu WCET. This particular example simulates
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Figure 45 – WCET reduction on using predication.

an extended Petri Net with automatically generated code containing
large amounts of if-statements (more than 250). Nsichneu also has
high cache overhead: it is basically a linear code without any loops.
As the predication increases the code, it produces more cache misses
and decreases the overall performance and increases the WCET. Pred-
ication is a compiler technique and in benchmarks with null WCET
reduction, predicated structures could not be detected.

7.6 OVERALL REDUCTION AND IMPACT ON WCET CALCULA-
TION

In this section we establish the overall WCET reduction enabling
and disabling all technologies similarly as in Sections 7.2 to 7.5 but we
keep the processor with 4-wide fetch unit to make a more fair compar-
ison.

In order to conduct this experiment, first, we compute the WCET
for all benchmarks with the following conditions: 4-wide fetch, two
multiplication units, one memory unit, predication disabled and only
“not-taken” branch prediction. This test is labeled “All-disabled”. After
that, we compute the WCET using a 4-wide fetch, two multiplication
units, two memory units, predication and full branch prediction en-
abled. This test is labeled “All-enabled”.
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Figure 46 shows the WCET reduction for all considered bench-
marks applying “All-disabled” and ‘All-enabled” conditions. The WCET
reduction is defined by Equation 7.5

Rtotal = 1− tall−enab

tall−disab
(7.5)
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Figure 46 – Total WCET reduction.

We note that all benchmarks had considerable WCET reduction
highlighting, the importance of the processor features used for high
performance real-time systems. The overall improvement of benchmark
nsichneu could be greater if the predication was disabled. This is the
only feature which produces negative effects and the compiler could
use the WCET information to disable such feature when it jeopardizes
WCET performance. Tuning the compiler for WCET performance is
not the subject of this thesis.

Considering the relevant performance improvement achieved, the
highlighted processor features have low impact on the effort for the
WCET estimation. Regarding the wider fetch, any static WCET an-
alyzer must somehow decode instructions to estimate timing for each
basic block. The adopted distributed encoding does not impose addi-
tional complexity because the analyzer must only inspect stop bits to
decode bundles into fixed slot operations. Predication and various mul-
tistage operations are also taken care during the pipeline analysis and
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operation decoding. The only feature that produces additional over-
head during WCET calculation is the static “taken/not-taken” branch
prediction which is modeled by different transition flows during the
worst-path search.

7.7 CONTRIBUTIONS TO THE STATE OF THE ART

The main objective of this thesis is to investigate various pro-
cessor architecture features that lead to a predictable design with rea-
sonable WCET performance. We also considered the WCET analysis
of such architecture and VHDL implementation in order to infer its
timing behavior.

We believe we have achieved our objectives to real-time proces-
sor architectures and regarding them, we can highlight the following
contributions:

∙ Design space investigation and evaluation:

We made an extensive evaluation of the proposed techniques and
we highlighted their performance benefits. This evaluation was
described in this chapter where we demonstrated the importance
of each of the techniques showing how much the WCET is re-
duced. There were benchmarks where the worst-case execution
time was reduced about 20% showing that we can improve the
performance and also have a predictable design. Some of them
like wide-instruction fetching and static branch prediction have
such importance for performance that cannot be ignored for real-
time systems.

We can also noted that such wide analysis have not been con-
sidered in related researches since they focus only on specific ob-
jectives like memory architecture, multi-threading or multi-core.
Such evaluation can guide new real-time processor design lines.

∙ Complete WCET analysis for the proposed design:
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We presented all necessary analysis to perform WCET estima-
tions of programs compiled for the proposed processor design.
Such analyses included cache modeling, pipeline modeling and
worst-case path search and they are described in Chapter 6. The
existence of a WCET analyzer is important in order to achieve
a predictable hardware design and, an integrated environment
between WCET and compiler enhances WCET estimation.

A complete description of a WCET analyzer for a VLIW architec-
ture have not been considered in related researches. The Patmos
approach, which is the only one that uses the VLIW approach,
uses the commercial aiT3 WCET analyzer. With our WCET an-
alyzer and our design space exploration we could identify quan-
titatively how much hardware techniques contribute to WCET
reduction, as well as how to analyze them during WCET static
estimation.

∙ Complete VHDL design and timing characterization:

We described an implementation of our deterministic real-time
processor. We described the timing of each module and their
VHDL implementation which are necessary for WCET modeling
and estimation.

Since the related researches focus on specific objectives, a project
like ours that involves WCET analyzer, compiler and processor
design brings a great research framework for future real-time re-
searches.

∙ Detailed branch architecture:

All details of the branch architecture are described including our
methodology to model it during WCET analyses. We also ex-
tended the ISA to support static branch prediction as well as the
performance benefits of using or not this technology in real-time
systems.

3 http://www.absint.com/ait/
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Some related researches do not recommend the use of static branch
prediction since they add complexity to the WCET analyzer.
However, the performance of loop structures are greatly jeop-
ardized without branch prediction technology. We showed that a
predictable static branch predictor can be analyzed using differ-
ent transition flows and it greatly increases performance.

