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RESUMO

Motivado por algoritmos criptográficos de emparelhamento bilinear,
a computação da raiz cúbica em corpos finitos de característica 3 já
fora abordada na literatura. Adicionalmente, novos estudos sobre a
computação da raiz p-ésima em corpos finitos de característica p, onde
p é um número primo, têm surgido. Estas contribuições estão centradas
na computação de raízes para corpos de característica fixa ou para
polinômios irredutíveis com poucos termos não nulos.
Esta dissertação propõe novas famílias de polinômios irredutíveis em
Fp, com k termos não nulos onde k ≥ 2 e p ≥ 3, para a computação
eficiente da raiz p-ésima em corpos finitos de característica p. Além
disso, para o caso onde p = 3, são obtidas novas extensões onde a
computação da raiz cúbica é eficiente e polinômios cujo desempenho é
ligeiramente melhor em comparação aos resultados da literatura.
Palavras-chave: Criptografia, Teoria de Números, Aritmética em
Corpos Finitos.





ABSTRACT

Efficient cube root computations in extensions fields of characteristic
three have been studied, in part motivated by pairing cryptography im-
plementations. Additionally, recent studies have emerged on the com-
putation of p-th roots of finite fields of characteristic p, where p prime.
These contributions have either considered a fixed characteristics for
the extension field or irreducible polynomials with few nonzero terms.
We provide new families of irreducible polynomials over Fp, taking into
account polynomials with k ≥ 2 nonzero terms and p ≥ 3. Moreover,
for the particular case p = 3, we slightly improve some previous results
and we provide new extensions where efficient cube root computations
are possible.
Keywords: Cryptography, Number Theory, Finite Field Arithmetic.
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1 INTRODUCTION

Over the years, elliptic curves have been extensively studied for
their efficiency when used for cryptographic implementations. Today,
for example, most websites that support the Transport Layer Security
suite (TLS) are slowly transitioning to elliptic curves protocols and en-
cryption algorithms. The experiments from Huang et al. (2014) show
an optimistic result where a large fraction of the websites that support
TLS prioritizes elliptic curves over RSA. This assumption is supported
by the fact that most modern browsers implement Elliptic Curve Cryp-
tography (ECC) suites. Therefore, if the client presents ECC as an
option, the servers will use it since it is more efficient than RSA. The
recommended key length of encryption algorithms from the National
Institute of Standards and Technology (NIST, from the United States
of America) is presented in Table 1. Taking into account the advances
in cryptanalysis and the Moore’s law, RSA key length will grow signif-
icantly when compared to ECC over the next decades. NIST recom-
mends that 15360 bit RSA keys should be used to encrypt data safely
after the year of 2030 (not taking quantum computers into account).

Table 1 – NIST security comparison of key length in bits.

Period of use Symmetric ECC RSA
2011-2030 128 bits 256 bits 3072 bits
2030-? 256 bits 512 bits 15360 bits

Available at: www.keylength.com

As it turns out, elliptic curves can be used for other applica-
tions in cryptography. Bilinear pairings of points defined over elliptic
curves have been proposed as an attack on ECC (MENEZES et al., 1993).
Furthermore, pairings can also be used for cryptographic algorithms
with remarkable flexibility, for example, the Identity-based Encryption
scheme (IBE). Shamir (1985) first introduced the idea of IBE where two
parties could communicate securely without exchanging randomly gen-
erated keys. He proposed that a public key - used to encrypt a session
key - could be derived from a trivially authenticated parameter, such
as an e-mail address. A central and trusted authority is responsible for
this operation with the use of a master secret. This master secret is
composed of a public and private master key, so that the authority may
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publish the public master key and grant third parties the capability of
computing any recipient’s public keys. This way, it would be possible
to send encrypted and authenticated messages even if the recipient has
not yet created his own private key. However, a fully functioning IBE
cryptosystem was only proposed years later, by Boneh and Franklin
(2001), with the use of bilinear pairing. In the advent of this, the
demand for fast Pairing-based Cryptography (PBC) algorithms have
increased over the last couple of decades.

The study of efficient PBC is generally based on two main topics.
The efficiency of the pairing construction itself and the implementation
taking the target architecture into account. The first is usually centered
on improving existing algorithms. This is done by proposing more
efficient ways to compute arithmetic operations or modifications that
decrease the overall complexity of the computation. The second is
focused on the implementation of the algorithms that take advantage of
the targeted computer architecture or even designing specific hardware
for pairing computations.

One enhancement, in particular, is related to the main objec-
tive of this thesis. A pairing construction, proposed for a specific set
of elliptic curves, uses cube root operations to compute the bilinear
pairing. Consequently, efficient cube root extraction have been stud-
ied (BARRETO, 2004; AHMADI; HANKERSON; MENEZES, 2007; AHMADI;
RODRÍGUEZ-HENRÍQUEZ, 2010). In addition, despite of these works
being centered on the idea of computing cube roots (that is, a p-th
root where p = 3), there has been recent developments in the compu-
tation of p-th roots, where p is prime (HARASAWA; SUEYOSHI; KUDO,
2006; PANARIO; THOMSON, 2009). In this thesis, we generalize previ-
ous cube root methods in order to compute p-th roots for finite fields
of characteristic p, using polynomial basis.

1.1 MOTIVATION

The computation of p-th roots of elements expressed as poly-
nomials is motivated by its use in factorization algorithms (GATHEN;
PANARIO, 2001). In addition, it can also be used for PBC, where cube
roots have been studied with the purpose of enhancing the perfor-
mance of pairing operations over F3. However, recent developments
have demonstrated that it is possible to compute the discrete log in
extension fields of small characteristic in quasi -polynomial time (BAR-
BULESCU et al., 2014). This suggests that cryptosystems that use such
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extension fields could have much lower level of security than antici-
pated. For example, the extension field F36·509 have been considered
for the implementation of 128 bit security level cryptosystems. How-
ever, it turns out that pairing based cryptosystems using this field have
significantly lower security level (ADJ et al., 2014). In light of this, the
study of efficient p-th root computations may help leverage implemen-
tations of PBC using higher characteristics. Lastly, the overall study
of efficient finite field arithmetic is a very interesting topic given the
many areas where this arithmetic can be applied.

1.2 OBJECTIVES

1.2.1 General Objectives

The main goal of this work is to provide new extensions and
families of irreducible polynomials over Fp, that result on the efficient
p-th root computation in finite fields of characteristic p, where p is an
odd prime number.

1.2.2 Specific Objectives

• Obtain general equation for p-th root computations, where p is
an odd prime number, for polynomials of varied sized of nonzero
coefficients.

• Obtain general lower and upper bounds of the Hamming weight
of our proposal, to compare to related work.

1.3 SCIENTIFIC METHOD

The main scientific method of this thesis is the mathematical
proof of our proposals. We present 4 proved theorems, one corollary
and a couple of propositions to illustrate the potentiality of the main
theorems. An other method we use to evaluate the soundness of this
thesis, is SageMath1 mathematics software system. After the literature
review is well established, simulations in search for patterns in the
related work is well suited for our main objective. In addition, by using

1Available at http://www.sagemath.org
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SageMath, it is also possible to evaluate the behavior of our proposed
families of polynomials against each other.

1.4 SCIENTIFIC CONTRIBUTION

This work provides two families of irreducible polynomials that
yield efficient p-th root computation in finite fields of characteristic p.
These families include (a) "friendly" polynomials such that the p-th
root computation requires no reduction modulo the irreducible polyno-
mial defining the field and (b) "equally spaced" polynomials that have
Hamming weight 1. These polynomials described in Chapter 5 and are
part of an accepted paper to appear in the Electronics Letters journal
(PERIN et al., 2015).

1.5 LIMITATIONS

In Chapter 3 we give a brief overview of bilinear pairings with the
purpose of introducing algorithms that depend on the cube root compu-
tation. While the related work presented in Chapter 4 and our proposal
presented in Chapter 5 have been motivated by bilinear pairings, we do
not give detailed mathematical background of pairings algorithms in
this thesis. The implementation of such algorithms using our proposal
is considered for future works, in Chapter 6.

