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RESUMO

Robôs são amplamente utilizados em fábricas, e novas aplicações no
espaço, nos oceanos, nas indústrias nucleares e em outros campos estão
sendo ativamente desenvolvidas. A criação de robôs autónomos que
podem aprender a agir em ambientes imprevisíveis tem sido um objet-
ivo de longa data da robótica, da inteligência arti�cial, e das ciências
cognitivas.

Um passo importante para a autonomia dos robôs é a necessidade
de dotá-los com um certo nível de independência, a �m de enfrentar
as mudanças rápidas no ambiente circundante; para obter robôs que
operem fora de ambientes rigidamente estruturados, tais como centros
de investigação ou instalações de universidades e sem precisar da super-
visão de engenheiros ou especialistas, é necessário enfrentar diferentes
desa�os tecnológicos, entre eles, o desenvolvimento de estratégias que
permitam que os robôs interajam com o ambiente. Neste contexto,
quando um contacto físico com o ambiente é estabelecido, uma força
especí�ca precisa de ser exercida e esta força tem de ser controlada em
relação ao processo a �m de evitar a sobrecarga ou dani�car o manip-
ulador ou os objetos a serem manipulados.

O principal objetivo deste trabalho é apresentar novas metodologias
desenvolvidas para determinar a máxima carga que um mecanismo ou
manipulador planar pode aplicar ou suportar (capacidade de carga),
sejam eles paralelos, seriais ou híbridos e com redundância ou não. A
�m de resolver o problema da capacidade de carga, neste trabalho fo-
ram propostas duas novas abordagens com base no método do fator de
escala clássico e nos métodos clássicos de otimização. Essas novas abor-
dagens deram como resultado um novo método chamado de método de
fator de escala modi�cado utilizado para resolver a capacidade de carga
em manipuladores seriais planares e quatro modelos matemáticos para
resolver o problema de capacidade de carga em manipuladores paralelos
planares com um grau líquido de restrição igual três, quatro, cinco ou
seis (CN = 3, CN = 4, CN = 5 ou CN = 6).

Palavras-chave: Capacidade de carga. Mecanismos. Robôs. Re-
dundância cinemática. Redundância de atuação. Teoria de Helicoides.
Método de Davies.





ABSTRACT

Robots are now widely used in factories, and new applications of robots
in space, the oceans, nuclear industries, and other �elds are being act-
ively developed. Creating autonomous robots that can learn to act in
unpredictable environments has been a long-standing goal of robotics,
arti�cial intelligence, and cognitive sciences.

An important step towards the autonomy of robots is the need to
provide them with a certain level of independence in order to face quick
changes in the environment surrounding them; to get robots operating
outside rigidly structured environments, such as research centres or uni-
versities facilities and beyond the supervision of engineers or experts,
it is necessary to face di�erent technological challenges, amongst them,
the development of strategies that allow robots to interact with the
environment. In this context, when a physical contact with the the
environment is established, a process-speci�c force need to be exerted
and this force has to be controlled in relation to the particular process
in order to prevent overloading or damaging the manipulator or the
objects to be manipulated.

The main objective of this work is to present new methodologies de-
veloped for determining the maximum wrench that can be applied or
sustained (wrench capability) in planar mechanisms and manipulators,
whether it be serial parallel or hybrid and with redundancy or not. In
order to solve the wrench capability problem, in this work two new ap-
proaches were proposed based in the classic scaling factor method and
in classical optimization methods. These new approaches gave as result
a new method called the modi�ed scaling factor method used to solve
the wrench capability in planar serial manipulators and four mathem-
atical closed-form solutions to solve the wrench capability problem in
planar parallel manipulators with a net degree of constraint equal to
three, four, �ve or six (CN = 3, CN = 4, CN = 5 ou CN = 6).

Keywords: Wrench Capability. Mechanisms. Robots. Kinematic
redundancy. Actuation redundancy. Screw theory. Davies method.
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1 INTRODUCTION

Robots are now widely used in factories, and applications of ro-
bots in space, the oceans, nuclear industries, and other �elds are being
actively developed. Also, nowadays, the use of robots in every facet of
society, including the home, is being seriously considered. In this con-
text, creating autonomous robots that can learn to act in unpredictable
environments has been a long-standing goal of robotics, arti�cial intel-
ligence, and cognitive sciences.

An important step towards the autonomy of robots is the need to
provide them with a certain level of independence in order to face quick
changes in the environment surrounding them; to get robots operating
outside rigidly structured environments, such as research centres or
universities facilities and beyond the supervision of engineers or experts,
it is necessary to face di�erent technological challenges, amongst them,
the development of strategies that allow robots to interact with the
environment (ROMANELLI, 2011).

In regard to the nature of the interaction between a robot and
its environment, robotic applications can be categorized in two classes.
The �rst class is referred to non-contact tasks (unconstrained motion
in a free space, without any environmental in�uence on the robot). In
these tasks, the robot dynamics is the most important aspect as regards
its performance, several industrial applications such as pick-and-place,
spray painting, gluing, and arc or spot welding belong to this category.

In contrast to the non-contact tasks, many complex advanced
robotic applications (packaging, assembling, or machining) require the
manipulator to be coupled with other objects which can move (ROMAN-

ELLI, 2011), this kind of applications can be categorized as contact
tasks.

The contact tasks can be furthermore divided into two sub-
classes: essential force tasks and compliant motion tasks. The
�rst subclass requires the end-e�ector to establish a physical contact
with the objects in the environment and exert a process-speci�c force.
In these tasks, a synergy between the control of the end-e�ector po-
sition and interaction forces is required; some examples of this kind
of tasks are deburring, roughing, bending, polishing, and so forth. In
these tasks, the force has to be controlled in relation to the particular
process in order to prevent overloading or damaging the tool or the
objects to be manufactured. In the second subclass, the tasks focus
on the end-e�ector motion, which has to be realized close to the con-
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strained surfaces, and it must be compliant (i.e., capable to reacting
to the interaction forces). In this second subclass, the problem of con-
trolling the robot is joined to the problem of accurate positioning (as in
part-mating process) (ROMANELLI, 2011). In the future of robotics, the
interaction with the environment is fundamental and more and more
tasks will include and require interaction.

In this work, we will focus on the contact task class; within
this context, the wrench capability in planar manipulators is studied
herein and generalized methods to solve the wrench capability problem
in planar mechanisms and manipulators are proposed.

The wrench capability is de�ned as the maximum wrench
(force and moment) that can be applied (or sustained) for a given pose,
based on the limits of its actuators (NOKLEBY et al., 2005). The wrench
capability of a manipulator is dependent on its design, posture, actu-
ation limits and redundancies (WEIHMANN; MARTINS; COELHO, 2011).
By considering all possible directions of the applied wrench, a wrench
capability plot can be generated for the given pose (NOKLEBY et al.,
2005, 2007).

The wrench capability analysis is essential for the design and
performance evaluation of manipulators. For a given pose, the end-
e�ector is required to move with a desired force/moment or to sustain
a speci�ed wrench. Thus, the information of the joint torques that
will produce such conditions could be investigated. These study is
referred to as the inverse static force problem. An extended problem
can be formulated as the analysis of the maximum wrench that the
end-e�ector can apply into the wrench spaces.

In robotics, although the terms wrench capability and force
capability of a manipulator can be used as synonymous, in the current
document is preferably used the term wrench capability because it is
broader.

1.1 LITERATURE REVIEW ON THE WRENCH CAPABILITY

The idea of measuring the manipulating ability of manipulators
was �rst introduced in (YOSHIKAWA, 1985b), where the velocity manip-
ulability ellipsoid and the force manipulability ellipsoid were de�ned.
To date, three di�erent approaches for determining force capabilities
have been proposed in the literature: wrench ellipsoid, wrench poly-
tope and constrained optimization (FIRMANI et al., 2008b).
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1.1.1 Wrench ellipsoid

The wrench ellipsoid approach is based on bounding the actu-
ator torque vector by a unit sphere τT τ ≤ 1. The torques are mapped
into the wrench space by using τ = JTF , yielding a force ellipsoid
FTJJTF ≤ 1. If Singular Value Decomposition (SVD) is applied to J
i.e., J = U

∑
V T , the principal axes of the ellipsoid can be determined

as uk/σk where σk is the kth singular value and uk is the kth column
of matrix U . These axes can be employed as wrench performance in-
dices of the manipulator. This approach was introduced by Yoshikawa
(YOSHIKAWA, 1985b, 1985a) with the manipulability (twist) ellipsoid
and proposed manipulability measurements. Also, Yoshikawa (YOSHI-
KAWA, 1990) presented the duality between the twist and wrench el-
lipsoids concluding that axes of the ellipsoids coincide but their lengths
are inversely proportional.

For cooperating manipulators, Chiacchio et al (CHIACCHIO; VER-
CELLI; PIERROT, 1996) presented a complete analysis of wrench el-
lipsoids for multiple-arm systems, which involves external and internal
forces. Lee and Kim (LEE; KIM, 1991) (velocity problem) and Chiacchio
et al. (CHIACCHIO; VERCELLI; PIERROT, 1997) (static force problem)
proposed to normalize the joint space variables (joint velocities and
joint torques, respectively) when the actuators do not produce the same
output. As a result, the resulting ellipsoid is de�ned as the pre-image
of the unit sphere in the scaled joint variable space.

The wrench ellipsoid approach can be implemented easily and
the required computation is immediate. However, this approach is an
approximation because the joint torques are normalized (τT τ ≤ 1)
yielding a hypersphere in the torque space. The correct model of the
joint torques must be an m-dimensional parallelepiped in the torque
space due to the nature of the extreme torque capabilities of each ac-
tuator, i.e., τimin or τimax .

1.1.2 Wrench polytope

The wrench polytope approach considers the complete region in
which the actuator can operate. A comparison between the ellipsoid
approach and the polytope approach is shown in Fig. (1). Assume a
manipulator with two actuated revolute joints whose extreme capabil-
ities are τiext

= ±1 [Nm], for i = 1, 2. Fig. (1.a) shows the generation
of an ellipse (in general, an ellipsoid) as a result of mapping a circle (in



32

general, a hypersphere). Fig. (1.b) shows the generation of a polygon
(in general, a polytope) as a result of mapping a square (in general, a
hypercube). Each plot contains two coordinate systems.

The inner circle of Fig. (1.a) and the inner square of Fig. (1.b)
describe the torque limits in the torque space (bottom and left axes);
whereas, the outer ellipse and polygon describe the wrench capabilities
in the wrench space (top and right axes). The lines that connect the
inner to the outer shapes illustrate the linear transformation. Note how
the edges and vertices of the square and polygon correspond in both
spaces. The areas comprised by these geometrical shapes represent
the feasible capabilities in their corresponding spaces. The square is
an exact representation of the torque capabilities; while, the circle is
an approximation. For example, the upper-right vertex of the square
is τ1 = τ2 = 1 [Nm]; although this torque combination is feasible, the
circle model does not include it. Thus, modeling the torque capabilities
as a square is better than as a circle. Fig. (1.c) shows how the circle
and ellipse are inscribed within the square and polygon, respectively.
It is important to mention that the principal axes of the ellipse are
directed towards the vertices of the polygon.

Figure 1 � Mapping of ellipsoids and polytopes from the joint space to
the task space.

In general, each actuator torque de�nes an orthonormal axis in
Rm. The extremes of each torque constrain the torque space with a
pair of parallel planes along each axis. The feasible region in which the
manipulator can operate is bounded by these pairs of parallel planes
yielding an m-dimensional parallelepiped.

A linear transformation, such as the equation of the direct static
force (τ = JTF ), maps vector τ from Rm (joint torque space) to Rn

(wrench space). Rockafellar (ROCKAFELLAR, 1997) studied the prop-
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erties of convex polyhedral sets. From his analysis, the following re-
lationship is held through a linear transformation: Let τ be the m-
dimensional parallelepiped (a convex set) and J−T be the linear trans-
formation from Rm to Rn. Then the resulting transformation J−T τ
leads to another convex polyhedral set (F ) in Rn and it contains a
�nite number of facets.

Kokkinis and Paden (KOKKINIS; PADEN, 1989) introduced the
concept of twist and wrench convex polytopes. The analysis was ap-
plied to a single serial manipulator and to two cooperating manipulat-
ors. Chiacchio et al. (CHIACCHIO, 1997) analyzed the wrench polytopes
of redundant serial manipulators. Finotello et al. (FINOTELLO et al.,
1998) introduced two sets of indices that can be implemented to twist
and wrench polytopes: the maximum isotropic value (MIV) and the
maximum available value (MAV). These indices will be discussed in
detail in Chapter 2. For 6-DOF manipulators, Finotello et al. (FINO-
TELLO et al., 1998) proposed to analyze these indices with force and
moment as separate entities. Gallina et al. (GALLINA; ROSATI; ROSSI,
2001) analyzed the manipulability of a 3-DOF wire driven planar haptic
device using polytopes. Lee and Shim (LEE; SHIM, 2004) expanded the
concept to dynamic manipulability of multiple cooperating manipulat-
ors resulting in acceleration polytopes.

Krut et al. (KRUT; COMPANY; PIERROT, 2004b) analyzed twist
ellipsoids and polytopes in redundant parallel manipulators and estab-
lished performance indices. They showed that there is another ellipsoid,
besides the one derived with SVD, which is larger in volume and is fully
inscribed within the polytope. Krut et al. (KRUT; COMPANY; PIERROT,
2004a) also studied force performance indices of redundant parallel ma-
nipulators and determined the isotropic wrench workspaces of planar
wire-driven manipulators with multiple actuated limbs. Firmani et al.
(FIRMANI et al., 2008a) derived a set of wrench performance indices for
PPMs.

1.1.3 Constrained optimization

In general, the constrained optimization approach involves: an
objective function that maximizes either the magnitude of the force (F )
or the moment (Mz); one equality constraint (F = J−T τ); and a set
of inequality constraints (τimin ≤ τi ≤ τimax), indicating the actuator
output capabilities. Several studies that used this approach are related
below.
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Kumar and Waldron (KUMAR; WALDRON, 1988) investigated the
force distribution in redundantly-actuated closed-loop kinematic chains
and concluded that there would be zero internal forces using the Moore-
Penrose pseudo-inverse solution. Tao and Luh (TAO; LUH, 1989) de-
veloped an algorithm to determine the minimum torque required to
sustain a common load between two joint-redundant cooperating ma-
nipulators. Nahon and Angeles (NAHON; ANGELES, 1992) described
the problem of a hand grasping an object as a redundantly-actuated
kinematic chain, by minimizing the internal forces in the system using
quadratic programming (QP).

Weihmann et al.(WEIHMANN; MARTINS; COELHO, 2011) and Mejia
et al. (MEJIA; SIMAS; MARTINS, 2014b, 2014c) proposed methodolo-
gies to evaluate the wrench capability of planar parallel manipulators
using di�erential evolution algorithms (DE). Buttolo and Hannaford
(BUTTOLO; HANNAFORD, 1995) analyzed the force capabilities of a re-
dundant planar parallel manipulator. Torques were optimized using
the ∞− norm resulting in higher force capabilities when compared to
the pseudo-inverse solution.

Nokleby et al. (NOKLEBY et al., 2005) developed a methodology
to optimize the force capabilities of redundantly-actuated planar par-
allel manipulators using an n-norm, for large values of n, and a scaling
factor. After, Nokleby et al. (NOKLEBY et al., 2007) used these methods
to obtain results for 3-RRR, 3-RPR and 3-PRR parallel architectures
with redundant and non-redundant actuation. Zibil et al. (ZIBIL et al.,
2007) implemented this approach to spatial parallel manipulators.

In general, the methods that use the constrained optimization
as primary tool are usually slow due to the numerical nature of the
algorithm and the inaccuracies due to the existence of local minima.
Based on these limitations, in this work two new approaches to solve
the wrench capability problem are proposed as an attempt to reduce
the time and the e�ort needed to solve such a problem avoiding sim-
ultaneously the use of optimization algorithms or iterative processes.
The proposed methods are based in the classic scaling factor method
and in classical gradient-based optimization methods.

First, some improvements are proposed on the classic scaling
factor method proposed by Nokleby et al. (NOKLEBY et al., 2005) in
order to avoid the use of an optimization algorithm. These improve-
ments result in the obtention of a modi�ed scaling factor method that
solves the wrench capabilities problem in an easier, faster and more
direct way. When used in conjunction with the Davies method, the
modi�ed scaling factor method proposed herein constitutes a powerful
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tool used to solve the wrench capability problem when the net degree of
constraint in a mechanism or manipulator is equal to three (CN = 3).

In the other hand, when the net degree of constraint in a mech-
anism or manipulator is greater than or equal to three (CN ≥ 3),
mathematical closed-form solutions to obtain the wrench capability of
manipulators are obtained.

The proposed generalized scaling factor method and the math-
ematical closed-form solutions to obtain the wrench capability of ma-
nipulators are the main results obtained in this work and can be used
to solve the wrench capability in most of planar mechanisms or manip-
ulators.

1.2 OBJECTIVES

The main objective of this work is to develop new strategies to
solve the wrench capability problem in general planar manipulators in
contact with the environment, taking advantage in an e�cient way of
the kinematic redundancy and the actuation redundancy when they are
present. Some speci�c objectives are listed below:

i. To analyse the factors which in�uence in the behavior of the wrench
capability in planar manipulator;

ii. To develop new strategies to solve the wrench capability problem
in planar manipulators;

iii. To compare the new proposed strategies to solve the wrench cap-
ability problem with other approaches found in the literature.

1.3 MOTIVATION

As previously mentioned, the increased complexity of the tasks
of industrial manipulators requires further studies on robots interaction
with the environment. The task space capabilities of a manipulator to
perform motion and/or to exert forces and moments are of fundamental
importance in robotics. Their evaluation can be useful to determine the
structure and the size of a manipulator that best �t the designer's re-
quirements or they can be used to �nd a better con�guration or a better
operation point for a manipulator to perform a given task (CHIACCHIO;
VERCELLI; PIERROT, 1996).
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The main problem related to the wrench capability optimization
problem is that the presence of geometric variable parameters generates
non-linear and non-convex functions over the search space. This con-
dition allows that global optimization methods should be used (WEIH-

MANN; MARTINS; COELHO, 2011). The global optimization problem
is not easy to solve and it is still an open challenge for researchers
since an analytical optimal solution is di�cult to obtain, even for relat-
ively simple application problems. Based in this idea, several methods
have been proposed in the literature using constrained optimization
algorithms.

As previously mentioned, the methods that use the constrained
optimization as primary tool are usually slow due to the numerical
nature of the algorithm. This fact, is the main motivation of this
thesis, and encouraged the study of alternatives to solve the wrench
capability problem but without using optimization algorithms or nu-
merical algorithms in order to reduce the time and the e�ort needed to
solve such a problem.

1.4 OVERVIEW OF THIS WORK

This work is organized as summarized below:

Chapter 1 is an introduction to the wrench capability problem
and presents a deep literature review. The objectives and motivation
of this work are also presented in this chapter.

Chapter 2 studies the fundamentals of the wrench capability
problem. In this chapter it is also included a brief revision about re-
dundancy in manipulators and wrench performance indices.

Chapter 3 presents the wrench capability problem in general
planar serial manipulators and presents the �rst result obtained in this
thesis: �the modi�ed scaling factor method�.

Chapter 4 presents the wrench capability problem in general
planar parallel manipulators and presents the second result obtained in
this thesis: �The closed form-solutions to solve the wrench capability
problem in manipulators with a net degree of constraint equal to three,
four, �ve or six�.

Chapter 5 presents the conclusions and topics for further works.

Additionally to the �ve main chapters described previously, three
appendices were included in order to support the comprehension of the
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thesis, these appendices are organized as summarized below:

Appendix A introduces some fundamental concepts of the theory
of mechanisms, necessary in order to help the reader in the understand-
ing of the main chapters. In this appendix the direct and inverse kin-
ematic problem of manipulators also is presented and some examples
are developed.

Appendix B studies the static problem in mechanisms and ma-
nipulators. Several concepts related to the Screw Theory are presented
and �nally the main mathematical tool to solve the static in mechan-
isms and manipulators (The Davies method) is presented.

Appendix C presents several concepts related to the global op-
timization process, these concepts are important for the understanding
of the proposed procedure to solve the wrench capability problem in
Chapter 4.
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2 WRENCH CAPABILITY

2.1 INSTANTANEOUS TWIST AND WRENCH CAPABILITIES

The instantaneous twist and wrench capability analysis are es-
sential for the design and performance evaluation of serial and parallel
manipulators (FIRMANI et al., 2008b). An instantaneous twist is a screw
quantity that contains both angular and translational velocities of the
end-e�ector, i.e., V = {ωT ; vT }T . Whereas, a wrench is a screw quant-
ity that contains the forces and moments acting on the end-e�ector,
i.e., F = {fT ;mT }T . For a given pose, the required task of the end-
e�ector is to move with a desired twist and to sustain (or apply) a
speci�c wrench (FIRMANI et al., 2008b). These kinematic conditions
are achieved with corresponding joint velocities (q̇) and joint torques
(τ) respectively. The relationship between the task and joint spaces is
de�ned by the well known linear transformations:

ẋ = Jq̇ (2.1)

τ = JTF (2.2)

where J is referred to as the Jacobian matrix.
In addition, an extended problem can be formulated as the ana-

lysis of the maximum twist or wrench that the end-e�ector can perform
in the twist or wrench spaces, respectively. The knowledge of maximum
twist and wrench capabilities is an important tool for achieving the op-
timum design of manipulators (FIRMANI et al., 2008b). For instance, by
being able to graphically visualize the twist and wrench capabilities,
comparisons between di�erent design parameters, such as the actuator
torque capabilities and the dimensions of the links, can be explored.
Also, the performance of an existing manipulator can be improved by
identifying the optimal capabilities based on the con�guration of the
branches and the pose of the end-e�ector (FIRMANI et al., 2008b).

This work focuses on the wrench capabilities of planar manipu-
lators, whether they are serial, parallel or hybrid and with actuation
redundancy or not. In this work, two new approaches are proposed
based in the classic scaling factor method and in classical optimization
methods. These methods will be discussed in detail in Chapters 3 and
4.

Before to introduce the proposed methods to solve the wrench
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capability problem, we will discuss brie�y the redundancies found in
manipulators due that most of the proposed solutions herein are ap-
plicable when this phenomenon appears in planar manipulators. In
this chapter we also introduce the concept of wrench capability poly-
tope and include a description of the most common wrench capability
indices found in the literature.

2.2 REDUNDANCY

2.2.1 Types of redundancy

Merlet (MERLET, 1996) described that the inclusion of redund-
ancy may lead to improvements in various analyses such as direct kin-
ematics, singular con�gurations, optimal force control, and calibration.
Lee and Kim (LEE; KIM, 1993) de�ned a redundant parallel manipu-
lator as one that has an in�nite number of choices for either generating
motion or resisting external forces. Also, Lee and Kim (LEE; KIM, 1993)
presented an analysis of di�erent types of redundancy. Ebrahimi et al.
(EBRAHIMI; CARREYERO; BORDREAU, 2007) classi�ed redundancy into
two categories: kinematic and actuation redundancy.

2.2.2 Kinematic redundancy

A manipulator is termed kinematically redundant when at least
one of the branches can have self-motion while keeping the mobile plat-
form �xed (FIRMANI et al., 2008b). Thus, there is an in�nite number
of possible solutions to the inverse displacement problem. This is the
typical case of redundant serial manipulators. For parallel manipulat-
ors, this redundancy happens when the number of joints of at least one
branch is greater than the number of joints that are required to provide
the desired mobility of the mobile platform. This type of redundancy
allows self-motion of the redundantly-jointed branch(es) improving the
dexterity and workspace of the manipulator (FIRMANI et al., 2008b).

A draw back of this type of redundancy is the increase of mass
and/or inertia due to the addition of actuators on the mobile links. Des-
pite the redundancy, there is only one vector force per branch acting on
the mobile platform. Thus, the load capability cannot be optimized,
but as an alternative, the direction of the branch forces can be op-
timized by changing the posture of the redundantly-jointed branch(es).
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With this type of redundancy, each actuator can be manipulated inde-
pendently and there are no internal forces that could damage the device.
Kinematic redundancy can be employed to reduce or even eliminate
singular con�gurations. Wang and Gosselin (WANG; GOSELIN, 2004)
added an extra revolute joint to one branch of the 3-RPR PPM yield-
ing a RRPR-2RPR layout. The singularity conditions were identi�ed
and the singularity loci were reduced. Ebrahimi et al. (EBRAHIMI;

CARREYERO; BORDREAU, 2007) proposed the 3-PRRR PPM, a lay-
out that contains joint redundancy in every branch. This manipulator
can provide singularity free paths and obstacle avoidance by properly
manipulating the actuated joints.

2.2.3 Actuation redundancy

A parallel manipulator is termed redundantly actuated when an
in�nite number of resultant force combinations can span the system of
external forces. Thus, there is an in�nite number of solutions to the
inverse static force problem. The implementation of this redundancy
requires a reliable control system because a small variation in the dis-
placement may cause severe damage to the manipulator. There are
two types of actuation redundancy: in-branch redundancy and branch
redundancy.

In-Branch Redundancy:

Passive joints are replaced by active joints. For every redundant ac-
tuator added within branch(es), the number of the forces resisting an
external load is augmented by one. This type of redundancy can be
easily incorporated into an existing device. Nokleby et al. (NOKLEBY
et al., 2005) developed a methodology to optimize the force capabilities
of the 3-RRR PPM using a high norm and a scaling factor. Zibil et
al. (ZIBIL et al., 2007) determined the force capabilities of the 3-RRR
PPM by using an analytical based method. Nokleby et al. (NOKLEBY
et al., 2007) investigated the force-moment capabilities of di�erent in-
branch redundancy architectures. With in-branch redundancy, there
is no change in the workspace of the manipulator. However, there is
an increase of mass and/or inertia due to the addition of actuators.
Firmani and Podhorodeski (FIRMANI; PODHORODESKI, 2004) elimin-
ated families of singular con�gurations by adding a redundant actuator
to the 3-RRR PPM, yielding a RRR-2RRR layout.
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Branch Redundancy:

An additional actuated branch is added to the system. For every ad-
ditional actuated branch incorporated into the system, the number of
forces acting on the mobile platform is augmented by one. Buttolo and
Hannaford (BUTTOLO; HANNAFORD, 1995) designed and analyzed the
force capabilities of a 2-DOF 3-RRR PPM haptic device, where all three
branches are pinned together. Gallina et al. (GALLINA; ROSATI; ROSSI,
2001) analyzed the maximum force and moment of a fourwire driven
3-DOF planar haptic device. Krut et al. (KRUT; COMPANY; PIERROT,
2004b) implemented performance indices, previously developed in Krut
et al. (KRUT; COMPANY; PIERROT, 2004a) for velocity analysis, to 2-
DOF parallel wire-driven manipulators. Di�erent analyses of multi-
actuated wires were considered. Nokleby et al. (NOKLEBY et al., 2007)
investigated the force-moment capabilities of the 4-RRR, 4-RPR, and
4-PRR PPMs. Firmani and Podhorodeski (FIRMANI; PODHORODESKI,
2004) presented a methodology to identify singular con�gurations of
planar parallel manipulators with redundant branches. The main prob-
lem of manipulators with branch redundancy is the reduction of their
dexterity and workspace.