∙ Low overhead full predication system for VLIW processors:

We propose a low-overhead full-predication system without adding
overhead to the hardware data paths or its forwarding logic. The
proposed predication system enhances the support of the single
path execution as well as loop unrolling techniques. However,
predication alone is not enough in order to increase performance
and predictability. The use of predication can actually increase
the WCET. Because of this we propose the use of a hybrid ap-
proach with hardware support of a low-overhead predication sys-
tem and static branch prediction. This leads to significant WCET
reduction and allows compiler WCET optimization by selecting
the appropriate technique.
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8 FINAL REMARKS

The objective of this thesis was to investigate various processor
architecture features that lead to a predictable design with reasonable
WCET performance. The thesis demonstrated that it is possible to
assemble together hardware elements that increase performance but
are predictable enough to ensure efficient and precise analyses. This
is highly motivated by the fact that despite the differences between
general-purpose and embedded computing, the addition of new func-
tionality such as audio/video processing, networking, security, automa-
tion and control, among others, increases the need for more advanced
processors for embedded applications. However, deterministic hard-
ware is necessary when the application has hard real-time requirements.
We can also note that safety standards for embedded applications (DO-
178B, DO-178C, IEC-61508, ISO-26262, EN-50125, etc.) require iden-
tifying potential functional and non-functional hazards and we must
demonstrate that the software comply with safety goals. Testing with
intensive measurements is tedious and also typically not safe. It is often
impossible to prove that the worst-case conditions have actually been
taken into account. As DO-178B succinctly puts it, “testing, in general,
cannot show the absence of errors.”

Therefore, it is necessary to analyze the strengths of hardware
techniques used in state-of-the-art processors, for example temporal
and spatial parallelism (pipeline), branch prediction and predication,
and to align them to real-time applications. Some of these techniques
require modifications due to high hardware complexity while others
need a well-defined timing behavior. In order to achieve these goals,
we propose new approaches in order to improve the efficiency and scal-
ability of temporal analysis, especially the worst-case execution time
analysis. We showed that the design of processors should increase the
level of importance of the determinism. In this thesis, we focus on do-
ing so considering several processor architecture features that lead to
predictable design but also improving the WCET performance.

Supporting our objective to investigate and evaluate hardware
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features which reconcile determinism and performance, we made the
following contributions:

∙ Design space investigation and evaluation regarding VLIW pro-
cessors.

∙ Complete WCET analysis for the proposed design.

∙ Complete VHDL design and timing characterization.

∙ Detailed branch architecture.

∙ Low-overhead full-predication system for VLIW processors.

Regarding the design-space investigation and performance eval-
uation, we made an intensive investigation of the literature analyzing
the proposed techniques for real-time processors. This investigation
lead us to some of our design decisions but there was a lack of perfor-
mance evaluations. We knew, for instance, that the use of predication
is interesting for real-time processors but how much this technique con-
tributes to WCET performance enhancement and how hard the hard-
ware is pushed to support a generic predication system were questions
to be answered. Same doubts turned up on branch prediction as well.
Some works propose to not use branch prediction at all but how much
this hurts pipeline performance? In order to answer these questions,
we made an extensive evaluation including the impact of the compiler
on the performance which is specially important for processors with
wide-fetch, in-order execution and static instruction scheduler. Other
experiments were made to evaluate our design decisions considering
wider fetch, the use or not of branch prediction and predication and
the benefits of dual-port memory access. Most of them lead to signifi-
cant WCET reduction while others need more compiler support to be
fully explored.

It is very important to have a WCET analyzer to infer proprieties
and make performance evaluations. In the context of this work, we used
state-of-the-art techniques, like the Implicit Path Enumeration Tech-
nique (IPET) for worst-case path search, and proposed new strategies
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in order to estimate WCET of programs running on our VLIW plat-
form. Execution of various paths while using predication was modeled
during pipeline analysis as well as the timing of multi-cycle operations.
Control-flow instruction timing was also modeled in conjunction with
IPET by using different transition flows (δ ) for each type of basic block
transition. Cache memory behavior was also considered by the WCET
analyzer and, even being a single direct-mapped cache, the modeling
of its timing was very challenging specially during validation due to
complex control-flow structures such as nested loops. We can also note
that an integrated data flow between the compiler and the analyzer
illustrated by our tool is very important when implementing a WCET
analyzer. Much of the data required for WCET estimation is always
produced by the compiler, specially the control-flow graph and loop an-
notations, and an integration of these tools makes WCET computation
more efficient and precise. With our WCET analyzer and our design
space exploration we could identify quantitatively how much hardware
techniques contribute to WCET reduction as well as how to analyze
them during WCET static estimation. We concluded that the knowl-
edge of a WCET analyzer is important in order to achieve a predictable
hardware design and that an integrated environment between WCET
and compiler enhances WCET estimation.

We made also a complete VHDL implementation of the proposed
design. This step was important to infer the timing behavior and the
hardware complexity of each module. The use of a hardware description
language to implement the design was very challenging. In order to
reach the desired clock speed and to use the proper hardware design
methodology, most of the modules were implemented synchronously.
Some of them are naturally implemented this way, but the pipeline
front-end required considerable levels of logic with various states in
its finite state machine. Large components, like the arithmetic units
and its forwarding logic have to be optimized in the VHDL code level
and they were pinned to specific FPGA regions in order to reach the
desired performance. The processor researched in this thesis was a 4-
wide fetch VLIW microprocessor with 32-bit RISC operations and it
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was synthesized on an Altera Cyclone IV GX (EP4CGX150DF31C7) in
a DE2i-150 development board. We targeted and reached a clock speed
of 100Mhz and it required a total of 21,220 of 149,760 (14%) FPGA
combination function resources. In terms of FPGA memory utilization,
it required a total of 1,188,764 of 6,635,520 (15%) memory bits.

Branch architecture has always generated discussion and research
in computer architectures. We showed that static branch prediction is
very important to increase the WCET performance of real-time sys-
tems especially for loops which are very predictable. In special, we
proved that the use of static branch predication does not add signifi-
cant hardware complexity and its WCET analysis is feasible. We must
only model different basic block transition flows. Since WCET anal-
ysis is feasible and it reduces the WCET for more than half of the
benchmarks when the hardware supports both “taken” and “not-taken”
predictions, we cannot ignore the use of branch prediction for real-time
systems. We also noted that the WCET reduction depends on the code
structure and up to 12% of reduction could be achieved even without
a WCET-oriented static branch prediction.

