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Abstract. The aim of this work is to propose an alternative method for de-

termining the condition of existence of “canard solutions” for three and four-
dimensional singularly perturbed systems with only one fast variable in the
folded saddle case. This method enables to state a unique generic condition
for the existence of “canard solutions” for such three and four-dimensional

singularly perturbed systems which is based on the stability of folded singu-
larities of the normalized slow dynamics deduced from a well-known property
of linear algebra. This unique generic condition is perfectly identical to that

provided in previous works. Application of this method to the famous three
and four-dimensional memristor canonical Chua’s circuits for which the classi-
cal piecewise-linear characteristic curve has been replaced by a smooth cubic
nonlinear function according to the least squares method enables to show the

existence of “canard solutions” in such Memristor Based Chaotic Circuits.

1. Introduction

As recalled by Fruchard and Schäfke [20, p. 435]: “In the late 1970s, under
the leadership of George Reeb, a group of young researchers, Jean-Louis Callot,
Francine and Marc Diener, Albert Troesch, Emile Urlacher and then, Eric Benôıt
and Imme van den Berg, based in Strasbourg some in Oran and others in Tlemcen
were given as research program to develop methods for “non-standard analysis1”
for the study of singular perturbation problems. Georges Reeb had proposed to
introduce a particular control parameter a in the original van der Pol’s equation
[45].

εẍ + (1 − x2)ẋ + x = a

The study of this equation has led this group to discover surprising solutions,
which they named “ducks2”. Van der Pol relaxation oscillator is considered as the
paradigm of slow -fast systems, i.e. two-dimensional singularly perturbed system
with one slow variable and one fast. It is well-known that for the control parameter
value a = 1, a Hopf bifurcation takes place in this system3. So, as expected by this
group of researchers, by setting ε constant, one would make the amplitude of the
periodic solution (limit cycle) change very fast for values of a near (just below) 1.
But, the results exceeded their expectations: at one critical value a = 0.9987404512
a very small change of this parameter’s value produced an amplitude drop of about
80 %.
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According to Marc Diener [13, p. 38]: “It was as if the existence of medium size
solutions would be a “canard4”! Canard is now the name of a type of solution of a
slow-fast differential system, to which the above “missing” medium-size solutions
belong, that had previously been ignored.”. Another interpretation of the denomi-
nation “canard” also given by Diener [13, p. 45] in the the same article, is that the
periodic solution resembles, for this critical parameter value, to a duck (See Fig.
1.).

Figure 1. “Canard cycle” of the Van der Pol equation, Diener
[13, p. 45].

In the beginning of the eighties, Benôıt and Lobry [5], Benôıt [6] and then
Benôıt [7] in his PhD-thesis studied canard solutions in R3. In the article enti-
tled “Systèmes lents-rapides dans R3 et leurs canards,” Benôıt [6, p. 170] proved
the existence of canards solution for three-dimensional singularly perturbed systems
with two slow variables and one fast variable while using “Non-Standard Analy-
sis”according to a theorem which stated that canard solutions exist in such systems
provided that the pseudo singular point5 of the slow dynamics, i.e., of the reduced
vector field is of saddle type.

Nearly twenty years later, Szmolyan and Wechselberger [41] extended “Geomet-
ric Singular Perturbation Theory6” to canards problems in R3 and provided a “stan-
dard version” of Benôıt’s theorem [6]. Very recently, Wechselberger [47] generalized
this theorem for n-dimensional singularly perturbed systems with k slow variables
and m fast (Eq. (1)). The method used by Szmolyan and Wechselberger [41] and
Wechselberger [47] require to implement a “desingularization procedure” which can
be summarized as follows: first, they compute the normal form of such singularly
perturbed systems (see Eq. (28) for dimension three and Eq. (48) for dimension
four) which is expressed according to some coefficients (a and b for dimension three

and ã, b̃ and c̃j for dimension four) depending on the functions defining the original
vector field (1) and their partial derivatives with respect to the variables. Secondly,
they project the “desingularized vector field” (originally called “normalized slow
dynamics” by Eric Benôıt [6, p. 166]) of such a normal form on the tangent bundle

4Canard = false report, from the old-French “vendre un canard moitié” (Sell the half of duck).
5This concept has been originally introduced by José Argémi [1]. See Sec. 2.7.
6See Fenichel [14, 17], O’Malley [35], Jones [29] and Kaper [30]
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of the critical manifold. Finally, they evaluate the Jacobian of the projection of
this “desingularized vector field” at the folded singularity (originally called pseudo
singular points by José Argémi [1, p. 336]. This leads Szmolyan and Wechsel-
berger [41, p. 427] and Wechselberger [47, p. 3298] to a “classification of folded
singularities (pseudo singular points)”. Thus, they show that for three-dimensional
singularly perturbed systems such folded singularities is of saddle type if the fol-
lowing condition is satisfied: a < 0 while for four-dimensional singularly perturbed
systems such folded singularities is of saddle type if ã < 0. Then, Szmolyan and
Wechselberger [41, p. 439] and Wechselberger [47, p. 3304] establish their Theorem
4.1. which state that “In the folded saddle and in the folded node case singular ca-
nards perturb to maximal canard for sufficiently small ε”. However, in their works
neither Szmolyan and Wechselberger [41] nor Wechselberger [47] do not provide (to
our knowledge) the expression of these constants (a and ã) which are necessary to
state the existence of canard solutions in such systems.

