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23 ABSTRACT

24

25 Chemical neurotransmitters (NT) are principal actors in all neuronal networks of animals. The 

26 central nervous system plays an important role in stress susceptibility and organizes the 

27 response to a stressful situation through the interaction of the dopaminergic and the 

28 serotonergic pathways, leading to the activation of the hypothalamus-pituitary-adrenal axis 

29 (HPA). This study was designed to investigate: a) the effects of stressful handling of pigs at 

30 the slaughterhouse on the neurotransmitter profile in four brain areas: amygdala, prefrontal 

31 cortex (PFC), hippocampus and hypothalamus, and b) whether the alterations in the brain NT 

32 profile after stressful handling were associated with fear, determined by the tonic immobility 

33 (TI) test. In the first place, the characterization of the NT profile allowed to distinguish the 

34 four brain areas in a principal component analysis. The most crucial pathway involved in the 

35 reaction of pigs to a stressful handling was the serotonergic system, and changes were 

36 observed in the amygdala with a decrease in serotonin (5-HT) and total indoleamines, and in 

37 the hippocampus, where this pathway was activated. Fearful and non-fearful pigs did not 

38 show significant differences in their NT profile in control conditions, but when subjected to a 

39 stressful handling in the slaughterhouse, fearful animals showed a significant variation in the 

40 serotonin pathway and, in a lesser extent, the dopamine (DA) pathway. In conclusion, the 

41 existence of an underlying biological trait - possibly fearfulness - may be involved in the pig's 

42 response toward stressful challenges, and the serotonergic system seems to play a central role 

43 in this response.
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45 1. Introduction

46 Chemical neurotransmitters (NT) are principal actors in all neuronal operations. The 

47 noradrenergic, dopaminergic and the serotonergic pathways are the most important and well 

48 characterized systems underlying the response to stress, fear and reward, among others. The 

49 central nervous system controls the action of endocrine glands through the release of 

50 catecholamines, indoleamines and other transmitters which can be excitatory or inhibitory 

51 mediators [1]. Amygdala, hippocampus and prefrontal cortex (PFC) are recognized to play a 

52 role in the stress response organization. In these structures, stressors produce changes in 

53 extracellular concentrations of different NTs leading to activation and modulation of 

54 processes to cope with stress. These areas have an indirect output to the hypothalamus, which 

55 acts modulating the final stress response through the sympathetic nervous system and the 

56 activation of the hypothalamic-pituitary-adrenal (HPA) axis [2]. Therefore, the stress response 

57 involves not only the activity of these specific brain areas, but also the interaction among 

58 those areas through neuromodulators, especially catecholamines (noradrenaline (NA), 

59 dopamine (DA)) and the indoleamine serotonin (5-HT). DA is metabolized to homovanillic 

60 acid (HVA) and 3,4-dihydroxyphenyl acetic acid (DOPAC), whereas 5-HT is metabolized to 

61 5-hydroxyindoleacetic acid (5-HIAA) [1]. Determining the ratios between the amine and its 

62 metabolites can indicate the turnover rate [3].

63 Tonic immobility (TI) is a well-established test to evaluate the fear response in a wide range 

64 of vertebrates and invertebrates [4,5]. Long duration of TI is generally considered as an 

65 indication for high levels of fearfulness associating tonic immobility with emotional 

66 components like fear or anxiety [6] and with a fear-related phenotype [7]. In pigs, the TI test 

67 has shown to be consistent with other behavioural tests carried out at different ages assessing  

68 fear, aggressiveness and behavioural strategies in front of a stressful situation, thus indicating 

69 that it may be related to individual personality characteristics [4,8–15]. A positive relationship 



70 has been reported between TI scores and lean meat percentage, and a genetic background has 

71 been suggested [8,9]. Furthermore, the fear-related behaviour is closely associated with the 

72 stress response regulated by the HPA axis [7,16]. 

73 There are several stressors widely recognized and studied in pigs, such as handling, mixing, 

74 transport and slaughter [17]. One of the main consequences of pre-slaughter stress is the 

75 production of pale, soft and exudative (PSE) meat, leading to an organoleptic and economic 

76 cost [18]. In the literature, changes in brain NT profiles in genetically stress-susceptible pigs 

77 have been reported [19]. Immobilization of pigs produces changes in hypothalamic and/or 

78 hippocampal bioamine levels, suggesting an important role of these regions in the 

79 responsiveness of the pig to acute stress conditions [3,20]. Furthermore, the involvement of 

80 central nervous system NT in aggressiveness and dominance has also been studied [21–24]. 

81 However, changes in brain NT related to standard or commercial stress conditions at slaughter 

82 and the fear-related behaviour have been rarely studied in pigs [25]. 

83 In the present study, we have first characterized the NT profile of catecholamines and 

84 indoleamines in four different brain areas of the pig involved in the stress and fear response: 

85 amygdala, PFC, hippocampus and hypothalamus. Secondly, we have analysed the changes in 

86 NT profile in pigs subjected to stress at slaughter classified according to a fear-related 

87 phenotype.

