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Abstract

In the article [16] the family of cubic polynomial differential systems possessing invariant

straight lines of total multiplicity 9 was considered and 23 such classes of systems were

detected. We recall that 9 invariant straight lines taking into account their multiplicities

is the maximum number of straight lines that a cubic polynomial differential systems can

have if this number is finite. Here we complete the classification given in [16] by adding a

new class of such cubic systems and for each one of these 24 such classes we perform the

corresponding first integral as well as its phase portrait. Moreover we present necessary and

sufficient affine invariant conditions for the realization of each one of the detected classes of

cubic systems with maximum number of invariant straight lines when this number is finite.

1 Introduction and preliminaries

Polynomial differential systems on the plane are systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P,Q ∈ R[x, y], i.e. P and Q are the polynomials over R. We can associate to systems (1)

the vector field

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
. (2)

1

This is a preprint of: “First integrals and phase portraits of planar polynomial differential cubic
systems with the maximum number of invariant straight lines”, Cristina Bujac, Jaume Llibre,
Nicolae Vulpe, Qual. Theory Dyn. Syst., vol. 15, 327–348, 2016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/78546855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We call cubic system a cubic polynomial differential system (1) with degree n = max{degP,
degQ} = 3.

There are several open problems on polynomial differential systems, especially on the class

of all cubic systems (1) (we denote in the following by CS the whole class of such systems).

In this paper we are concerned with the algebraic integrability in the sense of Darboux and the

classification of all phase portraits of CS. These problems are very hard even in the simplest

case of quadratic differential systems.

A straight line f(x, y) = ux+ vy + w = 0, (u, v) 6= (0, 0) satisfies

X(f) = uP (x, y) + vQ(x, y) = (ux+ vy + w)K(x, y)

for some polynomial K(x, y) if and only if it is invariant under the flow of X. If some of the

coefficients u, v, w of an invariant straight line belongs to C\R, then we say that the straight line

is complex; otherwise the straight line is real. Note that, since systems (1) are real, if a system

has a complex invariant straight line ux + vy + w = 0, then it also has its conjugate complex

invariant straight line ūx+ v̄y + w̄ = 0.

To a line f(x, y) = ux + vy + w = 0, (u, v) 6= (0, 0) we associate its projective completion

F (X,Y, Z) = uX + vY + wZ = 0 under the embedding C2 →֒ P2(C), (x, y) 7→ [x : y : 1]. The

line Z = 0 in P2(C) is called the line at infinity of the affine plane C2. It follows from the work

of Darboux (see, for instance, [12]) that each system of differential equations of the form (1) over

C yields a differential form on the complex projective plane P2(C) which is the compactification

of the differential form Qdx−Pdy = 0 in C2. The line Z = 0 is an invariant straight line of this

complex form.

Definition 1 ( [26]). We say that an invariant affine straight line f(x, y) = ux + vy + w = 0

(respectively the line at infinity Z = 0) for a cubic vector field X has multiplicity m if there exists

a sequence of real cubic vector fields Xk converging to X, such that each Xk has m (respectively

m − 1) distinct invariant affine straight lines f j
i = uj

ix + vji y + wj
i = 0, (uj

i , v
j
i ) 6= (0, 0),

(uj
i , v

j
i , w

j
i ) ∈ C3, converging to f = 0 as k → ∞ (with the topology of the coefficients), and this

does not occur for m+ 1 (respectively m).

We remark that the above definition is a particular case of the definition of geometric multiplicity

given in paper [11], and namely the notion of “strong geometric multiplicity” with the restriction,

that the corresponding perturbations belong to the same class of cubic systems.

The set CS of cubic differential systems depends on 20 parameters and for this reason people

began by studying particular subclasses of CS. Here we deals with CS possessing invariant

straight lines. We mention some papers devoted to polynomial differential systems possessing

invariant straight lines. For quadratic systems see [13, 22, 23, 26–29] and [30]; for cubic systems

see [4–9, 15, 16, 18, 19, 24, 33, 34] and [33]; for quartic systems see [32] and [35].

The existence of sufficiently many invariant straight lines of planar polynomial systems could

be used for integrability of such systems. During the last 15 years several articles were published

on this theme. Investigations concerning polynomial differential systems possessing invariant

straight lines were done by Artes, Dai Guo Ren, Gassul, Kooij, Llibre, Popa, Schlomiuk, Sibirski,

Sokulski, Vulpe, Zhang Xi Kang as well as Dolov and Kruglov.

According to [1] the maximum number of invariant straight lines taking into account their
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multiplicities for a polynomial differential system of degree m is 3m when we also consider the

infinite invariant straight line, and when this number is finite. This bound is always reached if

we consider the real and the complex invariant straight lines, see [11].

So the maximum number of the invariant straight lines (including the line at infinity Z = 0)

for cubic systems with non-degenerate infinity is 9. A classification of all cubic systems possessing

the maximum number of invariant straight lines taking into account their multiplicities has been

made in [16]. The authors used the notion of configuration of invariant lines for cubic systems

(as introduced in [26], but without indicating the multiplicities of real singularities) and detected

23 such configurations. Moreover using invariant polynomials with respect to the action of the

group Aff(2,R) of affine transformations and time rescaling in this paper, the necessary and

sufficient conditions for the realization of each one of 23 configurations were detected. A new

class of cubic systems omitted in [16] was constructed in [4].

Definition 2 ( [30]). Consider a planar cubic system (1). We call configuration of invariant

straight lines of this system, the set of (complex) invariant straight lines (which may have real

coefficients) of the system, each endowed with its own multiplicity and together with all the real

singular points of this system located on these invariant straight lines, each one endowed with its

own multiplicity.