1.6 ORGANIZATION

The remainder of this thesis is organized as follows. The objec-
tives, scientific method and contributions are discussed in this chapter.
We give a basic mathematical background in Chapter 2, to facilitate
the understanding of the main proposal of the thesis. In Chapter 3,
we give a short description of bilinear pairings with the sole purpose of
showing the algorithm where cube roots were introduced. In Chapter
4, we outline the main contributions of the related works mentioned
above, with theorems and examples. The main contribution of this
thesis is given in Chapter 5, where both families of polynomials are
formally proven followed by implementation remarks. To give the final
considerations of our work, Chapter 6 is the conclusion, followed by the
references.
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2 MATHEMATICAL BACKGROUND

In this chapter we give an introduction to the basic algebraic
structures used in this thesis. Most definitions are taken directly from
the book Finite Fields from Lidl and Niederreiter (1997). The defini-
tions are presented with their reference to the book and followed by a
few examples in the field of cryptography.

2.1 GROUPS

In mathematics, the operations of addition and multiplication,
over the integers for example, are well established. However, the con-
cept of operations to arbitrary sets can be generalized. Let S be a set
and S×S denote the set of all ordered pairs (s, t) with s, t ∈ S. Then a
binary operation on S is a mapping from S× S to S. When the image
of the operation is the domain itself, the closure property is satisfied.

Definition 2.1.1 (Lidl and Niederreiter (1997), Definition 1.1). A
group (G, ∗) is a set G together with a binary operation ∗ on G such
that the following three properties hold:

1 ∗ is associative; that is, for any a, b, c ∈ G,

a ∗ (b ∗ c) = (a ∗ b) ∗ c;

2 there is an identity (or unity) element e in G such that for all
a ∈ G,

a ∗ e = e ∗ a = a;

3 for each a ∈ G, there exists an inverse element a−1 ∈ G such that

a ∗ a−1 = a−1 ∗ a = e.

If the group satisfies a ∗ b = b ∗ a for all a, b ∈ G, then the group is
abelian or commutative.

A set closed under an operation is an algebraic structure. From
previous definition, G is an algebraic structure. Furthermore when G
is closed under the multiplication, G is a multiplicative group.

Definition 2.1.2 (Lidl and Niederreiter (1997), Definition 1.3). Amul-
tiplicative group G is said to be cyclic if there is an element a ∈ G such
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that for any b ∈ G there is some integer j with b = aj . Such element a
is called a generator of the cyclic group, and we write G = 〈a〉.

From the definition, we observe that a cyclic group is always
commutative. A cyclic group may have more than one element that is
a generator of the group.

Definition 2.1.3 (Lidl and Niederreiter (1997), Definition 1.6). A
group is called finite if it contains finitely many elements. The number
of elements in a finite group is called its order.

Finite groups are often constructed using equivalence classes with
the modulo of a positive integer. For example, let p be a prime number,
then the set {[0], [1], . . . , [p − 1]} closed under the operation ∗ is the
group of integers modulo p denoted by Zp. We observe that elements
of Zp denoted by [α] for 0 ≤ α ≤ p−1 are equivalence classes such that

[0] = {. . . ,−2p,−p, 0, p, 2p, . . .},
[1] = {. . . ,−2p+ 1,−p+ 1, 1, p+ 1, 2p+ 1, . . .},
... =

...
[p− 1] = {. . . ,−(p− 1),−1, p− 1, 2p− 1, . . .}.

Table 2 provides an example of an additive finite group of prime order,
where G is closed under the operation of addition.

Table 2 – Sum in a finite group of three elements

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

When there exists a hard problem associated with a group, this
property can be used in cryptography to construct secure protocols.

Example 2.1.4. Diffie-Hellman Key Exchange Protocol
Let G be a group of prime order q where g ∈ G is a generator.

This protocol suggests that two parties - Alice and Bob - that wish
to exchange private information, generate a common key to encrypt
data through a public communication channel. Alice generates a ∈ Zp
and sends to Bob the value A = ga, using the public channel. Bob
does the same thing and sends B = gb to Alice, where b ∈ Zp is
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generated by Bob. Both parties may now compute gab. The security of
this protocol relies on the Decision Diffie-Hellman (DDH) assumption,
where {g,A,B, gab} is indistinguishable from {g,A,B, grandom} in G.

Following from Example 2.1.4, other difficult problems used in
the Diffie-Hellman (DH) protocol are the discrete log problem and the
Computational Diffie-Hellman (CDH) problem. The discrete log prob-
lem is a very common tool used to build modern cryptosystems. It
states that given g and gx, the value x is hard to compute. The CDH
is a hard problem where given g, gx and gy, it is hard to compute gxy.
In the Diffie-Hellman protocol from previous example, Alice computes
the value gxy given that she generated the value x in the first place.

2.2 FINITE FIELDS

Finite fields, also called Galois fields, are algebraic structures
that contain a finite number of elements together with a set of proper-
ties and two binary operations. In this section we define the structures
needed to construct finite fields, which are used in the remainder of the
thesis.

Definition 2.2.1 (Lidl and Niederreiter (1997), Definition 1.28). A
ring (R,+, ∗) is a set R, together with two binary operations, denoted
by + and ∗, such that:

1 R is an abelian group with respect to +;

2 ∗ is associative; that is, (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ R;

3 distributive laws hold; that is, for all a, b, c ∈ R we have a∗(b+c) =
a ∗ b+ a ∗ c and (b+ c) ∗ a = b ∗ a+ c ∗ a.

With the definition of ring, we may now briefly distinguish the
algebraic structures that are obtained by further restricting rings with
additional constraints.

Definition 2.2.2 (Lidl and Niederreiter (1997), Definition 1.28).

i A ring is a ring with identity if it has a multiplicative identity;
that is, if there is an element e such that a ∗ e = e ∗ a = a for all
a ∈ R;

ii A ring is commutative if ∗ is commutative;
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iii A ring is an integral domain if it is a commutative ring with
identity e 6= 0 which ab = 0 implies that a = 0 or b = 0;

iv A ring is a division ring (or skew field) if the nonzero elements of
R form a group under ∗;

v A commutative division ring is a field.

A field is a set F closed under the operation of addition and
multiplication, where F is an abelian group with respect to the addition
operation where 0 is the identity. Additionally, the nonzero elements
of F form an abelian group with respect to the multiplication having,
identity element e 6= 0.

Definition 2.2.3 (Lidl and Niederreiter (1997) Definition 1.41). For a
prime p, let Fp be the set {0, 1, . . . , p−1} of integers and let ϕ : Z/(p)→
Fp be the mapping defined by ϕ([a]) = a for a = 0, 1, . . . , p− 1. Then
Fp, endowed with the field structure induced by ϕ, is a finite field, the
Galois field of order p.

The order of a finite field is the number of elements in the field.
In the notation Fp, p is the characteristic of the field. From Definition
2.2.3, since the characteristic is a prime number, the order of the field
is also p. However, although the characteristic of a field is always a
prime number, the order may not be. This is the case for extension
fields, described in the following section.

In cryptography, recalling from Example 2.1.4, the DH protocol
was first proposed where G = F∗p and p is a prime number. In addition,
sub-exponential algorithms that solve the discrete log over finite fields
have long existed (ODLYZKO, 1984). Therefore, for security reasons, p
must be thousands of bits long.

2.3 EXTENSION FIELDS

Let F be a field. Then K is a subfield of F if K is a subset of F
closed under the operations of F. Then F is an extension (field) of K.

Definition 2.3.1 (Lidl and Niederreiter (1997) Definition 1.77). A
field containing no proper subfields is a prime field.

A finite field of order p where p is prime is a prime field. The
notation Fp is used to represent prime fields. Furthermore, to distin-
guish extension fields, we use the notation Fq where q = pm and p is the
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characteristic of the field. In remainder of this thesis we treat exten-
sion fields as extensions of prime fields using a polynomial basis. Other
cases such as normal basis and shifted basis are not treated and should
be considered only if explicitly mentioned (LIDL; NIEDERREITER, 1997,
page 54)

Definition 2.3.2 (Lidl and Niederreiter (1997), page 19). A polyno-
mial Q over Fq is an expression of the form Q(x) =

∑n
i=0 aix

i, where
n is a nonnegative integer, and ai ∈ Fq for i = 0, 1, . . . , n. A polyno-
mial is monic if the coefficient of the highest power of x is 1. The ring
formed by the polynomials over Fq with sum and product is the ring
of polynomials over Fq denoted by Fq[x].
Definition 2.3.3 (Lidl and Niederreiter (1997), Definition 1.57). A
polynomial Q ∈ Fq[x] is an irreducible polynomial over Fq if Q has
positive degree and Q = gh with g, h ∈ Fq[x] implies that either g or h
is a constant polynomial.

