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Abstract. A ratio–dependent predator-prey model with stage structure for

prey was investigated in [8]. There the authors mentioned that they were

unable to show if such a model admits limit cycles when the unique equilibrium
point E∗ at the positive octant is unstable.

Here we characterize the existence of Hopf bifurcations for the systems. In

particular we provide a positive answer to the above question showing for such
models the existence of small–amplitude Hopf limit cycles being the equilibrium

point E∗ unstable.

1. Introduction and statement of the main results. Frequently it is assumed
in the ratio–dependent predator-prey models that each individual prey admits the
same risk to be attacked by a predator. This hypothesis is not always realistic for
many species. Thus there are many species whose individuals along his life pass
through two stages, immature and mature. Here the prey individuals are classified
in immature or mature, and we assume that the immature ones cannot be attacked
by the predators. This assumption is reasonable for many mammals, because the
immature preys concealed in a mountain cave, are raised by their parents and they
do not necessarily go out for seeking food, so the possibility of being attacked by
the predators is negligible.

Stage structured models have been studied with attention in these last years.
Thus a stage–structured model of single species growth with of immature and ma-
ture individuals was stated and analyzed in [1]. Later on in [2] it was also assumed
that the time from immaturity to maturity is itself state dependent. More recently,
in the articles [4, 5, 6, 7, 9] the authors considered predator–prey models with stage
structure for prey or predator in order to analyze the influence of a stage structure
for the prey or the predator. Xu, Chaplain and Davidson [8] studied the effect of

2010 Mathematics Subject Classification. Primary: 34D23, 92D25.
Key words and phrases. Ratio–dependence, predator-prey model, Hopf bifurcation, averaging

theory.

1

This is a preprint of: “Hopf periodic orbits for a ratio-dependent predator-prey model with stage
structure”, Jaume Llibre, Claudio Vidal, Discrete Contin. Dyn. Syst. Ser. B, vol. 21(6), 1859–
1867, 2016.
DOI: [10.3934/dcdsb.2016026]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/78546857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
10.3934/dcdsb.2016026


2 JAUME LLIBRE AND CLAUDIO VIDAL

stage structure for prey on the dynamics of ratio–dependent predator-prey system
by considering the differential system

ẋ = −(b+ r1)x+ ay,

ẏ = bx− b1y2 −
a1yz

y +mz
,

ż = z

(
−r +

a2y

y +mz

)
,

(1)

where x = x(t) represents the density of immature individual preys at time t, and
y = y(t) denotes the density of mature individual preys at time t, z = z(t) represents
the density of the predator at time t. As usual the eight parameters a, a1, a2, b, b1,
m, r and r1 of the system are positive, see [8] for their meaning.

When y∗ > 0 and a2 > r the differential system (1) has a unique equilibrium
point

E∗ =

(
ay∗

b+ r1
, y∗,

(a2 − r)y∗
mr

)
with y∗ =

aa2bm− a1(a2 − r)(b+ r1)

a2b1m(b+ r1)
,

in the positive octant, i.e., in {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0}.
In the conclusions of the paper [8] the authors said: We would like to mention

here that we are unable to show system (1) admits limit cycles when E∗ exists and
is unstable. We leave this for future work. As far as we know this question remained
open. The main difficulty for solving it was that the differential system (1) depends
on 8 parameters.

Here we shall characterize the existence of Hopf bifurcations for systems (1).
Moreover using the Hopf bifurcation for these systems we provide a positive answer
to the above question restricted to the small–amplitude Hopf limit cycles.