It was observed that the configurations of invariant straight lines which were detected for

various families of systems (1) using Poincaré compactification (see for details [10]), could serve

as a base to complete the whole phase portrait of the system in the Poincaré disc, i.e. to give

the full topological classification of such systems. For example, in papers [27, 29] for quadratic

systems with invariant straight lines grater than or equal to 4, it was proved that the existence

of 57 distinct configurations of invariant straight lines leads to the existence of 135 topologically

distinct phase portraits. In [24,25,33,34] for cubic systems with invariant straight lines of total

parallel multiplicity six or seven (see definition of parallel multiplicity in the quoted papers),

taking into consideration constructed configurations of invariant straight lines it was proved the

existence of 113 topologically distinct phase portraits.

In this paper we approach the earlier mentioned problems for a specific class of cubic systems,

i.e. CS possessing invariant straight lines of total multiplicity 9, including the line at infinity

and considering their multiplicities (we denote this family by CSL9).

The goal of this article is to present a full study of this class by:

• improving the classification theorem from [16] of systems belonging to CSL9 (we construct

the necessary and sufficient conditions for the realization of the detected class of systems);

• constructing the integrating factors and the first integrals (rational) for systems belonging

to CSL9 via the method of Darboux;

• determining all topologically distinct phase portraits of the systems in this class together

with the invariant criteria for their realization (we have 18 such phase portraits).

Let C[x, y] denote the ring of polynomials in two variables x and y with complex coefficients.

The method of integration of Darboux uses multiple-valued complex functions of the form:

F = eG(x,y)f1(x, y)
λ1 · · · fs(x, y)λs , G = G1/G2, Gi ∈ C[x, y], (3)
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and fi irreducible polynomials over C[x, y]. It is clear that F (x, y) is well defined at least in the

points (x, y) ∈ C2 \
(
{G2(x, y) = 0} ∪ {f1(x, y) = 0} ∪ · · · ∪ {fs(x, y) = 0}

)
.

Suppose that (1) has a solution curve which is not a singular point, contained in an algebraic

curve f(x, y) = 0. It is clear that the derivative of f with respect to t must vanish on the

algebraic curve f(x, y) = 0, so
df

dt
|f=0 =

( df
∂x

P (x, y) +
df

∂y
Q(x, y)

)
|f=0 = 0. By the Hilbert’s

Nullstellensatz theorem this is equivalent to the existence of a polynomial K = K(x, y) such

that X(f) = Kf .

In 1878 Darboux introduced the notion of the invariant algebraic curve for differential equa-

tions on the complex projective plane. This notion can be adapted for systems (1). According

to [12] the next definition follows.

Definition 3. An algebraic curve f(x, y) = 0 in C2 with f ∈ C[x, y] is an invariant alge-

braic curve (an algebraic partial integral) of a polynomial system (1) if X(f) = Kf for some

polynomial K(x, y) ∈ C[x, y] called the cofactor of the invariant algebraic curve f(x, y) = 0.

It could be observed that for the points of the curve f(x, y) = 0 the right hand side of (1) is

zero. This means that the gradient (∂f/∂x, ∂f/∂y) is orthogonal to the vector field X = (P,Q)

at these points. Therefore the vector field X is tangent to the curve f = 0. This explains why

the algebraic curve f = 0 is invariant under the flow of the vector field X.

The next proposition shows that we can work with irreducible invariant algebraic curves.

Proposition 1. We suppose that f ∈ C[x, y] and let f = fn1
1 · · · fnr

r be its factorization in

irreducible factors over C[x, y]. Then, for a polynomial system (1), f = 0 is an invariant

algebraic curve with the cofactor Kf if and only if fi = 0 is an invariant algebrain curve for

each i = 1, . . . , r with cofactor Kfi . Moreover Kf = n1Kf1 + . . .+ nrKfr .

Darboux showed that if a system (1) possesses a sufficient number of such invariant algebraic

solutions fi(x, y) = 0, fi ∈ C[x, y], i = 1, 2, . . . , s, then the system has a first integral of the

form (3).

According to [12], we say that a system (1) has a Darboux first integral (respectively Dar-

boux integrating factor) if it admits a first integral (respectively integrating factor) of the form
s∏

i=1

fi(x, y)
λi , where fi ∈ C[x, y], deg fi ≥ 1, i = 1, 2, . . . , s, fi irreducible over C[x, y] and λi ∈ C.

Let C(x, y) be the set of all rational functions with coefficients in C. According to [10] the

notion of Darboux first integral was extended as follows. From now on a Darboux first integral

is a function of the form

eG(x,y)
s∏

i=1

fi(x, y)
λi , (4)

where G(x, y) ∈ C(x, y) and fi ∈ C[x, y], deg fi ≥ 1, i = 1, 2, . . . , s, fi irreducible over C[x, y]
and λi ∈ C. If a system (1) has an integrating factor (or first integral) of the form (4) then

∀i ∈ {1, . . . , s}, fi = 0 is an algebraic invariant curve of (1).

In [12] Darboux proved the following remarkable theorem of integrability using invariant

algebraic solutions of systems (1):
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Theorem 2. Consider a differential system (1) with P,Q ∈ C[x, y]. Assume that m = max(degP, degQ)

and that this system admits s algebraic solutions fi(x, y) = 0, i = 1, 2, . . . , s (deg fi ≥ 1). Then

we have:

I. If s = m(m + 1)/2 then there exists λ = (λ1, . . . , λs) ∈ Cs \ {0} such that R =∏s
i=1 fi(x, y)

λi is an integrating factor of (1).

II. If s ≥ m(m + 1)/2 + 1 then there exists λ = (λ1, . . . , λs) ∈ Cs \ {0} such that F =∏s
i=1 fi(x, y)

λi is a first integral of (1).

The Darboux theory of integrability stated in Theorem 2 has been improved using the notion

of exponential factor, see for details [10].

Let h, g ∈ C[x, y] and assume that h and g are relatively prime in the ring C[x, y]. Then

the function exp(g/h) is called an exponential factor of the polynomial system (1) if for some

polynomial K ∈ C[x, y] of degree at most n− 1 it satisfies equation

X
(
exp

( g
h

))
= K exp

( g
h

)
.