2.3 WRENCH POLYTOPE ANALYSIS

2.3.1 Joint space parallelepiped

In order to introduce the concept, consider a manipulator work-
ing into an speci�c task space and being controlled by a known number
of actuators. Let n be the DOF of the task space coordinates and
m be the number of actuated joints. The ith joint torque variable,
which is bounded by τimin and τimax , can be represented in the joint
torque space as two parallel planes in Rm. With m joints, there are 2m
planes or m pairs of parallel planes. An m-dimensional parallelepiped
is formed with the combination of all of these parallel planes yielding
the region of joint torque capabilities (FIRMANI et al., 2008b). If all
the torque capabilities were equal, the m-dimensional parallelepiped
would result in a hypercube. Also, if the magnitude of the extreme
torques were equal, i.e., |τimin | = |τimax |, the parallelepiped would be
center-symmetric; otherwise it would be skewed.

A vertex of the m-dimensional parallelepiped de�nes the inter-
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section of m extreme torque planes. Thus, a vertex occurs when all
joint torques are at their extreme capabilities, i.e.,

υ = [τ1ext
, τ2ext

, · · · , τmext
] (2.3)

where τiext
denotes the extreme capabilities of the ith actuator, i.e.,

τimin
or τimax

.

2.3.2 Linear transformation

Visvanathan and Milor (VISVANATHAN; MILOR, 1986) investig-
ated the problems in analog integrated circuits while accounting for the
tolerance variations of the principal process parameters. The problem
involved the mapping of a parallelepiped under a linear transforma-
tion. Their mathematical formulation is similar to the one used for
analyzing wrench capabilities. Let the coordinates of the vertices of a
parallelepiped in Rm be υj , for j = 1, ..., 2m.

Be , υj for j = 1, ..., 2 . m through a linear transformation
from Rm to Rn, such as F = J−T τ , the m-dimensional parallelepiped
becomes a polytope (VISVANATHAN; MILOR, 1986). A polytope is a con-
vex region, i.e., any two points inside the polytope can be connected
by a line that completely �ts inside the polytope. An n-dimensional
convex polytope is bounded by (n − 1)-dimensional facets or hyper-
planes, e.g., linear edges in R2 bounding a polygon or planar facets in
R3 bounding a polyhedron.

A polytope P can be completely characterized by mapping all
the vertices of the parallelepiped and enclosing them in a convex hull,
i.e.,

P = convh{J−Tυj , j = 1, ..., 2m} (2.4)

where convh denotes a convex hull operator which encloses all the ex-
treme points forming the feasible region of the torque space in the
wrench space. A closed bounded convex set is the convex hull of its
extreme points (ROCKAFELLAR, 1997). The total number of vertices
in the polytope υTn depends on the dimension of the two spaces.
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2.3.3 Polytopes in Non-redundant planar manipulators

For non-redundant manipulators (n = m) the number of vertices
in the polytope equals the number of vertices in them-dimensional par-
allelepiped, i.e., υTm

= υTn
= 2m, an the vertices of the polytope are

the image of the vertices of the m-dimensional parallelepiped (CHIAC-
CHIO; VERCELLI; PIERROT, 1996), i.e.,

pj = J−Tυj (2.5)

where pj and υj are the vertices of the polytope and parallelepiped,
respectively. The linear transformation between the two spaces also
makes that the edges and facets of the polytope are the corresponding
image of the edges and facets of the m-dimensional parallelepiped.

For a planar parallel manipulator the vertices of the wrench poly-
tope are found as follows:

pj = J−Tυj (2.6)

 Fx

Fy

Mz

 =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ·
 τ1ext

τ2ext

τ3ext

 (2.7)

where ai,j denotes the elements of J−T . There are eight vertices 23 due
to the combination of the extreme torque capabilities, i.e., τiext can be
either τimin or τimax .

Fig. 2 illustrates the linear transformation of the torque capab-
ilities of a non-redundant planar parallel manipulator from the torque
space to the wrench space. Fig. 2 also shows the corresponding image
of the vertices, edges, and facets between the parallelepiped and the
polytope.

The resulting wrench polytope of a non-redundant manipulator
has the following characteristics:

i. Any point outside the polytope is a wrench that cannot be applied
or sustained;

ii. Any point inside the polytope is achieved with actuators that are
not working at their extreme capabilities;

iii. Any point on a facet of the polytope has one actuator working at
an extreme capability;
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Figure 2 � Linear transformation of a parallelepiped to a polytope of
a non-redundant PPM and image projection of vertices, edges, and
facets.

iv. Any point on an edge of the polytope has two actuators working
at their extremes;

v. Any vertex of the polytope has all three actuators working at their
extremes.

2.3.4 Polytopes in redundant planar manipulators

For redundant manipulators (n < m) the number of vertices
in the polytope is less than the vertices of the m-dimensional paral-
lelepiped, i.e., υTn < υTm. In this case, the vertices of the polytope are
formed with the mapping of some of the vertices of the m-dimensional
parallelepiped, i.e. (FIRMANI et al., 2008b),

pk ⊂ J−Tυj (2.8)

with k < j. The points that do not form the vertices of the polytope
are internal points in P . Let the potential vertices (pj) of the polytope
be all the projected vertices of the m-dimensional parallelepiped in Rn.
Thus, the potential vertices are determined as follows:

pj = J−Tυj (2.9)
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 Fx

Fy

Mz

 =

 a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m
a3,1 a3,2 · · · a3,m

 ·


τ1ext

τ2ext

...
τmext

 (2.10)

The number of vertices of the wrench polytope depends on the
pose of the manipulator, which de�nes the elements of the linear trans-
formation matrix, J−T and it may vary from case to case.

Finding the external vertices of a polytope can be computa-
tionally expensive. Generating a polytope through a convex hull has
been studied thoroughly in the �eld of computational geometry and
the goal has been to make a more e�cient algorithm. Chand and
Kapur (CHAND; KAPUR, 1970) proposed the so-called gift wrapping al-
gorithm, where the facets of a polytope are found by determining the
angles between one vertex and the rest of the points. The minimum and
maximum angles correspond to the hyperplanes passing through that
point. Visvanathan and Milor (VISVANATHAN; MILOR, 1986) proposed
an algorithm that searches in the directions that are orthogonal to each
of the known hyperplanes. New vertices and hyperplanes are formed
and the process is repeated. Bicchi et al. (BICCHI; MELCHIORRI; BAL-

LUCHI, 1995) presented an algorithm that involves slack variables that
transform the inequality constraints of the actuator limits into equality
constraints. Lee (LEE, 1997) proposed a method for determining the
vertices of twist polytopes using vector algebra. Hwang et al. (HWANG;

LEE; HSIA, 2000) developed a recursive algorithm that removes all the
internal points when �rst encountered. Hwang et al. (HWANG; LEE;

HSIA, 2000) also showed that even though the number of potential ver-
tices grows exponentially 2m the number of external points increases
linearly.

The resulting wrench polytope of a redundant manipulator has
the following characteristics:

i. Any point outside the polytope is a wrench that cannot be applied
or sustained;

ii. Any point inside the polytope is achieved with actuators that may
or may not work at their extreme capabilities;

iii. Any point on a facet of the polytope has m− 2 actuators working
at their extremes;
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iv. Any point on an edge of the polytope has m− 1 actuators working
at their extremes;

v. Any vertex of the polytope has all m actuators working at their
extremes.

2.4 WRENCH PERFORMANCE INDICES

2.4.1 Operational conditions

A wrench polytope represents the region in which the manipu-
lator can apply feasible wrenches. Unfortunately, a major drawback of
this approach compared to the ellipsoid approach is the e�ciency of the
algorithm. Determining the axes of the ellipsoid by applying Singular
Value Decomposition (SVD) to J is de�nitely more e�cient than con-
structing a polytope. A small eigenvalue indicates that the manipulator
requires large actuator torques to sustain an exerted wrench.

Nonetheless, the best representation, from a design perspective,
may not be the polytope itself, but rather a set of indices that char-
acterize it. These points may lie on facets, edges, or vertices of the
wrench polytope, and represent maximum/minimum values of either
moments or forces. Thus, these points, which are referred to as wrench
performance indices, allow the determination of either force or moment
ranges.

Under operational conditions, the manipulator performance is
dictated by the requirements of the application. These requirements
establish some parameters of moments and forces acting on the manip-
ulator. This is, the range of forces can be determined based on moment
requirements; similarly, the range of moments can be determined based
on force requirements. For the force analysis, there are two ranges of
forces that can be determined. Finotello et al. (FINOTELLO et al., 1998)
de�ned these forces as maximum available value (MAV) and maximum
isotropic value (MIV). Herein, MAV and MIV are denoted as Fav and
Fis respectively.

Assume a wrench with a constant moment, thus the polytope is
reduced to a polygon, i.e., the polytope is sliced at the constant moment
yielding a polygon. The area enclosed by the polygon represents the
force capabilities of the manipulator. The maximum available force
(Fav) is the farthest distance from the center of the force space to the
polygon. This force can be only applied in a particular direction and
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corresponds to a vertex of the polygon.
The maximum isotropic force (Fis) is the shortest distance from

the center of the force space to the polygon. Fig. 3 illustrates the force
polygon of a 3- RRR PPM, where the underline denotes the actuated
joints and is indicated in the �gure with τ1, τ2 and τ3. For an arbitrary
direction α, the distance from the center of the force space to any point
within the polygon is proportional to the magnitude of the force that
can be applied or sustained. Fig. 3 also shows an arbitrary force vector
f = [fx, fy]T = [f cos(α), f sin(α)]T and the maximum available (Fav)
and isotropic (Fis) forces.

x

y

τ1 τ2

τ3

α

(fx, fy)

fav

fis

Figure 3 � Force polygon in a 3RRR planar parallel manipulator

Firmani et al. (FIRMANI et al., 2008b) described six di�erent
scenarios of operational conditions in which the forces and moments
interact are presented. Table 1 summarizes the six operational con-
ditions which lead to two force analyses and four moment analyses
presented by Firmani et al. (FIRMANI et al., 2008b).

Additionally, Firmani et al. (FIRMANI et al., 2008b) describe six
di�erent indices to evaluate the wrench performance of a manipulator.
The performance index can be determined by verifying the maximum
f or mz among all of the combinations. If the problem involves �nding
a torque in transition, it is important to verify that this torque does
not exceed its torque output capabilities.

The performance indices presented by Firmani et al. (FIRMANI

et al., 2008b) are described below and are valid for both non-redundant



49

Table 1 � Operational condition and corresponding analyses.

Operational Condition Analysis

Prescribed Moment Force Analysis:
Find Range of Available
and Isotropic Forces

Largest Allowable Force
with an Associated Moment

Prescribed Force
(magnitude and direction)

Moment Analysis:
Find Range of Moments

Largest Allowable Moment
with an Associated Force

Prescribed Isotropic
Force (magnitude)
Prescribed Available
Force (magnitude)

and redundant planar parallel manipulators.

Maximum Force with a Prescribed Moment:

If the moment must be preserved (Mz must be speci�ed as a constant)
in the requirements of the application, either zero or any other value,
the polytope is reduced to a polygon.

The maximum available force (pmFav) corresponds to the largest

value of f that is evaluated with the combinations, where f =
√
f2x + f2y .

The maximum isotropic force (pmFis) is determined as the shortest dis-
tance from the center of the force space to the polygon. pmFav and
pmFis represent a point on an edge and a point on a facet of the poly-
tope.

The maximum available value (MAV ) presented by Finotello et
al. (FINOTELLO et al., 1998) and the maximum force with a prescribed
moment (Fapp) presented by Firmani et al. (FIRMANI et al., 2008a) are
similar force capability performance indices and they are de�ned as the
maximum force that can be applied (or sustained) by a manipulator
with a prescribed moment (WEIHMANN; MARTINS; COELHO, 2011). If
this prescribed moment is zero, it yields a pure force analysis. For
a given direction, the maximum force that can be applied with zero
moment will be denoted as Fm (WEIHMANN; MARTINS; COELHO, 2011).

From this point, it will be adopted the notation presented by
Firmani et al. (FIRMANI et al., 2008a) in order to maintain a concord-
ance with the author's previously published papers. In this manner,
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the notation Fapp will be considered for the cases where the maximum
force that can be applied (or sustained) by a manipulator have a pre-
scribed constant moment di�erent to zero and the notation Fm will be
considered for the cases where the maximum force that can be applied
(or sustained) by a manipulator have a prescribed moment equal to
zero.

Maximum Allowable Force with an Associated Moment:

If a moment does not a�ect the requirement of the application, the ma-
nipulator can reach the largest available and isotropic forces. To achieve
these forces a particular moment must be associated with them. A force
polygon may be generated by projecting the vertices of the polytope
on the force plane, or in other words, a force polygon can be obtained
as the upper view of the wrench capability polytope (FIRMANI et al.,
2008b).

Maximum Moment with a Prescribed Force:

For a fully described force (f and α), the force vector may be drawn
within the polytope and the set of moments pfMz that can be reached
with this force can be determined. The largest and smallest Mz that
can be obtained while keeping the torques in transition within their
capabilities de�ne the range of pfMz (FIRMANI et al., 2008b).

Maximum Allowable Moment with an Associated Force:

If the force does not a�ect the application, the maximum range of mo-
ments (afMz) has an associated force, i.e., a speci�c force must be
applied to achieve the largest moment. To �nd the maximum moment
all the actuators are set to their maximum capabilities. The highest
and lowest vertices of the polytope represent this performance index
(FIRMANI et al., 2008b).

Maximum Moment with a Prescribed Isotropic Force:

Assume that the manipulator is required to apply or sustain the same
force in all directions, i.e., an isotropic force fis. The region of mo-
ments that can attain this force may be seen as a cylinder of radius
fis that is fully contained within the polytope and intersects facets of
the polytope. The maximum and minimum pifMz are determined by
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comparing the resulting isotropic moment associated with every plane
of the polytope. Isotropy is ensured with the plane that yields the min-
imum of the maximum Mz moment (FIRMANI et al., 2008b).

Maximum Moment with a Prescribed Available Force:

Assume that the manipulator is required to apply a large force regard-
less of its direction, i.e., available force fav. This case may be seen as
the intersection of a cylinder of radius fav with a point on the poly-
tope which is the farthest away from the Mz = 0 plane. The cylinder
usually intersects an edge of the polytope, but in some particular cases
the intersection may happen with a facet of a vertex of the polytope
(FIRMANI et al., 2008b).
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3 WRENCH CAPABILITY IN MANIPULATORS
USING A MODIFIED SCALING FACTOR METHOD

In this chapter a modi�ed scaling factor method to obtain the
maximum force with a prescribed moment in planar manipulators with
a net degree of constraint equal to three (CN = 3) is presented. The
method proposed in this chapter is based on the scaling factor method
presented by Nokleby et al. [2005], but includes several modi�cations
which allow the use of optimization algorithms to be avoided. These
modi�cations lead to a reduction in the computing time and e�ort
required to evaluate the force capability in planar mechanisms, en-
abling the proposed method to be used in real-time applications such
as machining, grasping and manipulation. The modi�ed scaling factor
method proposed herein is general and can be applied to any planar
manipulator satisfying the condition CN = 3.

The scaling factor method was originally proposed by Nok-
leby et al. (NOKLEBY et al., 2005) as an attempt to solve the force
capability problem in planar manipulators, but, this original scal-
ing factor method (NOKLEBY et al., 2005) does not allow the desired
moment at the manipulator end e�ector to be included in an explicit
mathematical expression, and an optimization process is required in
order to solve the force capability problem. In addition, the computa-
tion of the maximum allowed moment is not presented. In this chapter
some improvements to the original scaling factor method will be
described in order to address these issues, resulting in the proposed
modi�ed scaling factor method .

The novelty of this modi�ed scaling factor method lies in
the fact that herein does not require the use of an optimization al-
gorithm, in contrast to the original scaling factor method. Instead,
explicit equations are used in order to solve the force capability prob-
lem. The avoidance of optimization algorithms results in a simpler,
faster and more direct solution to obtain the force capability of manip-
ulators compared with other solutions for the same problem found in
the literature.

The modi�ed scaling factor method proposed in this chapter is
one of the results presented in this thesis and, in combination with
the Davies method, it constitutes a powerful tool to solve the force
capability problem in any mechanism or manipulator (whether it be
serial, parallel or hybrid) with a net degree of constraint equal to three
(CN = 3).
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3.1 STATIC MODELS OF MECHANISMS AND MANIPULATORS
WITH CN = 3

In planar manipulators with CN = 3, once the Davies method
has been applied to obtain the inverse statics, it is possible to rep-
resent the N primary actions [τ1, τ2, ..., τN ]T as a generalized func-
tion of a coe�cient matrix [A] and the wrenches at the end e�ector
[Fx, Fy,Mz]T , as shown in Eq. (3.1).

τ1
τ2
...
τN

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

an,1 an,2 an,3

 ·
 Fx

Fy

Mz

 (3.1)

In Eq. (3.1) the elements a1,1, . . . , an,3 represent kinematic ex-
pressions as a function of the manipulator joint positions, the elements
τ1, τ2, ..., τN represent the primary actions (force or moment) of the
actuated joints and the elements Fx, Fy,Mz represent the wrenches at
the end e�ector. Thus, the serial manipulator shown in Fig. 4 (which
is a 3 DoF manipulator), can be statically modelled as shown in Eq.
(3.2), and the serial manipulator shown in Fig. 5 (which is a 6 DoF
manipulator), can be statically modelled as shown in Eq. (3.3).

1

2

3

E

A1

A2 A3

0

Figure 4 � Planar serial manipulator with 3 DoF.

 τA1

τA2

τA3

 =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ·
 EFx

EFy

EMz

 (3.2)
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Figure 5 � Planar serial manipulator with 6 DoF.


τA1

τA2

τA3

τA4

τA5

τA6

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
a4,1 a4,2 a4,3
a5,1 a5,2 a5,3
a6,1 a6,2 a6,3

 ·
 EFx

EFy

EMz

 (3.3)

The modi�ed scaling factor method proposed in this paper is
applicable only when the manipulator evaluated has the property CN =
3. Manipulators with CN values which are not three (CN 6= 3) will be
treated in Chapter 4 and are not addressed in this chapter.

3.2 SCALING FACTOR METHOD

The scaling factor method, originally presented by Nokleby et al.
in Ref. (NOKLEBY et al., 2005), is a numerical force-moment computa-
tional method that allows the actuator limits to be easily incorporated
into the problem of determining the force-moment capabilities of ma-
nipulators (GARG; NOKLEBY; CARRETERO, ). The method is explained
in this section and some improvements to the method are proposed in
Section 3.2.

In the original scaling factor method, a unit wrench $F is used
to represent the desired wrench direction as shown in Eq. (3.4). In this
equation fapp is the wrench intensity of Fapp (NOKLEBY et al., 2005).

Fapp = fapp$F (3.4)
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Using the unit wrench $F = [cos(θ), sin(θ), 0]T in order to rep-
resent the desired direction of the force, the inverse statics equation
shown in Eq. (3.1) can be rewritten as:

τ1
τ2
...
τN

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

an,1 an,2 an,3

 ·
 cos(θ)

sin(θ)
0

 (3.5)

Note that in Eq. (3.5) the prescribed moment is zero (Mz = 0)
and it yields a pure force analysis (Fm). By expanding Eq. (3.5), the
primary actions (τ1, τ2,..., τN ) can be calculated as a function of θ as
shown below.

τi(θ) = ai,1 · cos(θ) + ai,2 · sin(θ) + ai,3 · 0 i = 1, 2, ..., N (3.6)

Since all maximum actuated joint torque/force limits (τimax
) are

known for all actuated joints i, scaling factors for each actuated joint
can be found using Eq. (3.7) (NOKLEBY et al., 2005).

ψi =

∣∣∣∣τimax

τi(θ)

∣∣∣∣ i = 1, 2, ..., N (3.7)

where ψi is the scaling factor for each actuated joint i, and τi(θ) is the
torque/force of the ith actuated joint for a unit wrench in the desired
force direction, obtained from Eq. (3.6).

The scaling factors of Eq. (3.7) can be placed in a set. The
scaling factor (Ψ) in this set with the minimum value is the maximum
factor which all joint torques/forces can be scaled by and still remain at
or below their corresponding maximum values (NOKLEBY et al., 2005),
i.e.:

Ψ = min(ψi) i = 1, 2, ..., N (3.8)

Since $F = [cos(θ), sin(θ), 0]T is a unit wrench with a prescribed
moment equal to zero (Mz = 0), the method corresponds to a pure
force case, allowing us to rewrite Eq. (3.4) as:

Fm = fm$F (3.9)

where fm is the wrench intensity of Fm, and its maximum possible
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value is:

fm = Ψ (3.10)

By multiplying both sides of the inverse statics equation shown
in Eq. (3.5) by the scaling factor (Ψ), it is possible to highlight the
e�ects of apply the scaling factor, as shown in Eq. (3.11).


Ψ · τ1(θ)
Ψ · τ2(θ)

...
Ψ · τN (θ)

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

an,1 an,2 an,3

 ·
 Ψ · cos(θ)

Ψ · sin(θ)
Ψ · 0

 (3.11)

In Eq. (3.11) it can be noted that the use of the scaling factor im-
plies that the torques at the actuated joints of the manipulator (which
solve the unit wrench problem) will be scaled by a value of Ψ, and the
unit force (initially imposed) will be scaled by the same value of Ψ, but
the moment at the end e�ector of the manipulator remains equal to
zero (Mz = Ψ · 0 = 0).

At this point it is important to highlight that in the original
scaling factor method, when a desired moment which di�ers from zero
(Mz 6= 0) is imposed within the unit wrench ($F ), the application of
a scaling factor ampli�es both the unit force and the desired moment
(Mz). In order to better understand this, consider the unit wrench $F =
[cos(θ), sin(θ),Mz]T . On applying the original scaling factor method
using this unit wrench, Eq. (3.11) is modi�ed as shown in Eq. (3.12).


Ψ · τ1(θ,Mz)
Ψ · τ2(θ,Mz)

...
Ψ · τN (θ,Mz)

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

an,1 an,2 an,3

 ·
 Ψ · cos(θ)

Ψ · sin(θ)
Ψ ·Mz

 (3.12)

It can be observed in Eq. (3.12) that when a desired moment
at the end-e�ector which di�ers from zero (Mz 6= 0) is applied, it will
be scaled Ψ times together with the unit force, and this represents an
undesirable situation because the �nal value for the desired moment is
Ψ times higher than the desired value. In order to solve this problem
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it is necessary to �nd an initial value for the moment (MIz ) within the
unit wrench ($F ) in order to satisfy the condition Ψ ·MIz = Mz as
shown in Eq. (3.13).


Ψ · τ1(θ,MIz )
Ψ · τ2(θ,MIz )

...
Ψ · τN (θ,MIz )

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

an,1 an,2 an,3

 ·
 Ψ · cos(θ)

Ψ · sin(θ)
Ψ ·MIz

 (3.13)

This original scaling factor method uses an optimization algorithm
in order to obtain the appropriate values for MIz and Ψ (the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm with a mixed
quadratic and cubic line search (NOKLEBY et al., 2005) (ZIBIL et al.,
2007)). This leads to a signi�cant increase in the time required to
solve the force capability problem. In addition, the computation of the
maximum allowed moment is not an easy task.

As shown in Section 3.2, the original scaling factor method is
applicable when the imposed moment at the end e�ector is zero (Mz =
0), but when a di�erent value for the imposed moment is de�ned it is
necessary to use an optimization algorithm in order to solve the force
capability problem.

Herein we apply some algebraic modi�cations to the original scal-
ing factor method proposed by Nokleby et al. in Ref. (NOKLEBY et al.,
2005). These modi�cations require the use of a new unit wrench im-
posed at the end e�ector of the manipulator and a systematic solution
for the associated variables. The proposed modi�cations allow us to
avoid the use of optimization algorithms, reducing considerably the
time required to solve the force capability problem.

In the proposed modi�ed scaling factor method, the unit wrench
$F must include an associated value σ as the component of the moment
in z. The new unit wrench is represented as $F = [cos(θ), sin(θ), σ]T ,
and Eq. (3.1) can be rewritten as shown in Eq. (3.14).

τ1
τ2
...
τN

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

an,1 an,2 an,3

 ·
 cos(θ)

sin(θ)
σ

 (3.14)
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The associated value σ must be such that when multiplied by a
scaling factor (ψ) the desired moment is obtained:

Mz = ψ · σ (3.15)

As in Section 3.2, an expansion for Eq. (3.14) can be obtained
as:

τi(θ, σ) = ai,1 · cos(θ) + ai,2 · sin(θ) + ai,3 · σ i = 1, 2, ..., N (3.16)

Considering the direction θ as a constant, Eq. (3.16) can be
rewritten in a simpli�ed way as a function only of σ, as shown in Eq.
(3.17). In this equation the element mi(θ) is dependent on the chosen
constant angle θ (i.e.: mi(θ) = ai,1 cos(θ)+ai,2 sin(θ); i = 1, 2, ..., N).

τi(σ) = mi(θ) + ai,3 · σ i = 1, 2, ..., N (3.17)

As in Section 3.2, since all maximum actuated joint torque/force
limits (τimax

) are known for all actuated joints i, scaling factors for each
actuated joint can be found, but this time using Eq. (3.18).

ψi(σ) =

∣∣∣∣τimax

τi(σ)

∣∣∣∣ =

∣∣∣∣ τimax

mi(θ) + ai,3σ

∣∣∣∣ i = 1, 2, ..., N (3.18)

where, ψi(σ) is the scaling factor for each actuated joint i, and τi(σ)
is the torque/force of the ith actuated joint for a unit wrench in the
desired force direction (θ), obtained from Eq. (3.17).