The following result characterizes when the equilibrium point E∗ has eigenvalues
of the form ρ, ε± ωi.
Proposition 1. The equilibrium point E∗ of the differential system (1) has eigen-
values of the form ρ, ε± ωi if and only if

a =
β(b+ r1)(a

2
2r

2 − 2a2r
3 + r4 + 2a22rε− 2a2r

2ε+ a22ε
2 + a2rε

2 + a22ω
2 + a2rω

2)

αb
,

a1 =
βa2m(a22r

2 − 2a2r
3 + r4 + 2a22rε− 2a2r

2ε+ a22ε
2 + a22ω

2)

α(a2 − r)
,

where

α = −a22br2 + a2b
2r2 + 2a2br

3 − b2r3 − br4 − a22r2r1 + 2a2br
2r1 + 2a2r

3r1
−2br3r1 − r4r1 + a2r

2r21 − r3r21 − 2a22brε+ 4a2br
2ε− 2br3ε− 2a22rr1ε

+4a2r
2r1ε− 2r3r1ε− a22bε2 − a2brε2 + 2a2r

2ε2 − 2r3ε2 − a22r1ε2
−a2rr1ε2 − a22bω2 − a2brω2 + 2a2r

2ω2 − 2r3ω2 − a22r1ω2 − a2rr1ω2,

β = b2 + 2br1 + r21 + 2bε+ 2r1ε+ 2ε2 + 2ω2.

Proposition 1 is proved in section 2.

Hypothesis. In the rest of the paper we assume that the parameters a and a1 are
the ones given in the statement of Proposition 1.

Since a = a(b,m, r, r1, ε, ω) and a1 = a1(a2, b,m, r, r1, ε, ω), the parameters a2,
b, m, r, r1, ε and ω must be chosen in such a way that a > 0 and a1 > 0, later on
we shall show that such election of the parameters exist. Note that in fact we have
changed the parameters a and a1 by the parameters ε and ω.



HOPF PERIODIC ORBITS FOR A PREDATOR–PREY MODEL 3

The linearization of the differential system (1) at E∗ when ε = 0 has the pair
of conjugate purely imaginary eigenvalues ±ωi, and if the other one eigenvalues
ρ is non–zero this is the setting for a Hopf bifurcation. We can expect to see a
small–amplitude limit cycle bifurcating from the equilibrium point E∗. It remains
to compute the first Liapunov coefficient `1(E∗|ε=0) of (1) at E∗ when ε = 0 and
see that it is non–zero. When `1(E∗|ε=0) < 0 the point E∗ is a weak focus on
the corresponding two–dimensional central manifold of the system (1) and the limit
cycle that borns from E∗ is stable restricted to this central manifold, consequently
the weak focus becomes unstable restricted to the central surface. Due to the fact
that the eigenvalues of E∗ are ρ and ε± ωi where the small–amplitude limit cycle
which appears in the Hopf bifurcation is stable, it follows that ε > 0. In this case we
say that the Hopf bifurcation is supercritical. When `1(E∗|ε=0) > 0 the point E∗ is
also a weak focus of system (1) but the limit cycle that borns from E∗ is unstable,
and the weak focus becomes stable, and consequently ε < 0. In this second case we
say that the Hopf bifurcation is subcritical. Here we use the results on the Hopf
bifurcation stated in Chapters 3 and 5 of the book of Kuznetsov [3] for computing
`1(E∗|ε=0).

We have computed in function of all parameters of the system the Liapunov
coefficient `1(E∗|ε=0), but his expression is so huge that we shall need tens of pages
for writing it. All the steps of the computation of `1(E∗|ε=0) are described in section
2. These steps as we shall see can be used for computing effectively `1(E∗|ε=0) for
a given set of parameters. Using them we have proved the following result.

Theorem 2. The following system ratio–dependent predator–prey model with stage
structure

ẋ = −7x+
7y
(
ε2 + 14ε+ 50

) (
6ε2 + 4ε+ 7

)

−40ε2 − 14ε+ 2
,

ẏ = x− y2 +
2z
(
2ε2 + 14ε+ 51

) (
4ε2 + 4ε+ 5

)
y

(y + z) (40ε2 + 14ε− 2)
,

ż = z

(
−1 +

2y

y + z

)
,

(2)

has a Hopf bifurcation at the equilibrium point E∗ = (x∗, y∗, z∗) where

x∗ =

(
−2ε2 + 24ε+ 95

) (
ε2 + 1

) (
ε2 + 14ε+ 50

) (
6ε2 + 4ε+ 7

)