Predication has become important for real-time systems because
it can improve performance and determinism as well, but it adds more
complexity to hardware and software. Generic full predication adds
considerable levels of logic to critical processor data paths, specially in
instruction encoding and forwarding paths. The compiler must also be
designed to use this technology with if-conversions. In terms of hard-
ware, we proposed a low-overhead full-predication mechanism in order
to extend the real-time capabilities of the processor. We fixed the pred-
icate register, we used only one operation encoding bit and we added
two operation modes assisted by special ISA instruction. With these
features, we added full predication support, including complex nested
structures using full and partial predication, without adding latencies to
critical processor data paths. The support of predication could reduce
the WCET of some benchmarks and for some of them this technique
reduced the WCET by about 15%. However, predication alone is not
enough in order to increase performance and predictability. The use of



8.1. Publications 183

predication may increase WCET. Because of this we propose the use
of a hybrid approach with hardware support of a low-overhead predi-
cation system and static branch prediction. This leads to a significant
WCET reduction and allows compiler WCET optimization by selecting
the appropriate technique.

We believe we have achieved our objectives contributing to the
state of the art by providing a clear evaluation of the proposed tech-
niques as well as a complete framework for further real time researches.
We have also secured our low-level requirements focusing on hard real-
time systems but also not forgetting the high-level requirements allow-
ing our design to be applicable to modern systems using modern ISA
and a modern compiler back-end. The VLIW ST231 ISA operation
encoding provided a clear and well defined instruction encoding, ade-
quate set of arithmetic instructions, typical memory access instruction
with base plus offset addressing mode and allowed the use of func-
tion calling/returning. This enhanced the construction of the compiler
back-end as well as the decoding during the WCET analysis.

8.1 PUBLICATIONS

This work generated the following publications in conference pro-
ceedings:

1. Starke, R. A., Carminati, A., & de Oliveira, R. S. (2015). In-
vestigating a four-issue deterministic VLIW architecture for real-
time systems. In 2015 IEEE 13th International Conference on
Industrial Informatics (INDIN) (pp. 215–220). Cambrigde - UK:
IEEE. http://doi.org/10.1109/INDIN.2015.7281737

2. Silva, K. P., Starke, R. A., & de Oliveira, R. S. (2015). Value anal-
ysis for the determination of memory instruction latency in a WCET
tool. In 2015 IEEE 13th International Conference on Indus-
trial Informatics (INDIN) (pp. 252–257). IEEE. http://doi.org/
10.1109/INDIN.2015.7281743

Publication in journals:
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1. Starke, R. A., Carminati, A., & de Oliveira, R. S. Evaluating the
Design of a VLIW Processor for Real-Time Systems. ACM Trans-
actions on Embedded Computing Systems. Accepted on Decem-
ber 7th, 2015. Publication on Vol. 15, No. 3, Article 46. DOI:
http://dx.doi.org/10.1145/2889490.

Submitted for publication:

1. Starke, R. A., Carminati, A., & de Oliveira, R. S. Evaluation
of a Low Overhead Predication System for a Deterministic VLIW
Architecture Targeting Real-Time Applications. Microprocessors
and Microsystems. Submitted on October 29th, 2015.

2. Carminati, A., Starke, R. A., & de Oliveira, R. S. On implement-
ing a WCET analyzer with data integration for a compositional ar-
chitecture. Springer Design Automation for Embedded Systems.
Submitted on August 25th, 2015.

3. Carminati, A., Starke, R. A., & de Oliveira, R. S. On the Use
of Static Branch Prediction to Reduce the Worst-Case Execution
Time of Real-Time Applications. Journal of System and Software.
Submitted on January 6th, 2016.

8.2 SUGGESTIONS OF FUTURE WORK

We believe there are several directions in which this research
could be continued.

In terms of hardware, the first research is the support of DMA
(Direct Memory Access) operations between memories. This feature
will allow the use of a memory hierarchy but its design must consider
deterministic properties like other processor features. On supporting
large memories with a memory hierarchy, the compiler and the WCET
analyzer should be modified to include the use and analysis of such
features. The use of other types of memories in the first level could
be also researched: an instruction scratchpad, a data cache memory or
semantic caches like the Patmos approach.
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In order to support a complete real-time application with a real-
time operating system, peripherals like timers and a vectored interrupt
controller should also be included in the design. This allows avionics or
automotive applications to be used as case studies inferring proprieties
and helping to increase the performance, efficiency and precision of the
framework.

In terms of WCET analyzer, a value analysis could be considered
in order to detect unfeasible paths and loop bounds. This technique will
greatly increase the WCET precision and safety. Cache analysis could
also be improved with a better first miss detection and the support of
associative caches with Least Recent Use (LRU) eviction policy. We
could also investigate new methods in order to consider processor tim-
ing properties into scheduling equations (e.g. context-switch overhead
and shared data).

Working together with the compiler development, the instruc-
tion per cycle (IPC) could also be increased with a global instruction
scheduler. This also allows a more efficient multi-stage operation de-
pendency resolution not stalling the pipeline for all cycles. Our current
compiler back-end implementation does not consider any Read-After-
Write dependencies between pipeline stages and a more sophisticated
hardware dependency resolution will only increase hardware complex-
ity. If multi-stage operations could be re-scheduled and reordered, a
hardware mechanism could detect the necessary time to satisfy depen-
dencies instead of stalling all cycles every time a multi-stage operation
is executed. This can also be implemented splitting multiplication and
division in two parts like the MIPS architecture: first, calculation is
done and its result is read later (a special instruction reads the result
after the calculation). If we use this strategy, pipeline stall is not nec-
essary but the compiler or the hardware must be modified in order to
keep semantics if a result is requested before it is ready.

We can also increase our performance evaluation considering
average-case performance generating random input parameters. Since
WCET analysis tools for all related work are not available, we can com-
pare our design with others considering small assembly code snippets.