88 2. Materials and Methods

89 2.1. Animals, housing conditions, general procedure and ethical statement

90 This study was carried out at the IRTA-Monells experimental farm (Monells, Spain). Ninety-

91 two male piglets were randomly allocated in 10 housing groups of 10-12 piglets each in the 

92 pre-control building at 3 weeks of age (mean ± SE: 5.85 ± 0.166 Kg). All piglets came from 



93 the same commercial farm and were crosses of Large White × Landrace Halothane gene -

94 RYR(1)- free (NN) sows with Pietrain heterozygous (Nn) terminal sire. At 4 weeks of age, all 

95 piglets were subjected to a TI test in order to select a total of 36 piglets (18 positive to TI and 

96 18 negative to TI, see 2.2). At 8 weeks of age, pigs were moved to the control building and 

97 randomly allocated in four groups of nine.  

98 Each group was housed in slatted pens (5 m x 2.70 m) under natural light conditions at a 

99 constant environmental temperature of 22 ± 3 ºC. Each pen was provided with one steel 

100 drinker bowl (15 cm x 16 cm) connected to a nipple and a concrete feeder (58 cm x 34 cm) 

101 with 4 feeding places. Pigs had water and food ad libitum. The pigs were inspected daily and 

102 no health problems were observed during the experimental period. The study was approved 

103 by the Institutional Animal Care and Use Committee (IACUC) of IRTA.

104 2.2. Tonic immobility test

105 Piglets were subjected to a TI test adapted from Erhard et al. [10] and de Sevilla et al. [8]. An 

106 experimenter restrained individually each piglet in a dorsal decubitus position using a V-

107 shaped wooden restrain (50 cm long and with an 80º angle). Another experimenter placed a 

108 small bag (15 cm x 20 cm and weighing 500 g) over the piglet’s throat with one hand, while 

109 carefully holding the hind legs with the other until the animal remained immobile. Only one 

110 induction was performed and the time between the experimenter’s hands were removed from 

111 the animal’s hind legs and the time that the piglet tried to turn was recorded. If the piglet did 

112 not try to turn within 3 min, the trial finalized, and the time of 180 s was assigned to this 

113 piglet. Otherwise, piglets that did not show the immobility response because they struggled 

114 while they were being placed onto the V-shaped wooden restrain were assigned a time of 0 s. 

115 The 18 piglets with the lowest time (less than or equal to 10 s) to try to turn were chosen and 

116 classified as negative to TI test and the 18 piglets with the highest time (equal to or more than 



117 54 s) to try to turn were also selected and classified as positive to TI test. An outline of the 

118 experimental design and the distribution of TI negative and TI positive animals is shown in 

119 Figure 1.

120 2.3. Housing and slaughtering conditions.

121 Animals aged 24 weeks were fasted 8 h before being transported from the experimental farm 

122 to the experimental slaughterhouse (1.2 km of distance). “Control” and “stress” conditions 

123 included different management during unloading, lairage and conduction to the stunning area. 

124 During the unloading, the pigs of two housing pens (9 TI-negative, 9 TI-positive) were 

125 subjected to stress by noise, human presence and rough handling (simulating commercial 

126 conditions) whereas the pigs of the other two housing pens (9 TI-negative, 9 TI-positive) were 

127 handled very calmly allowing the time need for the animals to go ahead by themselves. Pigs 

128 were located in the lairage pens for an hour, the 18 animals under stressful conditions were 

129 mixed between the two housing groups, whereas the 18 animals under control conditions 

130 remained separated maintaining the housing groups. The management during the conduction 

131 of the pigs to the stunning area was similar to the management during unloading (control or 

132 stress). The total length of the procedure was approximately 90 min. Animals were stunned in 

133 groups of two by exposure to 90 % CO2 at atmospheric air for 3 min and exsanguinated 

134 afterwards.  

135 2.4. Tissue sampling and neurotransmitter quantification.

136 Immediately after the slaughter (≈5 min) the skull was opened. The brain was removed and 

137 tissue samples from the selected brain structures (amygdala, PFC, hippocampus and 

138 hypothalamus) were excised, collected as quickly as possible (within 90 s) in liquid N2 and 

139 kept frozen at -80⁰C, until NT analysis according to a procedure adapted from Sabrià et al. 

140 [26]. Samples were weighted and homogenized (1:10 w/v) in ice-cold 0.25 M perchloric acid 



141 containing 0.1 M Na2S2O5 and 0.25 M ethylenediaminetetraacetate (EDTA). 

142 Dihydroxybenzylamine (DHBA) and Nmetil-5-hydroxytryptamine (N) were added as 

143 internal standards for catecholamines and indoleamines, respectively. The mixtures were 

144 homogenized by sonication (Branson Digital Sonifier, model 250, Branson Ultrasonics Corp., 

145 Danbury, CT) followed by centrifugation at 3000 g for 10 min at 4⁰C and the supernatants 

146 were kept frozen at -80⁰C. After centrifugation at 12000 g for 10 min at 4⁰C, the 

147 concentration of catecholamines (NA, DA, DOPAC and HVA) and indoleamines (5-HT and 

148 5-HIAA) were determined in 20 L aliquots using HPLC (Elite LaCHrom, Merck, Hitachi, 

149 Japan) equipped with a Chromolith Rp-18e 100 x 4.6 mm column (Merck KgaA, Darmstadt, 

150 Germany) with electrochemical detection (ESA Coulochem II 5200, Bedford, MA). The 

151 mobile phase consisted of 0.5 M citrate buffer pH 2.8, 0.05 mM EDTA, 1.2 mM sodium octyl 

152 sulphate (SOS) and 1% acetonitrile. The applied voltage was set at 400 mV and the flow rate 

153 was 1 mL/min.