From Definition 2.3.3, the polynomial Q is irreducible if it does
not allow a factorization by two other polynomials of positive degree
and 1 < deg(g) ≤ deg(h) < deg(Q).

Let Fpm be an extension field of characteristic p and order pm.
Then the notation C ∈ Fpm ∼= Fp[x]/(Q), where Q is an irreducible
polynomial over Fp with degree m, describes an element represented as
the polynomial C =

∑n
i=0 aix

i in the extension field Fpm , where the
coefficients ai ∈ Fp and n < m, similar to Definition 2.2.3.

Table 3 – Sum in a finite field of characteristic four

+ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x + 1 0 1

x + 1 x+ 1 x 1 0

In Table 3 and 4, an example of the operations of addition and
multiplication of elements in F4

∼= F2[x]/(Q) where Q(x) = x2 + x+ 1
is given. The multiplication in this case is a little more complex than
traditional arithmetic. Since the elements are polynomials, the mul-
tiplication and exponentiation usually result in polynomials of higher
degrees. Also, since the largest degree exponent in the resulting poly-
nomial might be higher than the exponent of the irreducible polynomial
defining the field, a division by the irreducible polynomial that defines
the field may be required. See the following example from Table 4.
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Table 4 – Multiplication in a finite field of characteristic four

· 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Example 2.3.4.

(x+ 1)(x+ 1) = x2 + 2x+ 1 = x2 + 1 = x (mod x2 + x+ 1).

The last operation in Example (2.3.4) - where the result of the
multiplication is the residue of the division by the irreducible polyno-
mial defining the field extension - is called in this thesis a reduction.
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3 BILINEAR PAIRING

The Weil pairing was introduced by André Weil in 1946, fol-
lowed by the Tate-Lichenbaum pairing a few decades later. It was in
the early 90’s that pairings were first used as a cryptanalysis tool to "at-
tack" the Discrete-log problem in select groups (MENEZES et al., 1993).
Joux (2000) showed that it is possible to use pairings for cryptography
when he proposed a three party key exchange protocol from the Weil
pairing. Thereafter, bilinear pairings have been used for several new
cryptographic protocols. An example is the Identity Based Encryption
scheme with its first fully functional version proposed using the Weil
pairing (BONEH; FRANKLIN, 2001).

Some of the works related to efficient p-th root computation are
motivated by the computation of the modified Tate pairing, proposed
by Duursma and Lee (2003). In this chapter, we briefly describe bilinear
pairings and present the Duursma-Lee algorithm, to highlight the cube
root operation that is later generalized in this work.

3.1 PAIRING DEFINITION

A bilinear pairing is a map function from two elements of a group
to a target group.

e(g,g)
g

ga

b
ab

G TG

Figure 1 – Bilinear pairing ê : G×G→ GT

Definition 3.1.1. Let G be a group of points in an elliptic curve, GT
be an extension field and g ∈ G a generator of the group. A pairing is
a non-degenerate bilinear map ê where ê : G×G→ GT .
• Non-degenerate if g is a generator of G then ê(g, g) is a gener-

ator of GT .

• Bilinear: ê(g, g)ab = ê(ga, gb) for all a, b ∈ G;
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The bilinear property is used in cryptography where ê(gx, hy) =
ê(g, h)xy = ê(gy, hx). In the following, we give an example of a signa-
ture scheme proposed by Boneh, Lynn and Shacham (2001).

Example 3.1.2. Boneh–Lynn–Shacham signature scheme:

Key generation. Choose x at random in Zp, then x is the private key
and gx is the public key.

Signature generation. Let M be a message where M ∈ {0, 1}∗ and
h = H(M) where H is a hash function. Then the signature s is
computed as s = hx.

Signature verification. Given the public key gx, the message M and
the signature s, verify if ê(s, g) = ê(H(M), gx) holds.

If the signature is valid, then we have that ê(hx, g) = ê(h, gx).

3.2 PAIRING COMPUTATION

Let E(F3m) denote the points of the elliptic curve E : y2 =
x3 − x ± d defined over F3m . Let P,Q ∈ E(F3m) where P = (x1, y1)
andQ = (x2, y2). The coordinates x and y are elements of the extension
field and, in lines 3 and 8 of Algorithm 1, the cube root of these elements
must be computed.

Algorithm 1:Duursma-Lee modified Tate pairing (m prime)
1 Input: P,Q ∈ E(F3m);
2 Output: ê(P,Q) ∈ F36m);
3 x1 ← 3

√
x1 − (v + 1)b; y1 ← λ 3

√
y1;

4 y2 ← −λy2;
5 t← x1 + x2;
6 R← λ(y1t− y2σ − y1ρ)(−t2 + y1y2σ − tρ− ρ2);
7 for 1 to m−1

2 do
8 x1 ← 3

√
x1; y1 ← 3

√
y1;

9 x2 ← x32; y1 ← y32 ;
10 t← x1 + x2; u← y1y2;
11 R← R · (−t2 + uσ − tρ− ρ2)
12 end
13 Return RM ;
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For a more recent example of the implementation of this algo-
rithm, we give yet another modified version of the Tate pairing. To
further increase performance, Algorithm 1 can be enhanced to take
advantage of multi-core processors (BEUCHAT et al., 2009). Lines 10
and 11 from Algorithm 1 may be optimized using loop unrolling. This
technique is presented in lines 13 to 17 of Algorithm 2. By using this
approach, it is possible to distribute the load of the operations in the
multi-core pipeline. However, this comes with the cost of the storage
of the computations in lines 10 and 11.

Algorithm 2: Duursma-Lee modified Tate pairing with loop
unrolling (m prime)
1 Input: P,Q ∈ E(F3m);
2 Output: ê(P,Q) ∈ F36m);
3 x1 ← 3

√
x1 − (v + 1)b; y1 ← λ 3

√
y1;

4 y2 ← −λy2;
5 t← x1 + x2;
6 R← λ(y1t− y2σ − y1ρ)(−t2 + y1y2σ − tρ− ρ2);
7 x1[0]← x1; y1[0]← y1;
8 x2[0]← x2; y2[0]← y2;
9 for j = 1 to m−1

2 do
10 x1[j]← 3

√
x1[j − 1]; y1[j]← 3

√
y1[j − 1];

11 x2[j]← x2[j − 1]3; y1[j]← y2[j − 1]3;
12 end
13 for j = 1 to m−1

4 do
14 t← x1[2j − 1] + x2[2j − 1]; u← y1[2k − 1]y2[2k − 1];
15 t′ ← x1[2j] + x2[2j]; u′ ← y1[2k]y2[2k];
16 S ← (−t2 + uσ − tρ− ρ2)(−t′2 + u′σ − t′ρ− ρ2);
17 R← RS

18 end
19 Return RM ;

Both algorithms presented above use cube root computations
repeatedly, in the main loop. Taking this into consideration, these
algorithms are dependent on the performance of the cube root opera-
tion. The state of the art for the parallelization of the Tate pairing is
available in "Parallelizing the Weil and Tate pairings" (ARANHA et al.,
2011).

There exists a new trend on pairing algorithms that do not use
cube roots. Recent approaches in efficient pairing computations are
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defined over prime fields, rather then extension fields. The so-called
optimal pairings have been reported to beat previous speed records of
pairing computations. However, the outlining of these pairings along
with their advantages and disadvantages is not related to the main
scope of this thesis. For a survey and deeper understanding on the
state of the art of bilinear pairings and optimal pairings, see "The
Realm of the Pairings" (ARANHA et al., 2014).
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4 LITERATURE REVIEW

Early works on efficient p-th root computations are centered on
the idea of computing roots in finite fields with characteristic p for
p = 3. Barreto (2004) achieved significant results by carefully selecting
polynomials that result in efficient cube root computations. In his
work, Barreto claims that the fastest algorithms known to compute the
Tate pairing at that time was the Duursma-Lee algorithm (DUURSMA;
LEE, 2003). The main loop of the algorithm uses cubing and cube
root operations; this motivates his studies. In the following years other
works on cube roots were published exploring polynomials with few
nonzero coefficients over F3 (AHMADI; HANKERSON; MENEZES, 2007;
AHMADI; RODRÍGUEZ-HENRÍQUEZ, 2010).