187

BIBLIOGRAPHY

AHO, A. V. et al. Compilers: Principles, Techniques, and Tools. [S.l.]:
Pearson Education, 2011. ISBN 9780133002140. 142

ALT, M. et al. Cache behavior prediction by abstract interpretation. In: Static
Analysis. [S.l.: s.n.], 1996. p. 52–66. 145

BANAKAR, R. et al. Scratchpad memory: a design alternative for
cache on-chip memory in embedded systems. Proceedings of the Tenth
International Symposium on Hardware/Software Codesign. CODES 2002
(IEEE Cat. No.02TH8627), Acm, p. 73–78, 2002. 62

BURGUIERE, C.; ROCHANGE, C.; SAINRAT, P. A Case for Static Branch
Prediction in Real-Time Systems. In: 11th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA’05).
IEEE, 2005. p. 33–38. ISBN 0-7695-2346-3. Disponível em: <http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1541053>. 14,
39, 57, 171

CHOI, Y. et al. The Impact of If-conversion and Branch Prediction on
Program Execution on the Intel&Reg; Itanium&Trade; Processor. In:
Proceedings of the 34th Annual ACM/IEEE International Symposium
on Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2001. (MICRO 34), p. 182–191. ISBN 0-7695-1369-7. Disponível em:
<http://dl.acm.org/citation.cfm?id=563998.564023>. 58

CULLMANN, C. et al. Predictability considerations in the design of
multi-core embedded systems. Ingenieurs de l’Automobile, v. 807, p. 36–42,
2010. 141

DAVIS, R. I.; BURNS, A. A survey of hard real-time scheduling for
multiprocessor systems. ACM Computing Surveys, v. 43, n. 4, p. 1–44, out.
2011. ISSN 03600300. 33

EDWARDS, S. A.; LEE, E. A. The case for the precision timed (PRET)
machine. In: Proceedings of the 44th annual conference on Design
automation - DAC ’07. New York, New York, USA: ACM Press, 2007.
p. 264. ISBN 9781595936271. ISSN 0738100X. 32

ENGBLOM, J.; JONSSON, B. Processor pipelines and their
properties for static WCET analysis. In: Embedded Software.
[s.n.], 2002. p. 334–348. ISBN 3-540-44307-X. Disponível em:
<http://www.springerlink.com/index/J9C2BLLEWB0LMWC1.pdf>. 153

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1541053
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1541053
http://dl.acm.org/citation.cfm?id=563998.564023
http://www.springerlink.com/index/J9C2BLLEWB0LMWC1.pdf


188 Bibliography

FISHER, J. A.; FARABOSHI, P.; YOUNG, C. Emebedded Computing:
A VLIW Approach to Architecture Compilers and Tools. [S.l.]: Morgan
Kaufmann Publishers, 2005. 709 p. ISBN 1558607668. 13, 38, 55, 58, 59,
83, 85, 125, 166, 167

FISHER, J. A.; MEMBER, S. Trace Scheduling: A Technique for
Global Microcode Compaction. IEEE Transactions on Computers, C-30,
n. 7, p. 478–490, jul. 1981. ISSN 0018-9340. Disponível em: <http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1675827>. 106

GEYER, C. B. et al. Time-predictable code execution - Instruction-set
support for the single-path approach. In: 16th IEEE International Symposium
on Object/component/service-oriented Real-time distributed Computing
(ISORC 2013). IEEE, 2013. p. 1–8. ISBN 978-1-4799-2111-9. Disponível
em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6913195>. 60

GROSSMAN, J. P. Compiler and Architectural Techniques for Improving
the Effectiveness of VLIW Compilation. [S.l.], 2000. Disponível em:
<http://www.ai.mit.edu/projects/aries/>. 59

GRUND, D.; REINEKE, J.; WILHELM, R. A Template for Predictability
Definitions with Supporting Evidence. In: LUCAS, P. et al. (Ed.).
Bringing Theory to Practice: Predictability and Performance in Embedded
Systems. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2011. (OpenAccess Series in Informatics (OASIcs), v. 18),
p. 22–31. ISBN 978-3-939897-28-6. ISSN 2190-6807. Disponível em:
<http://drops.dagstuhl.de/opus/volltexte/2011/3078>. 35

GUSTAFSSON, J. Usability Aspects of WCET Analysis. 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), Ieee, p. 346–352, maio 2008. Disponível
em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
4519598>. 12

GUSTAFSSON, J. et al. The M{ä}lardalen WCET Benchmarks - Past,
Present and Future. In: Proceedings of the 10th International Workshop
on Worst-Case Execution Time Analysis. [s.n.], 2010. Disponível em:
<http://www.es.mdh.se/publications/1895->. 22, 40, 82, 165, 166

HWU, W. M. W. et al. The superblock: An effective technique for
VLIW and superscalar compilation. The Journal of Supercomputing,
v. 7, n. 1-2, p. 229–248, maio 1993. ISSN 0920-8542. Disponível
em: <http://link.springer.com/article/10.1007/BF01205185http:
//link.springer.com/10.1007/BF01205185>. 105

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1675827
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1675827
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6913195
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6913195
http://www.ai.mit.edu/projects/aries/
http://drops.dagstuhl.de/opus/volltexte/2011/3078
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519598
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519598
http://www.es.mdh.se/publications/1895-
http://link.springer.com/article/10.1007/BF01205185 http://link.springer.com/10.1007/BF01205185
http://link.springer.com/article/10.1007/BF01205185 http://link.springer.com/10.1007/BF01205185


Bibliography 189

JORDAN, A.; KIM, N.; KRALL, A. IR-level versus machine-level
if-conversion for predicated architectures. In: Proceedings of the 10th
Workshop on Optimizations for DSP and Embedded Systems - ODES ’13.
New York, New York, USA: ACM Press, 2013. p. 3. ISBN 9781450319058.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2443608.2443611>.
108