154 The chromatographic quantification of dopaminergic and serotonergic NTs showed a good 

155 precision, with coefficient of variation between-days and within-days lower than 4%. 

156 Linearity was evaluated between 2.5 – 80 pg/μl for 5-HT, 5-160 pg/μl for Nω, 5-240 pg/μl for 

157 HVA and 2.5-120 pg/μl for the rest of NTs. Coefficients of determination (R2) were 

158 calculated and found to be higher than 0.999 for all analytes. Limit of detection was between 

159 2.14 and 4.97 pg/μL and the limit of quantification was between 6.48 and 15.06 pg/μL for all 

160 the analytes. The internal controls (DHBA and Nω) allowed the comparison between runs.

161 Total content of catecholaminergic and serotonergic pathways and ratios of DOPAC and 

162 HVA to DA, and 5-HIAA to 5-HT were estimated as a measure of DA and 5-HT turnover or 

163 rate metabolism in these brain regions.

164 2.5. Statistical analysis



165 The statistical analysis was carried out with the Statistical Analyses System (SAS V9.2; 

166 software SAS Institute Inc., Cary, NC; 2002-2008). The significance level was established at 

167 P <0.05 and a tendency was considered at 0.05 ≤ P ≤ 0.1. Descriptive data are presented with 

168 the means and the standard error (mean ± SE).

169 Whenever possible, data was log transformed to correct the distribution and hence permit use 

170 of parametric statistics. Normality test of data and residuals was performed for each measure. 

171 Normally distributed measures were analyzed using the MIXED procedure of SAS with 

172 Tukey adjustment. Measures with Poisson or multinomial distributions were analyzed using 

173 the GENMOD procedure of SAS. In all models, each pig was introduced as the experimental 

174 unit, the fixed effects included were type of handling and immobility test and planned pair-

175 wise comparisons with Bonferroni correction were performed.

176 Factor analysis: Interrelations among the seven neurotransmitters were included in a 

177 common factor analysis using principal component solution (PCA) to identify unobserved 

178 common factors that explain differences between regions. The criteria used to determine the 

179 number of factors to retain were: (a) eigenvalues > 1 and (b) total variance accounted greater 

180 than 60 %. After the initial factor extraction, the matrix was orthogonally rotated (varimax 

181 method) to maintain factors independent and uncorrelated. Thus, each variable had a high 

182 loading (correlation coefficient between variables and factors) on a single factor and a small 

183 or moderate loading on other factors, using 0.5 loading in absolute value as cut-off point to 

184 accept a variable into a factor.  

185 Each brain region of each pig obtained an individual score on each factor. Factor scores were 

186 normally distributed with a mean of zero.

187 3. Results 



188 3.1. Tonic Immobility test

189 The mean time of the 92 piglets to turn was 34.80 ± 3.77 s. Five of the 92 piglets (5.43 %) did 

190 not show immobility response therefore they were classified as negative to TI. Three of the 92 

191 animals (3.26 %) did not turn during the 3 min of the test and were classified as positive to TI. 

192 Since this was not enough to build groups with the required sample size, the 18 individuals 

193 with the most extreme behaviours were chosen. The mean time of the animals negative to TI 

194 and positive to TI was 5.00 ± 0.93 s and 93.05 ± 10.22 s, respectively, thus both groups were 

195 considerably apart (Figure 1). Long duration of TI is considered as an indication for high 

196 levels of fearfulness, thus negative pigs to TI were classified as non-fearful animals and 

197 positive pigs as fearful animals 

198 3.2. Levels of brain amines and their metabolites in amygdala, PFC, hippocampus 

199 and hypothalamus. 

200 Table 1 shows the regional distribution of catecholamines and indoleamines in the four brain 

201 regions. Highest concentrations of NA were found in the hypothalamus. The concentration of 

202 DA and its metabolites DOPAC and HVA were found to be highest in the amygdala and 

203 hypothalamus. The ratio DOPAC/DA and HVA/DA was highest in the PFC.

204 Regarding to indoleamines, the highest concentration of 5-HT was found in the amygdala and 

205 hypothalamus, whereas the ratio 5-HIAA/5-HT was similar in all structures.

206 Principal Component analysis (PCA) reduced the seven variables (NA, L-DOPA, DOPAC, 

207 DA, HVA, 5-HIAA and 5-HT) to 2 common factors or principal components explaining 92.11 

208 % of the variance. The eigenvalues, the individual and cumulative percentage accounted and 

209 the varimax rotated factor loadings for each variable are shown in Table 2. Brain regions with 



210 a high score for factor 1 (PC1) had high levels of DOPAC, DA, HVA, 5-HIAA and 5-HT; and 

211 brain regions with a high score for factor 2 (PC2) had high levels of NA and L-DOPA.

212 The PCA score plot showed that the pattern of NTs was able to readily differentiate all four 

213 brain areas (Figure 2). 

214 3.3.  Influence of handling stress at slaughter on brain NTs.

215 The concentrations of brain monoamines in the amygdala, PFC, hippocampus and 

216 hypothalamus are presented in Table 3. 