4.1 CUBE ROOTS

The overall idea of the cube root computation, or the Folklore
algorithm using Barreto’s notation, is as follows. Let C ∈ F3m

∼=
F3[x]/(Q), where Q is an irreducible polynomial of degree m, where
m = 3ω + r for some positive integer ω and 0 ≤ r ≤ 2. Then, C =∑m−1
n=0 cnx

n =
∑3ω+r−1
n=0 cnx

n and

C =

ω−1+d r2 e∑
n=0

c3nx
3n + x

ω−1+b r2 c∑
n=0

c3n+1x
3n + x2

ω−1∑
n=0

c3n+2x
3n,

where cn ∈ F3 for 0 ≤ n ≤ m− 1. Then

C1/3 =

ω−1+d r2 e∑
n=0

c3nx
n+x1/3

ω−1+b r2 c∑
n=0

c3n+1x
n+x2/3

ω−1∑
n=0

c3n+2x
n. (4.1)

We observe that the Folklore algorithm requires the computation
of two multiplications by two fixed polynomials, x1/3 and x2/3. As
mentioned before, multiplication of polynomials in finite fields may
require reduction modulo Q. The multiplications for cube roots and the
multiplication of two regular polynomials share the same complexity of
O(m2) using classical arithmetic. However, the cube root operation
may cost fewer operations. The reason for this is because the other
factor of the product has degree smaller than m/3. Furthermore, since
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the polynomials used in this case are fixed for any C ∈ F3m , there is
room for improvement. This is usually done by carefully selecting the
irreducible polynomial defining the field.

Definition 4.1.1. The Hamming weight (wt) of a polynomial is the
number of nonzero coefficients.

In this thesis we use repeatedly wt(x1/3) and wt(x2/3) for the
polynomial representation of x1/3 and x2/3 in F3m = F3[x]/(Q), where
Q is an irreducible polynomial over F3 of degree m. The Hamming
weight is related to the performance of computing C1/3 using Equation
(4.1). It is also the main tool to compare the efficiency of families of
polynomials in this thesis. Intuitively, by selecting irreducible polyno-
mials with a small number of nonzero coefficients, the hamming weight
should be small. Indeed, most studies so far have centered on this idea.
In the following section, we demonstrate that this is true for some fam-
ilies of polynomials. However, it is possible to have polynomials with
a large number of nonzero coefficients where wt(x1/3) = 1. In adition,
we prove this for higher characteristic p.

4.1.1 Trinomials

The trinomial representation of irreducible polynomials is advan-
tageous for implementing modular reductions. Moreover, for m prime,
if Q(x) = xm+axk+ b and m ≡ k (mod 3) then no modular reduction
is needed for the computation of cube roots (BARRETO, 2004).

Theorem 4.1.2 (Barreto (2004)). Let Q(x) = xm + axk + b be an
irreducible polynomial over F3 where m ≡ k (mod 3). Then

wt(x1/3) =

{
3 if m ≡ l ≡ 1 (mod 3),
2 if m ≡ l ≡ 2 (mod 3).

Example 4.1.3. Case m ≡ k ≡ 1 (mod 3).
Let m = 3ω + 1 and k = 3υ + 1, then

b = −x3ω+1 − ax3υ+1

bx2 = −x3ω+3 − ax3υ+3
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Since b ∈ F3 and b2 = 1, we have

x2/3 = −bxω+1 − abxυ+1

x4/3 = x2ω+2 − axω+υ+2 + x2υ+2

x1/3 = x2ω+1 − axω+υ+1 + x2υ+1.

Using Theorem 4.1.2, the complexity of Equation (4.1) is reduced
to O(m). To better see this improvement, let C1/3 = C1 + x1/3C2 +
x2/3C3 and xnC be denoted by C<<n. Then from Example 4.1.3

C1/3 =C1 + C<<2ω+1
2 − aC<<ω+υ+1

2 + C<<2υ+1
2

− bC<<ω+1
3 − abC<<υ+1

3 .

Example 4.1.4. Case m ≡ k ≡ 2 (mod 3).
Let m = 3ω + 2 and k = 3υ + 2, then

x1/3 = −bxω+1 − abxυ+1

x2/3 = x2ω+2 − axω+υ+2 + x2υ+2.

If we consider wt(C1/3) = wt(x1/3) + wt(x2/3) the total weight
of C1/3, then both cases of the theorem have the same total weight.
From Example 4.1.4, observe that

C1/3 =C1 − bC<<ω+1
2 − aC<<υ+1

2

+ C<<2ω+2
3 − aC<<ω+υ+2

3 + C<<2υ+2
3 .

Therefore, from the previous examples, a notation to better evaluate
the performance of the cube root operations - when using the Hamming
weight as a tool - is the overall weight. Hence, in Theorem 4.1.2, we
note that wt(C1/3) = 5.

Further improvements were studied for trinomials, for example,
where m ≡ 0 (mod 3) and k ≡ 1 (mod 3). Ahmadi, Hankerson and
Menezes (2007) prove that, in this case, the Hamming weight of x1/3
may be as low as 1 for specific polynomials. In the same work a full
description of trinomials for efficient cube root computations is given.
However, choosing polynomials that yield weight 1 may come with the
cost of reduction modulo Q in Equation (4.1).
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4.1.2 Tetranomials

Let Q(x) = xm + axk + bxl + c be an irreducible polynomial
over F3 where m ≡ k ≡ l ≡ r (mod 3) with r ∈ {1, 2}. Similar to the
trinomials presented in the previous section, these polynomials require
no reduction modulo Q in (4.1).

Theorem 4.1.5 (Ahmadi and Rodríguez-Henríquez (2010)).
Let Q(x) = xm+ axk + bxl+ c be an irreducible polynomial over

F3 where m ≡ k ≡ l ≡ r (mod 3) with r ∈ {1, 2}, then wt(C1/3) = 9.

Example 4.1.6. Case r = 1
Let m = 3ω + 1, k = 3υ + 1 and l = 3ν + 1. We have that

x2/3 =− cxω+1 − acxυ+1 − bcxν+1

x1/3 =x2ω+1 − axω+υ+1 − bxω+nu+1

+ x2υ+1 + x2ν+1 − abxυ+nu+1.

Ahmadi and Rodríguez-Henríquez (2010), using the results of
Theorem 4.1.5, denotes trinomials and tetranomials where m ≡ k ≡ l
(mod 3) holds as cube root friendly polynomials. In the next chapter
we use the same shape of the exponents of the polynomials to generalize
friendly polynomials irreducible over Fp.

4.1.3 Pentanomials

In previous sections we show how cube root friendly polynomials
have their weight affected when the number of nonzero coefficients is
increased. Ahmadi and Rodríguez-Henríquez (2010) describe a fam-
ily of polynomials that have more nonzero coefficients than the ones
described before but lower Hamming weights.

Theorem 4.1.7 (Ahmadi and Rodríguez-Henríquez (2010)).
Let Q(x) = x4d + ax3d + x2d + cxd + ac be an irreducible poly-

nomial over F3 where d is a positive integer and 3 - d. Then, if a = c,
wt(x1/3) = 1 and wt(x2/3) = 1.

Example 4.1.8. Case t ≡ 1 (mod 3)
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x4d = −ax3d − x2d − cxd − ac
x5d = −ax4d − x3d − cx2d − acxd

= −a(−ax3d − x2d − cxd − ac)− x3d − cx2d − acxd

= x3d + ax2d + acxd + c− x3d − cx2d − acxd

x5d+1 = (a− c)x2d+1 + cx

cx = −(a− c)x2d+1 + x5d+1

x = (1− ac)x2d+1 + cx5d+1

x1/3 = (1− ac)x
2d+1

3 + cx
5d+1

3

x2/3 =
(
(1− ac)x

2d+1
3 + cx

5d+1
3

)2
x2/3 = (ac− 1)x

4d+2
3 + (a− c)x

7d+2
3 + x

10d+2
3

The polynomials described in Theorem 4.1.7 are equally spaced
polynomials, because of their construction where consecutive nonzero
coefficients are spaced by d. These polynomials have been studied as
an alternative to compute cube roots in F3m when friendly polynomials
do not exist.

4.2 P -TH ROOTS

There exists only a few irreducible binomials in F2 and F3. For
this reason, only polynomials with three or more nonzero coefficients
have been considered in the previous section. Alternatively, binomials
can be used in higher characteristics and result in weights equal to 1
for p-th root computations. As it turns out, by using Theorem 4.2.1,
it is possible to prove the existence of infinite extensions of irreducible
binomials over Fpm with odd characteristic p ≥ 5 and pm > 50.