KIRNER, R.; PUSCHNER, P. Time-predictable computing. In: Proceedings
of the 8th IFIP WG 10.2 international conference on Software technologies
for embedded and ubiquitous systems. Berlin, Heidelberg: Springer-Verlag,
2010. (SEUS’10), p. 23–34. ISBN 3-642-16255-X, 978-3-642-16255-8.
Disponível em: <http://dl.acm.org/citation.cfm?id=1927882.1927890>. 35

KREUZINGER, J. et al. Real-time event-handling and scheduling on a
multithreaded Java microcontroller. Microprocessors and Microsystems,
v. 27, n. 1, p. 19–31, 2003. ISSN 01419331. 67

LAFOREST, C.; STEFFAN, J. Efficient multi-ported memories for FPGAs.
Proceedings of the ACM/SIGDA 18th International Symposium on Field
Programmable Gate Arrays, ACM Press, New York, New York, USA, p. 41,
2010. 123, 138

LAFOREST, C. E. et al. Multi-ported memories for FPGAs via
XOR. Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays - FPGA ’12, ACM Press,
New York, New York, USA, p. 209, 2012. Disponível em: <http:
//dl.acm.org/citation.cfm?doid=2145694.2145730>. 123

LATTNER, C.; ADVE, V. LLVM: A compilation framework for lifelong
program analysis & transformation. In: Proceedings of the International
Symposium on Code Generation and Optimization, 2004. CGO 2004.
IEEE, 2004. p. 75–86. ISBN 0-7695-2102-9. Disponível em: <http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281665>. 40,
87, 105, 134, 165

LEE, C.-g. et al. Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling. IEEE Transactions on Computers, v. 47, n. 6, p.
700–713, jun. 1998. ISSN 00189340. 145

LENGAUER, T.; TARJAN, R. E. A fast algorithm for finding dominators
in a flowgraph. ACM Transactions on Programming Languages and
Systems, v. 1, n. 1, p. 121–141, jan. 1979. ISSN 01640925. Disponível em:
<http://portal.acm.org/citation.cfm?doid=357062.357071>. 142

http://dl.acm.org/citation.cfm?doid=2443608.2443611
http://dl.acm.org/citation.cfm?id=1927882.1927890
http://dl.acm.org/citation.cfm?doid=2145694.2145730
http://dl.acm.org/citation.cfm?doid=2145694.2145730
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281665
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281665
http://portal.acm.org/citation.cfm?doid=357062.357071


190 Bibliography

LI, Y.-T. S.; MALIK, S. Performance analysis of embedded software using
implicit path enumeration. ACM SIGPLAN Notices, v. 30, n. 11, p. 88–98,
nov. 1995. ISSN 03621340. 142, 154, 155

LIU, I. et al. A PRET microarchitecture implementation with repeatable
timing and competitive performance. 2012 IEEE 30th International
Conference on Computer Design (ICCD), Ieee, p. 87–93, set. 2012. 12, 63,
71, 83, 109

LIU, I.; REINEKE, J.; LEE, E. a. A PRET architecture supporting
concurrent programs with composable timing properties. 2010 Conference
Record of the Forty Fourth Asilomar Conference on Signals, Systems
and Computers, Ieee, p. 2111–2115, nov. 2010. Disponível em: <http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5757922>. 71

LIU, J. W. S. Real-Time Systems. 1. ed. [S.l.]: Prentice Hall, 2000. ISBN
0-13-099651-3. 32

LUNDQVIST, T.; STENSTROM, P. Timing anomalies in dynamically
scheduled microprocessors. Proceedings 20th IEEE Real-Time Systems
Symposium, IEEE Comput. Soc, p. 12–21, 1999. 13, 34, 37, 38

MAHLKE, S. et al. A comparison of full and partial predicated execution
support for ILP processors. Proceedings 22nd Annual International
Symposium on Computer Architecture, p. 138–149, 1995. ISSN 1063-6897.
58

MAKHORIN, A. GLPK (GNU linear programming kit). 2008. 156, 162

MARTÍNEZ, P. L.; CUEVAS, C.; DRAKE, J. M. Compositional
real-time models. Journal of Systems Architecture, v. 58, n. 6-7,
p. 257–276, jun. 2012. ISSN 13837621. Disponível em: <http:
//linkinghub.elsevier.com/retrieve/pii/S138376211200029X>. 36

MISCHE, J. et al. How to enhance a superscalar processor to provide
hard real-time capable in-order SMT. In: Lecture Notes in Computer
Science. [S.l.: s.n.], 2010. v. 5974 LNCS, p. 2–14. ISBN 3642119492. ISSN
03029743. 73, 74

MUELLER, F.; WHALLEY, D. Fast instruction cache analysis via static
cache simulation. In: Proceedings of Simulation Symposium. [S.l.]: IEEE
Comput. Soc. Press, 1995. p. 105–114. ISBN 0-8186-7091-6. 145

OTTOSSON, G.; SJöDIN, M. Worst-Case Execution Time Analysis for
Modern Hardware Architectures. In: In Proc. of SIGPLAN 1997 Workshop

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5757922
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5757922
http://linkinghub.elsevier.com/retrieve/pii/S138376211200029X
http://linkinghub.elsevier.com/retrieve/pii/S138376211200029X


Bibliography 191

on Languages, Compilers and Tools for Real-Time Systems; LCT-RTS97.
[s.n.], 1997. Disponível em: <http://www.es.mdh.se/publications/18->. 154

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and
Design, Revised Printing, Third Edition: The Hardware/Software Interface.
[S.l.]: Elsevier Science, 2007. (The Morgan Kaufmann Series in Computer
Architecture and Design). ISBN 9780080550336. 85

PUSCHNER, P. Experiments with WCET-Oriented Programming and
the Single-Path Architecture. 10th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems, Ieee, p. 205–210, 2005.
Disponível em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1544795>. 15, 39, 84