217 The handling stress group presented lower concentration of 5-HT (P = 0.044), HVA (P = 

218 0.028) and a tendency for DA (P = 0.064) in the amygdala. As a consequence, a decrease in 

219 total indole content was observed in this area (P = 0.043). In the hippocampus, the 

220 concentration of 5-HIAA (P= 0.031), 5-HT (P = 0.054, tendency) and total indole content (P 

221 = 0.024) was found to be higher in animals exposed to handling stress. Catecholamine levels 

222 did not show difference between handling groups, but an increase in the ratio 

223 indole/catecholamine (P = 0.012) was found in this area. In the hypothalamus, an increase in 

224 HVA (P = 0.017) and in the sum of the metabolites DOPAC+HVA (P = 0.020) was observed 

225 in stressed pigs. Finally, no difference in any monoamine and their metabolites was found in 

226 the PFC.

227 To find out whether the fearful individuals (TI positive) showed a higher response to a 

228 stressful situation in the slaughterhouse, pair-wise comparisons were performed within 

229 handling groups (Table 4). Indeed, there were no differences in the NT profile between fearful 

230 and non-fearful groups in the control situation. In contrast, significant differences were found 

231 between TI positive and TI negative groups when stressfully handled at the slaughterhouse. 

232 Fearful animals show an increase in total catecholamines (P = 0.047), 5-HT (P = 0.030) and a 



233 tendency for total indoleamines (P = 0.063) in the hippocampus and a tendency to increase L-

234 DOPA (P = 0.090) in the hypothalamus compared to non-fearful animals. 

235 4. Discussion

236 Following classical neurology, the neural pathways controlling response to stress, fear, 

237 aggression, emotion, decision-making and other behaviours are allocated in specific brain 

238 areas such as the amygdala, the hippocampus and the PFC [27–32]. They process sensory 

239 information to organize the autonomic response to stimuli from the environment or from 

240 internal cues and, in particular, these areas are involved in the control of stress and the 

241 regulation of the HPA axis [33]. Catecholaminergic (NA, DA and their metabolites), and 

242 serotonergic (5-HT and 5-HIAA) systems play a significant role in integrating the activity and 

243 interaction among those areas [1,34]. 

244 In this work, we have shown that, together with the hypothalamus, these areas are 

245 characterized by a particular pattern of NT that clearly discriminate the four regions. In the 

246 PCA, component 2 (high concentrations of NA and L-DOPA) characterized the hypothalamus 

247 versus the other three areas, whereas the first component (high concentrations of the other 

248 NTs) characterized the amygdala versus PFC and hippocampus. These two areas were the 

249 most similar in their NT profile.

250 All three NT systems (noradrenergic, dopaminergic and serotonergic) have an important role 

251 in the control of the stress reaction [34]. Although, historically, the noradrenergic system in 

252 the locus coeruleus has attracted much attention in the study of the stress response, the 

253 dopaminergic and the serotonergic systems have also been consistently implicated [35]. In 

254 particular, 5-HT has remarkable modulatory effects in almost all central nervous system 

255 integrative functions, such as stress, mood, anxiety and aggression [36] and it has been 

256 recognized as being directly related to stress and able to regulate the HPA axis by stimulating 



257 CRH release in the paraventricular nucleus of the hypothalamus [37]. Marked changes in 

258 brain 5-HT turnover have been shown to occur in both rodents and humans upon activation of 

259 the HPA axis [38]. In particular, significant increases in the synthesis and release of 5-HT 

260 have been observed in various brain areas in response to different stressful conditions such as 

261 electrical foot shocks, cold environment, immobilization sessions, or tail pinches in rats [37]. 

262 All these data strongly support the existence of reciprocal relationships between the 5-HT 

263 system and the HPA axis. 

264 The results presented here support the central role of the serotonergic pathway in the 

265 regulation of the short term reaction to acute stress in pigs. The most remarkable change 

266 induced by stressful handling at the slaughterhouse is the alteration of the serotonergic system 

267 in the hippocampus and in the amygdala. There is a decrease in the serotonin pathway (5-HT 

268 and total indoleamines, and a tendency for 5-HIAA) in the amygdala after acute handling 

269 stress. It is known that under stress conditions the locus coeruleus activates stress pathways in 

270 the amygdala through noradrenergic projections. Likewise, the amygdala sends projections to 

271 the hypothalamus and brain stem, mediating the unconscious acute responses to danger and 

272 orchestrating the expression of behavioural and physiological responses (e.g. changes in heart 

273 rate, respiration and pupillary dilation) [35]. Thus, the amygdala and the hypothalamus are 

274 connected to innate (unconditioned) fear and may serve to enhance the state of arousal in 

275 order to adapt to challenging situations [39]. A decrease in 5-HT in the amygdala has been 

276 shown in rats subjected to forced swimming as a model of acute stress [34], although 

277 contradictory results have been reported that are probably explained by the existence of 

278 specific regions inside the amygdala with different functional roles [27]. 