4 (20ε2 + 7ε− 1)
2 =

16625

2
+O(ε),

y∗ = z∗ =

(
−2ε2 + 24ε+ 95

) (
ε2 + 1

)

2 (−20ε2 − 7ε+ 1)
=

95

2
+O(ε),

when ε = 0. The eigenvalues at E∗ are

−7
(
2ε2 − 24ε− 95

)

4 (20ε2 + 7ε− 1)
= −665

4
+O(ε) and ε± i.

Since `1(E∗|ε=0) = −5796656446586/592156593152863031275 < 0 the Hopf bifur-
cation is supercritical and an stable Hopf limit cycle on the central manifold through
E∗ there exist for ε > 0 sufficiently small. So locally the equilibrium point E∗ is
unstable on the central manifold when it exhibits the small–amplitude Hopf limit
cycle.

Theorem 2 is proved in Section 4.
We also have the following result.
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Proposition 3. Assume that a Hopf limit cycle borns at the equilibrium point E∗

of the differential system (1), then the real eigenvalue at this equilibrium is negative.

Proposition 3 is also proved in Section 4.

2. Proof of Proposition 1. The characteristic polynomial of the linear part of
the differential system (1) at the equilibrium point E∗ is

p(λ) = λ3 + d2λ
2 + d1λ+ d0,

where

d2 =
1

a22m(b+ r1)

(
− a1a22b+ 2aa22bm+ a22b

2m+ a22bmr + a1br
2 − a2bmr2

−a1a22r1 + 2a22bmr1 + a22mrr1 + a1r
2r1 − a2mr2r1 + a22mr

2
1

)
,

d1 =
1

a22m(b+ r1)

(
− a1a22b2 + aa22b

2m− a1a22br + 2aa22bmr + a22b
2mr

+2a1a2br
2 + a1b

2r2 − 2aa2bmr
2 − a2b2mr2 − a1br3 − 2a1a

2
2br1

+aa22bmr1 − a1a22rr1 + 2a22bmrr1 + 2a1a2r
2r1 + 2a1br

2r1 − 2a2bmr
2r1

−a1r3r1 − a1a22r21 + a22mrr
2
1 + a1r

2r21 − a2mr2r21
)
,

d0 = −r(−a2 + r)(−a1a2b+ aa2bm+ a1br − a1a2r1 + a1rr1)

a22m
.

Forcing that the characteristic polynomial p(λ) be equal to (λ− ρ)(λ− ε−ωi)(λ−
ε + ωi), we get the expressions for a and a1 given in the statement of Proposition
1. Moreover

ρ =
(a2 − r)r(b+ r1)

αa2

(
− a2b2r + a22r

2 − 2a2r
3 + r4 − 2a2brr1 − a2rr21

+2a22rε− 2a2brε− 2a2r
2ε− 2a2rr1ε+ a22ε

2 − a2rε2 + a22ω
2 − a2rω2

)
.

Hence, the proposition follows.

3. The computation of the Liapunov coefficient. The following result comes
from [3].

Theorem 4. Let ẋ = F (x) be a differential system in Rn having E∗ as an equilib-
rium point. Consider the third order Taylor approximation of F around E∗ given

by F (x) = Ax +
1

2!
B(x, x) +

1

3!
C(x, x, x) + O(|x|4). Assume that A has a pair of

purely imaginary eigenvalues ±ωi. Let q be the eigenvector of A corresponding to
the eigenvalue ωi, normalized so that q.q = 1, where q is the conjugate vector of q.
Let p be the adjoint eigenvector such that AT p = −ωip and p.q = 1. If I denotes
the n× n identity matrix, then `1(E∗|ε=0) is equal to

1

2ω
Re(p · C(q, q, q)− 2p ·B(q,A−1B(q, q)) + p ·B(q, (2ωiI −A)−1B(q, q))). (3)