So, the aim of this work is first to provide the expression of these constants and
then to show that they can be directly determined starting from the normalized
slow dynamics and not from the projection of the “desingularized vector field” of
the normal form. This method enables to state a unique “generic” condition for
the existence of “canard solutions” for such three and four-dimensional singularly
perturbed systems which is based on the stability of folded singularities of the
normalized slow dynamics deduced from a well-known property of linear algebra.
This unique condition which is completely identical to that provided by Benôıt
[6] and then by Szmolyan and Wechselberger [41] and finally by Wechselberger
[47] is “generic” since it is exactly the same for singularly perturbed systems of
dimension three and four with only one fast variable. So, it provides a path to
many applications.

In the very beginning of the seventies, Leon Chua [11] considered the three basic
building blocks of an electric circuit: the capacitor, the resistor and the inductor
as well as the three laws linking the four fundamental circuit variables, namely, the
electric current i, the voltage v, the charge q and the magnetic flux φ. He thus
concluded from the logical as well as axiomatic points of view, that it is necessary,
for the sake of completeness, to postulate the existence of a fourth circuit element
to which he gave the name memristor since it behaves like a nonlinear resistor with
memory. On April 30th 2008, Stan Williams and co-workers [40] announced in the
journal Nature that the missing circuit element, postulated thirty-seven years before
by Leon Chua has been found [23]. Since, the memristor has been subject to many
studies and applications [12, 36]. More particularly, memristor-based circuits have
been used by Itoh and Chua [27, 28], Muthuswamy and Kokate [31], Muthuswamy
[32], Muthuswamy and Chua [33] and Fitch et al. [18, 19] to construct dynamical
systems whose solutions exhibit chaotic and hyperchaotic behavior [18].

In a paper entitled “Duality of Memristors Circuits”, Itoh and Chua [28, p.
1330001-15] gave the memristor canonical Chua’s circuit equation (69) in the three-
dimensional flux-linkage and charge phase space. Differentiating this Eq. (69) with
respect to time they obtained memristor-based canonical Chua’s circuit equation
(73) in the four-dimensional current-voltage phase space7. In both cases, the φ − q

7Let’s notice that Eq. (73) corresponds exactly to what Itoh and Chua [27, p. 3188] have called

in their previous paper on “Memristor Oscillators” the fourth-order memristor-based canonical
Chua’s circuit equation (35).
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characteristic curve of these circuits has been represented by a piecewise-linear
function (Eq. (40) in Itoh and Chua [27, p. 3189] and Eq. (70) in Itoh and Chua
[28, p. 1330001-15]). In their works, Itoh and Chua [27, 28] have shown that the
dynamical systems modeling such circuits possess at least one eigenvalue with a
large negative real part. This specific feature is of great interest since it enables to
consider memristor-based canonical Chua’s circuits as slow-fast dynamical systems.
So, there exists in the phase-space a slow manifold on which trajectories, solution
of the dynamical system modeling the memristor circuit, evolve slowly and toward
which nearby orbits contract exponentially in time in the normal directions.

For these memristor-based canonical circuits Itoh and Chua [27, 28] have used
a classical piecewise-linear function for the φ − q characteristic curve. However,
Muthuswamy [32] and Fitch et al. [18] have proposed to replace this piecewise
linear characteristic curve by a smooth cubic nonlinear function. This enables to
exhibit the existence of generic “canard solutions” in such Memristor Based Chaotic
Circuits.

The outline of this paper is as follows. In Sec. 2, definitions of singularly
perturbed system, critical manifold, reduced system, “constrained system”, canard
cycles, folded singularities and pseudo singular points are recalled. The method
proposed in this article is presented in Sec. 3 & 4 for the case of three and four-
dimensional singularly perturbed systems with only one fast variable. Existence
of canard solution for the third and fourth-order Chua’s memristor is established
according to this method in Sec. 5 & 6.

2. Definitions

2.1. Singularly perturbed systems. According to Tikhonov [43], Jones [29] and
Kaper [30] singularly perturbed systems are defined as:

(1)
x⃗′ = εf⃗ (x⃗, y⃗, ε) ,

y⃗′ = g⃗ (x⃗, y⃗, ε) .

where x⃗ ∈ Rk, y⃗ ∈ Rm, ε ∈ R+, and the prime denotes differentiation with

respect to the independent variable t′. The functions f⃗ and g⃗ are assumed to be
C∞ functions8 of x⃗, y⃗ and ε in U × I, where U is an open subset of Rk × Rm and
I is an open interval containing ε = 0.

In the case when 0 < ε ≪ 1, i.e. ε is a small positive number, the variable x⃗ is
called slow variable, and y⃗ is called fast variable. Using Landau’s notation: O (εp)
represents a function f of u and ε such that f(u, ε)/εp is bounded for positive ε
going to zero, uniformly for u in the given domain.