279 The hippocampus is central to 5-HT function since it receives a dense projection of 5-HT 

280 fibres mainly from the raphe nucleus and it is rich in various 5-HT receptor types, being a 

281 mediator in the relationship of 5-HT with the HPA axis [32,37]. The increase of 5-HT 



282 (tendency) as well as its metabolite 5-HIAA induced by stressful handling indicates that this 

283 NT is synthesized and rapidly metabolized. This is in agreement with the general idea that 

284 only inescapable, but not escapable, stresses produce an increase in extracellular 5-HT 

285 concentration in rat hippocampus [37,41]. In rodents, many studies have demonstrated that 5-

286 HT release is increased in the hippocampus during several stress conditions, including 

287 immobilization [42], psychological stress [43], exposure to cats, tail pinch and forced 

288 swimming [44] and footshock [45,46].

289 As stated above, the amygdala sends the distress signal to the hypothalamus, where an 

290 increase in HVA and HVA+DOPAC is observed, indicating a higher rate of DA catabolism. 

291 This indicates that the DA system, and not only the NA system, is activated by stressful 

292 stimuli, as suggested by others [35]. No changes in NA were detected in the hypothalamus in 

293 the present work, in contrast to the reported decrease in NA in this region in pigs that showed 

294 distressed behaviour at the slaughterhouse [25] and to acute immobilization stress [3,20], but 

295 their approach was different from our experimental setting. 

296 TI is a measure of fear and this fear-related behaviour is closely associated with the stress 

297 response regulated by the HPA [7,47,48]. Due to this relationship, we analysed the alteration 

298 in NTs associated to the response to the TI test. To get a more accurate analysis of the NT 

299 response to fear, we analyzed the response of the animals to control or stressful handling at 

300 the slaughterhouse depending on their TI classification. Fearfulness could be considered a 

301 basic feature of the temperament of each individual, that predisposes it to respond to a variety 

302 of potentially alarming challenges [49]. 

303 The objective was to establish differences between individuals classified as having a fear-

304 related behaviour and those classified as non-fearful. Indeed, there were no significant 

305 differences between fearful and non-fearful animals in control conditions. In contrast, fearful 



306 animals displayed important changes in the NT profile in the stressful situation. Again, the 

307 serotonergic pathway was mostly affected, especially in the hippocampus. The hippocampus 

308 and the serotonergic system have been previously related to fear behaviour in pigs [50] and 

309 chicken [51]. In pigs, Ursinus et al. [50] recently reported that hippocampal 5-HT is positively 

310 correlated with standing alert time (freezing) and inversely correlated with locomotion and 

311 exploration in pigs subjected to a novel object test. Since freezing is a sign of fear and 

312 explorative behaviours are generally thought to reflect a low level of fear or anxiety, it is 

313 concluded that hippocampal 5-HT increases in a fear condition [52]. The authors did not find 

314 any relationship between behaviour in the novel object test and 5-HT levels in the PFC or in 

315 the hypothalamus. In agreement with these authors, our results support the hypothesis that the 

316 relations between behaviour and measures of 5-HT in brain indicate an underlying personality 

317 trait and that individual differences in behaviour of animals during environmental challenges 

318 may covary with the animal's serotonergic system functioning. It is also interesting to note 

319 that in Ursinus’s work, hippocampal 5-HT activity measured at 19 weeks of age in euthanized 

320 animals was related to behaviours observed during the novelty test at 11 weeks of age [50]. 

321 Taken altogether, these results suggest that the hippocampus, but not other brain regions, 

322 might be involved in a putative personality measure in pigs related to the trait fearfulness, and 

323 that 5-HT would be the main neurotransmitter involved. In rats, a short lasting acute 

324 footshock session was able to induce a marked increase in 5-HT synaptic levels in the 

325 hippocampus as well as freezing and anxiety-related behaviours [46], and endogenous 5-HT 

326 seems to be responsible for the modulation of activity in the hippocampal pyramidal neurons 

327 linked to freezing behaviour [53]. Furthermore, mice with a genetic deletion of the serotonin 

328 1A receptor (5-HT1AR) have been shown to be more fearful in a number of behavioural 

329 conflict tests, confirming the important role of this neurotransmitter and this receptor in 

330 modulating anxiety [29,54]. Thus, the role of the hippocampus and the serotonergic system in 



331 the fear-related responses to stressful challenges may be a general characteristic of animal 

332 species. Although our results indicate a principal role of 5-HT and the hippocampus, they also 

333 suggest the involvement of the catecholamine system, since total catecholamines are 

334 increased in this region. 

335 It is interesting to speculate about the molecular changes that lead to variations in the NT 

336 concentration, taking into account that the methodological approach used in the present work 

337 measures the total amount of the NT. It is not possible in pigs to perform microdialysis 

338 experiments that would allow the direct measurement of extracellular NTs (presumably 

339 related to their presence at the synapsis) [55]. The mechanism involving NT release includes 

340 the synthesis of the NT by synthetic enzymes, their recruitment to vesicles and their release to 

341 the synaptic cleft [56]. Since we are measuring total content of NTs, rapid changes in total 5-

342 HT concentration could be related to a change of tryptophan hydroxylase 2 activity (TPH2), 

343 the enzyme that catalyzes the rate-limiting step in serotonin biosynthesis in the brain [57]. 