The linear part of system (1) at the equilibrium E∗ is

A =




−b− r1 a 0

b
a1(a22 − r2)(b+ r1)− 2aa22bm

a22m(b+ r1)
−a1r

2

a22

0
(a2 − r)2
a2m

r(r − a2)

a2



,
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and its eigenvalues are ε± ωi and ρ = −δ(a2 − r)r(b+ r1)/(σa2), where

δ = r4 − 2a2r
3 + a22r

2 − 2a2εr
2 − a2b2r − a2r21r − a2ε2r − a2ω2r − 2a2br1r+

2a22εr − 2a2bεr − 2a2r1εr + a22ε
2 + a22ω

2,

σ = br4 + r1r
4 + b2r3 + r21r

3 + 2ε2r3 + 2ω2r3 − 2a2br
3 − 2a2r1r

3 + 2br1r
3

+2bεr3 + 2r1εr
3 − a2b2r2 − a2r21r2 − 2a2ε

2r2 − 2a2ω
2r2 + a22br

2 + a22r1r
2

−2a2br1r
2 − 4a2bεr

2 − 4a2r1εr
2 + a2bε

2r + a2r1ε
2r + a2bω

2r + a2r1ω
2r

+2a22bεr + 2a22r1εr + a22bε
2 + a22r1ε

2 + a22bω
2 + a22r1ω

2.

Now we compute the bi– and tri–linear functions B and C of Theorem 4, and we
obtain

B(x1, y1, z1, x2, y2, z2) =
(
B1, B2, B3

)
,

where Bi = Bi(x1, y1, z1, x2, y2, z2) are

B1 = 0,

B2 = − b1
ηa22

(
a1a

3
2by1y2 − aa32bmy1y2 − 2a1a2br

2y1y2 + a1br
3y1y2 + a1a

3
2r1y1y2

−2a1a2r
2r1y1y2 + a1r

3r1y1y2 − 2a1a2bmr
2y2z1 + 2a1bmr

3y2z1
−2a1a2mr

2r1y2z1 + 2a1mr
3r1y2z1 − 2a1a2bmr

2y1z2 + 2a1bmr
3y1z2

−2a1a2mr
2r1y1z2 + 2a1mr

3r1y1z2 + a1bm
2r3z1z2 + a1m

2r3r1z1z2
)
,

B3 =
b1r(b+ r1)

ηa2

(
a22y1y2 − 2a2ry1y2 + r2y1y2 − 2a2mry2z1 + 2mr2y2z1

−2a2mry1z2 + 2mr2y1z2 +m2r2z1z2
)
,

η = a1a2b− aa2bm− a1br + a1a2r1 − a1rr1;

and

C(x1, y1, z1, x2, y2, z2, x3, y3, z3) =
(
C1, C2, C3

)
,

where Ci = Ci(x1, y1, z1, x2, y2, z2, x3, y3, z3) are

C1 = 0,

C2 = −a1b
2
1m(a2 − r)r2(b+ r1)2

η2a22

(
a2y1y2y3 − ry1y2y3 + a2my2y3z1

−3mry2y3z1 + a2my1y3z2 − 3mry1y3z2 + a2my1y2z3 − 3mry1y2z3
)
,

C3 =
a2
a1
C2.

Computing the normalized eigenvector q of A when ε = 0, associated to the
eigenvalue ωi, we obtain q = (q1, q2, q3) where

q1 =
im(b+ r1)(ib+ ir1 + ω)(a2r − r2 + ia2ω)(a

2
2r

2 − 2a2r
3 + r4 + a22ω

2 + a2rω
2)

−α0µb(a2 − r)2
,

q2 =
m(a2r − r2 + ia2ω)

µ(a2 − r)2
,

q3 =
a

µ
,

where α0 = α|ε=0 and

µ =
[
1 +

m2(a22r
2 − 2a2r

3 + r4 + a22ω
2)

(a2 − r)4
+

m2(b+ r1)2

α2
0b

2(a2 − r)4
(b2 + 2br1 + r21 + ω2)

(a22r
2 − 2a2r

3 + r4 + a22ω
2)(a22r

2 − 2a2r
3 + r4 + a22ω

2 + a2rω
2)2
]1/2

.