As before we say that K is the cofactor of the exponential factor exp(g/h).

Theorem 3. Suppose that a polynomial system (1) of degree m admits p invariant algebraic

curves fi = 0 with cofactors Ki for i = 1, . . . , p, q exponential factors exp(gj/hj) with cofactors

Lj for j = 1, . . . , q.

(a) If there exists λi, µj ∈ C not all zero such that

p∑

i=1

λiKi +

q∑

j=1

µjLj = 0, then the (multi-

valued) function

fλ1
1 · · · fλp

p

(
exp

(
g1
h1

))µ1

· · ·
(
exp

(
gq
hq

))µq

(5)

is a first integral of the system (1).

(b) If there exists λi, µj ∈ C not all zero such that

p∑

i=1

λiKi +

q∑

j=1

µjLj = −div(P,Q), then

function (5) is an integrating factor of system (1).

In 1979 Jouanolou proved the next theorem which improves part II of Darboux’s Theorem.

Theorem 4. Consider a polynomial differential system (1) over C and assume that it has s

algebraic solutions fi(x, y) = 0, i = 1, 2, . . . , s (deg fi ≥ 1). Suppose that s ≥ m(m + 1)/2 + 2.

Then there exists (n1, . . . , ns) ∈ Zs \ {0} such that F =
∏s

i=1 fi(x, y)
ni is a first integral of (1).

In this case F ∈ C(x, y), i.e. F is rational function over C.

The following theorem from [11] and [17] improves the Darboux theory of integrability

and the above result of Jouanolou taking into account not only the invariant algebraic curves

(especially invariant straight lines) but also their algebraic multiplicities.

Theorem 5 ( [11], [17]). Assume that the polynomial vector field X in C2 of degree d > 0 has

invariant algebraic curves.

(a) If some of these irreducible invariant algebraic curves has no defined algebraic multiplicity,

then the vector field X has a rational first integral.
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(b) Suppose that all the irreducible invariant algebraic curves fi = 0 have defined algebraic

multiplicity qi for i = 1, . . . , p.

(b1) If
∑p

i=1 qi ≥ N + 1, then the vector field X has a Darboux first integral, where N =

(2+d−1
2 )

(b2) If
∑p

i=1 qi ≥ N + 2, then the vector field X has a rational first integral.

As it was mentioned earlier our work here is based on the result of the paper [16] where the

classification theorem according to the configurations of invariant straight lines for systems in

CSL9 were proved (see further below). In what follows we recall some results of [16] which will

be needed to state the mentioned theorem [16, Main Theorem]. Consider generic cubic systems

of the form:
dx

dt
= p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P (a, x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(a, x, y),

(6)

with real homogeneous polynomials pi and qi (i = 0, 1, 2, 3) of degree i in x, y. We introduce the

following polynomials:

Ci = ypi(x, y)− xqi(x, y), Dj =
∂pj
∂x

+
∂qj
∂y

,

for i = 0, 1, 2, 3 and j = 1, 2, 3 which in fact are GL–comitants, see [31].

In order to state the classification theorem we need to construct some T –comitants and

CT –comitants which will be responsible for the existence of the maximum number of invariant

straight lines for system (6). They are constructed by using the polynomials Ci and Di via the

differential operator (f, g)(k) called transvectant of index k (see for instance [20]) which acts on

R[a, x, y] as follows:

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

Here f(x, y) and g(x, y) are polynomials in x and y of the degree r and s, respectively, and

a ∈ R20 is the 20–tuple formed by all the coefficients of system (6).

In order to define the needed invariant polynomials it is necessary to construct the following

comitants of second degree with respect to the coefficients of the initial system:

S1 = (C0, C1)
(1) , S8 = (C1, C2)

(2) , S15 = (C2, D2)
(1) , S22 = (D2, D3)

(1) ,

S2 = (C0, C2)
(1)

, S9 = (C1, D2)
(1)

, S16 = (C2, C3)
(1)

, S23 = (C3, C3)
(2)

,

S3 = (C0, D2)
(1)

, S10 = (C1, C3)
(1)

, S17 = (C2, C3)
(2)

, S24 = (C3, C3)
(4)

,

S4 = (C0, C3)
(1)

, S11 = (C1, C3)
(2)

, S18 = (C2, C3)
(3)

, S25 = (C3, D3)
(1)

,

S5 = (C0, D3)
(1)

, S12 = (C1, D3)
(1)

, S19 = (C2, D3)
(1)

, S26 = (C3, D3)
(2)

,

S6 = (C1, C1)
(2) , S13 = (C1, D3)

(2) , S20 = (C2, D3)
(2) , S27 = (D3, D3)

(2) .

S7 = (C1, C2)
(1)

, S14 = (C2, C2)
(2)

, S21 = (D2, C3)
(1)

,

We shall use here the following invariant polynomials constructed in [16] to characterize the

system in CSL9:
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D1(a) = 6S3
24 −

[
(C3, S23)

(4)
]2

, D2(a, x, y) = −S23,

D3(a, x, y) = (S23, S23)
(2) − 6C3(C3, S23)

(4),

D4(a) = (C3, D2)
(4), V1(a, x, y) = S23+2D2

3, V2(a, x, y) = S26,

V3(a, x, y) = 6S25−3S23−2D2
3, V4(a, x, y) = C3

[
(C3, S23)

(4)
+ 36 (D3, S26)

(2)
]
,

L1(a, x, y) = 9C2 (S24 + 24S27) 12D3 (S20 + 8S22)− 12 (S16, D3)
(2) − 3 (S23, C2)

(2) −
− 16 (S19, C3)

(2)
+ 12 (5S20 + 24S22, C3)

(1)
,

L2(a, x, y) = 32 (13 S19 + 33 S21, D2)
(1)

+ 84 (9 S11 − 2 S14, D3)
(1) −

− 448 (S18, C2)
(1) + 8D2 (12S22 + 35S18 − 73S20)− 56 (S17, C2)

(2) −
− 63 (S23, C1)