344 Current knowledge indicates that TPH2 is specifically transcribed in the somatodendritic 

345 segment of 5-HT neurons and a variable fraction of TPH2 mRNA is transported to terminal 

346 field [58]. A similar regulatory mechanism exist for tyrosine hydroxylase, the rate-limiting 

347 enzyme for the synthesis of catecholamines [59]. These enzymes can be rapidly transcribed in 

348 response to acute stress such as immobilization or other types of stress [27,60]. Other 

349 regulatory mechanisms that may be potentially involved are phosphorylation by protein 

350 kinase A (PKA) and the Ca2+/calmodulin dependent protein kinase II [61–63] and protein-

351 protein interactions [59]. 

352 Conclusions

353 The most remarkable change induced by stressful handling is the alteration of the serotonergic 

354 system in the hippocampus and in the amygdala. There was no difference in neurotransmitter 



355 profile between fearful and non-fearful pigs when confronted to a non-stressful handling at 

356 the slaughterhouse, but fearful animals did show more changes when subjected to stressful 

357 handling, concerning specially the serotonergic pathway in the hippocampus. 

358 In conclusion, the existence of an underlying biological trait - possibly fearfulness - may be 

359 involved in pig's response toward stressful challenges, and the serotonergic system seems to 

360 be central to this response.
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374 Legends to the figures

375

376 Figure 1. Outline of the experimental design and the distribution of TI negative and TI 

377 positive animals. Ninety-two pigs were subjected to the TI test with a maximum allowed time 

378 of 180 s. Three pigs did not turn (TI positive) and five moved immediately (time = 0 s, TI 

379 negative). The animals showing the most extreme responses in reaction time were selected to 

380 be included in the study (18 animals for each group).

381

382 Figure 2. Score plot from a principal component analysis showing the distribution of the four 

383 brain areas analysed (amygdala, PFC, hippocampus and hypothalamus) regarding their NT 

384 profile.  

385
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Table 1. Concentration of neurotransmitters (ng/g tissue) in brain areas

Amygdala PFC Hippocampus Hypothalamus
 Mean SE Mean SE Mean SE Mean SE
NA 152.50 9.37 144.39 4.00 130.48 5.03 2007.19 83.77
L-DOPA - - - - - - 309.91 18.73
DOPAC 43.65 4.04 7.28 0.86 - - 59.40 7.19
DA 359.69 24.42 19.95 1.31 27.52 2.63 302.27 15.05
HVA 280.27 18.39 61.45 4.93 - - 295.61 22.09
Total Catecholamines 860.48 40.86 232.62 11.13 154.81 5.31 2911.25 103.77
5-HIAA 270.97 13.22 111.10 5.16 129.74 5.41 373.24 23.09
5-HT 917.38 47.35 252.71 10.79 276.56 9.83 995.47 51.79
Total Indoleamines 1188.35 58.29 363.81 14.66 406.30 13.65 1368.71 70.88
5- HIAA/5-HT 0.31 0.01 0.45 0.02 0.48 0.02 0.08 0.02
DOPAC/DA 0.11 0.01 0.37 0.04 - - 0.19 0.02
HVA/DA 0.91 0.09 3.34 0.24 - - 1.03 0.09
NA/DA 0.83 0.38 8.39 0.63 6.55 0.91 6.94 0.33
(DOPAC+HVA)/DA 0.97 0.04 3.83 0.27 - - 1.28 0.12
DOPAC+HVA 330.88 19.84 67.41 5.81 - - 335.77 26.89
Indoleamines/Catecholamines 1.452 0.05 1.79 0.12 2.68 0.126 0.48 0.02



Table 2. Eigenvalues, individual and cumulative proportion of the Correlation Matrix and loadings of 
neurotransmitters in varimax rotated factor matrix. Loadings equals or higher than 0.50 are highlighted 
to indicate the main attributes of the different principal components (PC).

PC1 PC2

Eigenvalue 5.053 1.395

Individual Proportion 72.19% 19.92%

Cumulative Proportion 72.19% 92.11%

Variables

NA 0.23 0.97

L-DOPA 0.22 0.97

DOPAC 0.90 0.28

DA 0.95 0.11

HVA 0.93 0.18

5-HIAA 0.82 0.46

5-HT 0.91 0.26



Table 3. Effects of stressful handling at the slaughterhouse on the neurotransmitter concentration (ng/g 
tissue) in amygdala, PFC, hippocampus and hypothalamus in pigs. * P<0.05

 Handling at Slaughter  
CONTROL STRESS

 Variables Mean SE Mean SE Effect
NA 146.79 9.02 158.55 16.98 0.803
DOPAC 47.38 5.79 39.17 5.54 0.319
DA 403.52 32.34 313.27 34.20 0.064
HVA 318.94 24.92 239.32 24.02 0.028*
Total Catecholamines 916.63 61.81 793.10 47.24 0.134
5-HIAA 292.67 18.31 248.00 17.99 0.092
5-HT 1009.16 57.02 820.20 70.74 0.044*
Total Indoleamines 1301.84 72.43 1068.20 84.90 0.043*
5- HIAA/5-HT 0.29 0.01 0.32 0.02 0.336
DOPAC/DA 0.11 0.01 0.11 0.01 0.917
HVA/DA 0.83 0.06 1.00 0.18 0.614
NA/DA 0.39 0.02 0.50 0.08 0.624
(DOPAC+HVA)/DA 0.94 0.06 0.93 0.06 0.868
DOPAC+HVA 366.32 28.82 291.00 24.11 0.057