Note that the scaling factors ψi(σ) for each actuated joint i are
now dependent on the value of the unknown value σ since the value of
θ is a constant. Rewriting Eq. (3.15) as Mz

2 = (ψi(σ) · σ)
2, and sub-

stituting Eq. (3.18) into this rewritten equation using the property of
the absolute value |f |2 = f2, we obtain Eq. (3.19). This new equation
is a quadratic equation whose solution allows us to ascertain the values
of σ which satisfy Eqs. (3.15) and (3.18) simultaneously.

Mz
2 =

(
τimax

mi(θ) + ai,3σ

)2

· σ2 i = 1, 2, ..., N (3.19)

Equation (3.19) can be algebraically manipulated as shown in Eq.
(3.20) in order to facilitate the obtention of the root values.

Aσ2 +Bσ + C = 0; i = 1, 2, ..., N (3.20)
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where

A = ((Mz · ai,3)2 − τ2imax
) (3.21)

B = (2 ·M2
z · ai,3 ·mi(θ)) (3.22)

C = (Mz ·mi(θ))
2 (3.23)

On solving the quadratic equation (3.20) two roots for σ are
obtained for each value of i (i = 1, 2, ..., N). In total we will have 2N
di�erent roots and the obtained roots must be used in Eq. (3.15) in
order to obtain 2N scaling factors, one scaling factor for each root (σ)
obtained.

As in section 3.2, the scaling factors can be placed in a set. The
scaling factor (Ψ) in this set with the minimum value is the maximum
factor which all joint torques/forces can be scaled by and still remain at
or below their corresponding maximum values (NOKLEBY et al., 2005),
i.e.:

Ψ = min(ψi(σ1), ψi(σ2)) i = 1, 2, ..., N (3.24)

where σ1 and σ2 are the two roots of σ obtained for each value of
i = 1, 2, ..., N .

Since $F = [cos(θ), sin(θ), σ]T represents a unit force with an
initial moment in z, the maximum possible wrench intensity fapp of
the screw quantity Fapp in Eq. (3.4) is:

fapp = Ψ (3.25)

Multiplying the scaling factor by both sides of the inverse statics
equation allows better observation of the e�ects of the scaling factor,
as shown in Eq. (3.26).


Ψ · τ1(θ)
Ψ · τ2(θ)

...
Ψ · τN (θ)

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

an,1 an,2 an,3

 ·
 Ψ · cos(θ)

Ψ · sin(θ)
Ψ · σ

 (3.26)

In Eq. (3.26) the �rst element in the right vector represents
the component in x of the maximum force at the end e�ector of the
manipulator (Fx = Ψ · cos(θ)), the second element in the right vector
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represents the component in y of the maximum force at the end ef-
fector of the manipulator (Fy = Ψ · sin(θ)) and the last element in the
right vector represents the imposed moment at the end e�ector of the
manipulator (Mz = Ψ · σ), as shown previously in Eq. (3.15).

The modi�ed scaling factor method proposed in this section is an
important result obtained in this thesis, and in combination with the
Davies method it constitutes a powerful tool that can be used in order
to solve the force capability problem in any mechanism or manipulator
with a net degree of constraint equal to three (CN = 3).

At this point it is important to note that the modi�ed scaling
factor method proposed herein solves the main problem associated with
the original scaling factor method, that is, it avoid the use of optim-
ization algorithms and allows the desired moment at the manipulator
end e�ector to be included in an explicit mathematical expression.

It is also important to emphasize that although the modi�ed
scaling factor method proposed herein allow us to include a determined
value for the moment at the manipulator end e�ector, the interval in
which the moment can change is still unknown. In order to solve this
problem, an additional approach can be considered, as will be shown
in Section 3.2.1.

3.2.1 Maximum imposed moment

As shown in Section 3.2, the proposed modi�ed scaling factor
method involves imposing a desired moment at the end e�ector of the
manipulator (Mz). This imposed moment can not take values outside
the acceptable range [Mzmin

≤Mz ≤Mzmax
], and the calculation of the

elements Mzmin and Mzmax is carried out by following the same logic
applied in the previous sections, but now a unit wrench is imposed at
the end e�ector with an unit moment at z (Mz = 1) and without forces
in x or y. The new unit wrench is imposed as $F = [0, 0, 1]T and Eq.
(3.1) can be rewritten as Eq. (3.27).

τ1
τ2
...
τN

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

an,1 an,2 an,3

 ·
 0

0
1

 (3.27)

Expanding Eq. (3.27) provides the values of τ1,..., τN . The
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expansion of Eq. (3.27) is shown below in Eq. (3.28).

τi = ai,3 i = 1, 2, ..., N (3.28)

Once again, since all maximum actuated joint torque/force limits
(τimax

) are known for all actuated joints i, scaling factors for each
actuated joint can be found, in this case using Eq. (3.29) (NOKLEBY et

al., 2005).

ψi =

∣∣∣∣τimax

τi

∣∣∣∣ i = 1, 2, ..., N (3.29)

where ψi is the scaling factor for each actuated joint i, and τi is the
torque/force of the ith actuated joint for a unit wrench in the desired
force direction, obtained from Eq. (3.28).

Once again, the scaling factors of Eq. (3.29) can be placed in a
set. The scaling factor (Ψ) in this set with the minimum value is the
maximum factor which all joint torques/forces can be scaled by and still
remain at or below their corresponding maximum values (NOKLEBY et

al., 2005), i.e.:

Ψ = min(ψi) i = 1, 2, ..., N (3.30)

Since $F = [0, 0, 1]T is a wrench with a unit moment at z, the
maximum possible moment intensity Mzmax

of the screw quantity is:

Mzmax = Ψ (3.31)

Multiplying the scaling factor by both sides of the inverse statics
equation provides better observation of the e�ects of the scaling factor,
as shown in Eq. (3.32).


Ψ · τ1
Ψ · τ2
...

Ψ · τN

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

an,1 an,2 an,3

 ·
 Ψ · 0

Ψ · 0
Ψ · 1

 (3.32)

By repeating this procedure using the unit wrench $F = [0, 0,−1]T

it is possible to obtain the minimum moment at the end e�ector of the
manipulator asMzmin = −Mzmax , allowing us to determine the accept-
able range of imposed moments where: [Mzmin ≤Mz ≤Mzmax ].
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3.3 APPLICATIONS AND RESULTS

In order to validate the method proposed in this chapter, four
cases were studied. The �rst is a 3 DoF planar serial manipulator, the
second is a 6 DoF planar serial manipulator, the third is a 3 DoF 3RRR
planar parallel manipulator and the fourth is a 4 DoF PRRR planar
serial manipulator.

3.3.1 3 DoF planar serial manipulator

The schematic representation of the manipulator studied is shown
in Fig. 6. This is a planar serial manipulator with mobility equal to
three (M = 3) and with a net degree of constraint equal to three
(CN = 3). The statics of the manipulator was solved using the formal-
ism described by Davies (DAVIES, 1983c). The inverse statics solution
for this manipulator can be generalized as shown in Eq. (3.33).

E

A1

A2

A3

l1

l2 l3

θ1

θ2

θ3

Figure 6 � Planar serial manipulator with 3 DoF.

 τA1

τA2

τA3

 =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ·
 EFx

EFy

EMz

 (3.33)

The graphical results were obtained using arbitrary topological
information for the links: l1 = 0.4 [m], l2 = 0.25 [m] and l3 = 0.15 [m],
the end e�ector position E = (Ex, Ey) = (0.1498 [m], 0.3355 [m]), the
angles [θ1, θ2, θ3] = [120◦,−100◦,−60◦] and the maximum torques in
the actuated joints τ1max = τ2max = τ3max = ± 10 [Nm].

As previously discussed (Sections 3.2 and 3.2), the maximum
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force at the manipulator end e�ector is a function of the direction of
the force (θ) and the prescribed moment (Mz). Graphical results were
�rstly obtained using the proposed modi�ed scaling factor method with
a prescribed moment Mz = 0 [Nm] and varying the θ angle within the
interval [0◦, 360◦]. This allows us to obtain a force capability polygon,
as shown in Fig. 7.
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Figure 7 � Force capability polygon in a 3 DoF serial manipulator.

As shown in Section 3.2.1, it is possible to determine the in-
terval in which the moment can be modi�ed without hindering the
normal performance of the manipulator. This interval was calculated
as: [−Mmax,Mmax] = [−10 [Nm], 10 [Nm]].

By varying the value of the prescribed moment within the pre-
viously computed range of moments it is possible to obtain the force
capability polytope, as shown in Fig. 8. Note that the force capability
polytope is obtained as a set of individual force capability polygons.
In order to illustrate this, it can be observed that the force capability
polygon shown as a red-dashed line in Fig. 8, where the prescribed
moment is Mz = 0 [Nm], is the same as the force capability polygon
shown in Fig. 7.

Aditionally, in Fig. 9 are shown thee diferent force capability
polygons which prescribed moments areMz = −10 [Nm], Mz = 0 [Nm]
andMz = 10 [Nm] respectively. Such polygons are the same as the force
capability polygons shown in Fig. 8 and represented as a continuous
green line and a a red-dashed line. Observe that the force capability
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polygons with prescribed moments Mz = −10 [Nm] and Mz = 10 [Nm]
cannot apply forces in all the directions but only in a certain interval.

At this point it is important to emphasize that a force capability
polygon is not an spherical representation of all the forces and moments
at the end e�ector of the manipulator but a superposition of polar
representations that allow identify the behavior of the forces Fx and
Fy trough the imposition of a prescribed moment Mz.
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Figure 8 � Force capability polytope in a 3 DoF serial manipulator.

3.3.2 6 DoF planar serial manipulator

The schematic representation of the manipulator studied is shown
in Fig. 10. This is a planar serial manipulator with mobility equal to six
(M = 6) and with a net degree of constraint equal to three (CN = 3).
As in the last case, the statics of the manipulator was solved using
the formalism described by Davies (DAVIES, 1983c). The inverse stat-
ics solution for this manipulator can be generalized as shown in Eq.
(3.34).
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Figure 9 � Force capability polygons with di�erent prescribed moments
(Mz = −10, Mz = 0 and Mz = 10) in a 3 DoF serial manipulator.


τA1

τA2

τA3

τA4

τA5

τA6

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
a4,1 a4,2 a4,3
a5,1 a5,2 a5,3
a6,1 a6,2 a6,3

 ·
 EFx

EFy

EMz

 (3.34)
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Figure 10 � Planar serial manipulator with 6 DoF.
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The graphical results were obtained using arbitrary topological
information for the links: l1 = 0.4 [m], l2 = l3 = l4 = l5 = 0.25 [m] and
l6 = 0.15 [m], the end e�ector position E = (Ex, Ey) = (0.3200 [m], 0.5899 [m]),
the angles θ1 = 140◦, θ2 = −40◦ θ3 = −40◦, θ4 = −40◦, θ5 = −40◦ and
θ6 = −40◦ and the maximum torques in the actuated joints τ1max =
τ2max = τ3max = τ4max = τ5max = τ6max = ± 10 [Nm].

As previously discussed (Sections 3.2 and 3.2), the maximum
force at the manipulator end e�ector is a function of the direction of the
force (θ) and the prescribed moment (Mz). In order to obtain graphical
results in this study case, the proposed modi�ed scaling factor method
was used with a prescribed moment Mz = 0 [Nm] and with the θ angle
varying within the interval [0◦, 360◦]. This allows us to obtain a force
capability polygon, as shown in Fig. 11.
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Figure 11 � Force capability polygon in a 6 DoF serial manipulator.

As shown in Section 3.2.1, it is possible to determine the in-
terval in which the moment can be modi�ed without hindering the
normal performance of the manipulator. This interval was calculated
as: [−Mmax,Mmax] = [−10 Nm, 10 Nm].

By varying the value of the prescribed moment within the pre-
viously computed range of moments it is possible to obtain the force
capability polytope, as shown in Fig. 12. Note that the force capabil-
ity polytope is obtained as a set of individual force capability polygons.
In order to illustrate this, it can be observed that the force capability
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polygon shown as a red-dashed line in Fig. 12, where the prescribed
moment is Mz = 0 [Nm], is the same as the force capability polygon
shown in Fig. 11.
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Figure 12 � Force capability polytope in a 6 DoF serial manipulator.

At this point it is very important to note that the results shown
in Figs. 7 and 11 can not be directly compared since the manipulators
studied in the two cases are di�erent and their kinematic position and
orientation at the end e�ector di�er. Similarly, the results obtained in
Figs. 8 and 12 can not be directly compared.

3.3.3 4 DoF PRRR planar serial manipulator

The schematic representation of the manipulator studied is shown
in Fig. 13. This is a planar serial manipulator with mobility equal
to four (M = 4) and with a net degree of constraint equal to three
(CN = 3). The statics of the manipulator was solved using the formal-
ism described by Davies (DAVIES, 1983c). The inverse statics solution
for this manipulator can be generalized as shown in Eq. (3.35).
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Figure 13 � Planar serial manipulator with 3 DoF.


τA1

τA2

τA3

FP1

 =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
a4,1 a4,2 a4,3

 ·
 EFx

EFy

EMz

 (3.35)

The graphical results were obtained using arbitrary topological
information for the links: d1 = 0.2 [m], l1 = 0.4 [m], l2 = 0.25 [m] and
l3 = 0.15 [m], the end e�ector position E = (0.1498 [m], 0.3355 [m]),
the angles [θp, θ1, θ2, θ3] = [65◦, 120◦,−100◦,−60◦] and the maximum
torques/forces in the actuated joints τ1max = τ2max = τ3max = ± 10 [Nm]
and FPmax = ± 5 [N].

As previously discussed (Sections 3.2 and 3.2), the maximum
force at the manipulator end e�ector is a function of the direction of
the force (θ) and the prescribed moment (Mz). Graphical results were
�rstly obtained using the proposed modi�ed scaling factor method with
a prescribed moment Mz = 0 [Nm] and varying the θ angle within the
interval [0◦, 360◦]. This allows us to obtain a force capability polygon,
as shown in Fig. 14.

As shown in Section 3.2.1, it is possible to determine the in-
terval in which the moment can be modi�ed without hindering the
normal performance of the manipulator. This interval was calculated
as: [−Mmax,Mmax] = [−10 [Nm], 10 [Nm]].

By varying the value of the prescribed moment within the pre-
viously computed range of moments it is possible to obtain the force
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Figure 14 � Force capability polygon in a 4 DoF PRRR planar serial
manipulator.

capability polytope, as shown in Fig. 15. Note that the force capabil-
ity polytope is obtained as a set of individual force capability polygons.
In order to illustrate this, it can be observed that the force capability
polygon shown as a red-dashed line in Fig. 15, where the prescribed
moment is Mz = 0 [Nm], is the same as the force capability polygon
shown in Fig. 14.

Again, at this point it is important to emphasize that a force
capability polygon is not an spherical representation of all the forces
and moments at the end e�ector of the manipulator but a superposition
of polar representations that allow identify the behavior of the forces
Fx and Fy trough the imposition of a prescribed moment Mz.

3.3.4 3RRR parallel manipulator

The schematic representation of the 3RRR parallel manipulator
is shown in Fig. 16. As in the last two cases, the statics of the ma-
nipulator was solved using the formalism described by Davies (DAVIES,
1983c). The inverse statics solution for this manipulator can be gener-
alized as shown in Eq. (3.36).
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Figure 15 � Force capability polytope in a 3 DoF serial manipulator.
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Figure 16 � Schematic representation of a 3RRR parallel manipulator.
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 τA1

τA2

τA3

 =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ·
 RFx

RFy

RMz

 (3.36)

In order to validate the results, in this study the topology was
the same as that used in Nokleby et al. (NOKLEBY et al., 2005) and
Mejia et al. (MEJIA; SIMAS; MARTINS, 2014b). The graphical results
were obtained using the link lengths and platform edge lengths: l1 =
l2 = lm = 0.2 [m], lf = 0.5 [m], the manipulator end e�ector is located
at (0.25 [m], 0.144 [m]), the mobile platform is oriented at φ = 0◦ and
the maximum torque allowed in each actuated joint of the manipulator
is ± 4.2 [Nm].

To obtain the graphical results, the proposed modi�ed scaling
factor method was used with a prescribed moment Mz = 0 [Nm] and
with the θ angle varying within the interval [0◦; 360◦]. This allows us
to obtain a force capability polygon, as shown in Fig. 17
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Figure 17 � Force capability polygon in a 3RRR parallel manipulator.

As shown in Section 3.2.1, it is possible to determine the in-
terval in which the moment can be modi�ed without hindering the
normal performance of the manipulator. This interval was calculated
as: [−Mmax,Mmax] = [−8.3913 [Nm], 8.3913 [Nm]].
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Figure 18 � Force capability polytope in a 3RRR parallel manipulator.

Finally, by varying the value of the prescribed moment within the
previously computed range, it is possible to obtain the force capability
polytope, as shown in Fig. 18. Note that the force capability polytope
is obtained as a set of individual force capability polygons. In order
to illustrate this, it can be observed that the force capability polygon
shown as a red-dashed line in Fig. 18, where the prescribed moment
is Mz = 0 [Nm], is the same as the force capability polygon shown in
Fig. 17.

The results shown in Figs. 17 and 18 are the same as those ob-
tained by Nokleby (NOKLEBY et al., 2005) and Mejia (MEJIA; SIMAS;

MARTINS, 2014b) using the original scaling factor method and a dif-
ferential evolution (DE) algorithm. This allowed us to validate the
proposed modi�ed scaling factor method. The comparison showed that
the force capabilities obtained herein were exactly the same as the
reported by Nokleby et al. (NOKLEBY et al., 2005) and Mejia et al.
(MEJIA; SIMAS; MARTINS, 2014b), but an important di�erence lies in
the computing time used to obtain these results.

Using the proposed modi�ed scaling factor method, the force
capability analysis for one pose is completed in 0.099731 [s] when run-
ning on a P4 2.4 GHz computer. In comparison, on applying the ori-
ginal scaling factor method the force capability analysis for one pose
is completed in 15 [s] (ZIBIL et al., 2007), even when run on a faster
computer (a P4 3.2 GHz). The same results were obtained by Mejia
et al. (MEJIA; SIMAS; MARTINS, 2014b) using a di�erential evolution
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Table 2 � Comparison of the computing times required for di�erent
approaches to solving the force capability problem.

Method
Time needed

for one pose

Time needed

for one direction
Processor

(DE) algorithm > 5400 s > 18 s P4 2.4 GHz

Original scaling
factor method

15 s Unknown P4 3.2 GHz

Modi�ed scaling
factor method

0.099731 s 0.000311 s P4 2.4 GHz

(DE) algorithm, but with a very slow response of more than 5400 [s]
when run on a P4 2.4 GHz computer.

Another important issue with regard to the computing time of
the proposed modi�ed scaling factor method is that when the force
capability of a manipulator is evaluated in a �xed direction, the time
used in that operation is only 0.000311 [s] (again, when run on a P4
2.4 GHz computer). This response is very fast and allows us to con-
template applications that require a real-time response in terms of the
manipulation of the force, such as grasping, polishing, milling, etc. A
comparison of the computing times required to solve the force capabil-
ity problem is shown in Table 1.

This variation in the computing time required to solve the force
capability problem applying di�erent methodologies is easily explained
considering that the time needed to evaluate the mathematical func-
tions (as in the case of the proposed modi�ed scaling factor method) is,
in general, considerably less than the time required to solve the problem
using an optimization algorithm or a numerical solution which requires
several iterations or decision processes. An implicit characteristic of the
proposed modi�ed scaling factor method is that, in general, it requires
less time and e�ort to evaluate the variables involved.
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4 WRENCH CAPABILITY IN GENERAL PLANAR
PARALLEL MANIPULATORS

As previously discussed in Chapter 2, The wrench capability
of a manipulator is de�ned as the maximum wrench that can be applied
(or sustained) for a given pose, based on the limits of its actuators
(NOKLEBY et al., 2005). The wrench capability phenomenon can be
classi�ed by using several wrench capability indices which describe the
behavior of the forces and moments present at the manipulator.

One of the most important indices found in literature is the the
maximum force with a prescribed moment (Fapp) presented by Firmani
et al. If this prescribed moment is zero, it yields a pure force analysis.
For a given direction, the maximum force that can be applied with zero
moment will be denoted as Fm (WEIHMANN; MARTINS; COELHO, 2011).

The principal aim of this chapter is to present generalized math-
ematical closed-form solutions to obtain the maximum force with a
prescribed moment Fapp in planar redundantly and not-redundantly
actuated mechanisms and manipulators with a net degree of constraint
equal to three, four, �ve and six (CN = 3, CN = 4, CN = 5, CN = 6).
The proposed mathematical models are obtained applying classical op-
timization methods, considering the cases in which the net degree of
constraint is equal to the number of actuated joints in the mechanism
or manipulator. The mathematical closed form solutions presented in
this chapter together with the modi�ed scaling factor method presented
in Chapter 3. are the main results obtained in this thesis. In robotics,
closed-form solutions are often very desirable, because they are faster
than numerical solutions and readily identify all possible solutions (SI-
CILIANO; KHATIB, 2008).

The novelty of the study described herein lies in the fact that
our main results are not methods or numerical algorithms, but math-
ematical closed-form solutions to obtain the force capability in planar
redundantly-actuated mechanisms and manipulators with a net degree
of constraint equal to three, four, �ve and six (CN = 3, CN = 4,
CN = 5, CN = 6). An equation is said to be a closed-form solution if
it solves a given problem in terms of functions and mathematical oper-
ations from a given generally-accepted set (CHOW, 1999). This means
that the mathematical closed form solutions reported in this chapter
are functions that can be used directly without the use of a method,
numerical algorithm or optimization process, implying that their use
represent simpler, faster and more direct solutions to obtain the force
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capability of manipulators compared with other solutions for the same
problem found in literature. To validate the mathematical closed-form
solutions proposed in this chapter �ve study cases will be studied in
Section 4.8.

4.1 STATIC MODELS OF PARALLEL MANIPULATORS

In the static analysis of manipulators, the goal is to determine
the force and moment requirements for the joints in relation to the
wrenches applied at the end e�ector. It is possible to apply forces
and moments at the joints of the mechanism to analyze the wrenches
obtained at the end e�ector, or to apply external wrenches at the end
e�ector to calculate the forces and moments required at the joints to
balance these external forces.

There are several methodologies which allow us to obtain a com-
plete static analysis of manipulators; however, in this thesis the formal-
ism presented by Davies (DAVIES, 1983c) is used as the primary math-
ematical tool to analyze the mechanisms statically. In the present
study, the Davies method was used because the obtention of the static
model of a manipulator or mechanism is simple, easily adaptable and
it is not necessary to use a pseudo-inverse as in other methodologies.
Additionally, the Davies method together with the proposed mathem-
atical closed-form solutions, constitute a powerful tool that can be used
in order to solve the force capability problem in redundantly and not-
redundantly actuated parallel manipulators with a net degree of con-
straint equal to three, four, �ve and six (CN = 3, CN = 4, CN = 5,
CN = 6). for more information about the Davies method reader can
review Appendix B where this method was studied.

In parallel planar manipulators, once the Davies method has
been applied in order to obtain its static model, it is possible to rep-
resent the wrenches at the end e�ector (Fx, Fy,Mz) as a generalized
function of a coe�cient matrix (A3×CN

) and the N primary actions
(τ1, τ2, ..., τN ), as shown in Eq. (4.1). In order to better understand
this idea, consider for example the parallel manipulators shown in Fig.
19.

 Fx

Fy

Mz

 =

 a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
a3,1 a3,2 · · · a3,N

 ·


τ1
τ2
...
τN

 (4.1)
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Figure 19 � (a). Non-Redundantly-actuated 3RRR planar parallel ma-
nipulator (CN = 3). (b). Redundantly-actuated 4RRR planar parallel
manipulator (CN = 4). (c). Redundantly-actuated 5RRR planar par-
allel manipulator (CN = 5). (d). Redundantly-actuated 6RRR planar
parallel manipulator (CN = 6).

In planar manipulators with CN = 3 like the 3RRR parallel
manipulator shown in Fig. 19(a), once the Davies method has been
applied in order to obtain its static model, it is possible to represent
the wrenches at the end e�ector (Fx, Fy,Mz) as a generalized function
of a coe�cient matrix (A3×3) and the three primary actions (τ1, τ2, τ3),
as shown in Eq. (4.2). In a similar way, in planar manipulators with
CN = 4 like the 4RRR parallel manipulator shown in Fig. 19(b), once
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the Davies method has been applied in order to obtain its static model,
it is possible to represent the wrenches at the end e�ector (Fx, Fy,Mz)
as a generalized function of a coe�cient matrix (A3×4) and the four
primary actions (τ1, τ2, τ3, τ4) , as shown in Eq. (4.3). In manipulators
with CN = 5 like the 5RRR parallel manipulator shown in Fig. 19(c),
the wrenches at the end e�ector (Fx, Fy,Mz) can be represented static-
ally by using the Davies method as a generalized function of a coe�cient
matrix (A3×5) and the �ve primary actions (τ1, τ2, τ3, τ4, τ5) as shown
in Eq. (4.4). Finally, manipulators with CN = 6 like the 6RRR paral-
lel manipulator shown in Fig. 19(d), can have the wrenches at the end
e�ector (Fx, Fy,Mz) represented as a generalized function of a coe�-
cient matrix (A3×6) and the six primary actions (τ1, τ2, τ3, τ4, τ5, τ6) as
shown in Eq. (4.5).

At this point it is very important to emphasize that although
only especi�c models were shown for parallel manipulators with CN =
3, CN = 4, CN = 5 and CN = 6, Eq. 4.1 generalizes the static behavior
of any parallel manipulator with CN ≥ 3. Fx

Fy

Mz

 =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ·
 τ1
τ2
τ3

 (4.2)

 Fx

Fy

Mz

 =

 a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4

 ·

τ1
τ2
τ3
τ4

 (4.3)

 Fx

Fy

Mz

 =

 a1,1 a1,2 a1,3 a1,4 a1,5
a2,1 a2,2 a2,3 a2,4 a2,5
a3,1 a3,2 a3,3 a3,4 a3,5

 ·

τ1
τ2
τ3
τ4
τ5

 (4.4)
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 Fx

Fy

Mz

 =

 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6
a2,1 a2,2 a2,3 a2,4 a2,5 a2,6
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6

 ·

τ1
τ2
τ3
τ4
τ5
τ6

 (4.5)

4.2 OPTIMIZATION OF THE FORCE CAPABILITY IN MANIPU-
LATORS.

The principal aim of this chapter is to present generalized math-
ematical closed-form solutions to obtain the maximum force with a
prescribed moment (Fapp) in manipulators with a net degree of con-
straint equal to three, four, �ve and six (CN = 3, CN = 4, CN = 5,
CN = 6). In other words, the force capability optimization problem is
de�ned as the maximization of the force magnitude with a given dir-
ection and with a prescribed moment at the end e�ector in parallel
manipulators satisfying the conditions CN = 3, CN = 4, CN = 5 or
CN = 6. This condition allow us to think in a solution based in the
optimization methods presented in Appendix C.