(2)
+ 756D3S13 − 1944D1S26 + 112 (S17, D2)

(1) −
− 378 (S26, C1)

(1)
+ 9C1 (48S27 − 35S24) ,

L3(a, x, y) = (S23, D3)
(2)[(D2, S22)

(1) −D1S27], L4(a, x, y) = S25,

U1(a) = S24 − 4S27, U2(a, x, y) = 6(S23 − 3S25, S26)
(1) − 3S23(S24 − 8S27)−

− 24S2
26 + 2C3(C3, S23)

(4) + 24D3(D3, S26)
(1) + 24D2

3S27,

N1(a, x, y) = 4C2(27D1D3 − 8D2
2) + 2C2(20S15 − 4S14 + 39S12) + 18C1(3S21 −D2D3)+

+ 54D3(3S4 − S7)− 288C3S9 + 54(S7, C3)
(1) − 567(S4, C3)

(1) + 135C0D
2
3,

N2(a, x, y) = 2C2D3 − 3C3D2, N3(a, x, y) = C2D3 + 3S16,

N4(a, x, y) = D2D3 + 9S21 − 2S17, N5(a, x, y) = S17 + 2S19,

N6(a, x, y) = 6C3(S12 + 6S11)− 9C1(S23 + S25)− 8(S16, C2)
(1) − C3D

2
2,

N7(a, x, y) = 6C3(12S11 − S12 − 6D1D3)− 21C1S23 − 24(S16, C2)
(1) + 3C1S25+

+ 4D2(S16 + 2D2C3 − C2D3), N8(a, x, y) = D2
2 − 4D1D3,

N9(a, x, y) = C2
2 − 3C1C3, N10(a, x, y) = 2C2D1 + 3S4, N11(a) = S13,

N12(a, x, y) = − 32D2
3S2−108D1D3S10+108C3D1S11−18C1D3S11−27S10S11+

+ 4C0D3(9D2D3 + 4S17) + 108S4S21,

N13(a, x, y) = − S2
14 − 2D2

2(3S14 − 8S15)− 12D3(S14, C1)
(1)+

+D2(−48D3S9 + 16(S17, C1)
(1)),

N14(a, x, y) = 36D2D3(S8 − S9) +D1(108D
2
2D3 − 54D3(S14 − 8S15))+

+ 2S14(S14 − 22S15)− 8D2
2(3S14 + S15)− 9D3(S14, C1)

(1) − 16D4
2.

We apply a translation x = x′ + x0, y = y′ + y0 to the polynomials P (a, x, y) and Q(a, x, y)

from the right-hand part of (6). Therefore we obtain P̃ (ã(a, x0, y0), x
′, y′) = P (a, x′+x0, y

′+y0),

Q̃(ã(a, x0, y0), x
′, y′) = Q(a, x′ + x0, y

′ + y0). We construct the following polynomials:

Ωi(a, x0, y0) ≡ Res x′

(
Ci

(
ã(a, x0, y0), x

′, y′
)
, C0

(
ã(a, x0, y0), x

′, y′
))

/(y′)i+1,

G̃i(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3)

where Resx′ is the resultant of the above polynomials with respect the variable x′.

Notation 6. Assume Gi(a,X, Y, Z) (i = 1, 2, 3) be the homogenization of G̃i(a, x, y), i.e.

G1(a,X, Y, Z) = Z8G̃1(a,X/Z, Y/Z), G2(a,X, Y, Z) = Z10G̃2(a,X/Z, Y/Z),

G3(a,X, Y, Z) = Z12G̃3(a,X/Z, Y/Z),
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and H(a,X, Y, Z) = gcd
(
G1(a,X, Y, Z),G2(a,X, Y, Z),G3(a,X, Y, Z)

)
∈ R[a,X, Y, Z].

The geometrical meaning of the above defined affine comitants is given by the following two

lemmas (see [16]):

Lemma 7. The straight line L(x, y) ≡ ux+vy+w = 0, u, v, w ∈ C, (u, v) 6= (0, 0) is an invariant

straight line for a vector field X if and only if L(x, y) is a common factor of the polynomials

G̃1(a, x, y), G̃2(a, x, y) and G̃3(a, x, y) over C, i.e. G̃i(a, x, y) = (ux+vy+w)W̃i(x, y) (i = 1, 2, 3),

where W̃i(x, y) ∈ C[x, y].

Lemma 8. Consider a cubic system (6) and let a ∈ R20 be its 20-tuple of coefficients.

(a) If L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) 6= (0, 0) is an invariant straight line of

multiplicity k for this system then [L(x, y)]k | gcd(G̃1, G̃2, G̃3) in C[x, y], i.e. there exist

Wi(a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2, 3. (7)

(b) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(G1,G2,G3), i.e. we have

Zk−1 | H(a,X, Y, Z).

We underline that by P ⋆(X,Y, Z), Q⋆(X,Y, Z) we denote the homogeneous polynomials

associated to the polynomials P (a, x, y), Q(a, x, y), i.e.

P ⋆(X,Y, Z) =ZnP (X/Z, Y/Z), Q⋆(X,Y, Z) = ZnQ(X/Z, Y/Z) (8)

and C⋆(X,Y, Z) = Y P ⋆(X,Y, Z)−XQ⋆(X,Y, Z).

In order to determine the degree of the common factor of the polynomials G̃i(a, x, y) for

i = 1, 2, 3, we shall use the notion of the kth subresultant of two polynomials with respect to a

given indeterminate (see for instance, [20]).

We say that the k–th subresultant with respect to variable z of the two polynomials f(z)

and g(z) is the (m+ n− 2k)× (m+ n− 2k) determinant

R(k)
z (f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . . . . am+n−2k−1

0 a0 a1 . . . . . . am+n−2k−2

. . . . . . . . . . . . . . . . . . . . . . . .