A
m

yg
da

la

Indoleamines/Catecholamines 1.48 0.08 1.42 0.07 0.642
NA 139.11 5.77 150.80 5.10 0.149
DOPAC 7.61 1.24 6.87 1.21 0.830
DA 19.80 2.09 20.13 1.50 0.903
HVA 61.70 7.95 61.18 5.94 0.821
Total Catecholamines 227.58 14.36 239.94 18.22 0.595
5-HIAA 107.83 6.38 114.57 8.33 0.418
5-HT 255.24 15.10 250.03 15.89 0.835
Total Indoleamines 363.07 20.01 364.60 22.18 0.964
5- HIAA/5-HT 0.43 0.02 0.47 0.03 0.322
DOPAC/DA 0.36 0.05 0.37 0.06 0.949
HVA/DA 3.30 0.32 3.40 0.37 0.846
NA/DA 8.33 0.94 8.47 0.80 0.676
(DOPAC+HVA)/DA 3.74 0.34 3.96 0.43 0.679
DOPAC+HVA 68.41 9.04 66.26 7.31 0.981

Pr
ef

ro
nt

al
 C

or
te

x

Indoleamines/Catecholamines 1.74 0.11 1.85 0.26 0.838
NA 134.21 5.84 126.75 8.27 0.467
DA 28.86 4.19 26.18 3.29 0.619
Total Catecholamines 157.71 6.67 151.68 8.65 0.846
5-HIAA 118.24 6.64 141.23 7.76 0.031*
5-HT 257.78 11.78 295.35 14.68 0.054
Total Indoleamines 376.02 16.35 436.58 19.67 0.024*
5- HIAA/5-HT 0.46 0.02 0.49 0.02 0.519
NA/DA 6.47 1.25 6.63 1.39 0.979

H
ip

po
ca

m
pu

s 

Indoleamines/Catecholamines 2.39 0.14 3.00 0.18 0.012*
NA 2116.99 135.36 1913.08 101.48 0.232
L-DOPA 308.07 25.13 311.92 29.23 0.921
DOPAC 65.41 14.49 55.89 8.00 0.539
DA 293.10 23.93 310.12 19.58 0.583
HVA 240.94 20.37 338.56 32.17 0.017*
Total Catecholamines 2977.17 177.41 2854.74 122.88 0.567
5-HIAA 352.19 27.54 390.07 35.51 0.426
5-HT 967.30 71.29 1018.00 75.43 0.636

H
yp

ot
ha

la
m

us

Total Indoleamines 1319.50 92.95 1408.07 105.42 0.545



5- HIAA/5-HT 0.37 0.02 0.39 0.02 0.729
DOPAC/DA 0.21 0.06 0.18 0.02 0.781
HVA/DA 0.86 0.09 1.16 0.14 0.108
NA/DA 7.47 0.44 6.48 0.46 0.343
(DOPAC+HVA)/DA 1.02 0.14 1.41 0.16 0.132
DOPAC+HVA 271.25 28.51 386.47 37.98 0.020*
Indoleamines/Catecholamines 0.45 0.02 0.50 0.04 0.220



Table 4. Neurotransmitter concentration (ng/g tissue) in amygdala, PFC, hippocampus and hypothalamus in pigs and the influence of the TI test in the 
response to control or stressful handling at the slaughterhouse. * P<0.05

Control handling Stressful handling
Non-fearful Fearful Non-ferful Fearful

Variables Mean SE Mean SE Effect Mean SE Mean SE Effect 

NA 151.73 13.41 141.85 12.65 1.000 166.48 24.28 149.63 20.54 1.000
DOPAC 45.62 10.00 49.15 6.43 1.000 37.47 7.18 40.66 8.71 1.000
DA 407.38 59.12 399.67 30.76 1.000 278.69 46.24 352.17 50.24 0.583
HVA 280.28 32.11 357.60 35.13 0.231 229.50 40.92 250.36 24.83 1.000
Total Catecholamines 884.99 104.02 948.27 71.88 1.000 793.44 70.70 792.81 67.97 1.000
5-HIAA 311.48 29.19 273.86 22.02 0.615 241.95 29.51 254.81 20.97 1.000
5-HT 1016.53 73.68 1001.79 91.51 1.000 762.88 100.06 884.68 101.56 0.728
Total Indoleamines 1328.02 98.50 1275.65 111.46 1.000 1004.83 125.00 1139.49 116.39 0.829
5- HIAA/5-HT 0.31 0.02 0.28 0.01 0.603 0.33 0.02 0.31 0.03 0.837
DOPAC/DA 0.10 0.01 0.12 0.01 0.666 0.11 0.01 0.11 0.02 1.000
HVA/DA 0.75 0.08 0.91 0.09 1.000 1.18 0.35 0.81 0.12 0.904
NA/DA 0.41 0.04 0.36 0.03 1.000 0.55 0.13 0.44 0.11 1.000
(DOPAC+HVA)/DA 0.85 0.07 1.03 0.09 0.265 0.95 0.05 0.92 0.11 1.000
DOPAC+HVA 325.89 39.97 406.75 39.03 0.260 290.98 40.62 291.01 29.00 1.000