6 JAUME LLIBRE AND CLAUDIO VIDAL

The adjoint eigenvector p = (p1, p2, p3) is

p1 =
bν

b+ r1 − iω
,

p2 = ν,

p3 =
(mr2(a2r − r2 + ia2ω)(b2 + 2br1 + r21 + 2ω2)ν

α0(a2 − r)
,

where

ν =
α0µ(a2 − r)2(b+ r1 + iω)

2mων1
,

with

ν1 = −ia22b3r2 + ia32br
3 + ia2b

3r3 − 3ia22br
4 + 3ia2br

5 − ibr6 − 3ia22b
2r2r1

+ia32r
3r1 + 3ia2b

2r3r1 − 3ia22r
4r1 + 3ia2r

5r1 − ir6r1 − 3ia22br
2r21

+3ia2br
3r21 − ia22r2r31 + ia2r

3r31 − a32br2ω + a22b
2r2ω + 2a22br

3ω
−a2b2r3ω − a2br4ω − a32r2r1ω + 2a22br

2r1ω + 2a22r
3r1ω − 2a2br

3r1ω
−a2r4r1ω + a22r

2r21ω − a2r3r21ω + ia32brω
2 − 2ia22br

2ω2 + ia2br
3ω2

+ia32rr1ω
2 − 2ia22r

2r1ω
2 + ia2r

3r1ω
2 − a32bω3 − a22brω3 + 2a22r

2ω3

−2a2r
3ω3 − a32r1ω3 − a22rr1ω3.

In short, all the elements appearing in Theorem 4 are given explicitly for the
differential system (1), only remains to compute the Liapunov coefficient `1(E∗|ε=0)
using formula (3). As we mentioned in the introduction we have computed explicitly
`1(E∗|ε=0) in function of the coefficients of the system (1), using the algebraic
manipulator mathematica, but this expression occupies tens of pages.

4. Proofs of Theorem 2 and Proposition 3.

Proof of Theorem 2. We shall use the notations and definitions introduced in sec-
tion 3. Then, for the differential system (2) we have the matrix

A =




−7 −7
(
ε2 + 14ε+ 50

) (
6ε2 + 4ε+ 7

)

2 (20ε2 + 7ε− 1)
0

1
160ε3 + 642ε2 + 370ε+ 635

4 (20ε2 + 7ε− 1)

(
2ε2 + 14ε+ 51

) (
4ε2 + 4ε+ 5

)

4 (20ε2 + 7ε− 1)

0
1

2
−1

2



,

having the eigenvalues given in the statement of Theorem 2.
The normalized eigenvector q of A when ε = 0 associated to the eigenvalue ωi is

q =

(
−441 + 637i√

600274
,−
√

2

300137
(1 + 2i),−

√
2

300137

)
,

The adjoint eigenvector p = (p1, p2, p3) is

p1 =
4559− 15988i

11056025

√
300137

2
,

p2 =
637− 4659i

442241

√
300137

2
,

p3 =
−507705 + 172635i

884482

√
300137

2
.
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The bi–linear function B(x1, y1, z1, x2, y2, z2) = (B1, B2, B3) with Bi = Bi(x1,
y1, z1, x2, y2, z2) is given by

B1 = 0,

B2 =
1

2660
(−875y1y2 − 3570y2z1 − 3570y1z2 + 1785z1z2),

B3 =
1

190
(−y1y2 + 2y2z1 + 2y1z2 − z1z2);

and the tri–linear function C(x1, y1, z1, x2, y2, z2, x3, y3, z3) = (C1, C2, C3) with
Ci = Ci(x1, y1, z1, x2, y2, z2, x3, y3, z3) is given by

C1 = 0,

C2 = − 51

7220
(y1y2y3 − y2y3z1 − y1y3z2 − y1y2z3),

C3 =
1

18050
(y1y2y3 − y2y3z1 − y1y3z2 − y1y2z3).