In this section the procedure to obtain the mathematical closed-
form solutions de�ning the maximum force with a prescribed moment
(Fapp) in manipulators with CN = 3 is shown in detail, and the res-
ulting closed-form solution obtained for this kind of manipulators by
using this procedure will be shown in Section 4.4.

The optimization process used to obtain the mathematical closed-
form solutions for manipulators with CN = 4, CN = 5 and CN = 6
is very similar to such as used in in manipulators with CN = 3, and
because of this, only the closed-form solutions for this kind of manipu-
lators will be presented in sections 4.5, 4.6 and 4.7 in order to exemplify.
Manipulators with CN > 6 can have their mathematical closed form
solutions obtained in a similar way as in manipulators with CN = 3,
CN = 4, CN = 5 and CN = 6, however in this study will be not
included.
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4.3 FORCE CAPABILITY OPTIMIZATION IN MANIPULATORS
WITH CN = 3

In order to solve the force capability problem in parallel manipu-
lators with CN = 3, the �rst consideration that must take into account
is that the direction of the application of the force must be known.
The imposition of a force direction allows us to determine the relations
between the forces Fx and Fy at the manipulator end e�ector, as shown
in Fig. 20. These relations can be expressed mathematically by Eqs.
(4.6) and (4.7).

Fx

Fy
F

θ

Figure 20 � Prescribed force direction at the manipulator end e�ector

F =

√
Fx

2 + Fy
2 (4.6)

Fy = Fx tan(θ) (4.7)

Equations. (4.6) and (4.7) can be rewritten with the substitu-
tion of the elements in Eq. (4.2), as shown in Eqs. (4.8) and (4.9),
respectively.

F =
√

(a1,1τ1 + a1,2τ2 + a1,3τ3)2 + (a2,1τ1 + a2,2τ2 + a2,3τ3)2 (4.8)

ka(θ)τ1 + kb(θ)τ2 + kc(θ)τ3 = 0 (4.9)

where:
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ka(θ) = a2,1 − a1,1 tan(θ) (4.10)

kb(θ) = a2,2 − a1,2 tan(θ) (4.11)

kc(θ) = a2,3 − a1,3 tan(θ) (4.12)

The formulation of the force capability optimization problem
can be generalized as shown in Eqs. (4.13) to (4.18). For conveni-
ence, the objective function is represented in Eq. (4.13) as the negative
of the square of the force, in order to maximize the force. Equation
(4.14) represents the equality constraint function of the force direction.
Equation (4.180) represents the equality constraint function of the pre-
scribed moment (Miz ). Equations (4.16), (4.17) and (4.18) represent
the inequality constraint functions of the maximum admissible torque
in each actuated joint τ1, τ2 and τ3.

minimize : f(τ1, τ2, τ3) = −F 2 = −
(
F 2
x + F 2

y

)
= . . .

. . . = −
(
(a1,1τ1 + a1,2τ2 + a1,3τ3)

2 + (a2,1τ1 + a2,2τ2 + a2,3τ3)
2) (4.13)

subject to : h1(τ1, τ2, τ3) : ka(θ)τ1 + kb(θ)τ2 + kc(θ)τ3 = 0 (4.14)

h2(τ1, τ2, τ3) : a3,1τ1 + a3,2τ2 + a3,3τ3 −Miz = 0(4.15)

g1(τ1) : −τ1max 6 τ1 6 τ1max (4.16)

g2(τ2) : −τ2max 6 τ2 6 τ2max (4.17)

g3(τ3) : −τ3max 6 τ3 6 τ3max (4.18)

Note that Eqs. (4.16), (4.17) and (4.18) represent six inequality
constraints, because each equation can be decomposed into two inde-
pendent inequality constraints (e.g. Eq. (4.16) can be decomposed into
g1a(τ1) : −τ1max − τ1 6 0 and g1b(τ1) : τ1 − τ1max 6 0).

To solve the force capability optimization problem it is neces-
sary to de�ne a Lagrangian function as a combination of the objective
function, the equality constraint functions, the inequality constraint
functions, the Lagrange multipliers and the slack variables as shown in
deatil in Appendix C.

For convenience, in this chapter the Lagrange multipliers for the
equality constraints are represented as λ1 and λ2, the Lagrange mul-
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tipliers for the inequality constraints are represented as µ1, ..., µ6 and
the slack variables are represented as s1, ..., s6. Equation (4.19) shows
the Lagrangian function used to solve the Fapp optimization problem
herein.

L = −
(
krτ1

2 + ksτ2
2 + ktτ3

2 + kuτ1τ2 + kvτ1τ3 + kwτ2τ3
)
+ . . .

. . .+λ1 [ka(θ)τ1 + kb(θ)τ2 + kc(θ)τ3]+λ2 [a3,1τ1 + a3,2τ2 + a3,3τ3 −Miz ]+. . .

. . .+ µ1

[
−τ1max − τ1 + s1

2]+ µ2

[
τ1 − τ1max + s2

2]+ . . .

. . .+ µ3

[
−τ2max − τ2 + s3

2]+ µ4

[
τ2 − τ2max + s4

2]+ . . .

. . .+ µ5

[
−τ3max − τ3 + s5

2]+ µ6

[
τ3 − τ3max + s6

2] (4.19)

where:

kr = a1,1
2 + a2,1

2 (4.20)

ks = a1,2
2 + a2,2

2 (4.21)

kt = a1,3
2 + a3,3

2 (4.22)

ku = 2a1,1a1,2 + 2a2,1a2,2 (4.23)

kv = 2a1,1a1,3 + 2a2,1a2,3 (4.24)

kw = 2a1,2a1,3 + 2a2,2a2,3 (4.25)

Di�erentiating the Lagrangian function shown in Eq.(4.19) with respect
to τ , λ, µ and s, Eqs. (4.26) to (4.42) are obtained. These equations
allow us to construct a mathematical system whose solution will solve
the force capability optimization problem.

The partial derivatives of the Lagrangian (L) as a function of
the actuated joints (τ1, τ2 and τ3) are obtained as:

∂L
∂τ1

= − (2krτ1 + kuτ2 + kvτ3) + λ1ka(θ) + λ2a3,1 − µ1 + µ2 = 0 (4.26)

∂L
∂τ2

= − (2ksτ2 + kuτ1 + kwτ3) + λ1kb(θ) + λ2a3,2 − µ3 + µ4 = 0 (4.27)

∂L
∂τ3

= − (2ktτ3 + kvτ1 + kwτ2) + λ1kc(θ) + λ2a3,3 − µ5 + µ6 = 0 (4.28)
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The partial derivatives of the Lagrangian (L) as a function of the
Lagrange multipliers for equality constraints (λ1 and λ2) are obtained
as:

∂L
∂λ1

= ka(θ)τ1 + kb(θ)τ2 + kc(θ)τ3 = 0 (4.29)

∂L
∂λ2

= a3,1τ1 + a3,2τ2 + a3,3τ3 −Miz = 0 (4.30)

The partial derivatives of the Lagrangian (L) as a function of
the Lagrange multipliers for inequality constraints (µ1, µ2, µ3, µ4, µ1

and µ6) are obtained as:

∂L
∂µ1

= s1
2 − τ1max − τ1 = 0 (4.31)

∂L
∂µ2

= s2
2 − τ1max + τ1 = 0 (4.32)

∂L
∂µ3

= s3
2 − τ2max − τ2 = 0 (4.33)

∂L
∂µ4

= s4
2 − τ2max + τ2 = 0 (4.34)

∂L
∂µ5

= s5
2 − τ3max − τ3 = 0 (4.35)

∂L
∂µ6

= s6
2 − τ3max + τ3 = 0 (4.36)

Finally, the partial derivatives of the Lagrangian (L) as a func-
tion of the slack variables (s1, s2, s3, s4, s1 and s6) are obtained as:

∂L
∂s1

= 2s1µ1 = 0 (4.37)

∂L
∂s2

= 2s2µ2 = 0 (4.38)

∂L
∂s3

= 2s3µ3 = 0 (4.39)

∂L
∂s4

= 2s4µ4 = 0 (4.40)
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∂L
∂s5

= 2s5µ5 = 0 (4.41)

∂L
∂s6

= 2s6µ6 = 0 (4.42)

The mathematical system shown in Eqs. (4.26) to (4.42) is solved
through the imposition of hypothetical values for sn and µn satisfying
the conditions shown in Eqs. (4.37) to (4.42), but avoiding con�icting
solutions. The case in which s1 = 0 and s2 = 0 can be considered
as an example of such con�icting solutions, because although they are
possible solutions for Eqs. (4.37) and (4.38), the solutions obtained
for Eqs. (4.31) and (4.32), where τ1 = −τ1max and τ1 = τ1max, are
physically impossible to put into practice because the maximum posit-
ive torque and the maximum negative torque cannot be applied in an
actuator at the same time.

4.4 MATHEMATICAL CLOSED-FORM SOLUTION TOOBTAIN THE
FORCE CAPABILITY IN MANIPULATORS WITH CN = 3

In this section, one of the main results obtained in this study is
presented. First, the closed-form solution to obtain the force capability
in mechanisms and manipulators with CN = 3 is shown; then, a closed-
form solution to obtain the limits within which the prescribed moment
at the manipulator end e�ector can be changed is presented.

The mathematical closed-form solution to obtain the force cap-
ability in manipulators with CN = 3 presented in this section is ob-
tained from the solution of the mathematical system shown in Eqs.
(4.26) to (4.42). This solution allows us to obtain the maximum force
with a prescribed moment (Fapp) in planar manipulators with CN = 3
as a function of the desired force direction (θ) and the prescribed mo-
ment (Miz ) at the end e�ector of the manipulator.

The mathematical closed-form solution is shown in Eqs. (4.43)
to (4.53) and represents one of the most important results obtained
in this study. It should be noted that the nine kinematic variables
(a1,1, ..., a3,3) were obtained from the solution of the direct static prob-
lem presented in Eq. (4.2), and the terms ka(θ), kb(θ) and kc(θ) were
previously obtained as shown in Eqs. (4.10), (4.11) and (4.12).
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Fapp(θ,Miz ) = max[fe(−τ1max, τ2, τ3) · kkt1; fe(τ1max, τ2, τ3) · kkt1; · · ·
· · · fe(τ1,−τ2max, τ3) · kkt2; fe(τ1, τ2max, τ3) · kkt2; · · ·

· · · fe(τ1, τ2,−τ3max) · kkt3; fe(τ1, τ2, τ3max) · kkt3] (4.43)

where

fe(τ1, τ2, τ3) =
(
(a1,1τ1 + a1,2τ2 + a1,3τ3)

2 + (a2,1τ1 + a2,2τ2 + a2,3τ3)
2) 1

2

(4.44)

kkt1 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ3max ≤ τ3 ≤ τ3max)
0 otherwise

(4.45)

kkt2 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ3max ≤ τ3 ≤ τ3max)
0 otherwise

(4.46)

kkt3 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ3max ≤ τ3 ≤ τ3max)
0 otherwise

(4.47)

In this solution, Eq. (4.43) is represented as the maximum value
of six terms. Each term in Eq. (4.43) is obtained as the product of
Eq. (4.44) (evaluated with di�erent values of τ1, τ2 and τ3) and a
penalization term (kktn) as shown in Eqs. (4.45) to (4.47).

To evaluate the �rst and second terms in Eq. (4.43), the com-
ponents τ2 and τ3 need to be obtained as a function of τ1 (using −τ1max

and τ1max, respectively), Miz and θ using Eqs. (4.48) and (4.49). To
evaluate the third and fourth terms in Eq. (4.43), the components
τ1 and τ3 need to be obtained as a function of τ2 (using −τ2max and
τ2max, respectively), Miz and θ using Eqs. (4.50) and (4.51). Also, to
evaluate the �fth and sixth terms in Eq. (4.43), the components τ1 and
τ2 need to be obtained as a function of τ3 (using −τ3max and τ3max,
respectively), Miz and θ using Eqs. (4.52) and (4.53).
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τ2(τ1,Miz , θ) =
kc(θ)Miz + (a3,2ka(θ)− a3,1kc(θ))τ1

a3,2kc(θ)− a3,2kb(θ)
(4.48)

τ3(τ1,Miz , θ) =
(a3,1kb(θ)− a3,2ka(θ))τ1 − kb(θ)Miz

a3,2kc(θ)− a3,2kb(θ)
(4.49)

τ1(τ2,Miz , θ) =
kc(θ)Miz + (a3,2kb(θ)− a3,2kc(θ))τ2

a3,1kc(θ)− a3,2ka(θ)
(4.50)

τ3(τ2,Miz , θ) =
(a3,2ka(θ)− a3,1kb(θ))τ2 − ka(θ)Miz

a3,1kc(θ)− a3,2ka(θ)
(4.51)

τ1(τ3,Miz , θ) =
kb(θ)Miz + (a3,2kc(θ)− a3,2kb(θ))τ3

a3,1kb(θ)− a3,2ka(θ)
(4.52)

τ2(τ3,Miz , θ) =
(a3,2ka(θ)− a3,1kc(θ))τ3 − ka(θ)Miz

a3,1kb(θ)− a3,2ka(θ)
(4.53)

4.4.1 Mathematical closed-form solution for the maximum pre-
scribed moment (Mmax):

As previously shown in Eq. (4.43), the maximum force at the
manipulator end e�ector is a function of the direction of the force (θ)
and the prescribed moment (Miz ). But while the direction of the force
(θ) can be prescribed arbitrarily within the interval [0; 2π] rad, the
moment at the manipulator end e�ector (Miz ) can only be prescribed
within the interval [−Mmax;Mmax]. The value of Mmax can be ob-
tained using Eq. (4.54). This equation represents other important
result obtained in this study.

Mmax = max[Mm(τ1max, τ2, τ3);Mm(τ1, τ2max, τ3);Mm(τ1, τ2, τ3max)]
(4.54)

where

Mm = |a3,1τ1 + a3,2τ2 + a3,3τ3| (4.55)

Eq. (4.54) is represented as the maximum value of three terms.
Each term in Eq. (4.54) is obtained evaluating Eq. (4.55) with di�erent
values of τ1 , τ2 and τ3. To evaluate the �rst term in Eq. (4.54), the
components τ2 and τ3 need to be obtained as a function of τ1 using
Eqs. (4.56) and (4.57). To evaluate the second term in Eq. (4.54), the
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components τ1 and τ3 need to be obtained as a function of τ2 using
Eqs. (4.58) and (4.59). Finally, to evaluate the third term in Eq.
(4.54), components τ1 and τ2 need to be obtained as a function of τ3
using Eqs. (4.60) and (4.61).

τ2(τ1) =
τ1(a1,3a2,1 − a1,1a2,3)
a1,2a2,3 − a1,3a2,2

(4.56)

τ3(τ1) =
τ1(a1,1a2,2 − a1,2a2,1)
a1,2a2,3 − a1,3a2,2

(4.57)

τ1(τ2) =
τ2(a1,3a2,2 − a1,2a2,3)
a1,1a2,3 − a1,3a2,1

(4.58)

τ3(τ2) =
τ2(a1,2a2,1 − a1,1a2,2)
a1,1a2,3 − a1,3a2,1

(4.59)

τ1(τ3) =
τ3(a1,2a2,3 − a1,3a2,2)
a1,1a2,2 − a1,2a2,1

(4.60)

τ2(τ3) =
τ3(a1,3a2,1 − a1,1a2,3)
a1,1a2,2 − a1,2a2,1

(4.61)

The interval [−Mmax;Mmax] represents the possible values to
which the prescribed moment at the manipulator end e�ector can be
changed and this is the second part of the proposed mathematical
closed-form solution to obtain the force capability in planar manip-
ulators with CN = 3.

4.5 MATHEMATICAL CLOSED-FORM SOLUTION TOOBTAIN THE
FORCE CAPABILITY IN MANIPULATORS WITH CN = 4

In a similar way as in section 4.4, the mathematical closed-form
solution to obtain the force capability in manipulators with CN = 4
can be obtained by using an optimization process. In this section the
mathematical closed-form solution to obtain the force capability in ma-
nipulators with CN = 4 is presented directly as shown in Eqs. (4.62)
to (4.81).
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Fapp(θ,Miz ) = max[fe(−τ1max,−τ2max, τ3, τ4) · kkt1; · · ·
· · · fe(−τ1max, τ2max, τ3, τ4) · kkt1; fe(τ1max,−τ2max, τ3, τ4) · kkt1; · · ·
· · · fe(τ1max, τ2max, τ3, τ4) · kkt1; fe(−τ1max, τ2,−τ3max, τ4) · kkt2 · · ·
· · · fe(−τ1max, τ2, τ3max, τ4) · kkt2; fe(τ1max, τ2,−τ3max, τ4) · kkt2; · · ·
· · · fe(τ1max, τ2, τ3max, τ4) · kkt2; fe(−τ1max, τ2, τ3,−τ4max) · kkt3; · · ·
· · · fe(−τ1max, τ2, τ3, τ4max) · kkt3; fe(τ1max, τ2, τ3,−τ4max) · kkt3; · · ·
· · · fe(τ1max, τ2, τ3, τ4max) · kkt3; fe(τ1,−τ2max,−τ3max, τ4) · kkt4; · · ·
· · · fe(τ1,−τ2max, τ3max, τ4) · kkt4; fe(τ1, τ2max,−τ3max, τ4) · kkt4; · · ·
· · · fe(τ1, τ2max, τ3max, τ4) · kkt4; fe(τ1,−τ2max, τ3,−τ4max) · kkt5; · · ·
· · · fe(τ1,−τ2max, τ3, τ4max) · kkt5; fe(τ1, τ2max, τ3,−τ4max) · kkt5; · · ·
· · · fe(τ1, τ2max, τ3, τ4max) · kkt5; fe(τ1, τ2,−τ3max,−τ4max) · kkt6; · · ·
· · · fe(τ1, τ2,−τ3max, τ4max) · kkt6; fe(τ1, τ2, τ3max,−τ4max) · kkt6; · · ·

· · · fe(τ1, τ2, τ3max, τ4max) · kkt6] (4.62)

where

fe(τ1, τ2, τ3, τ4) = ((a1,1τ1 + a1,2τ2 + a1,3τ3 + a1,4τ4)
2 + · · ·

· · ·+ (a2,1τ1 + a2,2τ2 + a2,3τ3 + a2,4τ4)
2)

1
2 (4.63)

kkt1 =

{
1 ⇔ (−τ3max ≤ τ3 ≤ τ3max) ∧ (−τ4max ≤ τ4 ≤ τ4max)
0 otherwise

(4.64)

kkt2 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ4max ≤ τ4 ≤ τ4max)
0 otherwise

(4.65)

kkt3 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ3max ≤ τ3 ≤ τ3max)
0 otherwise

(4.66)

kkt4 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ4max ≤ τ4 ≤ τ4max)
0 otherwise

(4.67)



89

kkt5 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ3max ≤ τ3 ≤ τ3max)
0 otherwise

(4.68)

kkt6 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ2max ≤ τ2 ≤ τ2max)
0 otherwise

(4.69)

In this solution, Eq. (4.62) is represented as the maximum value
of 24 terms. Each term in Eq. (4.62) is obtained as the product of
Eq. (4.63) (evaluated with di�erent values of τ1, τ2, τ3 and τ4) and a
penalization term (kktn) as shown in Eqs. (4.64) to (4.69).

To evaluate the 24 terms in Eq. (4.62), the components τ1, τ2,
τ3 and τ4 need to be obtained as a function of the constant values
of saturation (τnmax), the desired moment at the end e�ector of the
manipulator (Miz ) and the desired angle of application of the force (θ)
using Eqs. (4.70) to (4.81).

τ1(τ3, τ4,Miz , θ) =
(Miz − τ3 a3,3 − τ4 a3,4) vb(θ) + (τ3 vc(θ) + τ4 vd(θ)) a3,2

a3,1 vb(θ)− a3,2 va(θ)
(4.70)

τ2(τ3, τ4,Miz , θ) =
(Miz − τ3 a3,3 − τ4 a3,4) va(θ) + (τ3 vc(θ) + τ4 vd(θ)) a3,1

a3,2 va(θ)− a3,1 vb(θ)
(4.71)

τ1(τ2, τ4,Miz , θ) =
(Miz − τ2 a3,2 − τ4 a3,4) vc(θ) + (τ2 vb(θ) + τ4 vd(θ)) a3,3

a3,1 vc(θ)− a3,3 va(θ)
(4.72)

τ3(τ2, τ4,Miz , θ) =
(Miz − τ2 a3,2 − τ4 a3,4) va(θ) + (τ2 vb(θ) + τ4 vd(θ)) a3,1

a3,3 va(θ)− a3,1 vc(θ)
(4.73)

τ1(τ2, τ3,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3) vd(θ) + (τ2 vb(θ) + τ3 vc(θ)) a3,4

a3,1 vd(θ)− a3,4 va(θ)
(4.74)
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τ4(τ2, τ3,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3) va(θ) + (τ2 vb(θ) + τ3 vc(θ)) a3,1

a3,4 va(θ)− a3,1 vd(θ)
(4.75)

τ2(τ1, τ4,Miz , θ) =
(Miz − τ1 a3,1 − τ4 a3,4) vc(θ) + (τ1 va(θ) + τ4 vd(θ)) a3,3

a3,2 vc(θ)− a3,3 vb(θ)
(4.76)

τ3(τ1, τ4,Miz , θ) =
(Miz − τ1 a3,1 − τ4 a3,4) vb(θ) + (τ1 va(θ) + τ4 vd(θ)) a3,2

a3,3 vb(θ)− a3,2 vc(θ)
(4.77)

τ2(τ1, τ3,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3) vd(θ) + (τ1 va(θ) + τ3 vc(θ)) a3,4

a3,2 vd(θ)− a3,4 vb(θ)
(4.78)

τ4(τ1, τ3,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3) vb(θ) + (τ1 va(θ) + τ3 vc(θ)) a3,2

a3,4 vb(θ)− a3,2 vd(θ)
(4.79)

τ3(τ1, τ2,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2) vd(θ) + (τ1 va(θ) + τ2 vb(θ)) a3,4

a3,3 vd(θ)− a3,4 vc(θ)
(4.80)

τ4(τ1, τ2,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2) vc(θ) + (τ1 va(θ) + τ2 vb(θ)) a3,3

a3,4 vc(θ)− a3,3 vd(θ)
(4.81)

The mathematical closed-form solution to obtain the force cap-
ability in manipulators with CN = 4 presented herein represents an-
other important result obtained in this study. It should be noted that
the twelve kinematic variables (a1,1, ..., a3,4) were obtained from the
solution of the direct static problem presented in Eq. (4.3), and the
terms va(θ), vb(θ), vc(θ) and vd(θ) are obtained as shown in Eqs. (4.82)
to (4.85). At this point it is important to highlight that although vari-
ables va(θ) to vd(θ) appeared previously in sections 4.3 and 4.4, in
this section these variables assume new values as shown in Eqs. (4.82)
to (4.85) in order to solve the force capability in manipulators with
CN = 4.
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va(θ) = a2,1 − a1,1 tan(θ) (4.82)

vb(θ) = a2,2 − a1,2 tan(θ) (4.83)

vc(θ) = a2,3 − a1,3 tan(θ) (4.84)

vd(θ) = a2,4 − a1,4 tan(θ) (4.85)

4.6 MATHEMATICAL CLOSED-FORM SOLUTION TOOBTAIN THE
FORCE CAPABILITY IN MANIPULATORS WITH CN = 5

In a similar way as in section 4.4 and 4.5, the mathematical
closed-form solution to obtain the force capability in manipulators with
CN = 5 can be obtained by using an optimization process. In this
section the mathematical closed-form solution to obtain the force cap-
ability in manipulators with CN = 5 is presented directly as shown in
Eqs. (4.86) to (4.122).

Fapp(θ,Miz ) = max[fe1(τ1, τ2, τ3, τ4(τ1, τ2, τ3), τ5(τ1, τ2, τ3)) · kkt1; · · ·
· · · fe2(τ1, τ2, τ3(τ1, τ2, τ4), τ4, τ5(τ1, τ2, τ4)) · kkt2; · · ·
· · · fe3(τ1, τ2(τ1, τ3, τ4), τ3, τ4, τ5(τ1, τ3, τ4)) · kkt3; · · ·
· · · fe4(τ1(τ2, τ3, τ4), τ2, τ3, τ4, τ5(τ2, τ3, τ4)) · kkt4; · · ·
· · · fe5(τ1, τ2, τ3(τ1, τ2, τ5), τ4(τ1, τ2, τ5), τ5) · kkt5; · · ·
· · · fe6(τ1, τ2(τ1, τ3, τ5), τ3, τ4(τ1, τ3, τ5), τ5) · kkt6; · · ·
· · · fe7(τ1(τ2, τ3, τ5), τ2, τ3, τ4(τ2, τ3, τ5), τ5) · kkt7; · · ·
· · · fe8(τ1, τ2(τ1, τ4, τ5), τ3(τ1, τ4, τ5), τ4, τ5) · kkt8; · · ·
· · · fe9(τ1(τ2, τ4, τ5), τ2, τ3(τ2, τ4, τ5), τ4, τ5) · kkt9; · · ·

· · · fe10(τ1(τ3, τ4, τ5), τ2(τ3, τ4, τ5), τ3, τ4, τ5) · kkt10] (4.86)

where

fen(τ1, τ2, τ3, τ4, τ5) = ((a1,1τ1 + a1,2τ2 + a1,3τ3 + a1,4τ4 + a1,5τ5)
2 + · · ·

· · ·+ (a2,1τ1 + a2,2τ2 + a2,3τ3 + a2,4τ4 + a2,5τ5)
2)

1
2 (4.87)
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kkt1 =

{
1 ⇔ (−τ4max ≤ τ4 ≤ τ4max) ∧ (−τ5max ≤ τ5 ≤ τ5max)
0 otherwise

(4.88)

kkt2 =

{
1 ⇔ (−τ3max ≤ τ3 ≤ τ3max) ∧ (−τ5max ≤ τ5 ≤ τ5max)
0 otherwise

(4.89)

kkt3 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ5max ≤ τ5 ≤ τ5max)
0 otherwise

(4.90)

kkt4 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ5max ≤ τ5 ≤ τ5max)
0 otherwise

(4.91)

kkt5 =

{
1 ⇔ (−τ3max ≤ τ3 ≤ τ3max) ∧ (−τ4max ≤ τ4 ≤ τ4max)
0 otherwise

(4.92)

kkt6 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ4max ≤ τ4 ≤ τ4max)
0 otherwise

(4.93)

kkt7 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ4max ≤ τ4 ≤ τ4max)
0 otherwise

(4.94)

kkt8 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ3max ≤ τ3 ≤ τ3max)
0 otherwise

(4.95)

kkt9 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ3max ≤ τ3 ≤ τ3max)
0 otherwise

(4.96)
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kkt10 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ2max ≤ τ2 ≤ τ2max)
0 otherwise

(4.97)

In this solution, Eq. (4.86) is represented as the maximum value
of 10 terms. Each term in Eq. (4.86) is obtained as the product of Eq.
(4.87) evaluated with di�erent values of saturation for τ1, τ2, τ3, τ4 and
τ5 and a penalization term (kktn) as shown in Eqs. (4.88) to (4.97).
In order to exemplify the choose of the di�erent values of saturation
for the actuated joints τn, consider the �rst element in Eq. (4.86),
where fe1(τ1, τ2, τ3, τ4(τ1, τ2, τ3), τ5(τ1, τ2, τ3)) is a composed function
that needs to be evaluated by all the possible saturation values of τ1,
τ2 and τ3. The possible values of saturation for τ1, τ2 and τ3 are shown
in Table. 1, and the elements τ4 and τ5 need to be calculated as a
function of these saturated elements and the imposed moment (Miz )
and the desired direction (θ) as shown in Eqs. (4.116) and (4.117). The
same process needs to be followed in order to evaluate all the elements
in Eq. (4.86) but saturating the independent values τn for each element
Fen in these equation.