A
m

yg
da

la
 

Indoleamines/Catecholamines 1.59 0.12 1.36 0.09 0.265 1.39 0.06 1.45 0.13 1.000
NA 131.26 8.89 146.10 7.18 0.346 150.22 5.17 151.38 9.26 1.000
DOPAC 8.46 1.85 6.86 1.74 0.737 7.15 1.91 6.59 1.65 1.000
DA 16.17 2.69 23.03 2.85 0.119 20.46 2.71 19.80 1.52 1.000
HVA 58.54 9.99 64.51 12.60 1.000 58.17 10.83 64.20 5.62 0.873
Total Catecholamines 213.36 22.07 241.80 18.42 0.691 225.83 32.16 256.86 11.94 0.789
5-HIAA 117.41 8.88 99.31 8.55 0.427 104.91 12.03 124.24 11.24 0.394
5-HT 258.26 12.71 252.56 27.08 1.000 228.96 26.73 271.10 15.52 0.448
Total Indoleamines 375.67 19.43 351.87 34.44 1.000 326.83 31.21 413.17 21.05 0.392
5- HIAA/5-HT 0.46 0.03 0.41 0.03 0.589 0.48 0.06 0.46 0.02 1.000
DOPAC/DA 0.46 0.06 0.28 0.06 0.167 0.39 0.10 0.35 0.09 0.945
HVA/DA 3.82 0.39 2.84 0.47 0.292 3.45 0.64 3.34 0.44 1.000
NA/DA 9.55 1.55 7.24 1.07 0.254 8.89 1.40 8.04 0.87 1.000

Pr
ef

ro
nt

al
 C

or
te

x

(DOPAC+HVA)/DA 4.22 0.34 3.25 0.56 0.363 4.17 0.74 3.76 0.52 1.000



DOPAC+HVA 65.94 11.74 70.61 14.16 1.000 63.54 12.59 69.38 7.26 0.968
Indoleamines/Catecholamines 1.87 0.19 1.61 0.12 1.000 1.96 0.48 1.72 0.13 1.000
NA 140.31 7.64 128.79 8.71 0.874 123.84 11.01 130.03 13.16 1.000
DA 33.01 6.68 24.72 5.09 0.566 23.31 4.61 30.00 4.57 0.777
Total Catecholamines 170.51 9.61 144.92 6.80 0.128 136.35 7.05 169.56 14.17 0.047*
5-HIAA 119.86 10.72 116.81 8.75 1.000 134.88 8.42 148.38 13.70 0.733
5-HT 253.05 21.67 261.98 12.42 1.000 265.13 13.90 329.35 22.04 0.030*
Total Indoleamines 372.91 30.80 378.79 16.41 1.000 400.01 20.11 477.73 30.03 0.063
5- HIAA/5-HT 0.48 0.03 0.45 0.04 1.000 0.51 0.03 0.46 0.04 0.537
NA/DA 5.76 1.44 7.18 2.11 1.000 7.09 2.13 6.09 1.91 1.000

H
ip

po
ca

m
pu

s

Indoleamines/Catecholamines 2.15 0.19 2.62 0.16 0.290 3.09 0.27 2.88 0.26 1.000
NA 2011.75 177.09 2264.34 213.90 0.613 1724.17 128.95 2054.75 133.69 0.303
L-DOPA 295.22 37.60 326.05 32.57 1.000 238.27 29.48 354.01 34.31 0.090
DOPAC 58.26 16.61 74.94 28.97 1.000 57.50 13.78 54.27 9.52 1.000
DA 293.43 41.27 292.63 14.28 1.000 286.96 35.20 327.50 21.95 0.713
HVA 224.42 20.66 269.85 43.28 0.704 397.28 58.88 294.52 29.32 0.202
Total Catecholamines 2858.10 254.02 3143.87 245.60 0.729 2624.76 72.66 3027.23 190.60 0.343
5-HIAA 327.84 30.67 386.30 50.30 0.859 383.88 47.08 395.49 55.28 1.000
5-HT 906.42 101.21 1052.53 94.46 0.714 900.42 114.09 1120.88 91.29 0.245
Total Indoleamines 1234.26 128.72 1438.83 126.98 0.710 1284.30 155.95 1516.37 140.86 0.476
5- HIAA/5-HT 0.38 0.03 0.37 0.04 1.000 0.43 0.02 0.35 0.03 0.120
DOPAC/DA 0.16 0.03 0.28 0.13 0.842 0.19 0.03 0.16 0.03 1.000
HVA/DA 0.85 0.13 0.88 0.13 1.000 1.45 0.25 0.94 0.13 0.096
NA/DA 7.26 0.63 7.76 0.65 1.000 6.59 0.96 6.41 0.45 1.000
(DOPAC+HVA)/DA 0.95 0.16 1.18 0.32 0.959 1.64 0.26 1.17 0.17 0.261
DOPAC+HVA 257.71 31.60 294.94 60.51 1.000 454.78 67.95 335.23 36.59 0.270

H
yp

ot
ha

la
m

us

Indoleamines/Catecholamines 0.44 0.04 0.46 0.03 1.000 0.50 0.07 0.51 0.04 1.000
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Highlights

 We measured brain neurotransmitters in pigs classified as fearful-nonfearful under 
stressful handling. 

 Stressful handling alters the 5-HT system in the hippocampus and the amygdala.
 There was no difference between fearful and non-fearful pigs under non-stressful 

handling.
 The 5-HT pathway is activated in the hippocampus under stressful handling only in 

fearful pigs.