0 b0 b1 . . . . . . bm+n−2k−2

b0 b1 b2 . . . . . . bm+n−2k−1

∣∣∣∣∣∣∣∣∣∣∣∣





(m− k)− times





(n− k)− times

(9)

in which there are m− k rows of a’s and n− k rows of b’s, and ai = 0 for i > n, and bj = 0 for

j > m.

For k = 0 we obtain the standard resultant of two polynomials. In other words we can say

that the k–th subresultant with respect to the variable z of the two polynomials f(z) and g(z)

can be obtained by deleting the first and the last k rows and columns from its resultant written

in the form (9) when k = 0.

The geometrical meaning of the subresultants is based on the following lemma.
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Lemma 9. (see [20]). Polynomials f(z) and g(z) have precisely k roots in common (considering

their multiplicities) if and only if the following conditions hold:

R(0)
z (f, g) = R(1)

z (f, g) = R(2)
z (f, g) = · · · = R(k−1)

z (f, g) = 0 6= R(k)
z (f, g).

For the polynomials in more than one variables it is easy to deduce from Lemma 9 the

following result.

Lemma 10. Two polynomials f̃(x1, x2, ..., xn) and g̃(x1, x2, ..., xn) have a common factor of

degree k with respect to the variable xj if and only if the following conditions are satisfied:

R(0)
xj

(f̃ , g̃) = R(1)
xj

(f̃ , g̃) = R(2)
xj

(f̃ , g̃) = · · · = R(k−1)
xj

(f̃ , g̃) = 0 6= R(k)
xj

(f̃ , g̃),

where R
(i)
xj (f̃ , g̃) = 0 in R[x1, . . . xj−1, xj+1, . . . , xn].

Next we consider the differential operator L = x · L2 − y · L1 constructed in [3] and acting

on R[a, x, y], where

L1 =3a00
∂

∂a10
+ 2a10

∂

∂a20
+ a01

∂

∂a11
+

1

3
a02

∂

∂a12
+

2

3
a11

∂

∂a21
+ a20

∂

∂a30
+

3b00
∂

∂b10
+ 2b10

∂

∂b20
+ b01

∂

∂b11
+

1

3
b02

∂

∂b12
+

2

3
b11

∂

∂b21
+ b20

∂

∂b30
,

L2 =3a00
∂

∂a01
+ 2a01

∂

∂a02
+ a10

∂

∂a11
+

1

3
a20

∂

∂a21
+

2

3
a11

∂

∂a12
+ a02

∂

∂a03
+

3b00
∂

∂b01
+ 2b01

∂

∂b02
+ b10

∂

∂b11
+

1

3
b20

∂

∂b21
+

2

3
b11

∂

∂b12
+ b02

∂

∂b03
.

Using this operator and the affine invariant µ0 = Resultantx
(
p3(a, x, y), q3(a, x, y)

)
/y9 we con-

struct the following polynomials: µi(a, x, y) =
1

i!
L(i)(µ0), i = 1, .., 9, whereL(i)(µ0) = L(L(i−1)(µ0))

and L(0)(µ0) = µ0.

The geometrical meaning of these polynomial is revealed in the next lemma.

Lemma 11 (see [2], [3]). Assume that a cubic system (S) with coefficients ã belongs to the family

(6). Then:

(a) The total multiplicity of all finite singularities of this system equals 9− k if and only if for

every i ∈ {0, 1, . . . , k− 1} we have µi(ã, x, y) = 0 in the ring R[x, y] and µk(ã, x, y) 6= 0. In

this case the factorization µk(ã, x, y) =

k∏

i=1

(uix− viy) 6= 0 over C indicates the coordinates

[vi : ui : 0] of those finite singularities of the system (S) which ”have gone” to infinity.

Moreover the number of distinct factors in this factorization is less than or equal to four

(the maximum number of infinite singularities of a cubic system) and the multiplicity of

each one of the factors uix−viy gives us the number of the finite singularities of the system

(S) which have collapsed with the infinite singular point [vi : ui : 0].

(b) The system (S) is degenerate (i.e. gcd(P,Q) 6= const) if and only if µi(ã, x, y) = 0 in

R[x, y] for every i = 0, 1, . . . , 9.

9



Let L(x, y) = Ux + V y +W = 0 be an invariant straight line of cubic systems (S). Then,

according to the definition of an invariant line, we have UP (x, y) + V Q(x, y) = (Ux + V y +

W )(Ax2 + 2Bxy + Cy2 +Dx+ Ey + F ), and this identity provides the following 10 relations:

Eq1 =(a30 −A)U + b30V = 0, Eq2 = (3a21 − 2B)U + (3b21 −A)V = 0,

Eq3 =(3a12 − C)U + (3b12 − 2B)V = 0, Eq4 = a03U + (b03 − C)V = 0,

Eq5 =(a20 −D)U + b20V −AW = 0,

Eq6 =(2a11 − E)U + (2b11 −D)V − 2BW = 0,

Eq7 =a02U + (b02 − E)V − CW = 0, Eq8 = (a10 − F )U + b10V −DW = 0,

Eq9 =a01U + (b01 − F )V − EW = 0, Eq10 = a00U + b00V − FW = 0.

(10)

2 The classification theorem in terms of configurations of

invariant straight lines for the family of systems CSL9

Taking into account [16] and [4] we prove the next result.

Theorem 12. Any cubic system having invariant straight lines of total multiplicity 9 including

the line at infinity and considering their multiplicities via an affine transformation and time

rescaling can be written as one of the following 24 systems. In the figure associated to each

system is presented the configuration of its invariant straight lines in the Poincaré disc (see

Figure 1). Moreover, every system has associated a set of affine invariant conditions which

characterize it.