Theorem 4.2.1 (Panario and Thomson (2009)). Let Fpm be a finite
field of odd characteristic p, p ≥ 5. There exists an irreducible binomial
over Fp of degree m, m 6≡ 0 (mod 4), if and only if every prime factor
of m is also a prime factor of pm − 1. For m ≡ 0 (mod 4) then there
exists an irreducible binomial over Fp of degree m if and only if pm ≡ 1
(mod 4) and every prime factor of m is also a prime factor of pm − 1.

First we demonstrate the case where p = 5. From the previous
theorem, the irreducible binomials over F5 have degree m = 2k. Let
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C ∈ F5m
∼= F5[x]/(Q), whereQ is an irreducible polynomial with degree

m = 5ω + r, with 0 ≤ r ≤ 4. Then for m ≡ 4 (mod 5) (that is, r = 4)
and with 0 ≤ i ≤ m− 1

C1/5 =

( ∑
i≡0(mod5)

cix
i
5

)
+ x1/5

( ∑
i≡1(mod5)

cix
i−1
5

)
+

x2/5

( ∑
i≡2(mod5)

cix
i−2
5

)
+ x3/5

( ∑
i≡3(mod5)

cix
i−3
5

)
+

x4/5

( ∑
i≡4(mod5)

cix
i−4
5

)
.

(4.2)

If Q(x) = xm− b then x1/5 = (−b)exeω+(er+1)/5 where e is the smallest
positive integer such that er ≡ −1 (mod 5). Values of e and r are given
in the following table.

Table 5 – Values of e and r for p-th root computations using binomials

e r (er + 1)/5
1 4 1
2 2 1
3 3 2
4 1 1

By taking powers of x1/5 the values of x2/5 to x4/5 can be de-
termined. Let γ = eω + (er + 1)/5 then, using Barreto’s notation, the
computation of fith-roots using Equation (4.2) is the following:

C1/5 =C0 + (−b)eC>>γ1 + (−b)2eC>>2γ
2

+ (−b)3eC>>3γ
3 + (−b)4eC>>4γ

4 .

For m ≡ 1, 2, 3 (mod 5), the computation of C1/5 is similar with
exception of a few changes on the range of the summations. Equation
(4.2) is a variation of the Folklore algorithm for characteristic 5 and
Panario and Thomson (2009) give a general formula for this p-th root
variation.

Theorem 4.2.2 (Panario and Thomson (2009)). Let q be a power of
an odd prime p and let m be a positive integer such that there exists an
irreducible binomial Q(x) = xm−b over Fq, as given by Theorem 4.2.1.
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After a precomputation of 2(p− 1) elements in Fq, the p-th root of an
element C ∈ Fqm requires p − 1 scalar multiplications of elements in
Fqm by elements in Fq. In addition, the computation requires at most
(p− 1)dm/pe additions in Fqm .

Let γ = eω + (er + 1)/p, then x1/p = b−exγ . Additionally, the
values of x2/p to xp−1/p are obtained by taking powers of x1/p.

C1/p = C0 + b−eC>>γ1 + · · ·+ b−(p−1)C
>>(p−1)γ
p−1 (mod Q). (4.3)

The general p-th root algorithm for irreducible binomials is given
in Equation 4.3. It is noticed that γ < m, however, since the follow-
ing constants are obtained by taking powers of the previous ones, we
observe that (p− 1)γ > m. Therefore, this method for p-th root com-
putations force us to carry out a reduction modulo Q.

4.3 SHIFTED POLYNOMIAL BASIS

Previous sections consider the cube root and p-th root problem
in finite fields using polynomial basis. While the remainder of this
thesis uses the same approach, in this section we give an example of
cube roots in F3m using a shifted polynomial basis.

Definition 4.3.1. Let s be an integer and Q = {xi|0 ≤ i ≤ m− 1} be
a polynomial basis over F3m . Then x−sQ = {xi−s|0 ≤ i ≤ m− 1} is a
shifted polynomial basis.

From definition 4.3.1, we observe that the polynomial basis is
a special case of the shifted polynomial basis, where s = 0. Shifted
polynomial basis can be used to reduce the Hamming weights of x1/3
and x2/3 in Section 4.1. Additionally, for some cases, it is possible to
determine a value for s such that no reduction is required (CHO; CHANG;
HONG, 2014). Let s = 3t+α where t is a positive integer, α ∈ {0, 1, 2}
and

δj(j = 1, 2) =

{
0 if [α+ j] < 3,
1 if [α+ j] ≥ 3.

Similarly to Equation (4.1), and letting m ≡ 0 (mod 3) we have

C = x−(3t+α)

(
ω−1∑
n=0

c3nx
3n + x

ω−1∑
n=0

c3n+1x
3n + x2

ω−1∑
n=0

c3n+2x
3n

)
,
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where cn ∈ F3 for 0 ≤ n ≤ m− 1, and

C =

ω−1∑
n=0

c3n+αx
3n+α−(3tα) + x

ω−1−δ1∑
n=−δ1

c3n+α+1x
3n+α−(3tα)

+ x

ω−1−δ2∑
n=−δ2

c3n+α+2x
3n+α−(3tα)

C1/3 =

ω−1∑
n=0

c3n+αx
n−t + x1/3

ω−1−δ1∑
n=−δ1

c3n+α+1x
n−t

+ x2/3
ω−1−δ2∑
n=−δ2

c3n+α+2x
n−t

(4.4)

Theorem 4.3.2 (Cho, Chang and Hong (2014), Theorem 6). Let
Q(x) = xm+axk+ b be an irreducible polynomial over F3 where m ≡ 0
(mod 3) and k ≡ 1 (mod 3). Then wt(C1/3) = 5.

The proof of Theorem 4.3.2 is similar to previous examples of
this chapter and the values of x1/3 and x2/3 are given below.

x1/3 = −axω−υ − abx−υ,

x2/3 = x2ω−2υ + x−2υ − bxω−2υ.

We observe that negative exponents in x1/3 and x2/3 exist when s 6= 0.
For the case where s = 0, further computations are required. Therefore,
when m ≡ 0 (mod 3) and k ≡ 1 (mod 3), the Hamming weight of C1/3

is lower when s 6= 0. Furthermore, in the following equation we impose
the condition such that the degree of C1/3 is smaller than m{

−2υ − δ2 − t ≥ −3t− α,
3ω − 2υ − i− δ2 − t ≤ 3ω − 1− (3t+ α).

(4.5)

By replacing the constants x1/3 and x2/3 from Theorem 4.3.2 in Equa-
tion (4.4), the minimum degree of C1/3 is −2υ − δ2 − t and maximum
degree of C1/3 is 3ω − 2υ − i− δ2 − t. Then Equation (4.5) is satisfied
when the ordered pair (t, α) is equal to (υ, 0) or (υ, 1). Hence, if s = 3υ
or s = 3υ + 1, no reduction modulo Q is required in Equation (4.4).
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5 FORMULAS FOR P -TH ROOTS

In this chapter, we present new families of irreducible polyno-
mials over Fp with more nonzero coefficients than the ones studied so
far. We prove that these polynomials still have low weights for p-th
root computations. These families include (a) “friendly” polynomials
such that no reduction modulo the irreducible polynomial of degree
m defining Fpm is required, and (b) “equally-spaced polynomials” that
have Hamming weight 1. When p = 3 we extend previous results by
providing new families of irreducible polynomials and new extensionsm
with low cube root complexity. When p = 5, only binomials have been
treated (PANARIO; THOMSON, 2009); we extend this to polynomials
with more terms and for p ≥ 5.

First we generalize the Folklore algorithm for p-th roots, so that
the constants x1/3 and x2/3 in Equation (4.1) are represented as xi/p
with 1 ≤ i ≤ p−1. Let C ∈ Fpm ∼= Fp[x]/(Q) where Q is an irreducible
polynomial over Fp of degree m and m = pω + r for some positive
integer ω. Let 0 ≤ r ≤ p − 1, G(i) = 1 if i < r and G(i) = 0 if i ≥ r.
Then,

C1/p =

p−1∑
i=0

(
xi/p

ω−1+G(i)∑
n=0

cpn+ix
n
)
. (5.1)

We provide a description of each family of polynomial in the
following sections. To further generalize our work, we use k-nomials
in alternative to fixed trinomials or tetranomials. Upper and lower
bounds for the Hamming weights of the p-th root friendly polynomials
and a formal proof of existence for the equally spaced polynomials are
provided.