Case τ1 τ2 τ3

1 −τ1max −τ2max −τ3max

2 −τ1max −τ2max τ3max

3 −τ1max τ2max −τ3max

4 −τ1max τ2max τ3max

5 τ1max −τ2max −τ3max

6 τ1max −τ2max τ3max

7 τ1max τ2max −τ3max

8 τ1max τ2max τ3max

Table 3 � Saturation values of τ1, τ2 and τ3 in the �rst element of Eq.
4.86.

τ1(τ3, τ4, τ5,Miz , θ) =
(Miz − τ3 a3,3 − τ4 a3,4 − τ5 a3,5) vb(θ)

a3,1 vb(θ)− a3,2 va(θ)
+ · · ·

· · ·+ (τ3 vc(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,2
a3,1 vb(θ)− a3,2 va(θ)

(4.98)
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τ2(τ3, τ4, τ5,Miz , θ) =
(Miz − τ3 a3,3 − τ4 a3,4 − τ5 a3,5) va(θ)

a3,2 va(θ)− a3,1 vb(θ)
+ · · ·

· · ·+ (τ3 vc(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,1
a3,2 va(θ)− a3,1 vb(θ)

(4.99)

τ1(τ2, τ4, τ5,Miz , θ) =
(Miz − τ2 a3,2 − τ4 a3,4 − τ5 a3,5) vc(θ)

a3,1 vc(θ)− a3,3 va(θ)
+ · · ·

· · ·+ (τ2 vb(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,3
a3,1 vc(θ)− a3,3 va(θ)

(4.100)

τ3(τ2, τ4, τ5,Miz , θ) =
(Miz − τ2 a3,2 − τ4 a3,4 − τ5 a3,5) va(θ)

a3,3 va(θ)− a3,1 vc(θ)
+ · · ·

· · ·+ (τ2 vb(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,1
a3,3 va(θ)− a3,1 vc(θ)

(4.101)

τ1(τ2, τ3, τ5,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ5 a3,5) vd(θ)

a3,1 vd(θ)− a3,4 va(θ)
+ · · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ5 ve(θ)) a3,4
a3,1 vd(θ)− a3,4 va(θ)

(4.102)

τ4(τ2, τ3, τ5,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ5 a3,5) va(θ)

a3,4 va(θ)− a3,1 vd(θ)
+ · · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ5 ve(θ)) a3,1
a3,4 va(θ)− a3,1 vd(θ)

(4.103)

τ1(τ2, τ3, τ4,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ4 a3,4) ve(θ)

a3,1 ve(θ)− a3,5 va(θ)
+ · · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ4 vd(θ)) a3,5
a3,1 ve(θ)− a3,5 va(θ)

(4.104)

τ5(τ2, τ3, τ4,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ4 a3,4) va(θ)

a3,5 va(θ)− a3,1 ve(θ)
+ · · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ4 vd(θ)) a3,1
a3,5 va(θ)− a3,1 ve(θ)

(4.105)
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τ2(τ1, τ4, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ4 a3,4 − τ5 a3,5) vc(θ)

a3,2 vc(θ)− a3,3 vb(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,3
a3,2 vc(θ)− a3,3 vb(θ)

(4.106)

τ3(τ1, τ4, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ4 a3,4 − τ5 a3,5) vb(θ)

a3,3 vb(θ)− a3,2 vc(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,2
a3,3 vb(θ)− a3,2 vc(θ)

(4.107)

τ2(τ1, τ3, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ5 a3,5) vd(θ)

a3,2 vd(θ)− a3,4 vb(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ5 ve(θ)) a3,4
a3,2 vd(θ)− a3,4 vb(θ)

(4.108)

τ4(τ1, τ3, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ5 a3,5) vb(θ)

a3,4 vb(θ)− a3,2 vd(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ5 ve(θ)) a3,2
a3,4 vb(θ)− a3,2 vd(θ)

(4.109)

τ2(τ1, τ3, τ4,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ4 a3,4) ve(θ)

a3,2 ve(θ)− a3,5 vb(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ4 vd(θ)) a3,5
a3,2 ve(θ)− a3,5 vb(θ)

(4.110)

τ5(τ1, τ3, τ4,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ4 a3,4) vb(θ)

a3,5 vb(θ)− a3,2 ve(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ4 vd(θ)) a3,2
a3,5 vb(θ)− a3,2 ve(θ)

(4.111)

τ3(τ1, τ2, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ5 a3,5) vd(θ)

a3,3 vd(θ)− a3,4 vc(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ5 ve(θ)) a3,4
a3,3 vd(θ)− a3,4 vc(θ)

(4.112)
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τ4(τ1, τ2, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ5 a3,5) vc(θ)

a3,4 vc(θ)− a3,3 vd(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ5 ve(θ)) a3,3
a3,4 vc(θ)− a3,3 vd(θ)

(4.113)

τ3(τ1, τ2, τ4,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ4 a3,4) ve(θ)

a3,3 ve(θ)− a3,5 vc(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ4 vd(θ)) a3,5
a3,3 ve(θ)− a3,5 vc(θ)

(4.114)

τ5(τ1, τ2, τ4,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ4 a3,4) vc(θ)

a3,5 vc(θ)− a3,3 ve(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ4 vd(θ)) a3,3
a3,5 vc(θ)− a3,3 ve(θ)

(4.115)

τ4(τ1, τ2, τ3,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ3 a3,3) ve(θ)

a3,4 ve(θ)− a3,5 vd(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ3 vc(θ)) a3,5
a3,4 ve(θ)− a3,5 vd(θ)

(4.116)

τ5(τ1, τ2, τ3,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ3 a3,3) vd(θ)

a3,5 vd(θ)− a3,4 ve(θ)
+ · · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ3 vc(θ)) a3,4
a3,5 vd(θ)− a3,4 ve(θ)

(4.117)

The mathematical closed-form solution to obtain the force cap-
ability in manipulators with CN = 5 presented herein represents an-
other important result obtained in this study. It should be noted that
the �fteen kinematic variables (a1,1, ..., a3,5) were obtained from the
solution of the direct static problem presented in Eq. (4.4), and the
terms va(θ), vb(θ), vc(θ), vd(θ) and ve(θ) are obtained as shown in Eqs.
(4.118) to (4.122). At this point it is important to highlight that al-
though variables va(θ) to vd(θ) appeared previously in section 4.5, in
this section these variables assume new values as shown in Eqs. (4.118)
to (4.121) in order to solve the force capability in manipulators with
CN = 5.
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va(θ) = a2,1 − a1,1 tan(θ) (4.118)

vb(θ) = a2,2 − a1,2 tan(θ) (4.119)

vc(θ) = a2,3 − a1,3 tan(θ) (4.120)

vd(θ) = a2,4 − a1,4 tan(θ) (4.121)

ve(θ) = a2,5 − a1,5 tan(θ) (4.122)

4.7 MATHEMATICAL CLOSED-FORM SOLUTION TOOBTAIN THE
FORCE CAPABILITY IN MANIPULATORS WITH CN = 6

Similarly as in Sections 4.4, 4.5 and 4.6, the mathematical closed-
form solution to obtain the force capability in manipulators with CN =
6 was obtained by using an optimization procedure. This section shows
in a direct way the mathematical closed-form solution to obtain the
force capability in manipulators with CN = 6. This mathematical
closed-form solution is presented in Eqs. (4.123) to (4.175).

Fapp(θ,Miz ) = max[fe1(τ1, τ2, τ3, τ4, τ5(τ1, τ2, τ3, τ4), τ6(τ1, τ2, τ3, τ4))·kkt1; · · ·
· · · fe2(τ1, τ2, τ3, τ4(τ1, τ2, τ3, τ5), τ5, τ6(τ1, τ2, τ3, τ5)) · kkt2; · · ·
· · · fe3(τ1, τ2, τ3(τ1, τ2, τ4, τ5), τ4, τ5, τ6(τ1, τ2, τ4, τ5)) · kkt3; · · ·
· · · fe4(τ1, τ2(τ1, τ3, τ4, τ5), τ3, τ4, τ5, τ6(τ1, τ3, τ4, τ5)) · kkt4; · · ·
· · · fe5(τ1(τ2, τ3, τ4, τ5), τ2, τ3, τ4, τ5, τ6(τ2, τ3, τ4, τ5)) · kkt5 · · ·
· · · fe6(τ1, τ2, τ3, τ4(τ1, τ2, τ3, τ6), τ5(τ1, τ2, τ3, τ6), τ6) · kkt6; · · ·
· · · fe7(τ1, τ2, τ3(τ1, τ2, τ4, τ6), τ4, τ5(τ1, τ2, τ4, τ6), τ6) · kkt7; · · ·
· · · fe8(τ1, τ2(τ1, τ3, τ4, τ6), τ3, τ4, τ5(τ1, τ3, τ4, τ6), τ6) · kkt8; · · ·
· · · fe9(τ1(τ2, τ3, τ4, τ6), τ2, τ3, τ4, τ5(τ2, τ3, τ4, τ6), τ6) · kkt9; · · ·
· · · fe10(τ1, τ2, τ3(τ1, τ2, τ5, τ6), τ4(τ1, τ2, τ5, τ6), τ5, τ6) · kkt10; · · ·
· · · fe11(τ1, τ2(τ1, τ3, τ5, τ6), τ3, τ4(τ1, τ3, τ5, τ6), τ5, τ6) · kkt11; · · ·
· · · fe12(τ1(τ2, τ3, τ5, τ6), τ2, τ3, τ4(τ2, τ3, τ5, τ6), τ5, τ6) · kkt12; · · ·
· · · fe13(τ1, τ2(τ1, τ4, τ5, τ6), τ3(τ1, τ4, τ5, τ6), τ4, τ5, τ6) · kkt13; · · ·
· · · fe14(τ1(τ2, τ4, τ5, τ6), τ2, τ3(τ2, τ4, τ5, τ6), τ4, τ5, τ6) · kkt14; · · ·
· · · fe15(τ1(τ3, τ4, τ5, τ6), τ2(τ3, τ4, τ5, τ6), τ3, τ4, τ5, τ6) · kkt15] (4.123)

where
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fen(τ1, τ2, τ3, τ4, τ5, τ6) = ((a1,1τ1+a1,2τ2+a1,3τ3+a1,4τ4+a1,5τ5+a1,6τ6)
2+· · ·

· · ·+ (a2,1τ1 + a2,2τ2 + a2,3τ3 + a2,4τ4 + a2,5τ5 + a2,6τ6)
2)

1
2 (4.124)

kkt1 =

{
1 ⇔ (−τ5max ≤ τ5 ≤ τ5max) ∧ (−τ6max ≤ τ6 ≤ τ6max)
0 otherwise

(4.125)

kkt2 =

{
1 ⇔ (−τ4max ≤ τ4 ≤ τ4max) ∧ (−τ6max ≤ τ6 ≤ τ6max)
0 otherwise

(4.126)

kkt3 =

{
1 ⇔ (−τ3max ≤ τ3 ≤ τ3max) ∧ (−τ6max ≤ τ6 ≤ τ6max)
0 otherwise

(4.127)

kkt4 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ6max ≤ τ6 ≤ τ6max)
0 otherwise

(4.128)

kkt5 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ6max ≤ τ6 ≤ τ6max)
0 otherwise

(4.129)

kkt6 =

{
1 ⇔ (−τ4max ≤ τ4 ≤ τ4max) ∧ (−τ5max ≤ τ5 ≤ τ5max)
0 otherwise

(4.130)

kkt7 =

{
1 ⇔ (−τ3max ≤ τ3 ≤ τ3max) ∧ (−τ5max ≤ τ5 ≤ τ5max)
0 otherwise

(4.131)

kkt8 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ5max ≤ τ5 ≤ τ5max)
0 otherwise

(4.132)
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kkt9 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ5max ≤ τ5 ≤ τ5max)
0 otherwise

(4.133)

kkt10 =

{
1 ⇔ (−τ3max ≤ τ3 ≤ τ3max) ∧ (−τ4max ≤ τ4 ≤ τ4max)
0 otherwise

(4.134)

kkt11 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ4max ≤ τ4 ≤ τ4max)
0 otherwise

(4.135)

kkt12 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ4max ≤ τ4 ≤ τ4max)
0 otherwise

(4.136)

kkt13 =

{
1 ⇔ (−τ2max ≤ τ2 ≤ τ2max) ∧ (−τ3max ≤ τ3 ≤ τ3max)
0 otherwise

(4.137)

kkt14 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ3max ≤ τ3 ≤ τ3max)
0 otherwise

(4.138)

kkt15 =

{
1 ⇔ (−τ1max ≤ τ1 ≤ τ1max) ∧ (−τ2max ≤ τ2 ≤ τ2max)
0 otherwise

(4.139)

In this new solution, Eq. (4.123) is represented as the maximum
value of �fteen elements where each element in these equation is ob-
tained as the product of Eq. (4.124) evaluated with di�erent values of
saturation for τ1, τ2, τ3, τ4, τ5 and τ6 and a penalization term (kktn)
as shown in Eqs. (4.125) to (4.139). In order to exemplify the choose
of the di�erent values of saturation for the actuated joints τn, consider
the �rst element in Eq. (4.123) similarly as was done in Section 4.6,
where fe1(τ1, τ2, τ3, τ4, τ5(τ1, τ2, τ3, τ4), τ6(τ1, τ2, τ3, τ4)) is a composed
function that needs to be evaluated by all the possible saturation val-
ues of τ1, τ2, τ3 and τ4. The possible values of saturation for τ1, τ2, τ3
and τ4 are shown in Table. 2, and the elements τ5 and τ6 need to be
calculated as a function of these saturated elements and the imposed
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moment (Miz ) and the desired direction (θ) as shown in Eqs. (4.168)
and (4.169). The same process needs to be followed in order to evaluate
all the elements in Eq. (4.123) but saturating the independent values
τn for each element fen in these equation.

Case τ1 τ2 τ3 τ4

1 −τ1max −τ2max −τ3max −τ4max

2 −τ1max −τ2max −τ3max τ4max

3 −τ1max −τ2max τ3max −τ4max

4 −τ1max −τ2max τ3max τ4max

5 −τ1max τ2max −τ3max −τ4max

6 −τ1max τ2max −τ3max τ4max

7 −τ1max τ2max τ3max −τ4max

8 −τ1max τ2max τ3max τ4max

9 τ1max −τ2max −τ3max −τ4max

10 τ1max −τ2max −τ3max τ4max

11 τ1max −τ2max τ3max −τ4max

12 τ1max −τ2max τ3max τ4max

13 τ1max τ2max −τ3max −τ4max

14 τ1max τ2max −τ3max τ4max

15 τ1max τ2max τ3max −τ4max

16 τ1max τ2max τ3max τ4max

Table 4 � Saturation values of τ1, τ2, τ3 and τ4 in the �rst element of
Eq. 4.123.

τ1(τ3, τ4, τ5, τ6,Miz , θ) =
(Miz − τ3 a3,3 − τ4 a3,4 − τ5 a3,5 − τ6 a3,6) vb(θ)

a3,1 vb(θ)− a3,2 va(θ)
+· · ·

· · ·+ (τ3 vc(θ) + τ4 vd(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,2
a3,1 vb(θ)− a3,2 va(θ)

(4.140)

τ2(τ3, τ4, τ5, τ6,Miz , θ) =
(Miz − τ3 a3,3 − τ4 a3,4 − τ5 a3,5 − τ6 a3,6) va(θ)

a3,2 va(θ)− a3,1 vb(θ)
+· · ·

· · ·+ (τ3 vc(θ) + τ4 vd(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,1
a3,2 va(θ)− a3,1 vb(θ)

(4.141)
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τ1(τ2, τ4, τ5, τ6,Miz , θ) =
(Miz − τ2 a3,2 − τ4 a3,4 − τ5 a3,5 − τ6 a3,6) vc(θ)

a3,1 vc(θ)− a3,3 va(θ)
+· · ·

· · ·+ (τ2 vb(θ) + τ4 vd(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,3
a3,1 vc(θ)− a3,3 va(θ)

(4.142)

τ3(τ2, τ4, τ5, τ6,Miz , θ) =
(Miz − τ2 a3,2 − τ4 a3,4 − τ5 a3,5 − τ6 a3,6) va(θ)

a3,3 va(θ)− a3,1 vc(θ)
+· · ·

· · ·+ (τ2 vb(θ) + τ4 vd(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,1
a3,3 va(θ)− a3,1 vc(θ)

(4.143)

τ1(τ2, τ3, τ5, τ6,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ5 a3,5 − τ6 a3,6) vd(θ)

a3,1 vd(θ)− a3,4 va(θ)
+· · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,4
a3,1 vd(θ)− a3,4 va(θ)

(4.144)

τ4(τ2, τ3, τ5, τ6,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ5 a3,5 − τ6 a3,6) va(θ)

a3,4 va(θ)− a3,1 vd(θ)
+· · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,1
a3,4 va(θ)− a3,1 vd(θ)

(4.145)

τ1(τ2, τ3, τ4, τ6,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ4 a3,4 − τ6 a3,6) ve(θ)

a3,1 ve(θ)− a3,5 va(θ)
+· · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ4 vd(θ) + τ6 vf (θ)) a3,5
a3,1 ve(θ)− a3,5 va(θ)

(4.146)

τ5(τ2, τ3, τ4, τ6,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ4 a3,4 − τ6 a3,6) va(θ)

a3,5 va(θ)− a3,1 ve(θ)
+· · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ4 vd(θ) + τ6 vf (θ)) a3,1
a3,5 va(θ)− a3,1 ve(θ)

(4.147)

τ1(τ2, τ3, τ4, τ5,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ4 a3,4 − τ5 a3,5) vf (θ)

a3,1 vf (θ)− a3,6 va(θ)
+· · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,6
a3,1 vf (θ)− a3,6 va(θ)

(4.148)
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τ6(τ2, τ3, τ4, τ5,Miz , θ) =
(Miz − τ2 a3,2 − τ3 a3,3 − τ4 a3,4 − τ5 a3,5) va(θ)

a3,6 va(θ)− a3,1 vf (θ)
+· · ·

· · ·+ (τ2 vb(θ) + τ3 vc(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,1
a3,6 va(θ)− a3,1 vf (θ)

(4.149)

τ2(τ1, τ4, τ5, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ4 a3,4 − τ5 a3,5 − τ6 a3,6) vc(θ)

a3,2 vc(θ)− a3,3 vb(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ4 vd(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,3
a3,2 vc(θ)− a3,3 vb(θ)

(4.150)

τ3(τ1, τ4, τ5, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ4 a3,4 − τ5 a3,5 − τ6 a3,6) vb(θ)

a3,3 vb(θ)− a3,2 vc(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ4 vd(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,2
a3,3 vb(θ)− a3,2 vc(θ)

(4.151)

τ2(τ1, τ3, τ5, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ5 a3,5 − τ6 a3,6) vd(θ)

a3,2 vd(θ)− a3,4 vb(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,4
a3,2 vd(θ)− a3,4 vb(θ)

(4.152)

τ4(τ1, τ3, τ5, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ5 a3,5 − τ6 a3,6) vb(θ)

a3,4 vb(θ)− a3,2 vd(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,2
a3,4 vb(θ)− a3,2 vd(θ)

(4.153)

τ2(τ1, τ3, τ4, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ4 a3,4 − τ6 a3,6) ve(θ)

a3,2 ve(θ)− a3,5 vb(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ4 vd(θ) + τ6 vf (θ)) a3,5
a3,2 ve(θ)− a3,5 vb(θ)

(4.154)

τ5(τ1, τ3, τ4, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ4 a3,4 − τ6 a3,6) vb(θ)

a3,5 vb(θ)− a3,2 ve(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ4 vd(θ) + τ6 vf (θ)) a3,2
a3,5 vb(θ)− a3,2 ve(θ)

(4.155)
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τ2(τ1, τ3, τ4, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ4 a3,4 − τ5 a3,5) vf (θ)

a3,2 vf (θ)− a3,6 vb(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,6
a3,2 vf (θ)− a3,6 vb(θ)

(4.156)

τ6(τ1, τ3, τ4, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ3 a3,3 − τ4 a3,4 − τ5 a3,5) vb(θ)

a3,6 vb(θ)− a3,2 vf (θ)
+· · ·

· · ·+ (τ1 va(θ) + τ3 vc(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,2
a3,6 vb(θ)− a3,2 vf (θ)

(4.157)

τ3(τ1, τ2, τ5, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ5 a3,5 − τ6 a3,6) vd(θ)

a3,3 vd(θ)− a3,4 vc(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,4
a3,3 vd(θ)− a3,4 vc(θ)

(4.158)

τ4(τ1, τ2, τ5, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ5 a3,5 − τ6 a3,6) vc(θ)

a3,4 vc(θ)− a3,3 vd(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ5 ve(θ) + τ6 vf (θ)) a3,3
a3,4 vc(θ)− a3,3 vd(θ)

(4.159)

τ3(τ1, τ2, τ4, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ4 a3,4 − τ6 a3,6) ve(θ)

a3,3 ve(θ)− a3,5 vc(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ4 vd(θ) + τ6 vf (θ)) a3,5
a3,3 ve(θ)− a3,5 vc(θ)

(4.160)

τ5(τ1, τ2, τ4, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ4 a3,4 − τ6 a3,6) vc(θ)

a3,5 vc(θ)− a3,3 ve(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ4 vd(θ) + τ6 vf (θ)) a3,3
a3,5 vc(θ)− a3,3 ve(θ)

(4.161)

τ3(τ1, τ2, τ4, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ4 a3,4 − τ5 a3,5) vf (θ)

a3,3 vf (θ)− a3,6 vc(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,6
a3,3 vf (θ)− a3,6 vc(θ)

(4.162)
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τ6(τ1, τ2, τ4, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ4 a3,4 − τ5 a3,5) vc(θ)

a3,6 vc(θ)− a3,3 vf (θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ4 vd(θ) + τ5 ve(θ)) a3,3
a3,6 vc(θ)− a3,3 vf (θ)

(4.163)

τ4(τ1, τ2, τ3, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ3 a3,3 − τ6 a3,6) ve(θ)

a3,4 ve(θ)− a3,5 vd(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ3 vc(θ) + τ6 vf (θ)) a3,5
a3,4 ve(θ)− a3,5 vd(θ)

(4.164)

τ5(τ1, τ2, τ3, τ6,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ3 a3,3 − τ6 a3,6) vd(θ)

a3,5 vd(θ)− a3,4 ve(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ3 vc(θ) + τ6 vf (θ)) a3,4
a3,5 vd(θ)− a3,4 ve(θ)

(4.165)

τ4(τ1, τ2, τ3, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ3 a3,3 − τ5 a3,5) vf (θ)

a3,4 vf (θ)− a3,6 vd(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ3 vc(θ) + τ5 ve(θ)) a3,6
a3,4 vf (θ)− a3,6 vd(θ)

(4.166)

τ6(τ1, τ2, τ3, τ5,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ3 a3,3 − τ5 a3,5) vd(θ)

a3,6 vd(θ)− a3,4 vf (θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ3 vc(θ) + τ5 ve(θ)) a3,4
a3,6 vd(θ)− a3,4 vf (θ)

(4.167)

τ5(τ1, τ2, τ3, τ4,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ3 a3,3 − τ4 a3,4) vf (θ)

a3,5 vf (θ)− a3,6 ve(θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ3 vc(θ) + τ4 vd(θ)) a3,6
a3,5 vf (θ)− a3,6 ve(θ)

(4.168)

τ6(τ1, τ2, τ3, τ4,Miz , θ) =
(Miz − τ1 a3,1 − τ2 a3,2 − τ3 a3,3 − τ4 a3,4) ve(θ)

a3,6 ve(θ)− a3,5 vf (θ)
+· · ·

· · ·+ (τ1 va(θ) + τ2 vb(θ) + τ3 vc(θ) + τ4 vd(θ)) a3,5
a3,6 ve(θ)− a3,5 vf (θ)

(4.169)
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The mathematical closed-form solution to obtain the force cap-
ability in manipulators with CN = 6 presented herein represents the
last important result obtained in this chapter. It should be noted that
the eighteen kinematic variables (a1,1, ..., a3,6) were obtained from the
solution of the direct static problem presented in Eq. (4.5), and the
terms va(θ), vb(θ), vc(θ), vd(θ), ve(θ) and vf (θ) are obtained now as
shown in Eqs. (4.170) to (4.175). Similarly as in the previous sections,
it is important to highlight that although variables va(θ) to ve(θ) ap-
peared previously, in this section these variables assume new values as
shown in Eqs. (4.170) to (4.174) in order to solve the force capability
in manipulators with CN = 6.

va(θ) = a2,1 − a1,1 tan(θ) (4.170)

vb(θ) = a2,2 − a1,2 tan(θ) (4.171)

vc(θ) = a2,3 − a1,3 tan(θ) (4.172)

vd(θ) = a2,4 − a1,4 tan(θ) (4.173)

ve(θ) = a2,5 − a1,5 tan(θ) (4.174)

vf (θ) = a2,6 − a1,6 tan(θ) (4.175)

4.8 APPLICATIONS AND RESULTS OF THE PROPOSED CLOSED-
FORM SOLUTIONS

To validate the mathematical closed-form solutions proposed in
this chapter six cases were studied, the �rst is a non-redundantly-
actuated 3RRR planar parallel manipulator, the second is a redundantly-
actuated 4RRR planar parallel manipulator, the third is a redundantly-
actuated 5RRR planar parallel manipulator, the fourth is a redundantly-
actuated 6RRR planar parallel manipulator, the �fth is a redundantly-
actuated 3RRR planar parallel manipulator with three of its passive
joints actuated, and �nally, the sixth is a non-redundantly-actuated
3RPR planar parallel manipulator. The �rst four planar parallel ma-
nipulators studied herein were shown in Figs. 19(a), 19(b), 19(c) and
19(d) respectively, the �fth studied manipulator is shown in Fig. 21
and the sixth studied manipulator is shown in Fig. 22. In these paral-
lel manipulators, the �xed and moving platforms are formed by regular
polygons with 3, 4, 5 and 6 sides joined by using the same number of
legs. Each leg has three rotational joints whose axes are perpendicular
to the (x − y) plane, and some of their joints in each leg are actuated
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according to its net degree of constraint (CN ).