• D1 > 0, D2 > 0, D3 > 0, V1 = V2 = L1 = L2 = N1 = 0:

(1) L3 < 0 ⇔ ẋ = x(x2 − 1), ẏ = (y2 − 1)y; ⇔ Fig.1;

(2) L3 > 0 ⇔ ẋ = x(x2 + 1), ẏ = (y2 + 1)y; ⇔ Fig.2;

(3) L3 = 0 ⇔ ẋ = x3, ẏ = y3; ⇔ Fig.3;

• D1 > 0, D2 > 0, D3 > 0, V3 = V4 = L1 = L2 = N1 = 0:

(4) L3 > 0 ⇔ ẋ = 2x(x2 − 1), ẏ = (y2 − 1)(3x− y); ⇔ Fig.4;

(5) L3 < 0 ⇔ ẋ = 2x(x2 + 1), ẏ = (y2 + 1)(3x− y); ⇔ Fig.5;

(6) L3 = 0 ⇔ ẋ = 2x3, ẏ = y2(3x− y); ⇔ Fig.6;

• D1 < 0, V1 = V2 = L1 = L2 = N1 = 0:

(7) L3 6= 0, L4 < 0 ⇔ ẋ = x(x2 + 1), ẏ = (1− y2)y; ⇔ Fig.7;

(8) L3 = 0, L4 < 0 ⇔ ẋ = x3, ẏ = −y3; ⇔ Fig.8;

(9) L3 6= 0, L4 > 0 ⇔ ẋ = x(1 + x2 − 3y2), ẏ = y(1 + 3x2 − y2); ⇔ Fig.9;

(10) L3 = 0, L4 > 0 ⇔ ẋ = x(x2 − 3y2), ẏ = y(3x2 − y2); ⇔ Fig.10;

(11) L3 < 0, ⇔ ẋ = 2x(x2 − 1), ẏ = y(3x2 + y2 + 1); ⇔ Fig.11;

(12) L3 > 0, ⇔ ẋ = 2x(x2 + 1), ẏ = y(3x2 + y2 − 1); ⇔ Fig.12;

(13) L3 = 0, ⇔ ẋ = 2x3, ẏ = y(3x2 + y2); ⇔ Fig.13;
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• D1 = D3 = D4 = V1 = N1 = N2 = N3 = 0, D2 6= 0 :

• L4 < 0:

(14) N7 = 0, N8 < 0 ⇔ ẋ = x(x2 − 1), ẏ = 2y; ⇔ Fig.14;

(15) N7 = 0, N8 > 0 ⇔ ẋ = x(x2 + 1), ẏ = −2y; ⇔ Fig.15;

(16) N6 = 0, N8 > 0 ⇔ ẋ = x(x2 − 1), ẏ = −y; ⇔ Fig.16;

(17) N6 = 0, N8 < 0 ⇔ ẋ = x(x2 + 1), ẏ = y; ⇔ Fig.17;

(18) N6 = 0, N8 = 0 ⇔ ẋ = x3, ẏ = 1; ⇔ Fig.18;

• L4 > 0:

(19) N6 = 0, N8 > 0 ⇔ ẋ = x(x2 − 1), ẏ = y(3x2 − 1); ⇔ Fig.19;

(20) N6 = 0, N8 < 0 ⇔ ẋ = x(x2 + 1), ẏ = y(3x2 + 1); ⇔ Fig.20;

(21) N7 = 0, N8 > 0 ⇔ ẋ = 2x(x2 − 1), ẏ = y(3x2 + 1); ⇔ Fig.21;

(22) N7 = 0, N8 < 0 ⇔ ẋ = 2x(x2 + 1), ẏ = y(3x2 − 1); ⇔ Fig.22;

• D1 = D2 = D3 = V1 = N2 = N3 = N9 = N10 = 0 ⇔

(23) ẋ = x, ẏ = y − x3; ⇔ Fig.23;

• D1 = D3 = D4 = V1 = N1 = N11 = N12 = N13 = N14 = 0, D2N2 6= 0, L4 < 0 ⇔

(24) ẋ = x(9x2 − 4), ẏ = 2y(9x− 2); ⇔ Fig.24.

Remark 13. Real invariant straight lines are represented by continuous lines, whereas complex

invariant straight lines are represented by dashed lines. If in a configuration an invariant straight

line has multiplicity k > 1, then the number k appears near the corresponding straight line and

this line is in bold face. We indicate next to the real singular points of the system, located on

the invariant lines, their corresponding multiplicities. By the notation (a, b) we point out the

maximum number a (respectively b) of infinite (respectively finite) singularities which can be

obtained by perturbation of the multiple point.

Proof of Theorem 12. We remark that the first 23 configurations of invariant lines as well as the

corresponding affine invariant conditions where constructed in paper [16]. On the other hand in

article [4] a new class of planar cubic systems possessing invariant lines of total multiplicity 9,

which was omitted in [16] was presented. So it remains to find out the necessary and sufficient

conditions for the realization of this new class.

First of all we mention that the omitted misstep in paper [16] was localized in Section 7 and

namely, it is related with the case of systems (66), i.e. systems of the form

ẋ = a+ cx+ dy + 2hxy + ky2 + x3, ẏ = b+ ex+ fy + lx2 + 2mxy + ny2. (11)

For this system we have C3(x, y) = x3y and therefore, there exist two directions for the possible

invariant straight lines: x = 0 and y = 0.

Direction x = 0. From (10) for U = 1, V = 0 it was obtained A = 1, B = C = 0, D =

−W, E = 2h, F = W 2 + c, Eq7 = k = 0, Eq9 = −2hW + d = 0 and Eq10 = −W 3 − cW + a = 0.

The last equations imply the conditions k = h = d = 0 (in order to have the maximum number

of invariant straight lines).
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Figure 1: Configurations of cubic systems in
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Direction y = 0. In this case U = 0, V = 1 and, from (10) we get A = B = C = 0,

D = 2m, E = n, F = −nW + f and

Eq5 = l, Eq8 = −2mW + e, Eq10 = nW 2 − fW + b. (12)

Evidently the condition Eq5 = 0 is equivalent to l = 0, whereas the condition Eq8 = 0 implies

two possibilities: (α) m = 0 (then e = 0) and (β) m 6= 0 (then W = e/(2m)). The first case

was examined in [16], whereas the second case when m 6= 0 was omitted. Here further below we

show that in the case m 6= 0 systems (11) also possess invariant lines of total multiplicity 9 and

we present the corresponding configuration. Furthermore we construct necessary and sufficient

conditions to get this configuration in terms of invariant polynomials.