5.1 P -TH ROOT FRIENDLY POLYNOMIALS

A polynomial with k nonzero coefficients is a k-nomial and it can
be expressed as Q(x) = a0 +

∑k−1
n=1 anx

βn for some βn, 1 ≤ n ≤ k − 1.

Definition 5.1.1. Let Q(x) = a0 +
∑k−1
n=1 anx

βn be an irreducible k-
nomial over Fp of degree m, then Q is a p-th root friendly polynomial
(or p-th root friendly k-nomial) if β1 ≡ β2 ≡ · · · ≡ βk−1 ≡ r (mod p)
where m = βk−1 and 0 ≤ r ≤ p− 1 holds.

In this section we show that the reduction modulo Q is not re-
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quired for the computation of p-th roots when Q is a p-th root friendly
k-nomial.

Let Q be a friendly k-nomial irreducible over Fp. Then Q(x) =

a0 + xrf(xp) where f(x) =
∑k−1
n=1 anx

(βn−r)/p. Let u be the inverse
of p − r in Fp so that u(p − r) ≡ 1 (mod p). We have that for each
1 ≤ i ≤ p − 1 there exists ji and ti with 1 ≤ ji, ti ≤ p − 1, such that
ui = pti + ji. In particular, when i = p − r, we have jp−r = 1. Let
tp−r = t′; then we have u(p−r) = pt′+1. Using standard computations
in finite fields, we have −a0x−r = f(xp) and so

−a0xp−r =xpf(xp)
(−a0)1/px(p−r)/p =xf(x)(

(−a0)1/px(p−r)/p
)ji

=(xf(x))ji .

Multiplying both sides by
(
(−a0)1/px(p−r)/p

)pti we get(
(−a0)1/px(p−r)/p

)pti+ji
=(−a0)tix(p−r)ti+jif(x)ji . (5.2)

Recalling that ui = pti+ ji, using Equation (5.2), and since for 1 ≤ i ≤
p− 1,(

(−a0)1/px(p−r)/p
)ui

= (−a0)ui/px
(pt′+1)i

p = (−a0)ui/pxit
′
xi/p,

we have
xi/p = (−a0)−ji/px(p−r)ti−it

′+jif(x)ji . (5.3)

Using u(p− r) = pt′ + 1, we obtain that ur = up− pt′ − 1 = p(u− t′ −
1) + p− 1. As jr = p− 1 and tr = u− t′ − 1, we may now simplify the
exponent (p− r)ti − it′ + ji of (5.3) obtaining

pti − rti − it′ + ji

= ui− rti − it′

= (tr + t′ + 1)i− rti − it′

= itr − rti + i.

Hence, for 1 ≤ i ≤ p− 1

xi/p = (−a0)−ji/pxitr−rti+if(x)ji . (5.4)

Theorem 5.1.2. Let C ∈ Fpm ∼= Fp[x]/(Q), where Q is a friendly
k-nomial irreducible over Fp with degree m. Then there is no reduction
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modulo Q to compute the p-th roots with xi/p, 1 ≤ i ≤ p−1, in Equation
(5.1).

Proof. We note that −ur ≡ 1 (mod p), so p|1 + ur. From Equation
(5.4) we have

itr − rti + i ≤ r if and only if i(tr + 1) ≤ r(ti + 1)

if and only if i
⌈
ur

p

⌉
≤ r

⌈
ui

p

⌉
if and only if i

ur + 1

p
≤ r

⌈
ui

p

⌉
if and only if i ≤ pr

⌈
ui

p

⌉
− iur.

Since pr
⌈
ui
p

⌉
− iur ≡ i(−ur) ≡ i (mod p), we have itr − rti + i ≤ r.

It is now possible to compute the degree of xi/p and determine if the
computation of p-th roots require reductions modulo Q in Equation
(5.1):

deg(xi/p) =itr − rti + i+ deg
(
f(x)

)
ji

=itr − rti + i+

(
pω + r − r

p

)
ji = itr − rti + i+ ωji.

If the highest degree in Equation (5.1) is greater or equal thanm. Then

m ≤ deg
(
xi/p

ω−1+G(i)∑
n=0

cpn+ix
n
)

pω + r ≤ ωji + (itr − rti + i) + ω − 1 +G(i).

We choose i = r; then we get the contradiction

pω + r ≤ ω(p− 1) + r + w − 1 +G(r)

pω + r ≤ pω + r − 1.

The Hamming weight for p-th root friendly k-nomials can be
computed directly from Equation (5.4) using the polynomial expansion
of f(x)ji . Therefore, from the multinomial theorem, an upper bound
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for wt(xi/p) can be expressed as
(
ji+k−2
k−2

)
.

Definition 5.1.3. Let Q be a p-th root friendly k-nomial. If βk−1 −
βk−2 = · · · = β2 − β1 = pα holds for α ∈ Z>0, Q is an improved p-th
root friendly polynomial (or k-nomial).

For the improved p-th root friendly polynomials, letting β1 =
pz + r for some positive integer z, then f(x) =

∑k−1
i=1 aix

z+(i−1)α with
ω = z+(k−2)α in Equation (5.1). The result above shows that in this
case, as expected, the computation of p-th roots in Equation (5.1) do
not require a reduction modulo Q. Furthermore, the exponents of f(x)
are arranged in an arithmetic progression. Thus a lower upper bound
can be achieved. To this end Theorem 5.1.4 and Corollary 5.1.6, on the
field of additive combinatorics, are introduced.

Theorem 5.1.4. Let A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bn}
be finite sets of positive integers arranged in an arithmetic progression
with n ≥ k. If the elements of A and B share the same difference d,
the cardinality of the sumset of A and B is |A|+ |B| − 1.

When the elements of A and B share the same d, the assertion
aw + bx = ay + bz is true if and only if w+x = y+ z, for all aw, ay ∈ A
and bx, bz ∈ B.

Example 5.1.5.

a3 + b5 = a2 + b6

a1 + 2d+ b1 + 4d = a1 + d+ b1 + 5d

a1 + b1 + 6d = a1 + b1 + 6d

Proof. Since A and B share the same d, the sumset of A and B may
be represented as the following matrix. We note that the empty cells
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are not used for the proof.

A+B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 + b1
a1 + b2 a2 + b1
· · · · · · · · · · · · · · ·
a1 + bk−1 a2 + bk−2 · · · ak−1 + b1
a1 + bk a2 + bk−1 · · · ak−1 + b2 ak + b1
a1 + bk+1 a2 + bk · · · ak−1 + b3 ak + b2
· · · · · · · · · · · · · · ·
a1 + bn a2 + bn−1 · · · ak−1 + bn−k+2 ak + bn−k+1

a2 + bn · · · ak−1 + bn−k+2 ak + bn−k+2

· · · · · · · · · · · · · · ·
ak−1 + bn ak + bn−1

ak + bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The elements contained in the same line of matrix A + B sat-

isfy the assertion above. Hence, all the distinct elements of the sumset
are contained in the first and last columns. Let mi,j be an element
of the matrix A + B. The result on sumsets entails the set S =
{m1,1,m2,1, . . . ,mk,1,mk+1,k,mk+2,k, . . . ,mk+n−2,k,mk+n−1,k}. Con-
sequently |S| = k + n− 1 = |A|+ |B| − 1.

Corollary 5.1.6. Let A be a finite set of positive integers arranged
in an arithmetic progression. Let Am be the sumset of A with itself
repeatedm times; then the cardinality of the sumset Am ism(|A|−1)+1.

Proof. By induction on m. Basis: using Theorem 5.1.4 for m = 2 we
obtain

|A2| = |A+A| = |A|+ |A| − 1 = 2(|A| − 1) + 1.

Let A+A = B. Since A and B share the same difference, for m = 3,

|A3| = |A+A+A| = |A+B| = |A|+ |B| − 1 = 3(|A| − 1) + 1.

Inductive step: From the statement, whenm = k we have |Ak| =
k(|A| − 1) + 1. Let m = k + 1 then

|Ak+1| = |A+Ak| = |A|+ |Ak| − 1

= (|A| − 1) + k(|A| − 1) + 1

= (k + 1)(|A| − 1) + 1

|Am| = m(|A| − 1) + 1.
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Theorem 5.1.7. Let C ∈ Fpm ∼= Fp[x]/(Q), where Q is an improved
friendly k-nomial irreducible over Fp of degree m. Then we have

• wt(xi/p) = 1 for k = 2;

• wt(xi/p) ≥ 2 for k = 3;

• wt(xi/p) ≥ 3 for k ≥ 4;

• wt(xi/p) ≤ ji(k − 2) + 1 for k ≥ 3.