= Actuated Joints

= Passive Joints

φm

φf

l1
l2 α

Figure 21 � Redundantly-actuated 3RRR planar parallel manipulator
(CN = 6).

= Prismatic Actuated Joints

= Passive Revolute Joints

φm

φf

l1
l2 α

Figure 22 � Non-Redundantly-actuated 3RPR planar parallel manipu-
lator (CN = 3).

Notice that in the planar parallel manipulators shown in Figs.
19(a), 19(b), 19(c), 19(d), and in Fig. 21 and 22, all of them have a
circular envelopment around their moving and �xed platform. These
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circular envelopments were constructed in order to normalize the geo-
metry of the studied manipulators. In this study, the �xed and moving
platform of the parallel manipulators are circumscribed about circles
with diameters φf = 1 [m] and φm = 0.3 [m] respectively. In all
the studied manipulators herein, the legs are formed or by two links
with lengths l1 and l2 either a variable distance d1, the end e�ector
of the manipulator is located in the geometrical center of the moving
platform (E) and the angle of orientation (α) represents the orienta-
tion of the moving platform (MEJIA; SIMAS; MARTINS, 2014b, 2014c).
Here, the link lengths in each leg were speci�ed as l1 = l2 = 0.6 [m]
and d1 = 0.7 [m], the end e�ector of the manipulator is located in
E = (0, 0) [m], the moving platform is oriented in α = 0◦ and the
maximum torque for each actuated joint of the manipulator is imposed
as τmax = ± 100 [Nm].

Due that the closed-form solutions shown in Sections 4.4, 4.5, 4.6
and 4.7 allow us to know the maximum force (Fapp) with a prescribed
moment (Miz ) that can be applied or sustained in a given direction
(θ). If all the possible directions of the desired angle θ are considered
as 0◦ ≤ θ ≤ 360◦, a force capability polygon can be constructed as a po-
lar representation of the maximum force with a prescribed moment at
the end e�ector of the manipulator. Considering the imposed moment
Miz = 0, the force capability polygon for the 3RRR non-redundant
planar parallel manipulator (PPM) is obtained as shown in Fig. 23,
the force capability polygon for the 4RRR redundant planar parallel
manipulator (RPPM) is obtained as shown in Fig. 24, the force capab-
ility polygon for the 5RRR RPPM is obtained as shown in Fig. 25, the
force capability polygon for the 6RRR RPPM is obtained as shown in
Fig. 26, the force capability polygon for the 3RRR RPPM with three
of its passive joints actuated is obtained as shown in Fig. 27 and �nally
the force capability polygon for the 3RPR PPM is obtained as shown
in Fig. 28.

Following the same strategy that we used previously, it is pos-
sible to obtain di�erent wrench capability polygons for di�erent values
of the imposed moment at the end e�ector of the manipulator. If a
three-dimensional representation of several wrench capability polygons
is plotted, a complete mapping of the wrench capability at the end
e�ector of the manipulator can be obtained. This kind of graphic rep-
resentation is called the wrench capability polytope.

The wrench capability polytope of the studied manipulators are
shown in Figs. 29, 30, 31, 32 and 33. In Fig. 29 the wrench capability
polytope of the 3RRR PPM is shown. In Fig. 30 the wrench capab-
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Figure 23 � Force capability polygons for a non-Redundantly-actuated
3RRR planar parallel manipulator (CN = 3).
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Figure 24 � Force capability polygons for a Redundantly-actuated
4RRR planar parallel manipulator (CN = 4).
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Figure 25 � Force capability polygons for a Redundantly-actuated
5RRR planar parallel manipulator (CN = 5).
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Figure 26 � Force capability polygons for a Redundantly-actuated
6RRR planar parallel manipulator (CN = 6).



110

−800 −600 −400 −200 0 200 400 600 800
−800

−600

−400

−200

0

200

400

600

800

Fap
p

Fx [N]

F
y 

[N
]

Figure 27 � Force capability polygons for a Redundantly-actuated
3RRR planar parallel manipulator (CN = 6).
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Figure 28 � Force capability polygons for a non-Redundantly-actuated
3RPR planar parallel manipulator (CN = 3).
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ility polytope of the 4RRR RPPM is shown. In Fig. 31 the wrench
capability polytope of the 5RRR RPPM is shown. In Fig. 32 the
wrench capability polytope of the 6RRR RPPM is shown, in Fig. 33,
the wrench capability polytope of the 3RRR planar parallel manipu-
lator with three of its passive joints actuated is shown and �nally, in
Fig. 34, the wrench capability polytope of the 3RPR planar parallel
manipulator is shown.
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Figure 29 � Force capability polytope for the studied PPM 3RRR

4.9 QUADRATIC PROGRAMMING APPROACH

A special case of the NLP arises when the objective functional f
is quadratic and the constraints h, g are linear in x ∈ Rn. Such an NLP
is called a Quadratic Programming (QP) problem. Its general form is

minimize f(x) :=
1

2
xTHx− bxT , over x ∈ Rn (4.176)

subject to A1(x) = c (4.177)

A2(x) 6 d (4.178)

where H ∈ Rn×n, m ≤ n is symmetric, A1 ∈ Rm×n, A2 ∈ Rp×n

and b ∈ Rn, c ∈ Rm, d ∈ Rp.
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Figure 30 � Force capability polytope for the studied RPPM 4RRR
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Figure 31 � Force capability polytope for the studied RPPM 5RRR
RPPM
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Figure 32 � Force capability polytope for the studied RPPM 6RRR
RPPM
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Figure 33 � Force capability polytope for the studied 3RRR planar
parallel manipulator with three of its passive joints actuated.
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Figure 34 � Force capability polytope for the studied 3RPR planar
parallel manipulator.

If the force capability problem previously shown in Eqs. 4.13 to
4.18 is re-formulated in order to eliminate the non-linear constraint of
direction of the application of the force shown in 4.14, the optimization
problem lies on a quadratic programming case and can be solved al-
ternatively by using several computing tools freely available as Octave,
GeoGebra, Mathematica, Matlab, among others.

At this point it is very important to remark that by using the
quadratic programming approach, the maximum wrench in a manipu-
lator is obtained only for a limited number of directions, and without
consider a direction of application, it is not possible to guarantee that
this maximum value of wrench can be applied in all directions and it
is not possible to prevent overloading or even it is possible damaging
the manipulator or the objects to be manipulated. In this way, it is
necessary to be very carefully with the results obtained by using this
approach.

by using the quadratic programming approach, and in order to
exemplify, the wrench capability optimization problem for a manipu-
lator with CN = 3 can be re-formulated as:
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minimize : f(τ1, τ2, τ3) = −F 2 = −
(
F 2
x + F 2

y

)
= . . .

. . . = −
(
(a1,1τ1 + a1,2τ2 + a1,3τ3)

2 + (a2,1τ1 + a2,2τ2 + a2,3τ3)
2
)

(4.179)

subject to : h1(τ1, τ2, τ3) : a3,1τ1 + a3,2τ2 + a3,3τ3 −Miz = 0 (4.180)

g1(τ1) : −τ1max 6 τ1 6 τ1max (4.181)

g2(τ2) : −τ2max 6 τ2 6 τ2max (4.182)

g3(τ3) : −τ3max 6 τ3 6 τ3max (4.183)

where the objective function, can be rewritten as:

f(τ1, τ2, τ3) = −c1(τ1)2 − c2(τ2)
2 − c3(τ3)

2 − c4τ1τ1 − c5τ1τ3 − c6τ2τ3 (4.184)

and the coe�cients c1 to c6 are expressed as:

c1 = a21,1 + a22,1 (4.185)

c2 = a21,2 + a22,2 (4.186)

c3 = a21,3 + a22,3 (4.187)

c4 = 2a1,1a1,2 + 2a2,1a2,2 (4.188)

c5 = 2a1,1a1,3 + 2a2,1a2,3 (4.189)

c6 = 2a1,2a1,3 + 2a2,2a2,3 (4.190)

And by using the general form of a quadratic programming
(QP) approach, The wrench capability optimization problem can be
re-written as:

minimize f(x) :=
1

2
xTHx− bxT (4.191)

subject to Ax = Miz (4.192)

lb ≤ x ≤ ub (4.193)

where:
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H =

−2c1 −c4 −c5
−c4 −2c2 −c6
−c5 −c6 −2c3

 (4.194)

b =

00
0

 (4.195)

x =

τ1τ2
τ3

 (4.196)

A =
[
a3,1 a3,2 a3,3

]
(4.197)

lb =

−τ1max

−τ2max

−τ3max

 (4.198)

ub =

τ1max

τ2max

τ3max

 (4.199)

In order to optimize the problem previously de�ned, any quad-
ratic programming algorithm can be used, in our case, we used a Matlab
subroutine as shown below:

x = quadprog(H,b,[],[],A,Miz ,lb,ub)

At this point, it is important to note that, although only one
example using manipulators with CN = 3 was shown, the method can
be applied to manipulators with di�erent net degree of constraint (CN ).
The elapsed time used to solve the problem in a manipulator with
CN = 3 was 0.356512 seconds approximately.

4.10 DISCUSSION ABOUT THE PROPOSED CLOSED-FORM SOLU-
TIONS

Some important issues regarding the closed-form solutions ob-
tained are related to its simplicity, generality, versatility and computing
time. We comment these aspects below.

The closed-form solutions shown in Sections 4.4, 4.5, 4.6 and 4.7
are mathematical expressions that can be evaluated in a �nite number
of operations, containing constants, variables, well known operations
(e.g., +,−,×,÷) and functions (e.g., square root, exponent, maximum,
etc.) and thus the evaluation is simpler compared with other methodo-
logies found in the literature.
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The evaluation of the closed-form solutions is based on a know-
ledge of the kinematic variables (a1,1, ..., a3,CN

) obtained from the solu-
tion of the direct static problem (presented in Eqs. (4.2), 4.3), (4.4)
and (4.5)), the desired moment and direction of the application of the
force at the end e�ector of the manipulator, and the maximum torque
in the actuated joints. Since these characteristics are a common factor
in all manipulators with CN = 3, CN = 4, CN = 5 and CN = 6 the
proposed solutions represent general solutions for any manipulator with
these net degree of constraint.

Given that the force capabilities as a function of the desired mo-
ment and the �xed force direction can be established relatively easily,
it is possible to solve several processes which require an easy rede�ni-
tion of the task. This allow us to a�rm that the proposed closed-form
solutions o�ers a high degree of versatility.

Finally, as the e�ort necessary to evaluate the mathematical
closed-form solutions is reduced to the time needed to evaluate some
�nite operations, the computing time is less than that associated with
other methodologies using heuristic or meta-heuristic approaches de-
scribed in the literature.

It should be emphasized that the proposed mathematical closed-
form solutions obtained in Sections. 4.4, 4.5, 4.6 and 4.7 work only
when the manipulator evaluated has a net degree of constraint value
equal to three, four, �ve or six (CN = 3, CN = 4, CN = 5 or CN =
6). Manipulators with a net degree of constraint values which are not
four, �ve or six (CN 6= 3, CN 6= 4, CN 6= 5 or CN 6= 6) cannot
be solved using the mathematical closed-form solutions proposed in
this chapter. However, and although it is not common in practice,
mathematical closed-form solutions can be constructed in a similiar
way in manipulators with a net degree of constraint values greater than
six (CN > 6).

The results shown in Figs. 23, 24, 25, 26, 27, 29, 30, 31, 32 and
33 are the same as those obtained by using the method proposed by
Mejia et al. (MEJIA; SIMAS; MARTINS, 2014b, 2014c) for the same ma-
nipulators, using the same dimensions, topological structure, posture
and maximum torques at the actuated joints. This allowed us to com-
pare and validate the results obtained using the proposed mathematical
closed-form solutions. The comparison showed that the force capabilit-
ies obtained were exactly the same as the results reported by Mejia et
al. (MEJIA; SIMAS; MARTINS, 2014c), but an important di�erence lies
in the computing time used to obtain these results.



118

T
ab
le
5
�
C
om

pa
ri
so
n
of

th
e
co
m
pu

ti
ng

ti
m
e
re
qu
ir
ed

fo
r
di
�
er
en
t
st
ra
te
gi
es

in
or
de
r
to

so
lv
e
th
e
fo
rc
e
ca
pa
bi
lit
y

pr
ob
le
m
. S
tu
d
y
ca
se

C
o
m
p
u
te
r
u
se
d

M
et
h
o
d
u
se
d

T
im
e
n
ee
d
ed

fo
r
o
n
e
p
o
se

T
im
e
n
ee
d
ed

fo
r
o
n
e
d
ir
ec
ti
o
n

P
P
M

w
it
h
C

N
=

3
P
4
2.
4
G
H
z

P
ro
p
os
ed

cl
os
ed
-f
or
m

so
lu
ti
on

0.
02
14
07

s
0.
00
00
74

s

Q
ua
dr
at
ic
P
ro
gr
am

m
in
g

0.
35
65
12

s
U
nk
no
w
n

(D
E
)
al
go
ri
th
m

>
54
00

s
>
18

s

P
4
3.
2
G
H
z

E
xp
lic
it
m
et
ho
d

0.
1
s

U
nk
no
w
n

Sc
al
in
g
fa
ct
or

m
et
ho
d

15
s

U
nk
no
w
n

P
P
M

w
it
h
C

N
=

4
P
4
2.
4
G
H
z

P
ro
p
os
ed

cl
os
ed
-f
or
m

so
lu
ti
on

0.
46
22

s
0.
00
12
84

s

Q
ua
dr
at
ic
P
ro
gr
am

m
in
g

0.
62
43

s
U
nk
no
w
n

(D
E
)
al
go
ri
th
m

>
74
00

s
>
21

s

P
P
M

w
it
h
C

N
=

5
P
4
2.
4
G
H
z

P
ro
p
os
ed

cl
os
ed
-f
or
m

so
lu
ti
on

1.
18
94

s
0.
00
33
04

s

Q
ua
dr
at
ic
P
ro
gr
am

m
in
g

1.
46
23

s
U
nk
no
w
n

(D
E
)
al
go
ri
th
m

>
90
00

s
>
25

s

P
P
M

w
it
h
C

N
=

6
P
4
2.
4
G
H
z

P
ro
p
os
ed

cl
os
ed
-f
or
m

so
lu
ti
on

3.
78
68

s
0.
01
05
19

s

Q
ua
dr
at
ic
P
ro
gr
am

m
in
g

3.
98
23

s
U
nk
no
w
n

(D
E
)
al
go
ri
th
m

>
10
80
0
s

>
30

s



119

Using the proposed generalized mathematical closed-form solu-
tions for the manipulators with CN = 3, CN = 4, CN = 5 and CN = 6,
the force capability polygon for one pose is completed in 0.021407,
0.4622 seconds, 1.1894 seconds and 3.7868 seconds respectively when
running on a P4 2.4 GHz computer.

As a comparison, the same results were obtained using the method
proposed by Mejia et al. (MEJIA; SIMAS; MARTINS, 2014c) using a dif-
ferential evolution algorithm (DE), but with a very slow response of
more than 5400 seconds for each case when running on a the same P4
2.4 GHz computer.

Another important issue with regard to the computing time of
the proposed generalized mathematical closed-form solution is that
when the force capability of manipulators with CN = 3, CN = 4,
CN = 5 and CN = 6 is evaluated in a �xed direction, the time used
in that operation is only 0.000074 seconds, 0.001284 seconds, 0.003304
seconds and 0.010519 seconds respectively (again, when running on a
P4 2.4 GHz computer). This response is very fast and allows us to
contemplate applications that require a real-time response in terms of
the manipulation of the force, such as grasping, polishing, milling, etc.
A comparison of the computing times required to solve the force cap-
ability problem using several approaches is shown in Table. 5.
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5 CONCLUSIONS

This work focuses on the wrench capabilities of planar manip-
ulators, whether it be serial parallel or hybrid and with redundancy
or not. In order to solve the wrench capability problem, in this work
two new approaches were proposed based in the classic scaling factor
method and in classical optimization methods.

These new approaches gave as result a new method called the
modi�ed scaling factor method used to solve the wrench capability in
planar serial manipulators and four mathematical closed-form solutions
to solve the wrench capability problem in planar parallel manipulators
with a net degree of constraint equal to three, four, �ve or six (CN = 3,
CN = 4, CN = 5 or CN = 6).

The modi�ed scaling factor method proposed in this work,
was proposed because the original scaling factor method (NOK-
LEBY et al., 2005) does not allow the desired moment at the manipulator
end e�ector to be included in an explicit mathematical expression, and
an optimization process is required in order to solve the force capab-
ility problem. In addition, the computation of the maximum allowed
moment is not presented.

The novelty of the modi�ed scaling factor method lies in
the fact that this approach does not require the use of an optimization
algorithm, in contrast to the original scaling factor method. Instead,
explicit equations are used in order to solve the force capability prob-
lem. The avoidance of optimization algorithms results in a simpler,
faster and more direct solution to obtain the force capability of manip-
ulators compared with other solutions for the same problem found in
the literature.

In the other hand, the proposed mathematical closed-form
solutions were obtained applying classical optimization methods, con-
sidering the cases in which the net degree of constraint is equal to the
number of actuated joints in the mechanism or manipulator and their
values are equal to three, four, �ve or six (CN = 3, CN = 4, CN = 5
or CN = 6). In robotics, closed-form solutions are often very desirable,
because they are faster than numerical solutions and readily identify
all possible solutions (SICILIANO; KHATIB, 2008).

The novelty of the mathematical closed-form solutions described
in this work lies in the fact that our main results are not methods or
numerical algorithms, but mathematical expressions to obtain the force
capability in planar redundantly-actuated mechanisms and manipulat-
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ors with net degree of constraint equal to three, four, �ve or six.
An equation is said to be a closed-form solution if it solves a

given problem in terms of functions and mathematical operations from
a given generally-accepted set (CHOW, 1999). This means that the
mathematical closed-form solution reported in this thesis are functions
that can be used directly without the use of a method, numerical al-
gorithm or optimization process, implying that their use represent sim-
pler, faster and more direct solutions to obtain the force capability
of manipulators compared with other solutions for the same problem
found in literature.

The proposed modi�ed scaling factor method and math-
ematical closed-form solutions in combination with the Davies
method constitutes a powerful tool to solve the force capability prob-
lem in any mechanism or manipulator (whether it be serial, parallel or
hybrid) with a net degree of constraint equal to three, four, �ve or six
(CN = 3, CN = 4, CN = 5 and CN = 6).

A �nal and very important conclusion is that, once the modi�ed
scaling factor method and the mathematical closed-form solutions pro-
posed in this thesis were developed in a symbolic way, the maximization
of similar models like the di�erential kinematics in planar mechanisms
can be optimized by using exactly the same methods, but taking care
of the correct formulation of the coe�cient matrices. In this way, the
velocity capacity and the power capacity in planar manipulators can be
obtained by using the same methods proposed in this document. The
detailed solution for those problems is proposed as future works.

5.1 CONTRIBUTIONS OF THIS WORK

The original contributions of this work can be summarized as
shown below:

i. Development of a modi�ed scaling factor method to obtain the
wrench capability in manipulators with CN = 3.

ii. Inclusion of a procedure to obtain the maximum imposed moment
as a particularization of the modi�ed scaling factor method.

iii. Development of mathematical closed-form solutions to obtain the
wrench capability in manipulators with a net degree of constraint
equal to three, four, �ve or six (CN = 3, CN = 4, CN = 5 and
CN = 6).
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iv. Development of mathematical closed-form solutions to obtain the
maximum imposed moment in manipulators with a net degree of
constraint equal to three, four, �ve or six (CN = 3, CN = 4,
CN = 5 and CN = 6).

5.2 PUBLICATIONS

Up to the moment to the submission of this thesis, several pub-
lications have been generated. These publications are classi�ed and
listed below:

Publications in Journal:

i. Journal: Mechanisms and Machine Theory;
Status: Published;
Title: Force capability in general 3 DoF planar mechanisms (MEJIA;

SIMAS; MARTINS, 2015b);
Available online from: Apr 29, 2015.

ii. Journal: Mechanisms and Machine Theory;
Status: Under Review;
Title: Determination of force capability of planar mechanisms us-
ing a modi�ed scaling factor method (MEJIA; SIMAS; MARTINS,
2015a);
Status Date: Jun 16, 2015.

iii. Journal: Mechanisms and Machine Theory;
Status: Under Review;
Title: Wrench capability in redundant planar parallel manipulators
with net degree of constraint equal to four, �ve or six (MEJIA;

SIMAS; MARTINS, 2015c);
Status Date: Dec 01, 2015.

Chapters in Book:

i. Book: Advances on Theory and Practice of Robots and Manipu-
lators;
Status: Published;
Title: Force Capability Polytope of a 3RRR Planar Parallel Ma-
nipulator (MEJIA; SIMAS; MARTINS, 2014b);
Available online from: Jun 03, 2014.
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ii. Book: Advances in Robot Kinematics;
Status: Published;
Title: Force Capability Polytope of a 4RRR Redundant Planar
Parallel Manipulator (MEJIA; SIMAS; MARTINS, 2014c);
Available online from: May 20, 2014.

iii. Book: ABCM Symposium Series in Mechatronics - Vol: 6;
Status: Published;
Title: Force Capability maximization of a 3RRR parallel manipu-
lator by topology optimization;
Available online from: Aug 15, 2014.

Proceedings Congress:

i. Congress: 23th ABCM International Congress of Mechanical En-
gineering (COBEM 2015);
Status: Published;
Title: In�uence of the assembly mode on the force capability in
parallel manipulators (MEJIA et al., 2015b);
Available online from: Dez 11, 2015.

ii. Congress: 23th ABCM International Congress of Mechanical En-
gineering (COBEM 2015);
Status: Published;
Title: Wrench capability polytopes in redundant parallel manipu-
lators (MEJIA et al., 2015d);
Available online from: Dez 11, 2015.

iii. Congress: 23th ABCM International Congress of Mechanical En-
gineering (COBEM 2015);
Status: Published;
Title: Analysis of wrench capability for cooperative robotic sys-
tems (MEJIA et al., 2015a);
Available online from: Dez 11, 2015.

iv. Congress: 14th IFToMM World Congress (IFToMM 2015);
Status: Published;
Title: Modi�ed Scaling Factor Method for the Obtention of the
Wrench Capabilities in Cooperative Planar Manipulators (MEJIA

et al., 2015c);
Available online from: Oct 30, 2015.
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v. Congress: 21th Congreso Iberoamericano de Ingenieria Mecánica
(CIBIM 2013);
Status: Published;
Title: In�uencia del modo de trabajo de un manipulador paralelo
planar sobre su capacidad de fuerza (MEJIA; SIMAS; MARTINS, 2013);
Available online from: Nov 30, 2013.

5.3 FUTURE WORKS

The results presented in this work opened the door to a huge
world of possibilities related to the study of the wrench capability in
manipulators. Some of these future works are listed below:

i. To include the sti�ness and the gravitational forces in the static
model of the manipulators;

ii. To include the dynamic behavior into the study of the wrench
capability problem;

iii. To extend the proposed methods for spatial mechanisms and ma-
nipulators;

iv. To optimize the posture of complex robotic structures as humanoids
in order to minimize the energy consumption;

v. To obtain the velocity capacity in planar manipulators;

vi. To obtain the power capacity in planar manipulators;
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Kinematic chain, mechanism, manipulator and robot are com-
mon terms found in the literature, and, although these terms can be
frequently confused as being synonymous, there exist a signi�cant dif-
ference among them. For instance, a kinematic chain is an intercon-
nected system of links in which not a single link is �xed, but such a
chain becomes a mechanism when one of the links in the chain is �xed
(the �xed link is called a frame or, sometimes, a base link). When a
gripper device is attached to such a mechanism, it could be considered
a manipulator or a robot (TSAI, 1999).

In order to assist the reader in the understanding of this doc-
ument, this Appendix introduces some fundamental concepts of the
mechanisms theory such as: mobility, coupling, joint, kinematic chain,
mechanism, manipulator and robot among others.

As previously noted, kinematic chains and manipulators are con-
stituted by links and joints. These components can be represented in
one more abstract way by a graph whose vertices correspond to the
links and the edges correspond to the joints. This type of representa-
tion will be presented in this document. Also, a brief introduction on
kinematics of manipulators will be shown at the end of this Appendix.

A.1 BASIC TERMS AND DEFINITIONS

In the study of mechanisms, manipulators and robots are com-
monly used the terms coupling, joint, kinematic chain, mechanism,
manipulator and robot (DAVIES, 1995). Considering that these terms
will be used along the current document, a de�nition of each of them
is shown below. The terminology exposed here is in accordance with
the International Federation for the Promotion of Mechanism and Ma-
chine Science (IFToMM) and the International Federation of Robotics
(IFR). For further information about terminology, see Ionescu (ION-
ESCU, 2003), Tsai (TSAI, 1999) and Hunt (HUNT, 1978).

Link: 1. (IFToMM) Mechanism element (component) car-
rying kinematic pairing elements. 2. (IFToMM) Element
of a linkage.

Coupling: 1. (IFToMM) Device for joining two moving
members, e.g. two shafts at their ends.