PUSCHNER, P.; KIRNER, R.; PETTIT, R. G. Towards Composable
Timing for Real-Time Programs. 2009 Software Technologies for Future
Dependable Distributed Systems, Ieee, n. 214373, p. 1–5, mar. 2009.
Disponível em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4804562>. 36, 37

REINEKE, J. et al. PRET DRAM controller. In: Proceedings of the
seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis - CODES+ISSS ’11. New York, New York,
USA: ACM Press, 2011. p. 99. ISBN 9781450307154. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2039370.2039388>. 14, 38, 72, 103,
140

SANTOS, R.; AZEVEDO, R.; ARAUJO, G. 2D-VLIW: An Architecture
Based on the Geometry of Computation. In: IEEE 17th International
Conference on Application-specific Systems, Architectures and Processors
(ASAP’06). IEEE, 2006. p. 87–94. ISBN 0-7695-2682-9. Disponível
em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
4019496>. 125

SCHOEBERL, M. A Time Predictable Instruction Cache for a Java
Processor. In: On the Move to Meaningful Internet Systems 2004:
Workshop on Java Technologies for Real-Time and Embedded Systems
(JTRES 2004). Springer, 2004. v. 3292, p. 371–382. Disponível em:
<http://www.jopdesign.com/doc/jtres\_cache.pdf>. 69

SCHOEBERL, M. Design and Implementation of an Efficient
Stack Machine. In: Proceedings of the 12th IEEE Reconfigurable
Architecture Workshop (RAW2005). IEEE, 2005. Disponível em:
<http://www.jopdesign.com/doc/stack.pdf>. 70

http://www.es.mdh.se/publications/18-
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1544795
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1544795
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4804562
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4804562
http://dl.acm.org/citation.cfm?doid=2039370.2039388
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4019496
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4019496
http://www.jopdesign.com/doc/jtres\_cache.pdf
http://www.jopdesign.com/doc/stack.pdf


192 Bibliography

SCHOEBERL, M. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture, v. 54, p. 265–286, 2008. ISSN
1383-7621. Disponível em: <http://www.jopdesign.com/doc/rtarch.pdf>.
69, 70, 72

SCHOEBERL, M. Time-predictable cache organization. In: Proceedings
of the First International Workshop on Software Technologies for Future
Dependable Distributed Systems (STFSSD 2009). [S.l.: s.n.], 2009. 102

SCHOEBERL, M. Time-Predictable Computer Architecture. EURASIP
Journal on Embedded Systems, v. 2009, p. 1–17, 2009. ISSN 1687-3955. 31,
32, 61, 63, 76

SCHOEBERL, M. Is time predictability quantifiable? 2012 International
Conference on Embedded Computer Systems (SAMOS), Ieee, p. 333–338,
jul. 2012. 35

SCHOEBERL, M. et al. T-CREST: Time-predictable multi-core
architecture for embedded systems. Journal of Systems Architecture,
Elsevier B.V., 2015. ISSN 13837621. Disponível em: <http:
//linkinghub.elsevier.com/retrieve/pii/S1383762115000193>. 12, 63, 73, 74,
75, 79

SCHOEBERL, M. et al. Worst-case execution time analysis for a Java
processor. Software: Practice and Experience, v. 40/6, p. 507–542, 2010.
Disponível em: <http://www.jopdesign.com/doc/wcetana.pdf>. 70

SCHOEBERL, M. et al. Towards a Time-predictable Dual-Issue
Microprocessor: The Patmos Approach. In: LUCAS, P. et al. (Ed.). Bringing
Theory to Practice: Predictability and Performance in Embedded Systems.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2011. (OpenAccess Series in Informatics (OASIcs), v. 18), p. 11–21. ISBN
978-3-939897-28-6. ISSN 2190-6807. 12, 14, 32, 38, 72, 75, 83, 102

SHEN, J. P. et al. Modern Processor Design: Fundamentals of Superscalar
Processors. New York: McGraw-Hill, 2005. ISBN 0-07-059033-8.
Disponível em: <http://opac.inria.fr/record=b1129703>. 19, 43, 44, 46, 47,
53, 56, 57, 91

THIELE, L.; WILHELM, R. Design for Timing Predictability.
Real-Time Syst., Kluwer Academic Publishers, Norwell, MA, USA,
v. 28, n. 2-3, p. 157–177, nov. 2004. ISSN 0922-6443. Disponível em:
<http://dx.doi.org/10.1023/B:TIME.0000045316.66276.6e>. 35

http://www.jopdesign.com/doc/rtarch.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1383762115000193
http://linkinghub.elsevier.com/retrieve/pii/S1383762115000193
http://www.jopdesign.com/doc/wcetana.pdf
http://opac.inria.fr/record=b1129703
http://dx.doi.org/10.1023/B:TIME.0000045316.66276.6e


Bibliography 193

UHRIG, S.; MISCHE, J.; UNGERER, T. An IP Core for Embedded
Java Systems. In: Embedded Computer Systems: Architectures,
Modeling, and Simulation. [s.n.], 2007. p. 263–272. Disponível em:
<http://link.springer.com/10.1007/978-3-540-73625-7\_28>. 67, 68, 73

UHRIG, S.; WIESE, J. jamuth: an IP processor core for embedded
Java real-time systems. In: Proceedings of the 5th international
workshop on Java technologies for real-time and embedded systems -
JTRES ’07. [s.n.], 2007. p. 230. ISBN 9781595938138. Disponível em:
<http://dl.acm.org/citation.cfm?doid=1288940.1288974>. 68, 69

UNGERER, T. et al. Merasa: Multicore Execution of Hard Real-Time
Applications Supporting Analyzability. IEEE Micro, v. 30, n. 5, p. 66–75,
set. 2010. ISSN 0272-1732. 74, 75