Proof. Recall that f(x) =
∑k−1
n=1 anx

(βn−r)/p. When Q is a p-th root
friendly irreducible binomial (k = 2), the expansion of f(x)ji is trivial
and always results in a monomial since f(x) is also a monomial. There-
fore, wt(xi/p) = 1. The lower bounds when k = 3 and k = 4 are also
trivial for ji = 1. If ji > 1 or if k > 4 then the lower bound is not
trivially proven. we show this for k = 4 below

f(x) = a1x
1 + a2x

2 + a3x
3

f(x)2 = a21x
2 + a1a2x

3 + a1a3x
4 + a1a2x

3 + a22x
4 + . . .+ a23x

6

= a21x
2 + 2a1a2x

3 + (a1a3 + a22)x
4 + . . .

By taking powers of f(x), the first and last two terms of the
expansion are the only terms that have no additions in their coefficients.
Therefore, these coefficients may never cancel since a1, a2 and a3 are
positive integers in Fp . If the coefficients of Q are selected to cancel
all the other coefficients of the expansion of f(x)ji , then the previous
result holds for any k ≥ 4.

The last item is the upper bound ji(k − 2) + 1. The maximum
number of coefficients in the expansion of f(x)ji can be expressed as
the cardinality of the sumset of the exponents of f(x). Hence, from
Corollary 5.1.6, wt(xi/p) = ji(k − 2) + 1.

From the previous theorem, the overall weight of C1/p for the
improved p-th root friendly polynomials, when k ≥ 4, is

3(p− 1) ≤ wt(C1/p) ≤ (p− 1)((k − 2)p/2 + 1).

To show the potentiality of Theorem 5.1.7, we slightly improve
the weights of x1/3 and x2/3 for the tetranomials described previously
in Theorem 4.1.5. In the next proposition we provide the results for
r = 1; the proof for r = 2 is similar.
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Table 6 – Prime extensions where exists irreducible friendly tetranomi-
als and improved friendly tetranomials over F3; m < 510.

m Friendly/Improved m Friendly/Improved
11 - 251 ?
13 ? 263 ?
23 ? 277 ?
37 ? 311 -
47 ? 313 ?
59 ? 337 ?
61 ? 347 ?
71 ? 349 ?
73 ? 359 ?
83 ? 373 ?
97 ? 383 -
107 ? 397 -
109 ? 409 ?
131 ? 419 -
157 ? 421 ?
167 ? 431 ?
179 ? 433 ?
181 ? 443 -
191 ? 457 ?
193 ? 467 ?
227 ? 479 ?
229 ? 491 ?
239 ? 503 ?
241 ?

(?) Both friendly and improved tetranomials exist; (-) Only Friendly
tetranomials exist
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Proposition 5.1.8. Let P (x) = xm + axk + bxl + c be an irreducible
polynomial over F3 where m ≡ k ≡ l ≡ r (mod 3) with r = 1. If
m− k = k − l = 3α with α > 0, then wt(x2/3) = 3 and

wt(x1/3) =

{
5 if b = 2,
4 if b = 1.

Proof. Let l = 3ω+r, k = 3ω+r+3α andm = 3ω+r+6α where r = 1.
We have that x1/3 can be calculated from −c = xm+axk+bxl. Indeed,
this gives −cx2 = x2(x3ω+6α+1 + ax3ω+3α+1 + bx3ω+1) = x3(ω+2α+1) +
ax3(ω+α+1) + bx3(ω+1) and we conclude that

x2/3 = −cxω+2α+1 − acxω+α+1 − bcxω+1.

Since a, b and c are nonzero in F3, and c satisfies c2 = 1, we have
wt(x2/3) = 3. We get

x4/3 =x2ω+4α+2 + x2ω+2α+2 + x2ω+2

− ax2ω+3α+2 − bx2ω+2α+2 − abx2ω+α+2

implying that

x1/3 =x2ω+4α+1 − ax2ω+3α+1

+ (1− b)x2ω+2α+1 − abx2ω+α+1 + x2ω+1.

We observe that the overall weight of C1/3 is improved from
wt(C1/3) = 9 to wt(C1/3) = 7. Furthermore, by further restricting
the exponents of Q, it is expected that there exists fewer improved
cube root friendly polynomials than there are regular cube root friendly
polynomials. In contradiction to this, in Table 6 we show that - for m
prime - most extensions where friendly polynomials exists, there also
exists improved friendly polynomials 1.

5.2 P -TH ROOT EQUALLY SPACED POLYNOMIALS

Equally spaced polynomials can be used to achieve minimum
overall weight when computing p-th roots using Equation 5.1.

1Source code available at https://github.com/lucasperin/pth_root_finite_
fields
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Definition 5.2.1. Let Q(x) = x(k−1)d+
∑k−2
n=0 anx

nd be an irreducible
polynomial over Fp where d is a positive integer. If all coefficients an
are nonzero, Q is an equally spaced polynomial.

In this section we show that if Q(x) = x(k−1)d+
∑k−2
n=0 λ

k−n−1xnd

is irreducible over Fp for λ ∈ F∗p, then wt(xi/p) = 1 for 1 ≤ i ≤ p − 1

where xi/p are constants of Equation (5.1). By using Theorem 5.2.3,
we also prove the existence of infinite equally spaced polynomials that
are irreducible over Fp .

Let Q(x) = x(k−1)d +
∑k−2
n=0 anx

nd be an irreducible polynomial
over Fp where d is a positive integer. Then we have

x(k−1)d = −
k−2∑
n=0

anx
nd

x(k−1)d = −ak−2x(k−2)d −
k−3∑
n=0

anx
nd

xkd = −ak−2x(k−1)d −
k−2∑
n=0

anx
(n+1)d

= −ak−2
(
−
k−2∑
n=0

anx
nd
)
−
k−3∑
n=0

anx
(n+1)d

= ak−2a0 +

k−2∑
n=1

(ak−2an − an−1)xnd

ak−2a0 = xkd −
k−2∑
n=1

(ak−2an − an−1)xnd.

Then for some integer u where 1 ≤ u ≤ p − 1, multiplying both sides
by xu and letting γ = (ak−2a0)

−1

ak−2a0x
u = xkd+u −

k−2∑
n=1

(ak−2an − an−1)xnd+u

xu = γxkd+u − γ
k−2∑
n=1

(ak−2an − an−1)xnd+u.

(5.5)

Theorem 5.2.2. Let p - k and kd + u ≡ 0 (mod p) for some integer
1 ≤ u ≤ p − 1. Let Q be an irreducible equally spaced polynomial over
Fp and let an = λk−n−1, 0 ≤ n ≤ k − 2, for some λ ∈ Fp. Then
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wt(xu/p) = 1, and this implies that wt(xi/p) = 1 for 1 ≤ i ≤ p− 1.

Proof. From Equation (5.5), we impose the condition ak−2an = an−1.
Choose n = k − 2, then

ak−2 =
ak−3
ak−2

ak−3 = a2k−2

ak−4 = a3k−2

Successively we get

an = ak−n−1k−2 .

By the choice of coefficients an = λk−n−1 with 1 ≤ n ≤ k−2 and λ ∈ Fp,
we must have ak−2ai = ai−1, and hence xu = γxkd+u. Consequently,
since kd+ u ≡ 0 (mod p), we always obtain wt(xu/p) = 1 where

xu/p = γ1/px
kd+u

p .

Recalling that u is constant and co-prime to p, then there exists
integers ti and ji with ti ≥ 0 and 1 ≤ ji ≤ p− 1 such that ui = pti+ ji
for 1 ≤ i ≤ p− 1. By taking powers of xu, we have

xui = γixi(kd+u)

xpti+ji = γixi(kd+u)

xti+ji/p = γi/pxi
(kd+u)

p

xji/p = γi/pxi
(kd+u)

p −ti .

(5.6)

We note that, by varying i in Equation (5.6), we obtain all values
ji = {1, 2, . . . , p− 1}, thus for 1 ≤ i ≤ p− 1 we have wt(xi/p) = 1.