Joint: 1. (IFToMM) Physical realization of a kinematic
pair, including connection via intermediate mechanism ele-
ments. 2. (IFToMM) Kinematic pair.
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Kinematic pair: 1. (IFToMM) Mechanical model of the
connection of two pairing elements having relative motion
of a certain type.

Kinematic chain: 1. (IFToMM) Assemblage of links and
joints.

Closed kinematic chain: 1. (IFToMM) Kinematic chain
each link of which is connected with at least two other links.

Open kinematic chain: 1. (IFToMM) Kinematic chain
in which there is at least one link which carries only one
kinematic pairing element.

Loop: 1. (IFToMM) Subset of links that forms a closed
circuit.

Tree: 1. (IFToMM) Kinematic chain that contains no
loops.

Mechanism: 1. (IFToMM) System of bodies designed to
convert motions of, and forces on, one or several bodies
into constrained motions of, and forces on, other bodies.
2. (IFToMM) Kinematic chain with one of its components
(links) taken as a frame.

Manipulator: 1. (IFToMM) Device for gripping and the
controlled movement of objects. 2. (IFR) machine in which
the mechanism usually consists of a series of segments, join-
ted or sliding relative to one another, for the purpose of
grasping and/or moving objects (pieces or tools) usually in
several degrees of freedom

Robot: 1. (IFToMM) Mechanical system under automatic
control that performs operations such as handling and loco-
motion. 2. (IFR) An automatically controlled, reprogram-
mable, multipurpose manipulator programmable in three or
more axes, which may be either �xed in place or mobile for
use in industrial automation applications.

Although the terms previously shown can have a conceptual dif-
ference, some of them can be used in an analogous way in speci�c
situations. In the calculus of the mobility and the redundancies, for



139

instance, it is common to use the terms kinematic chain and mechan-
ism indistinctly. In the kinematic and static analysis of manipulators,
the term robot can be used without restrictions. Thus, since the con-
ceptual principles are not infringed, some of these terms may be used
interchangeably (DAVIES, 1995).

A.2 MOBILITY

manipulators can be represented by a set of links and joints ar-
ranged as a serial, parallel or hybrid kinematic chain. In a manipulator
one or more links are connected to the ground and at the free end
an end e�ector or gripping device is attached (KHALIFA et al., 2012).
Three examples of serial, parallel and hybrid manipulators are shown
in Fig. 35. In these examples, the underlining indicates joints which
are actuated within each branch.

Serial - RRR Parallel - 3RRR Hybrid

(a) (b) (c)

Figure 35 � (a) Serial, (b) parallel and (c) hybrid manipulators

manipulators assembled from a number of links and joints have a
signi�cant structural attribute calledmobility (M). Mobility is one of
the most fundamental concepts in the kinematic and dynamic modeling
of mechanisms and manipulators (KHALIFA et al., 2012).

IFToMM terminology de�nes the mobility (M) or degrees of
freedom (DoF) as the number of independent coordinates needed to
de�ne the con�guration of a kinematic chain or mechanism (GOGU,
2005; IONESCU, 2003). Mobility is used to verify the existence of a
mechanism (M > 0), to indicate the number of independent paramet-
ers in kinematic and dynamic models and to determine the number of
inputs needed to drive the mechanism (KHALIFA et al., 2012).

Many formulas have been proposed in the literature for the cal-
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culation of mechanism mobility and several of these are reducible to
the Chebychev-Grubler-Kutzbach mobility formula given by Eq. (A.1)
(GOGU, 2005). Using this formula, the mobility M of a linkage com-
posed of �n� links connected with �j� joints can be determined
(KHALIFA et al., 2012).

M = λ(n− j − 1) +

j∑
i=1

fi (A.1)

In Eq. (A.1) λ represents the dimension of the task space in
which the mechanism works (in planar mechanisms λ = 3 and in
spatial mechanisms λ = 6), and fi is the DoF associated with joint i
(for instance, prismatic and rotative joints in a planar mechanism have
fi = 1). In order to exemplify how the mobility in a mechanism or
manipulator can be obtained, below is calculated this property for the
parallel manipulator shown in Fig. 35 (b). For all mechanisms shown
in Fig. 35 M = 3.

A.2.1 Calculus of the mobility in the 3RRR parallel manipu-
lator:

The parallel manipulator shown in Fig. 35 (b) is a manipulator
with eight links (n = 8) and nine joints (j = 9). As the manipulator
is in a planar system λ = 3, and as all the joints are rotative the
DoF in each joint is fi = 1. Using the the Chebychev-Grubler-
Kutzbach mobility formula given by Eq. (A.1) it is possible to calculate
its mobility as shown below:

M = λ(n− j − 1) +

j∑
i=1

fi (A.2)

M = λ(n− j − 1) + j (A.3)

M = 3(8− 9− 1) + 9 = 3 (A.4)

A.3 GRAPH THEORY APPLIED TO MECHANISMS

A graph is a structure in which pairs of vertices are connected
by edges. A graph G = (V,E) consists of two �nite sets V and E
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where the elements of V are called the vertices and the elements of
E are the edges of G. Graphs have natural visual representations in
which each vertex is represented by a point or circle and each edge
by a line connecting two points. For instance, as shown in Fig. 36,
V = {1, 2, 3, 4, 5} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}} de�ne a
graph with 5 vertices and 4 edges.

1 2 3 4 5

Figure 36 � Example of a graph with 5 vertices and 4 edges.

The general theory of graphs can be used to model many types
of relations and processes in physical, biological, social and information
systems. Many practical problems can be represented by graphs.

Graph theory is a useful representation because on the one hand
the elements of the graph can be de�ned so as to have a one-to-one cor-
respondence with the elements of many kinds of engineering systems.
On the other hand, the theorems and algorithms of graph theory al-
low one also to represent behavioral properties of the system, such as
deformations and forces, or velocities and movements, as properties of
the vertices or edges of the graph.

Since a kinematic chain is an assemblage of links and joints,
this link and joint assemblage can be represented in a more abstract
form known as the graph representation. In a graph representation
links are denoted by vertices and joints by edges. To distinguish the
di�erences between pair connections, the edges can be colored or labeled
(SHAI; PREISS, 1999). The advantages of using graph representation in
mechanisms theory can be summarized as follows (TSAI, 1999):

1.Many network properties of graphs are directly applicable;

2.The structure topology of a mechanism can be uniquely identi-
�ed. Using graph representation, the similarities and di�erences
between various mechanisms can be clearly identi�ed;

3.A single atlas of graphs can be used to enumerate an enormous
amount of mechanisms;

4.Graphs can be used to better organize kinematic and dynamic
analysis of mechanisms.

In order to exemplify the graph representation of a mechanical
system, Fig. 37 (a) shows a hybrid manipulator that is basically consti-
tuted by a serial manipulator assembled on a four bar mechanism. This
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hybrid manipulator has seven joints (j = 7) and seven links (n = 7)
and its graph representation is shown in Fig. 37 (b). In this represent-
ation, the links are identi�ed using numbers (i.e. 0, 1, 2, 3, 4, 5 and 6
respectively), while the joints are identi�ed using letters (i. e. A, B, C,
D, E, F and G respectively)

(a) (b)

0
1 2

3

4

5

6

A D

B C

E

F G

0

1 2

3

4 5

6

A
D

B C

E

F
G

Joint D

Link 0

Figure 37 � (a) Hybrid manipulator and its (b) graph representation

In a graph, all types of joints are represented by edges, thus,
it is necessary to introduce an additional notation in order to identify
what type of joint is being represented in each kinematic chain. In this
notation, a number signi�es the number of kinematic chains linking
the end e�ector or moving platform to the base, and the set of letters
de�nes the sequence of joints used in each kinematic chain. A revolute
joint is denoted by R and a prismatic joint by P . Spatial universal and
spherical joints are respectively denoted by U (or sometimes RR) and
S . Actuated joints are indicated by underlining (e.g. R, P, RR, etc.)
(MORRISON, 2003).

Following this line of thought, the 3RRR planar parallel manipu-
lator shown if Fig. 35(b), is a manipulator with three kinematic chains
(legs) connecting the �xed and the mobile platform. Each leg has three
rotational joints whose axes are perpendicular to the (x − y) plane
(because is a planar manipulator), and the �rst joint in each leg is ac-
tuated. In a similar way, the serial planar manipulator RRR shown in
Fig. 35 (a) is a manipulator with only one kinematic chain which has
three rotational joints, all them actuated.

A graph to which is assigned an orientation to their edges in
order to distinguish between its start vertices and arrival vertices is
called a directed graph or digraph, otherwise is called undirected
graph.

The possibility of directing a graph is important in the study of
the mechanisms when it is desired to represent the static or kinematic
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state of a rigid body in relation to its adjacent. In the kinematic ana-
lysis, a di-graph indicates the direction of relative movement between
adjacent links. In static analysis, the direction of the edges de�nes if
a body is applying an action in the adjacent body or if it is receiving
such action. The di-graph works as a sign convention which must be
respected in order to obtain correct results.

A correct representation of the restrictions and freedoms allowed
in the joints of mechanisms is required in its kinematic and static ana-
lysis. This representation can be done through graphs. In order to ex-
emplify this, suppose a revolute joint acting in a spatial system (λ = 6)
and allowing only a rotation around the x axis (ωx) as shown in Fig. 38
(a), then, this revolute joint will have �ve constraints on its movement,
two rotational constraints around the axis y and z (My,Mz) and
three linear constraints along the main axis x, y and z (Fx, Fy, Fz).
Figure 38 (b) and (c) show the graph representation of this revolute
joint in the kinematics and statics analysis respectively.

(a) (b) (c)

ωx

Fx

Fy

My

Mz

Fz

1

2

1

2

ωx

1

2

Mx

My

Mz

Fx

Fy

Figure 38 � (a) Revolute joint and its (b) kinematic and (c) static graph
representation

Some other concepts of graphs theory directly related to the
static and kinematic analysis of mechanisms and robots are mentioned
below (CAZANGI, 2008; GROSS; YELLEN, 2005):

Path: Sequence of vertices v1, v2, v3, ..., vn where there is
an edge from vi to vi+1.

Cycle: A path in which the �rst and last vertices are the
same.

Tree: 1. connected, acyclic graph with a specially desig-
nated vertex called the root. 2. It is a graph in which at
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least one path connects each pair of vertices, but does not
have circuits.

Spanning tree: A subgraph of a connected undirected graph
that contains all of its vertices and enough of its edges to
form a tree. 2. A tree is called a spanning tree if it is a
subgraph of any graph, so that contains all vertices of the
graph, but only a subset of their edges.

Branch: An edge of a spanning tree is called a branch.

Chord: an edge in the graph that is not in the spanning
tree is called a chord.

Cut: A cut of a connected graph is a minimal set of edges
whose removal separate the graph into two components (pieces).

A.4 KINEMATICS OF MANIPULATORS

Kinematics studies the motion of bodies without consideration
of the forces or moments that cause the motion. Robot kinematics
refers to the analytical study of the motion of a robot manipulator.
Formulating the suitable kinematics models for a robot mechanism is
very crucial for analyzing the behaviour of manipulators.

Kinematics is the science of geometry in motion. It is restric-
ted to a pure geometrical description of motion by means of position,
orientation, and their time derivatives. In robotics, the kinematic de-
scriptions of manipulators and their assigned tasks are utilized to set
up the fundamental equations for dynamics and control (JAZAR, 2007).

Because the links in a robotic system are modeled as rigid bod-
ies, the properties of rigid body displacement takes a central place in
robotics. Vector and matrix algebra are utilized to develop a system-
atic and generalized approach to describe and represent the location of
the links of a robot with respect to a global �xed reference frame G.
Since the links of a robot may rotate or translate with respect to each
other, body-attached coordinate frames (for instance A, B, C,...,etc)
will be established along with the joint axis for each link to �nd their
relative con�gurations, and within the reference frame G. The position
of one link B relative to another link A is de�ned kinematically by a
coordinate transformation ATB between reference frames attached to
the link (JAZAR, 2007).



145

The direct kinematics problem is reduced to �nding a transform-
ation matrix GTB that relates the body attached local coordinate frame
B to the global reference coordinate frame G. A 3×3 rotation matrix
is utilized to describe the rotational operations of the local frame with
respect to the global frame. The homogeneous coordinates are then
introduced to represent position vectors and directional vectors in a
three dimensional space. The rotation matrices are expanded to 4× 4
homogeneous transformation matrices to include both the rotational
and translational motions. In the other hand, the inverse kinematics
problem is reduced to �nding the joint variables for a given con�gur-
ation of a robot. The determination of the joint variables reduces to
solving a set of nonlinear coupled algebraic equations (JAZAR, 2007).
The relationship between direct and inverse kinematics is illustrated in
Fig. 39.

θ1
θ2
...

θn

Joint
Space

0Tn
Cartesian
Space

Direct Kinematics

Inverse Kinematics

Figure 39 � The schematic representation of direct and inverse kinemat-
ics.

Although there is no standard and generally applicable method
to solve the direct and inverse kinematic of robots, there are a few ana-
lytic and numerical methods that help in the solution of this problem.
Some of them are: The geometrical method, The Denavit-Hartenberg
(DH) method, the method of successive screw displacements and the
dual quaternions method, among others.

This document do not have as main objective to describe or
discuss the methods used in order to solve the direct and inverse kin-
ematic problem, however, two basic examples are shown in order to
illustrate how the direct and inverse kinematic problem can be solved.
The studied manipulators used as example in the current document
are a RRR planar serial manipulator and a 3RRR planar parallel ma-
nipulator. In the examples, were used the Denavit-Hartenberg (DH)
method and the geometric method in order to solve the direct and in-
verse kinematic problem respectively, but the reader may rely on other
methods in order to obtain the same results.
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A.4.1 Direct Kinematic of the RRR planar serial manipulator
using the Denavit-Hartenberg (DH) method:

As mentioned earlier, a serial manipulator consists of a sequence
of links connected by joints. In most industrial manipulators, the links
are designed to minimize de�ection and consequent loss of accuracy and
repeatability, and, in this sense, the links can be assumed to be rigid
bodies. It is well-known that a rigid body in 3D space can be described
(with respect to another rigid body or a reference coordinate system)
completely by six independent parameters, three for the position vector
of a point of interest on the link or the origin of a coordinate system
attached to the rigid body and three angles for the orientation of the
rigid body.

In 1955, Denavit and Hartenberg (DENAVIT; HARTENBERG, 1955),
presented a formulation for describing links connected by revolute (R)
or prismatic (P) joints which required only four independent parameters
and thus leading to more e�cient computations. Denavit-Hartenberg
(DH) method that uses four parameters is the most common method
for describing the robot kinematics. These parameters ai, αi, di and
θi are the link length, link twist, link o�set and joint angle, respectively.
A coordinate frame is attached to each joint to determine DH paramet-
ers. Zi axis of the coordinate frame is pointing along the rotary axis
or sliding direction of the joints. Fig. 40 shows an example of the four
parameters of classic DH convention for a general manipulator.

Joint i− 1

Link i− 1

Link i

Joint i

θi

di

ai

αi

Oi−1
xi−1

yi−1 zi−1

Oi
xi

yi

zi

Figure 40 � The four parameters of classic DH convention are shown in
red text.
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In general terms, Denavit-Hartenberg method is based on the
use of the four parameters of classic D-H convention and a 4×4 homo-
geneous transformations matrix that completely describe the position
and orientation of the link i with respect to the link i− 1. In the D-H
convention, each homogeneous transformation i−1Ti is represented as
a product of four basic transformations as shown below:

i−1Ti = Rot(z, θi) · Trans(z, di) · Trans(x, ai) ·Rot(x, αi)
(A.5)

i−1Ti =


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 · · ·

· · ·


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

 (A.6)

i−1Ti =


cθi −sθi · cαi sθi · sαi ai · cαi
sθi cθi · cαi −cθi · sαi ai · sαi
0 sαi cαi d
0 0 0 1

 (A.7)

To obtain the transformation matrix of a link i with respect to
any other link, product of transformation matrices can be used. For
example, the link i can be described with respect to the �xed base or
reference coordinate system {0} as:

0Ti =
0 T1

1T2 . . .
i−1Ti (A.8)

To illustrate the concept of Denavit-Hartenberg parameters and
link transformation matrices, below is solved the Direct Kinematic of
the RRR planar serial manipulator shown in Fig. 41. In this example,
all the rotary joint axes are parallel and are pointing out of the paper.
The Denavit-Hartenberg parameters are obtained as follows.

The �xed or reference coordinate system, {0}, is chosen with its
z0 coming out of the paper, and x0 and y0 pointing to the right and
top, respectively. For the �rst coordinate system, the origin O1 and
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z1 are coincident with O0 and z0, and x1 and y1 are coincident with
x0 and y0 when θ1 is zero. The x1 is along the mutual perpendicular
between z1 and z2. Similarly, x2 is along the mutual perpendicular
between z2 and z3. For the last frame, x3 is aligned to x2 when
θ3 = 0. The origin O2 is located at the intersection of the mutual
perpendicular along x2 and z2. The origin O3 is chosen such that d3
is zero. The origins and the axes of {1}, {2}, and {3} are as shown
in Fig. 41.

x0

y0

θ1

θ1

θ2

θ3

l1

l2

l3

O0;O1

O2

O3

{Tool}

x1

y1

x2
y2

x3

y3

xTool

yTool

Figure 41 � Illustration of a RRR serial planar manipulator

From the assigned origins and axes, the Denavit-Hartenberg
parameters can be obtained by inspection. They are presented in a
tabular form below:

Table 6 � The D-H parameters of the RRR planar serial manipulator.

i αi ai di θi

1 0 0 0 θ1
2 0 l1 0 θ2
3 0 l2 0 θ3

In the Table 6, l1 and l2 are the link lengths as shown in Fig. 41.
It may be noted that the length of the end-e�ector does not appear in
Table 6. To describe the end-e�ector, we attach a tool frame, {Tool},
aligned to {3} at the mid-point of the parallel jaw gripper. In Fig. 41,
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the origin of {Tool} is shown at a distance of l3 from O3 along X3.
From the DH table, using Eq. A.7, the link transformation matrices
can be obtained by substitution. For i = 1, ai = 0, αi = 0 and
di = 0. Denoting sin(θ1) and cos(θ2) by s1 and c1, respectively, one
can get

0T1 =


cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1

 (A.9)

Similarly, for i = 2 (ai = l1, αi = 0, and di = 0) and for
i = 3 (ai = l2, αi = 0 and di = 0).

1T2 =


cθ2 −sθ2 0 l1
sθ2 cθ2 0 0
0 0 1 0
0 0 0 1

 (A.10)

2T3 =


cθ3 −sθ3 0 l2
sθ3 cθ3 0 0
0 0 1 0
0 0 0 1

 (A.11)

To �nd the transformation matrix 3T{Tool}, the orientation of
{Tool} is assumed to be the same as the orientation of {3} and the
origin is at a distance l3 along x3. Hence

3T{Tool} =


1 0 0 l3
0 1 0 0
0 0 1 0
0 0 0 1

 (A.12)

To �nd the transformation matrix 0T3, multiply 0T1
1T2

2T3

resulting in

3T{Tool} =


c123 −s123 0 l1c1 + l2c12
s123 c123 0 l1s1 + l2s12
0 0 1 0
0 0 0 1

 (A.13)

Finally, to obtain 0T{Tool}, multiply 0T3
3T{Tool} and get
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0T{Tool} =


c123 −s123 0 l1c1 + l2c12 + l3c123
s123 c123 0 l1s1 + l2s12 + l3s123
0 0 1 0
0 0 0 1

 (A.14)

A.4.2 Inverse Kinematic of the 3RRR planar parallel manip-
ulator using the graphic method:

Parallel manipulators usually consist in a mobile platform con-
nected to a �xed platform by several branches in order to transmit the
movement. Generally, the number of branches of parallel manipulators
is equal to their degree of freedom (DoF), and the motors are usually
located near the �xed base (TSAI, 1999).

In the 3RRR planar parallel manipulator studied in this section,
the �xed and mobile platforms are joined by using three branches as
shown in Fig. 42. Each branch has three rotational joints whose axes
are perpendicular to the (x−y) plane, and the �rst of the three joints in
each branch is actuated. Furthermore, the mobile and �xed platforms
are formed by equilateral triangles with sides lm and lf respectively.
The branches are formed by two links with lengths l1 and l2 respect-
ively, the distance between one of the mobile platform vertices and its
centroid (E) is called l3 and the angle φ represents the orientation of
the mobile platform.

In order to obtain the inverse kinematics of the parallel manip-
ulator, the �rst step is to obtain the coordinates of the vertices C1,
C2 and C3 at the mobile platform as a function of its centroid E, the
angle of orientation φ and the lengths l3 and lm. The obtention of the
coordinates of the vertices C1, C2 and C3 is supported by Fig. 43 and
is shown in Eqs. A.15, A.16 and A.17.

C1 = (C1x, C1y) = (Ex− l3 ·cos(φ+30◦), Ey− l3 · sin(φ+30◦))
(A.15)

C2 = (C2x, C2y) = (C1x+ lm · cos(φ), C1y + lm · sin(φ) (A.16)
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Figure 42 � Illustration of a RRR parallel planar manipulator
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30◦
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Figure 43 � Schematic representation of the mobile platform in a RRR
parallel planar manipulator.

C3 = (C3x, C3y) = (C1x+lm·cos(φ+60◦), C1y+lm·sin(φ+60◦)
(A.17)

From Fig. 42, it is possible to observe that the origin of the
system is located in A1. it allows us to calculate in a simple way the
position of the joints A1, A2 and A3 as shown below in Eqs. A.18,
A.19 and A.20.

A1 = (A1x, A1y) = (0, 0) (A.18)

A2 = (A2x, A2y) = (lf , 0) (A.19)
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A3 = (A3x, A3y) = (lf · cos(60◦), lf · sin(60◦)) (A.20)

And �nally, the position of the joints B1, B2 and B3 can be
calculated using simple trigonometric relations. In order to exemplify
the procedure, the leg A1B1C1 is shown in Fig. 44 and the calculus
for the position of the joint B1 is shown below in Eqs. A.21 to A.25.
Similar procedures can be used in order to obtain the position of the
joints B2 and B3, even if the assembly mode is di�erent to such as
shown in Fig. 44.

A1

B1 C1

l1

l2

h

α

δ
θ

Figure 44 � Schematic representation of the leg A1B1C1 in the RRR
parallel planar manipulator.

B1 = (B1x, B1y) = (l1 · cos(θ), l1 · sin(θ)) (A.21)

where

θ = δ + α (A.22)

δ = arctan

(
C1y

C1x

)
(A.23)

α = arccos

(
h2 + l21 − l22

2l1h

)
(A.24)

h =
√
C2

1x + C2
1y (A.25)



APPENDIX B -- Static analysis of mechanisms and
manipulators
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In the static analysis of manipulators, the goal is to determine
the force and moment requirements for the joints in relation to the
wrenches applied at the end e�ector. It is possible to apply forces
and moments at the joints of the mechanism to analyze the wrenches
obtained at the end e�ector, or to apply external wrenches at the end
e�ector to calculate the forces and moments required at the joints to
balance these external forces.

There are several methodologies which allow us to obtain a com-
plete static analysis of manipulators; however, in this thesis the formal-
ism presented by Davies (DAVIES, 1983c) is used as the primary math-
ematical tool to analyze the mechanisms statically. In this Appendix,
the Davies method is presented together to its main conceptual tools.
The dynamic e�ects given by the gravitational force, acceleration, iner-
tia, among others are not considered herein, and only the instantaneous
kinematics and statics of mechanisms constituted by rigid bodies are
taken into account.

The Davies method provides a systematic way to relate the joint
forces and moments in closed kinematic chains (CAZANGI, 2008). This
method is based on graph theory , screw theory and the Kirchho�
cut-set law and it can be used to obtain the statics of a manipulator
as a matricial expression (CAZANGI, 2008).

In the current document the Davies method is widely used be-
cause the obtention of the static model of a manipulator or mechanism
is simple and easily adaptable, furthermore, it is not necessary to use
a pseudo-inverse as in other methodologies. Additionally, the Davies
method together with the proposed methods in this thesis constitute a
powerful tool to solve the force capability problem in mechanisms and
manipulators.

The Davies method uses the graph theory and the Kirchho�
cut-set law in order to represent the relation between the unknown
variables, however, the physical characteristics (mechanical quantities),
such as forces, moments, etc., are included in the formulation through
screws. Therefore, the screw theory is presented for the static case in
Sections B.1 and B.2.

The Davies method appears in many publications in the literat-
ure and further explanations regarding its use can be found in (DAVIES,
1983a, 1983b, 1983c; CAZANGI, 2008; WEIHMANN, 2011).
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B.1 THEORETICAL REVIEW ON THE SCREW THEORY

Screw theory is the algebra and calculus of pairs of vectors, such
as forces and moments and angular and linear velocity, that arise in the
kinematics and dynamics of rigid bodies (YANG, 1974). The mathemat-
ical framework for application in kinematics and statics of mechanisms
was initially formulated by Mozzi (MOZZI, 1763) and later systematized
by Ball (BALL, 1876, 1900). The screw theory has been an import-
ant object of study in recent decades and it has found in the study of
mechanisms and robotics a fertile �eld for their application (DAVIDSON;
HUNT, 2004).

In the same way that a point (geometric element) can be used
to represent a particle of mass, and a directed line (geometric element)
can be used to represent a moment, a screw (geometric element) can
also be useful in the representation of mechanical quantities (CAMPOS,
2004).

Geometrically, a screw $ is nothing else than a line l together
with a scalar pitch λ:

$ := (l, λ) (B.1)

Since the dimension of the space of lines is four, the dimension
of the space of screws is �ve. Note that a screw, as a line, does not have
any module information a priori. If this module information is given
as we did with the line, we get a six-dimensional space of measurable
screws. If the line l representing the screw $ is de�ned by using a
unit vector, the screw is said to be a normalized screw $̂. A screw
can be conveniently expressed by using the six Plücker's homogeneous
coordinates as shown in the following equation:

$ =



~S

−−−−−−

~S0 × ~S + h~S


=



L
M
N

−−−−−−
P ∗ = P + hL
Q∗ = Q+ hM
R∗ = R+ hN


(B.2)

In Eq. B.2, ~S is the direction vector along the axis of the screw,
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~S0 is the position vector at any point of the screw axis relative to the
origin of the coordinate system (Oxyz) and L,M , N , P ∗, Q∗ and R∗

are the Plücker's homogeneous coordinates (ZHAO; FENG; DONG, 2006).
In screw notation, the components are often separated by markers (dot-
ted in a matrix form) to facilitate distinction of the pair of vectors.