It is worth to point out that if for perturbed systems some condition U(x, y) = 0 holds,

where U(x, y) is an invariant polynomial, then this condition must hold also for the initial

(not-perturbed) systems. So considering Theorem 12 (more exactly its part related with the

configurations Fig.1 - Fig.13 which was proved in [16]) we arrive at the next remark.

Remark 14. The condition L1 = L2 = 0 is necessary for any cubic system possessing invariant

lines of total multiplicity 9.

The case m 6= 0. Thus in what follows we consider m 6= 0. It was shown above that for

a system (11) to possess at least 4 invariant lines in two directions (x = 0 and y = 0) the

conditions k = h = d = l = 0 are necessary. So considering Remark 14 we calculate L1 = 0

and L2 = 20736nx(mx − 3ny). It is evident that the polynomial L2 vanishes if and only if

n = 0. In this case applying the rescaling (x, y, t) 7→ (mx, y, t/m2) we can set m = 1 and

systems (11) become ẋ = a + cx + x3, ẏ = b + ex + fy + 2xy. Considering (12) we get

Eq8 = −2W + e = 0, Eq10 = −fW + b = 0. These equations have a common solution if and

only if the resultant RW (Eq8, Eq10) = −2b + fe = 0, i.e. b = ef/2 (see Lemma 9). So, the

conditions k = h = d = l = n = 0,m = 1 and b = ef/2 yield the following systems of equations

ẋ = a+ cx+ x3 ≡ P (x), ẏ = (f + 2x)(e + 2y)/2 ≡ (e+ 2y)Q(x). (13)

Remark 15. It is clear that systems (13) are degenerate if and only if the polynomials P (x) and

Q(x) have a non-constant common factor (depending on x). So, the following condition must

hold:

Φ ≡ R(0)
x (P (x), Q(x)) 6= 0. (14)

For systems (13) we calculate H(X,Z) = 2−1Z(2Y + eZ)(X3 + cXZ2 + aZ3) for which

degH = 5. On the other hand for a system in CSL9 the corresponding polynomial H must have

the degree eight.

Considering Lemmas 7 and 8 we determine the conditions to get a common factor of degree

three of the polynomials Gi/H, i = 1, 2, 3. For systems (13) we calculate

G1/H = 4X3 + (sf − 4)X2Z − 4fXZ2 + (cf − 2a− f2)Z3,

G2/H = (3X − 2Z))(2X + fZ)(X3 + cXZ2 + aZ3).

Since the polynomials Gi/H, (i = 1, 2) do not depend on Y we conclude that the common

factor of degree 3 of these two polynomials must depend on X . So by Lemma 9 the following

condition is necessary in order to have a such a factor:

R
(0)
X (G2/H,G1/H) = R

(1)
X (G2/H,G1/H) = R

(2)
X (G2/H,G1/H) = 0.
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Calculations yield

R
(2)
X (G2/H,G1/H) = −2(64 + 288a+ 64c+ 48f − 96cf + 12f2 − 27f3)Z3 = 0

and this implies a = (96cf − 64− 64c− 48f − 12f2 + 27f3)/288. Then we obtain

R
(1)
X (G2/H,G1/H) = (4 + 3f)2(4 + 9f)2(16 + 16c+ 3f2)2Z8/576 = 0,

Φ = R(0)
x (P (x), Q(x)) = (4 + 3f)(16 + 16c+ 3f2)/288 6= 0

and clearly the above relations imply 4 + 9f = 0, i.e. f = -4/9. Herein we calculate

R
(0)
X (G2/H,G1/H) = 2163−31(4 + 9c)3(28 + 27c)3Z15 = 0,

Φ = R(0)
x (P (x), Q(x)) = 4(28 + 27c)/729 6= 0

and therefore we obtain c = −4/9 = f which implies a = 0.

Thus for systems (11) with m 6= 0 (then we assume m = 1) we get the set of conditions

k = h = d = l = n = a = 0, f = c = −4/9, b = −2e/9 (15)

which leads to a system belonging to CSL9. Moreover applying the transformation (x, y, z) 7→
(x, (2y − e)/2, 9t) this system could be brought to the form

ẋ = x(9x2 − 4), ẏ = 2y(9x− 2). (16)

For this system we have H(X,Y, Z) = −18X2Y (3X − 2Z)3Z(3X + 2Z).

Considering Lemma 11 we calculate: µ0 = . . . = µ5 = 0, µ6 = 373248x6 6= 0. By the same

lemma six finite singular points from 9 have gone to infinity and collapsed with the singular

point [0, 1, 0] located on the “end” of the invariant line x = 0. On the other hand system (16)

possesses three finite singular points (0, 0) and (±2/3, 0) and the invariant straight lines:

L1,2 : x = 0, L3 : y = 0, L4,5,6 : 3x− 2 = 0, L7 : 3x+ 2 = 0, L7,8 : Z = 0.

In this case the configuration of invariant lines of the system (16) corresponds to Figure 24.

Invariant conditions for the realization of the configuration given by Figure 24.

Now we construct the necessary and sufficient conditions in terms of affine invariant polynomials

using the theory of algebraic invariants developed by K.Sibirschi’s school (see for instance, [31]).

From [16, Proposition 28] we need the following result:

Proposition 16. If for a cubic system (6) the conditions D1 = D3 = D4 = 0, D2 6= 0 and

V1 = 0 hold, then via a linear transformation and time rescaling the homogeneous cubic part of

this system becomes into the form p3 = x3, q3 = 0 for L4 < 0.