Next, we show there always exist irreducible equally spaced k-
nomials satisfying the requirements of Theorem 5.2.2. Let Q(x) =

x(k−1) +
∑k−2
n=0 λ

k−n−1xn and y = x/λ. Then, we can rewrite Q as

Q(x) = λk−1
k−1∑
n=0

λ−nxn = λk−1
k−1∑
n=0

yn = λk−1R(y).
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Then Q is irreducible over Fp if and only if R is irreducible over Fp.
Take any prime k such that order of p modulo k is φ(k). Then, R is
an irreducible cyclotomic polynomial over Fp with deg(R) = k− 1 and
ord(R) = k (LIDL; NIEDERREITER, 1997, Theorem 2.42). Consequently,
Q is also irreducible over Fp. Furthermore, by Theorem 5.2.3 below, if
k is an odd prime, k - (pk−1−1)/k and d is any power of k, then Q(xd)
is irreducible over Fp.

Theorem 5.2.3 ((MENEZES et al., 2013) Theorem 3.9). Let R ∈ Fp[x]
be an irreducible polynomial of degree k − 1 and order k. Let d be
a positive integer. Then R(yd) is irreducible over Fp if and only if
gcd

(
d, p

k−1−1
k

)
= 1, each prime factor of d divides k, and if 4 | d, then

4 | pk−1 − 1.

We show the potentiality of Theorem 5.2.2, combined with the
irreducibility existence criterion just developed for k-nomials, to pro-
vide the exhaustive list of all irreducible equally spaced heptanomi-
als (that is, polynomials with 7 nonzero terms and hence, k = 7)
over F3. This gives new extensions of F3 with low Hamming weight.
In the following, we denote a monic polynomial over F3 of the form
x6t + a5x

5t + a4x
4t + a3x

3t + a2x
2t + a1x

t + a0 by a5a4a3a2a1a0. The
proof is given directly from Theorem 5.2.3.

Proposition 5.2.4. An equally spaced heptanomial Q ∈ F3[x] is irre-
ducible if and only if it is one of the following:

• 111111 or 212121 for t = 7i where i ≥ 0;

• 111122, 122122, 221112 or 222112 for t = 2i13j where i, j ≥ 0;

• 121221, 122221, 221211 or 222211 for t = 7i13j where i, j ≥ 0;

• 111112, 111222, 112222, 121212, 211212, 212122, 212212 or
222222 for t = 2i7j13h where i, j, h ≥ 0.

In Table 7, we give the Hamming weights of our heptanomials. In
comparison to the equally spaced pentanomials in Section 4.1.3, these
heptanomials have similar or better weight values. There are 21 new
extensions for m ≤ 1024 where equally spaced heptanomials exists but
no polynomial with less number of nonzero terms exist. The extensions
resulting on Hamming weights equal to 1 (6, 42, 294 for heptanomials)
can be obtained from Theorem 5.2.2.
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Table 7 – Hamming weights for equally spaced pentanomials and hep-
tanomials over F3.

Coefficients t = 1 t = 2
Extensions a5a4a3a2a1a0 x1/3 x2/3 x1/3 x2/3

P
en

ta

4 · 5i 0 1 1 1 1 1 1 1 1 10 1 2 1 2 1

4 · 2i5j 0 1 1 1 2 2 2 3 3 20 1 2 1 1 2

H
ep

ta

6 · 7i 1 1 1 1 1 1 1 1 1 12 1 2 1 2 1

6 · 2i7j13h
1 1 1 1 1 2 2 2 2 22 1 2 1 2 2
1 1 2 2 2 2 3 2 3 22 1 1 2 1 2

5.3 IMPLEMENTATION REMARKS

In this section we give a few remarks on the results of our im-
plementations of p-th roots. Our goal is to contrast the effect of the
reduction operation, required in the equally spaced polynomials and not
in the friendly polynomials. The source code is available at the URL
https://github.com/lucasperin/pth_root_finite_fields and it is
written in python. The code can be executed on the Sage Environment
which has its own implementation of polynomial arithmetic and finite
fields.

Table 8 compares both families proposed in this thesis for the
computation of p-th roots. The friendly polynomials, or friendly k-
nomials, are computed for k = 2 to k = 5 and k = 40, so that the effect
of the increasing Hamming weight can be measured. Furthermore, we
give two computations of p-th roots using equally spaced polynomials,
comparing the efficiency against each other and against the friendly
polynomials. Timings for the computations are given in the last column
of Table 8. These timings were measured in Sage v6.5, using the timeit
package from python’s standard library.

First, we point out that the results suggest that the friendly
polynomials always have better performance than the equally spaced
polynomials. However, this may be a misleading observation, since
our implementation does not take advantage of low Hamming weights
in the multiplications in Equation (5.1). Our benchmark application
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Table 8 – Friendly and equally spaced polynomials benchmark (Fp)

Extension k-nomial Family µs
256 Binomial Friendly 17.13
271 Trinomial Friendly 17.41
271 Tetranomial Friendly 17.45
271 Pentanomial Friendly 17.45
294 Heptanomial Eq. Spaced 21.08
272 17-nomial Eq. Spaced 19.36
271 40-nomial Friendly 17.47

Sage v6.5 - Intel x64 3.2GHz

runs over the multiplication of elements in the extension field. All
of the constants xi/p of the binomial, the heptanomial and the 17-
nomial have Hamming weight 1. However, the results demonstrate
that the binomials are ∼ 13% to ∼ 23% faster than the equally spaced
polynomials. In fact, the only difference in their computation, given
that the input is the same element, is the degree of xi/p. This indicates
that the reduction entailed by the higher degrees of xi/p of the equally
spaced polynomial family has significant impact in our implementation.

The friendly polynomials results are very similar, indicating that
the Hamming weight have very little impact in our implementation.
The performance gained on using binomials over 40-nomials of simi-
lar extension is ∼ 2%. Furthermore, if compared to fewer -nomials of
the same extension, the impact is less than ∼ 0.4%. This result is
expected since, as previously mentioned, our implementation does not
take advantage of the low Hamming weights.

We conclude that the irreducible friendly polynomials have an
advantage over other families, supported by the fact that they do not
require reduction modulo the irreducible polynomial that defines the
extension field. However, from our results, the performance of equally
spaced polynomials compared to friendly k-nomials is not clear when
k > 2. For a specific application and by using lower level programing
language, the p-th roots can be computed by using shifts instead of reg-
ular "Sage multiplications". Therefore, the ∼ 13% to ∼ 23% difference
from Table 8 could be much smaller.
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6 FINAL CONSIDERATIONS

In this thesis we provide a general formula for computing p-th
roots efficiently. Our method consists in choosing an appropriate irre-
ducible polynomial to define the extension field. These polynomials are
classified in two families, including (a) "friendly" polynomials such that
the p-th root computation requires no reduction modulo the irreducible
polynomial defining the field and (b) "equally spaced" polynomials that
have Hamming weight 1.

We generalize Equation (4.1) and determine formulae to com-
pute the values of xi/p for friendly and equally spaced polynomials.
With this, we distinguish the p-th root improved friendly polynomials
that have lower weights than the regular friendly polynomials. We give
an upper and lower bound for the Hamming weights of xi/p of the p-th
root friendly polynomials and for the improved case. When the friendly
polynomial is a binomial, the Hamming weight is always 1.

Lastly - our implementations suggest that - whereas the equally
spaced polynomials may have the lowest overall weight possible, the
friendly polynomials family have better performance. This can be ob-
served for the case p ≥ 5, p prime, where friendly binomials exist and
also have minimum overall Hamming weight. The p-th root compu-
tations with p-th root friendly binomials is around 13% faster than
equally spaced polynomials of the similar degree. In light of this, we
emphasize that the extensions where each family exists are not always
the same, their comparison is merely for performance analysis. Equally
spaced polynomials play an important role for p-th root computations
when there are no irreducible friendly polynomial in a specific extension
field.

For future work, we propose a deeper analysis on the perfor-
mance impact of this thesis in real application algorithms. There is ev-
idence that cube root friendly polynomials have been used to enhance
pairing operations. However, the choice of irreducible polynomials for
cryptosystems may also affect other operations used in the pairing al-
gorithms. The reduction operation, for example, is also affected by the
irreducible polynomials defining the extension field. We believe this
could result in a promising trade-off study of p-th root friendly and
reduction-friendly polynomials. Additionally, from a theoretical stand-
point, a study of p-th root computations using shifted polynomial basis
may lead to new families of polynomials and improvements for this
operation.
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