WENZEL, I. et al. Principles of Timing Anomalies in Superscalar
Processors. In: Fifth International Conference on Quality Software. [S.l.]:
IEEE, 2005. p. 295–306. ISBN 0-7695-2472-9. 33, 34

WHITHAM, J.; AUDSLEY, N. MCGREP–A Predictable Architecture for
Embedded Real-Time Systems. 2006 27th IEEE International Real-Time
Systems Symposium (RTSS’06), Ieee, p. 13–24, 2006. 70, 71

WHITHAM, J.; AUDSLEY, N. Investigating Average versus Worst-Case
Timing Behavior of Data Caches and Data Scratchpads. 2010 22nd
Euromicro Conference on Real-Time Systems, Ieee, p. 165–174, jul. 2010. 62

WHITHAM, J. et al. Investigation of Scratchpad Memory for Preemptive
Multitasking. 2012 IEEE 33rd Real-Time Systems Symposium, Ieee, p. 3–13,
dez. 2012. 62

WILHELM, R. et al. The worst-case execution-time problem - overview of
methods and survey of tools. ACM Transactions on Embedded Computing
Systems, v. 7, n. 3, p. 1–53, abr. 2008. ISSN 15399087. 31, 32

http://link.springer.com/10.1007/978-3-540-73625-7\_28
http://dl.acm.org/citation.cfm?doid=1288940.1288974




Appendix





197

APPENDIX A – LIST OF SUPPORTED OPERATIONS

Operand Encoding Bits Type

bcond 25..23 Predicate ($br)
bdest 20..18 Predicate ($br)
btarg 22..0 Immediate
dest 17..12 Register ($r)
idest 11..6 Register ($r)
isrc2 20..12 Immediate
scond 23..21 Predicate ($br)
src1 5..0 Register ($r)
src2 11..6 Register ($r)
pc Program counter

Table 31 – List of operation operands

Mnemonic Semantic

ADD dest = signext32 (src1) + signext32 (src2)
ADD_I idest = signext32 (src1) + signext32 (isrc2)
SUB dest = signext32 (src1) - signext32 (src2)
SUB_I idest = signext32 (src1) - signext32 (isrc2)
SHL dest = signext32 (src1) ≪ src2 (4..0)
SHL_I idest = signext32 (src1) ≪ signext32 (isrc2

(4..0))
SHR dest = signext32 (src1) ≫ src2 (4..0)
SHR_I idest = signext32 (src1) ≫ signext32 (isrc2

(4..0))
SHRU dest = signext32 (src1) ≫ src2 (4..0)
SHRU_I idest = signext32 (src1) ≫ signext32 (isrc2

(4..0))
AND dest = signext32 (src1) & signext32 (src2)
AND_I idest = signext32 (src1) & signext32 (isrc2)
ANDC dest = signext32 (src1) & signext32 (src2)
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ANDC_I idest = signext32 (src1) & signext32 (isrc2)
OR dest = signext32 (src1) | signext32 (src2)
OR_I idest = signext32 (src1) | signext32 (isrc2)
ORC dest = signext32 (src1) | signext32 (src2)
ORC_I idest = signext32 (src1) | signext32 (isrc2)
XOR dest = signext32 (src1) ^signext32 (src2)
XOR_I idest = signext32 (src1) ^signext32 (isrc2)
MAX dest = signext32 (src1) > signext32 (src2) ?

src1 : src2
MAX_I idest = signext32 (src1) > signext32 (isrc2) ?

src1 : isrc2
MAXU dest = zeroext32 (src1) > zeroext32 (src2) ?

src1 : src2
MAXU_I idest = zeroext32 (src1) > zeroext32 (isrc2) ?

src1 : isrc2
MIN dest = signext32 (src1) <signext32 (src2) ?

src1 : src2
MIN_I idest = signext32 (src1) <signext32 (isrc2) ?

src1 : isrc2
MINU dest = zeroext32 (src1) <zeroext32 (src2) ?

src1 : src2
MINU_I idest = zeroext32 (src1) <zeroext32 (isrc2) ?

src1 : isrc2
SXTB idest = signext32 (src1(7..0))
SXTH idest = signext32 (src1(15..0))
ZXTB idest = zeroext32 (src1(7..0))
ZXTH idest = zeroext32 (src1(15..0))
ADDCG dest = signext32 (src1) + signext32 (src2) +

zeroext1(scond) ; bdest = carry bit
SUBCG dest = signext32 (src1) - signext32 (src2) +

zeroext1(scond) – 1 ; bdest = carry bit
CMPEQ_R dest(1) = signext32 (src1) == signext32

(src2)
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CMPEQ_B bdest = signext32 (src1) == signext32 (isrc2)
CMPEQ_IR dest(1) = signext32 (src1) == signext32

(isrc2)
CMPEQ_IB bdest = signext32 (src1) == signext32 (isrc2)
CMPNE_R dest(1) = signext32 (src1) == signext32

(src2)
CMPNE_B bdest = signext32 (src1) != signext32 (isrc2)
CMPNE_IR dest(1) = signext32 (src1) != signext32

(isrc2)
CMPNE_IB bdest = signext32 (src1) != signext32 (isrc2)
CMPGE_R dest(1) = signext32 (src1) >= signext32

(src2)
CMPGE_B bdest = signext32 (src1) >= signext32 (isrc2)
CMPGE_IR dest(1) = signext32 (src1) >= signext32

(isrc2)
CMPGE_IB bdest = signext32 (src1) >= signext32 (isrc2)
CMPGEU_R dest(1) = zeroext32 (src1) >= zeroext32

(src2)
CMPGEU_B bdest = zeroext32 (src1) >= zeroext32 (isrc2)
CMPGEU_IR dest(1) = zeroext32 (src1) >= zeroext32