So, we get systems (11) (with (p3, q3) = (x3, 0)) and, as it was earlier showed, in the case

m 6= 0 (then we may assume m = 1 due to a rescaling) the conditions (15) (which are in terms

of the coefficient of these systems) are necessary and sufficient for a system (11) to have 9 ILs.
We calculate

N3 = −12x2(lx3 + (2h− n)xy2 + 2ky3)

and taking into consideration Remark 14 and the fact that L2 = 0 ⇔ n = 0 from the page 13

we obtain that N3 = L2 = 0 ⇔ l = k = n = h = 0.
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In this case we calculate N2 = −18mx4y and therefore the condition m 6= 0 is governed by

the invariant polynomial N2 and in what follows we assume N2 6= 0, i.e. m = 1.

We continue with the calculation of N11 = 12d = 0, i.e. d = 0 and this implies N12 =

1296(ef − 2b)x6. It is evident that N12 = 0 ⇔ ef − 2b = 0, i.e. b = ef/2. In this case the

calculations yield

N13 = 5184(c− f)x4, N14 = 2592(4 + 6c+ 3f)x4.

It is not too hard to see that N13 = N14 = 0 is equivalent with f = c = −4/9 and these leads to

N1 = −1944ax4y and clearly the condition N1 = 0 gives a = 0.

This completes the proof of Theorem 12.

3 Main results: first integrals and phase portraits of cubic

systems with the maximum number of invariant straight

lines

Theorem 17. Consider systems (6) in CSL9. Then these systems have the polynomial integrat-

ing factors as well as the rational first integrals corresponding to each one of the 24 canonical

forms as it is indicated in Table 1. This table also lists all phase portraits P.1 - P.24 correspond-

ing to the configurations Fig.1 - Fig.24 of invariant straight lines of such systems. Moreover

using the geometrical (numeric) invariants (see Remark 18) in the diagram from Figure 2 it is

shown that among these 24 phase portraits only 18 are topologically distinct.

Remark 18. In order to distinguish topologically the phase portraits of the systems we obtained,

we use the following geometric invariants:

• The number ISR of real infinite singularities.

• The number FSR of real finite singularities.

• The number Sep f of separatrices associated to finite singularities.

• The number Sep∞ of separatrices associated to infinite singularities.

• The number FSep of separatrices connecting finite singularities.

• The number SC of separatrix connections.

Proof. Using Theorems 12 and 3 it follows after some easy calculations the expressions for the

integrating factors and the first integrals of Table 1.

The phase portraits of polynomial differential equations are usually presented in the Poincaré

disc using the so called Poincaré compactification, see for details Chapter 5 of [14]. The existence

of the 9 invariant straight lines taking into account their multiplicities and the knowledge of

the rational first integrals allows us to drown the 24 phase portraits of the systems given in

Theorem 17. After we prove that only 18 of these phase portraits are topologically different

using Remark 18. They are given in Figure 2.
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We note that the systems in Theorem 12 have no parameters and the study of their phase

portraits also can be done using the algebraic program P4, see for details Chapters 9 and 10

of [14].

We also observe that the inverse integrating factors described in Table 1 are all polynomial

except 5 of them.

Figure 2: Topologically distinct phase portraits

Acknowledgments

The first and the third authors are partially supported by FP7-PEOPLE-2012-IRSES-316338

and by the grant 12.839.08.05F from SCSTD of ASM. The second author is partially supported

by a MINECO grantMTM2013-40998-P, an AGAUR grant number 2014SGR-568, and the grants

FP7-PEOPLE-2012-IRSES 318999 and 316338.

References
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no. 2 (75), p. 102–105.

[5] Bujac C. One subfamily of cubic systems with invariant lines of total multiplicity eight and

with two distinct real infinite singularities. Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no.

1 (77), p. 48–86.

[6] Bujac C., Vulpe N. Cubic differential systems with invariant lines of total multiplicity eight

and with four distinct infinite singularities. J. Math. Anal. Appl., 2015, no. 2 (423), p.

1025–1080.

[7] Bujac C., Vulpe N. Cubic systems with invariant straight lines of total multiplicity eight

and with three distinct infinite singularities. Qual. Theory Dyn. Syst., 2015, Volume 14,

Issue 1, p. 109–137.

[8] Bujac C., Vulpe N. Classification of cubic differential systems with invariant straight lines

of total multiplicity eight and two distinct infinite singularities. Electron. J. Qual. Theory

Differ. Equ., 2015, no. 74, p. 1–38.

[9] Bujac C., Vulpe N. Cubic Differential Systems with Invariant Straight Lines of Total Mul-

tiplicity Eight possessing One Infinite Singularity. Qual. Theory Dyn. Syst., 2016. 24 p.

[10] Christopher C., Llibre J. Integrability via invariant algebraic curves for planar polynomial

differential systems. Ann. Differ. Equations, 2000, vol. 16, no.1, p. 5–19.

[11] Christopher C., Llibre J., Pereira J. V. Multiplicity of invariant algebraic curves in polyno-

mial vector fields. Pacific J. Math., Vol 229, no. 1, 2007, p. 63–117.
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[25] Puţuntică V., Şubă A. Classiffcation of the cubic differential systems with seven real invari-

ant straight lines. In: ROMAI J., 5 (2009), no. 1, p. 121–122.

[26] Schlomiuk D., Vulpe N. Planar quadratic vector fields with invariant lines of total multi-

plicity at least five. Qual. Theory Dyn. Syst., 5 (2004), no.1, p. 135–194.

[27] Schlomiuk D., Vulpe N. Integrals and phase portraits of planar quadratic differential systems

with invariant lines of at least five total multiplicity. Rocky Mountain J. Math. 38 (2008),

no. 6, p. 2015–2075.

[28] Schlomiuk D., Vulpe N. Planar quadratic differential systems with invariant straight lines

of total multiplicity four. Nonlinear Anal., 68 (2008), no. 4, p. 681–715

[29] Schlomiuk D., Vulpe N. Integrals and phase portraits of planar quadratic differential sys-

tems with invariant lines of total multiplicity four. Bul. Acad. Ştiinţe Repub. Mold. Mat.
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