A screw that is used in order to describe the di�erential kin-
ematic of mechanisms is commonly called a �Twist� , and a screw that
is used in order to describe the statics of mechanisms is commonly
called a �Wrench� . The following section presents a review of the
screws used in the static analysis of mechanisms and manipulators.

B.2 THE SCREW IN THE STATICS: �THE WRENCH�

The force and torque vectors that arise in applying Newton's laws
to a rigid body can be assembled into a screw called a wrench ($A). A
force has a point of application and a line of action, therefore it de�nes
the Plücker coordinates of a line in space and has zero pitch. A torque,
on the other hand, is a pure moment that is not bound to a line in space
and is an in�nite pitch screw. The ratio of these two magnitudes de�nes
the pitch of the screw (POINSOT, 1806). In static analysis, depending
on the point chosen to de�ne the equilibrium equations, the forces may
also generate a torque regarding this point (DAVIES, 1995).

The wrench is composed of a vector ~R that is the force acting
along the normalized action line ~SA and a vector ~TP representing the
torque calculated at a speci�c point of the body. The components
(L,M,P ) of the force vector ~R, represent the forces in the directions
of each of the main axes x, y and z of the reference coordinate system.
The torque ~TP is composed by the couple ~T (whose axis is parallel to
~SA) and the moment due to the action of the force ~R, calculated by
the cross product between the vectors ~S0 and ~R (see Fig. 45). The
components (P ∗, Q∗, R∗) of the moment TP represent the moments
about each of the main axes x, y and z of the reference coordinate
system. The vector ~SA is a unit vector and corresponds to the screw's
axis of actuation, �nally, the vector S0 is the position vector of a point
on the screw axis (~SA), relative to the point P that was chosen to
de�ne the equilibrium equations (DAVIES, 1995).

The torque ~T has units [force]× [length] and can be related
to the force ~R through the pitch of the screw (h) employing Eq. B.3.

~T = h~R (B.3)
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~T
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$A(0)

~S0 × ~R

~T = h~R

~TP

Figure 45 � Wrench determination on a rigid body

As seen in Eq. (B.4) it is possible to normalize the wrench,
separating it into a geometric component $̂A without an associated di-
mension and a scalar component ψ with units of force. The actions
transferred or constrained by a joint connecting two consecutive links
can be represented through a wrench. Because generally the scalar that
de�nes the action axis does not point at one of the main directions of
the coordinate system, it is usual to represent each constraint through
a wrench called the unitary wrench. The resulting wrench is the sum-
mation of the existing unit wrenches. Constraints can be decomposed
into three forces (Fx, Fy, Fz) and three moments (Mx,My,Mz)
for the main axes x, y and z respecting the conventions of a OXY Z
right-handed coordinate system as shown in Fig. 46.

If the wrench represents a pure force, the pitch of the wrench
is zero (h = 0), and the component ( ~TP ) representing the torque is
reduced to ~S0 × ~R. Knowing the coordinates px, py, and pz determ-
ining the vector ~S0, each constraint can be written as a unit wrench
and the magnitude of each force has dimensions as shown in Eq. B.5.
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$ =



~TP

−−

~R


=



P ∗

Q∗

R∗

−−
L
M
N


=



~S0 × ~R+ h~R

−−−−−−

~R


= . . .

. . .


(~S0 × ~SA + h~SA)ψ

−−−−−−

~SAψ


=


(~S0 × ~SA + h~SA)

−−−−−−

~SA


ψ = $̂Aψ

(B.4)

x y

z

Fx Fy

Fz

Mx My

Mz

$A

Figure 46 � Wrench decomposition on a right-handed coordinate system

If the wrench represents a couple (pure moment), the pitch of
the wrench is considered in�nite (h = ∞) and the force ~R is zero.
Therefore, only exist the component ~T of the wrench which can be de-
composed in the three main directions of the reference system as shown
in Eq. B.6, where the magnitudes of each unit wrench is [force] ×
[length].



160

$ =



~TP

−−

~R


=



~S0 × ~R

−−−
Fx
Fy
Fz


=



−pzFy + pyFz
pzFx − pxFz
−pyFx + pxFy
−−−−−−

Fx
Fy
Fz


= . . .

. . . =



0
pz
−py
−−
1
0
0


Fx +



−pz
0
px
−−
0
1
0


Fy +



py
−px
0
−−
0
0
1


Fz

(B.5)

$ =



~T

−−

0


=



Mx

My

Mz

−−
0
0
0


=



Mx

0
0
−−
0
0
0


+



0
My

0
−−
0
0
0


+



0
0
Mz

−−
0
0
0


= . . .

. . . =



1
0
0
−−
0
0
0


Mx +



0
1
0
−−
0
0
0


My +



0
0
1
−−
0
0
0


Mz

(B.6)

In static analysis of mechanisms using the Davies method, it
is desirable that all existing wrenches are represented over the same
point (generally the origin system), avoiding the need to transform the
coordinates to determine the equilibrium equations (DAVIES, 1995).
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B.3 SUMMARY OF THE DAVIES METHOD

The Davies method for static analysis can be described in a sim-
pli�ed way through the following steps:

1.Given a mechanism, draw its kinematic chain identifying all of its
�n� links and �e� direct couplings.

2.Draw the coupling graph �GC� for the mechanism with the links
of the mechanism as the vertices of the graph, and the joints of
the mechanism as the edges of the graph.

3.Generate the action graph �GA� from �GC� through unfolding
single actions from direct couplings. In this step, each edge of
�GC� representing a coupling is replaced in �GA� by c constraint
edges in parallel.

•Assign positive directions to each edge with an arrow point-
ing from the minor to major vertex.

•Locate the number of cuts (k = n − 1) and chords (c =
e− n+ 1) in the action graph and depict them.

4.Write the cut-set matrix [QN ]k,e with suitable signs.

5.Write a wrench $J for each edge from GA as follows:

$J ==



0
pz
−py
−−
1
0
0


JFx +



−pz
0
px
−−
0
1
0


JFy +



py
−px
0
−−
0
0
1


JFz + . . .

. . .+



1
0
0
−−
0
0
0


JMx +



0
1
0
−−
0
0
0


JMy +



0
0
1
−−
0
0
0


JMz

(B.7)
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6.Replace each wrench $J in the cut-set matrix [QN ]k,e in order
to obtain the generalized action matrix [AN ]3k,e

7.Operate algebraically the generalized action matrix [AN ]3k,e in
order to statically solve the system.

B.4 NET DEGREE OF CONSTRAINT (CN )

The net degree of constraint (CN ) is an intrinsic property ob-
tained from the Davies method and is de�ned as the number of primary
variables needed to solve the static problem. The net degree of con-
straint (CN ) can be directly obtained from the action graph of the
mechanism, and it can be computed as shown in Eq. (B.8).

CN = C − λk (B.8)

whereC represents the total number of internal constraints of the mech-
anism, λ represents the dimension of the task space in which the mech-
anism works (in planar mechanisms λ = 3) and k is the number of cuts
in the action graph. In order to exemplify the computational process
to obtain the net degree of constraint, suppose the planar serial manip-
ulator shown in Fig. 47 (a) and depicted by the action graph shown
in Fig. 47 (b). In the action graph, the vertices of the graph represent
the links of the manipulator and the edges of the graph represent the
actions at the joints of the manipulator.

1
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E
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30

EFx
EFy

EMz

(a) (b)
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A
1F
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A
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A
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A2Fx
A2Fy

A2

A
1 A
3

k1

k2
k3

0

Figure 47 � (a). Planar serial manipulator with 3 DoF. (b). Action
graph of the planar serial manipulator

From the action graph shown in Fig. 47 (b). it is possible to
observe that the total number of internal constraints is equal to twelve
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(C = 12), represented as the twelve arrows in the graph, the number
of cuts in the graph is equal to three k = 3 (k1, k2, k3) and due that
the manipulator is a planar system the dimension of the task space is
λ = 3. By using Eq. (B.8), it is possible to obtain the net degree of
constraint as shown below:

CN = C − λk = 12− 3 · 3 = 12− 9 = 3 (B.9)

B.4.1 Static models of mechanisms and manipulators

In planar manipulators, once the Davies method has been ap-
plied in order to obtain their inverse statics, it is possible to repres-
ent the N primary actions [τ1, τ2, ..., τN ]T as a generalized func-
tion of a coe�cient matrix [A] and the wrenches at the end e�ector
[Fx, Fy,Mz]

T , as shown in Eq. (B.10).


τ1
τ2
...
τN

 =


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

...
...

...
aN,1 aN,2 aN,3

 ·
 Fx
Fy
Mz

 (B.10)

In Eq. (B.10) the a1,1, . . . , aN,3 elements represent kinematic
expressions as a function of the manipulator joint positions, the τ1, τ2, ..., τN
elements represent the actions (forces/moments) of the actuated joints
and the elements Fx, Fy,Mz represent the wrenches at the end ef-
fector. In this way, the serial manipulator shown in Fig. 47 (a) (that is
a manipulator with a net degree of constraint equal to three (CN = 3)),
can have their inverse static model as shown in Eq. (B.11), and the
serial manipulator shown in Fig. 48 (that is a manipulator with a net
degree of constraint equal to three (CN = 3)), can have their inverse
static model as shown in Eq. (B.12).

 τA1

τA2

τA3

 =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ·
 EFx

EFy

EMz

 (B.11)
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Figure 48 � Planar serial manipulator with 6 DoF.


τA1

τA2

τA3

τA4

τA5

τA6

 =


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a4,1 a4,2 a4,3

a5,1 a5,2 a5,3

a6,1 a6,2 a6,3

 ·
 EFx

EFy

EMz

 (B.12)

In the other hand, in planar manipulators which the direct statics
has been solved using the Davies method, it is possible to represent the
wrenches at the end e�ector [Fx, Fy,Mz]

T as a generalized function of
a coe�cient matrix [A] and the N primary actions [τ1, τ2, ..., τN ]T ,
as shown in Eq. (B.13).

 Fx
Fy
Mz

 =

 a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N

a3,1 a3,2 · · · a3,N

 ·

τ1
τ2
...
τN

 (B.13)

Similarly as in the inverse statics, In Eq. (B.13) the a1,1, . . . , a3,N

elements represent kinematic expressions as a function of the manip-
ulator joint positions, the τ1, τ2, ..., τN elements represent the ac-
tions of the actuated joints and the elements Fx, Fy,Mz represent
the wrenches at the end e�ector. In this way, the parallel manipulator
shown in Fig. 49 (a) (that is a manipulator with a net degree of con-
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straint equal to three CN = 3), can have their direct static model
as shown in Eq. (B.14), and the parallel manipulator shown in Fig.
49(b) (that is a manipulator with a net degree of constraint equal to
six CN = 6), can be statically modelled as shown in Eq. (B.15). Fx

Fy
Mz

 =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ·
 τ1
τ2
τ3

 (B.14)

 Fx
Fy
Mz

 =

 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6

a3,1 a3,2 a3,3 a3,4 a3,5 a3,6

 ·

τ1
τ2
τ3
τ4
τ5
τ6


(B.15)

= Actuated Joints

= Passive Joints

(c) (b)

φm

φf

l1 l2 α

φm

φf

l1 l2

α

Figure 49 � (a). Non-Redundantly-actuated 3RRR planar parallel ma-
nipulator (CN = 3). (b). Redundantly-actuated 6RRR planar parallel
manipulator (CN = 6).

It should be emphasized that although so far, it has been shown
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only a few examples of manipulators with CN = 3 and CN = 6, these
are not the only mechanisms with this property, in fact, there is a huge
number of them.



APPENDIX C -- Global Optimization
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Engineering consists of a number of well established activities,
including analysis, design, fabrication, research, and the development
of systems. The process of designing and fabricating systems has been
developed over centuries and it is maybe the major �eld in the en-
gineering profession. The existence of many complex systems, such as
buildings, bridges, highways, automobiles, airplanes, space vehicles, ro-
bots and others, is an excellent testimonial for this process. However,
the evolution of these systems has been slow. The entire process has
been both time-consuming and costly, requiring substantial human and
material resources (ARORA, 2004).

The design of complex systems requires data processing and a
large number of calculations. In the recent past, a revolution in com-
puter technology and numerical computations has taken place. Today's
computers can perform complex calculations and process large amounts
of data rapidly. The engineering design and optimization processes be-
ne�t greatly from this revolution because they require a large number
of calculations. Better systems can now be designed by analyzing and
optimizing various options in a short time. This is highly desirable be-
cause better designed systems cost less, have more capability, and are
easy to maintain and operate (ARORA, 2004).

The design of systems can be formulated as problems of optim-
ization in which a measure of performance is to be optimized while sat-
isfying all constraints. Many numerical methods of optimization have
been developed and used to design better systems (ARORA, 2004).

In simple terms, optimization is an attempt to maximize the
desirable properties of a system while simultaneously minimizing the
undesirable characteristics (STORN; PRICE; LAMPINEN, 2005). Form-
ally, mathematical optimization (MO) is de�ned as a process which
involves: (i) the formulation and (ii) the solution of a constrained op-
timization problem of the general mathematical form (STORN; PRICE;
LAMPINEN, 2005):

minimize f(x), x = [x1, x2, x3, . . . , xn]
T ∈ Rn (C.1)

subject to hi(x) = 0, i = 1, . . . , ne (C.2)

gj(x) 6 0, j = 1, . . . , ng (C.3)

where f(x), hi(x) and gj(x) are scalar functions of the real column
vector x.
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The continuous components xi of x = [x1, x2, x3, . . . , xn]
T

are the design variables, f(x) is the objective function, hi(x) de-
notes the respective equality constraint functions and gj(x) the
inequality constraint functions (STORN; PRICE; LAMPINEN, 2005).
The optimum vector x that solves the problem is denoted by x∗ with
a corresponding optimum function value f(x∗) (STORN; PRICE; LAMP-

INEN, 2005).
In some optimization problems, the objective is to maximize a

function (rather than minimize it). In these cases, the maximization of
a function is obtained by the minimization of its negative (e.g. maxim-
ization of a function f(x) = (d1x1+d2x2+ ...+dnxn) is equivalent
to minimization of its negative, −f(x) = −(d1x1 + d2x2 + ... +
dnxn)) (ARORA, 2004).

In general, constrained optimization problems can have several
local minima. The existence of a single global minimum is guaran-
teed only under certain circumstances. The necessary conditions for a
minimum in the constrained problem are obtained by using the Lag-
range multiplier method (ARORA, 2004). Considering the special case
of equality constraints only and using the Lagrange multiplier tech-
nique , the Lagrangian function can be de�ned as:

L(x, λ) = f(x) +

ne∑
j=1

λjhj(x) (C.4)

where λj are unknown Lagrange multipliers for equality constraints.
The necessary conditions for a stationary point are:

∂L
∂xi

=
∂f

∂xi
+

ne∑
j=1

λj
∂hj

∂xi
= 0, i = 1, . . . , n (C.5)

∂L
∂λj

= hj(x) = 0, j = 1, . . . , ne (C.6)

These conditions, however, apply only at a regular point, that is, at a
point where the gradients of the constraints are linearly independent. If
constraint gradients that are linearly dependent exist, then it is possible
to remove some constraints without a�ecting the solution. At a regular
point, Eqs. (C.5) and (C.6) represent n + ne equations for the ne
Lagrange multipliers and the n coordinates of the stationary point
(ARORA, 2004).
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The situation is somewhat more complicated when inequality
constraints are present. To apply the Lagrange multiplier method it is
necessary to transform the inequality constraints to equality constraints
by adding slack variables (ARORA, 2004). That is, the inequality con-
straints are written as:

gj(x) + sj
2 = 0, j = 1, . . . , ng (C.7)

where sj is a slack variable which measures how far the jth constraint
is from being critical. The Lagrangian function can be formed as:

L(x, µ, s) = f +

ng∑
j=1

µj(gj + sj
2) (C.8)

where µj are unknown Lagrange multipliers for inequality constraints.
Di�erentiating the Lagrangian function with respect to x, µ and s we
obtain:

∂L
∂xi

=
∂f

∂xi
+

ng∑
j=1

µj
∂gj

∂xi
= 0, i = 1, . . . , n (C.9)

∂L
∂µj

= gj(x) + sj
2 = 0, j = 1, . . . , ng (C.10)

∂L
∂sj

= 2µjsj = 0, j = 1, . . . , ng (C.11)

Equations (C.10) and (C.11) imply that when an inequality constraint
is not critical (and thus the corresponding slack variable is non-zero)
then the Lagrange multiplier µj associated with the constraint is zero.
Equations (C.9) to (C.11) are the necessary conditions for a stationary
regular point. Note that for inequality constraints a regular point is one
where the gradients of the active constraints are linearly independent
(ARORA, 2004). These conditions are modi�ed slightly to yield the
necessary conditions for a minimum and are known as the Karush-
Kuhn-Tucker conditions (KKT) (ARORA, 2004).

The Karush-Kuhn-Tucker conditions (KKT) conditions can be
sumarized as shown below:
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∂h(x, λ)

∂xj
= 0 for j = 1, ..., n (C.12)

λigi(x) = 0 for i = 1, ..., ng (C.13)

gi(x) ≤ 0 for i = 1, ..., ng (C.14)

λi ≥ 0 for i = 1, ..., ng (C.15)

where Eq. (C.12) is known as the parallel gradient condition, Eq.
(C.13) is known as the ortogonality condition, Eq. (C.14) are the con-
ditions for the satisfaction of the original constraints and Eq. (C.15) is
known as the Lagrange multiplier nonnegativity condition.

C.1 EXAMPLES:

To illustrate the optimization process using the Karush-Kuhn-
Tucker conditions, three simple examples will be shown below in order
to help the reader to understand how the optimization process can be
developed by using the KKT conditions. The �rst of these examples
shows an optimization problem without constraints, The second ex-
ample shows an optimization with equality constraints, and �nally the
third of these examples shows an optimization with equality and in-
equality constraints.

C.1.1 Example 1: Optimization without constraints.

In this very simple example we optimize an objective function
without considering any constraint as shown in Eq. C.16. That means
that the variables x1, x2, x3 and x4 can assume any value in R4.

minimize : f(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4 (C.16)

To solve this optimization problem it is necessary to de�ne a
Lagrangian function (L) �rst as shown below in Eq. C.17. Di�eren-
tiating the Lagrangian function (L) with respect to x1, x2, x3 and
x4 and equating to zero allow us to obtain Eqs. C.18 to C.21. These
equations allow us to construct a mathematical system whose solution
will solve the optimization problem. In this example the solution is
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obtained by using a very simple gradient approximation.

L(x1, x2, x3, x4) = f(x1, x2, x3, x4) = x2
1+x

2
2+x

2
3+x

2
4 (C.17)

∂L
∂x1

= 2x1 = 0 (C.18)

∂L
∂x2

= 2x2 = 0 (C.19)

∂L
∂x3

= 2x3 = 0 (C.20)

∂L
∂x4

= 2x4 = 0 (C.21)

Solving Eqs. C.18 to C.21 it is possible to determine the solution
to the optimization problem as: x1 = x2 = x3 = x4 = 0 and
f(x1, x2, x3, x4) = 0.

In order to graphically represent this results, consider for ex-
ample a 2-dimensional plane in 4-dimensional space as shown in Fig
50. In that �gure it is possible to observe that the optimum values for
the x1 and x4 variables are located at the origin. this analysis can
be extended to any other pair of variables in a similar way. A similar
graphical analysis will be done below for examples 2 and 3 but including
constraints.

x1

x4

L = Constant

(x1, x4) = (0, 0)

Figure 50 � Example 1 represented in two dimensions
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C.1.2 Example 2: Optimization with equality constraints.

In this example we will optimize the same objective function
shown in Eq. C.16 and rewritten in Eq. C.22, but considering an
equality constraint as shown in Eq. C.23. That means that the vari-
ables x1, x2, x3 and x4 can assume only values satisfying the equality
constraint C.23. The optimization problem can be described as:

minimize : f(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4 (C.22)

subject to : h(x1, x2, x3, x4) = x1 + x2 + x3 + x4 = 1(C.23)

To solve this optimization problem it is necessary to de�ne a
Lagrangian function (L) �rst as shown below in Eq. C.24. Di�erenti-
ating the Lagrangian function (L) with respect to x1, x2, x3, x4 and
λ and equating to zero allow us to obtain Eqs. C.25 to C.29. These
equations allow us to construct a mathematical system whose solution
will solve the optimization problem.

L(x1, x2, x3, x4, λ) = x2
1+x

2
2+x

2
3+x

2
4+λ(1−x1−x2−x3−x4)

(C.24)

∂L
∂x1

= 2x1 − λ = 0 (C.25)

∂L
∂x2

= 2x2 − λ = 0 (C.26)

∂L
∂x3

= 2x3 − λ = 0 (C.27)

∂L
∂x4

= 2x4 − λ = 0 (C.28)

∂L
∂λ

= 1− x1 − x2 − x3 − x4 = 0 (C.29)

Solving Eqs. C.25 to C.29 it is possible to determine the solution
to the optimization problem as:
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x1 = x2 = x3 = x4 =
λ

2
(C.30)

x1 + x2 + x3 + x4 = 4

(
λ

2

)
= 1 or λ =

1

2
(C.31)

so:

x1 = x2 = x3 = x4 =
1

4
and f(x1, x2, x3, x4) =

1

4
(C.32)

In order to graphically represent this results, consider for ex-
ample a 2-dimensional plane in 4-dimensional space as shown in Fig
51. In that �gure it is possible to observe that the optimum values
for the x1 and x4 variables are located on the curve de�ned by the
constraint equation and satisfying the condition x1 = x2 = λ

2
. This

analysis can be extended to any other pair of variables in a similar way.

x1

x4

L = Constant

(1
4
, 1
4
)

equality constraint

x1 = x4 = λ
2

Figure 51 � Example 2 represented in two dimensions

C.1.3 Example 3: Optimization with equality and inequality
constraints.

In this example we will optimize the same objective function
shown in Eq. C.16 and rewritten in Eq. C.33, but considering an



176

equality constraint and an inequality constraint as shown in Eqs. C.34
and C.35. That means that the variables x1, x2, x3 and x4 can as-
sume only values satisfying those equality and inequality constraints
simultaneously. The optimization problem can be described as:

minimize : f(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4 (C.33)

subject to : h(x1, x2, x3, x4) = x1 + x2 + x3 + x4 = 1(C.34)

g(x1, x2, x3, x4) = x4 ≤ A (C.35)

in which A is a parameter that we will play with.
Figures 52 and 53 illustrate two possible versions of this problem,

depending on the value of A. (The shaded regions are the forbidden
values of x, the places where x4 > A).

x1

x4

L = Constant

equality
constraint

inequality
constraint

x∗

Figure 52 � Example 3 represented in two dimensions with A large

As previously discussed, optimization problems are somewhat
more complicated when inequality constraints are presents due that
inequality constraints need to be transformed into equality constraints.
This transformation is done by using slack variables, and for the present
example the Lagrangian function is expressed as shown in Eq. C.36.
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x1

x4

L = Constant

equality
constraint

inequality
constraint

x∗

Figure 53 � Example 3 represented in two dimensions with A small

L(x1, x2, x3, x4, λ, µ) = x2
1 + x2

2 + x2
3 + x2

4 + . . .

. . .+ λ(1− x1 − x2 − x3 − x4) + µ(x4 −A) (C.36)

Then, the necessary conditions for an optimal solution in the nonlin-
ear problem are satis�ed through the Karush-Kuhn-Tucker conditions
(KKT) as shown below:

∂L
∂x

= 0 (C.37)

x1 + x2 + x3 + x4 = 1 (C.38)

x4 ≤ A (C.39)

µ ≥ 0 (C.40)

µ(x4 −A) = 0 (C.41)

From Eq. C.37:

∂L
∂x

=


x1 − λ
x2 − λ
x3 − λ

x4 − λ+ µ

 =


0
0
0
0

 (C.42)
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Therefore

x1 = x2 = x3 =
λ

2
, x4 =

λ− µ
2

(C.43)

so, from Eq C.38:

x1 + x2 + x3 + x4 = 4

(
λ

2

)
−
µ

2
= 1 (C.44)

or

4λ− µ = 2 or λ =
2 + µ

4
(C.45)

Therefore:

x1 = x2 = x3 =
2 + µ

8
=

1

4
+
µ

8
, x4 =

2 + µ

8
−
µ

2
=

1

4
−

3µ

8
(C.46)

From Eq. C.39 we have:

1

4
−

3µ

8
≤ A or

3µ

8
≥

1

4
−A (C.47)

From the general equations previously constructed, it is possible
to analyze the behavior of the optimization problem as a function of
the imposed value for A. this analysis can be divided into three cases
as shown below:

Case 1: This is the interior case illustrated in Fig. 52 where we
assume that A > 1

4
. Since 1

4
− A ≤ 0, Eq. C.47 implies that Eq.

C.40 is automatically satis�ed. From Eq. C.46 we have

x1 = x2 = x3 ≥
1

4
, x4 = 1− (x1 + x2 + x3) ≤

1

4
(C.48)

More information can be obtained using the results in Eq. C.46
due that the condition in Eq. C.41 can only be satis�ed if µ = 0.
Therefore:

x1 = x2 = x3 = x4 =
1

4
(C.49)

which is consistent with the answer to Example 2 and common
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sense. Example 2 says that this is optimal; if we also require that x4

is less than A and A is greater than 1
4
, we haven't changed anything.

Note that the optimal L is again 1/4.

Case 2: In this case, we analyse the limit situation where
A = 1

4
. This behaves like Case 1. The unconstrained optimum lies on

the boundary. Therefore, if we ignored the inequality constraint, we
would get the same x∗.

Case 3: In this case we consider A < 1
4
. If x4 were strictly less

than A, then Eq. C.41 would require that µ = 0. But then Eq. C.25
would imply x = 1

4
, which violates Eq. C.39. Therefore x4 = A and:

x1 = x2 = x3 =
1

3
(1−A) (C.50)

Also

L = 3

(
1

9
(1−A)2

)
+A2 =

1

3
(1−A)2 +A2 (C.51)

or

L =
1

3
(4A2 − 2A+ 1) (C.52)

In a generalized form, the results obtained in Example 3 can be
expressed mathematically as a composed function of L as function of
A as shown in Eq. C.53 and represented graphically in Fig. 54.

L =

{
1
4

⇔ A ≥ 1
4

1
3
(4A2 − 2A+ 1) otherwise

(C.53)
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L

A
1
4

Figure 54 � Graphical representation of L vs A for Example 3.