According to Theorem 4 for computing `1(E∗|ε=0), we need to compute first A−1

and a (2iI −A)−1. Note that now ω = 1. We have that

A−1 =




− 89

133
−70

19

8925

19

− 2

665
− 2

95

51

19

− 2

665
− 2

95

13

19



,

and

(2iI −A)−1 =




7 + 2i −1225 0

−1
635

4
+ 2i

255

4

0 −1

2

1

2
+ 2i



.

The first, second and third terms of `1(E∗|ε=0) given in Theorem 4 are

p · C(q, q, q) =
950436 + 129948i

239582861065685
,

−2p ·B(q, A−1B(q, q)) =
−152367568 + 104825176i

4552074360248015
,

p ·B(q, (2iI −A)−1B(q, q)) =
928154260416 + 1952607677788i

93498409445188899675
.

Consequently we get

`1(E∗|ε=0) = − 5796656446586

592156593152863031275
.

This completes the proof of the theorem.

Proof of Proposition 3. From the expression of ρ, given in section 2, and for |ε|
sufficiently small it follows that ρ > 0 if and only if

α0(−a2b2r + a22r
2 − 2a2r

3 + r4 − 2a2brr1 − a2rr21 + a22ω
2 − a2rω2) > 0. (4)

Here we have used that a2 > r, recall that this is due to the fact that the equilibrium
point E∗ must be in the positive octant.
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By Proposition 1 and for |ε| sufficiently small we get that a > 0 if and only if

α0(a22r
2 − 2a2r

3 + r4 + a22ω
2 + a2rω

2) > 0. (5)

Note that β|ε=0 > 0, see its definition in the statement of Proposition 1.
On the other hand, the coordinate x of the equilibrium point E∗ is positive if

and only

−(−a2b2r + a22r
2 − 2a2r

3 + r4 − 2a2brr1 − a2rr21 + a22ω
2 − a2rω2)·

(a22r
2 − 2a2r

3 + r4 + a22ω
2 + a2rω

2) > 0.
(6)

Now, since the x–coordinate of E∗ and the parameter a are positive, the inequal-
ities (5) and (6) hold. Then, from (4) we obtain that ρ < 0. That is, the real
eigenvalue of the equilibrium point E∗ is negative for |ε| sufficiently small. Hence
the proposition is proved.

5. Conclusions. Xu, Chaplain and Davidson [8] studied the effect of stage struc-
ture for prey on the dynamics of ratio–dependent predator-prey system by consid-
ering the differential system

ẋ = −(b+ r1)x+ ay,

ẏ = bx− b1y2 −
a1yz

y +mz
,

ż = z

(
−r +

a2y

y +mz

)
,

(7)

where x = x(t) represents the density of immature individual preys at time t, and
y = y(t) denotes the density of mature individual preys at time t, z = z(t) represents
the density of the predator at time t. As usual the eight parameters a, a1, a2, b, b1,
m, r and r1 of the system are positive. It is verified that when y∗ > 0 and a2 > r
the differential system (7) has a unique equilibrium point

E∗ =

(
ay∗

b+ r1
, y∗,

(a2 − r)y∗
mr

)
with y∗ =

aa2bm− a1(a2 − r)(b+ r1)

a2b1m(b+ r1)
,

in the positive octant, i.e., in {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0}. In the
conclusions of the paper [8] the authors said: We would like to mention here that
we are unable to show system (1) admits limit cycles when E∗ exists and is unstable.
We leave this for future work. As far as we know this question remained open. In
this work we answer affirmatively this question, see Theorem 2. The main difficulty
for solving it was that the differential system (7) depends on 8 parameters, our
main result show the existence of a Hopf bifurcation at the equilibrium point E∗

for appropriate values of the parameters.
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