(isrc2)
CMPGEU_IB bdest = zeroext32 (src1) >= zeroext32 (isrc2)
CMPGT_R dest(1) = signext32 (src1) > signext32 (src2)
CMPGT_B bdest = signext32 (src1) > signext32 (isrc2)
CMPGT_IR dest(1) = signext32 (src1) > signext32 (isrc2)
CMPGT_IB bdest = signext32 (src1) > signext32 (isrc2)
CMPGTU_R dest(1) = zeroext32 (src1) > zeroext32 (src2)
CMPGTU_B bdest = zeroext32 (src1) > zeroext32 (isrc2)
CMPGTU_IR dest(1) = zeroext32 (src1) > zeroext32 (isrc2)
CMPGTU_IB bdest = zeroext32 (src1) > zeroext32 (isrc2)
CMPLE_R dest(1) = signext32 (src1) <= signext32

(src2)
CMPLE_B bdest = signext32 (src1) <= signext32 (isrc2)
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CMPLE_IR dest(1) = signext32 (src1) <= signext32
(isrc2)

CMPLE_IB bdest = signext32 (src1) <= signext32 (isrc2)
CMPLEU_R dest(1) = zeroext32 (src1) <= zeroext32

(src2)
CMPLEU_B bdest = zeroext32 (src1) <= zeroext32 (isrc2)
CMPLEU_IR dest(1) = zeroext32 (src1) <= zeroext32

(isrc2)
CMPLEU_IB bdest = zeroext32 (src1) <= zeroext32 (isrc2)
CMPLT_R dest(1) = signext32 (src1) <signext32 (src2)
CMPLT_B bdest = signext32 (src1) <signext32 (isrc2)
CMPLT_IR dest(1) = signext32 (src1) <signext32 (isrc2)
CMPLT_IB bdest = signext32 (src1) <signext32 (isrc2)
CMPLTU_R dest(1) = zeroext32 (src1) <zeroext32 (src2)
CMPLTU_B bdest = zeroext32 (src1) <zeroext32 (isrc2)
CMPLTU_IR dest(1) = zeroext32 (src1) <zeroext32 (isrc2)
CMPLTU_IB bdest = zeroext32 (src1) <zeroext32 (isrc2)
ANDL_R dest(1) = zeroext32 (src1) && zeroext32

(src2)
ANDL_B bdest = zeroext32 (src1) && zeroext32 (isrc2)
ANDL_IR dest(1) = zeroext32 (src1) && zeroext32

(isrc2)
ANDL_IB bdest = zeroext32 (src1) && zeroext32 (isrc2)
NANDL_R dest(1) = (zeroext32 (src1) && zeroext32

(src2))
NANDL_B bdest = (zeroext32 (src1) && zeroext32

(isrc2))
NANDL_IR dest(1) = (zeroext32 (src1) && zeroext32

(isrc2))
NANDL_IB bdest = (zeroext32 (src1) && zeroext32

(isrc2))
NORL_R dest(1) = (zeroext32 (src1) || zeroext32

(src2))
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NORL_B bdest = (zeroext32 (src1) || zeroext32
(isrc2))

NORL_IR dest(1) = (zeroext32 (src1) || zeroext32
(isrc2))

NORL_IB bdest = (zeroext32 (src1) || zeroext32
(isrc2))

ORL_R dest(1) = zeroext32 (src1) || zeroext32 (src2)
ORL_B bdest = zeroext32 (src1) || zeroext32 (isrc2)
ORL_IR dest(1) = zeroext32 (src1) || zeroext32 (isrc2)
ORL_IB bdest = zeroext32 (src1) || zeroext32 (isrc2)
SLCT_R dest = (scond == 1 ? src1 : src2)
SLCT_I dest = (scond == 1 ? src1 : isrc2)
SLCTF_R dest = (scond == 0 ? src1 : src2)
SLCTF_I dest = (scond == 0 ? src1 : isrc2)
BR pc = (scond == 1 ? signext32 (pc) +

signext32 (btarg))
BRF pc = (scond == 0 ? signext32 (pc) +

signext32 (btarg))
MULL Dest = (32 lower bits) signext32 (src1) *

signext32 (src2)
MULL64H Dest = (32 higher bits) signext32 (src1) *

signext32 (src2)
MULL64HU Dest = (32 higher bits) signext32 (src1) *

signext32 (src2)
DIV_R dest = signext32 (src1) % signext32 (src2)
DIV_Q dest = signext32 (src1) / signext32 (src2)
DIV_RU dest = zeroext32 (src1) % zeroext32 (src2)
DIV_QU dest = zeroext32 (src1) / zeroext32 (src2)
CALL pc = src1 R63 = pc
ICALL pc = btarg R63 = pc
GOTO pc == signext32 (pc) + signext32 (btarg)
IGOTO pc = signext32 (pc) + signext32 (btarg)
IMML imm for previous operation is:

signext32(btarg ≪ 9 + isrc2)
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IMMR imm for next operation is: signext32(btarg
≪ 9 + isrc2)

LDW idest = signext32 (mem [signext32 (src1) +
signext32 (isrc2))

LDH idest = signext32(mem [signext32 (src1) +
signext32 (isrc2) (15..0))

LDHU idest = mem [signext32 (src1) + signext32
(isrc2) (15..0)

LDB idest = signext32(mem [signext32 (src1) +
signext32 (isrc2) (7..0))

LDBU idest = mem [signext32 (src1) + signext32
(isrc2) (7..0)

STW mem [signext32 (src1) + signext32 (isrc2)) =
src2

STH mem [signext32 (src1) + signext32 (isrc2)) =
src2 (15..0)

STB mem [signext32 (src1) + signext32 (isrc2)) =
src2 (7..d0)

HALT halt the cpu
PAR_ON enable predication complete mode
PAR_OFF disable predication complete mode
PRELD direct next branch to (signext32 (pc) +

signext32 (btarg))

Table 32 – List of supported operations
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