In general we consider that x⃗ evolves at an O (ε) rate; while y⃗ evolves at an O (1)
slow rate. Reformulating system (1) in terms of the rescaled variable t = εt′, we
obtain

(2)
˙⃗x = f⃗ (x⃗, y⃗, ε) ,

ε ˙⃗y = g⃗ (x⃗, y⃗, ε) .

8In certain applications these functions will be supposed to be Cr, r > 1.
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The dot represents the derivative with respect to the new independent variable
t.

The independent variables t′ and t are referred to the fast and slow times, re-
spectively, and (1) and (2) are called the fast and slow systems, respectively. These
systems are equivalent whenever ε ̸= 0, and they are labeled singular perturbation
problems when 0 < ε ≪ 1. The label “singular” stems in part from the discontinu-
ous limiting behavior in system (1) as ε → 0.

2.2. Reduced slow system. In such case system (2) leads to a differential-algebraic
system (D.A.E.) called reduced slow system whose dimension decreases from k+m =
n to m. Then, the slow variable x⃗ ∈ Rk partially evolves in the submanifold M0

called the critical manifold9. The reduced slow system is

(3)
˙⃗x = f⃗ (x⃗, y⃗, ε) ,

0⃗ = g⃗ (x⃗, y⃗, ε) .

2.3. Slow Invariant Manifold. The critical manifold is defined by

(4) M0 :=
{

(x⃗, y⃗) : g⃗ (x⃗, y⃗, 0) = 0⃗
}

.

Such a normally hyperbolic invariant manifold (4) of the reduced slow system (3)
persists as a locally invariant slow manifold of the full problem (1) for ε sufficiently
small. This locally slow invariant manifold is O(ε) close to the critical manifold.

When Dx⃗f⃗ is invertible, thanks to the Implicit Function Theorem, M0 is given

by the graph of a C∞ function x⃗ = G⃗0 (y⃗) for y⃗ ∈ D, where D ⊆ Rk is a compact,
simply connected domain and the boundary of D is a (k − 1)–dimensional C∞

submanifold10.

According to Fenichel [14, 17] theory if 0 < ε ≪ 1 is sufficiently small, then there

exists a function G⃗ (y⃗, ε) defined on D such that the manifold

(5) Mε :=
{

(x⃗, y⃗) : x⃗ = G⃗ (y⃗, ε)
}

,

is locally invariant under the flow of system (1). Moreover, there exist perturbed
local stable (or attracting) Ma and unstable (or repelling) Mr branches of the slow
invariant manifold Mε. Thus, normal hyperbolicity of Mε is lost via a saddle-
node bifurcation of the reduced slow system (3). Then, it gives rise to solutions of
“canard” type.

2.4. Canards, singular canards and maximal canards. A canard is a solution
of a singularly perturbed dynamical system (1) following the attracting branch Ma

of the slow invariant manifold, passing near a bifurcation point located on the fold
of this slow invariant manifold, and then following the repelling branch Mr of the
slow invariant manifold.

9It represents the approximation of the slow invariant manifold, with an error of O(ε).
10The set D is overflowing invariant with respect to (2) when ε = 0. See Kaper [30] and Jones

[29].
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A singular canard is a solution of a reduced slow system (3) following the attract-
ing branch Ma,0 of the critical manifold, passing near a bifurcation point located
on the fold of this critical manifold, and then following the repelling branch Mr,0

of the critical manifold.

A maximal canard corresponds to the intersection of the attracting and repelling
branches Ma,ε ∩Mr,ε of the slow manifold in the vicinity of a non-hyperbolic point.

According to Wechselberger [47, p. 3302]:

“Such a maximal canard defines a family of canards nearby which
are exponentially close to the maximal canard, i.e. a family of
solutions of (1) that follow an attracting branch Ma,ε of the slow
manifold and then follow, rather surprisingly, a repelling/saddle
branch Mr,ε of the slow manifold for a considerable amount of slow
time. The existence of this family of canards is a consequence of the
non-uniqueness of Ma,ε and Mr,ε. However, in the singular limit
ε → 0, such a family of canards is represented by a unique singular
canard.”

Canards are a special class of solution of singularly perturbed dynamical systems
for which normal hyperbolicity is lost. Canards in singularly perturbed systems
with two or more slow variables (x⃗ ∈ Rk, k > 2) and one fast variable (y⃗ ∈ Rm,
m = 1) are robust, since maximal canards generically persist under small parameter
changes11.

2.5. Constrained system. In order to characterize the “slow dynamics”, i.e. the
slow trajectory of the reduced slow system (3) (obtained by setting ε = 0 in (2)),
Floris Takens [42] introduced the “constrained system” defined as follows:

(6)

˙⃗x = f⃗ (x⃗, y⃗, 0) ,

Dy⃗ g⃗. ˙⃗y = −(Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) ,

0⃗ = g⃗ (x⃗, y⃗, 0) .

Since, according to Fenichel [14, 17], the critical manifold g⃗ (x⃗, y⃗, 0) may be
considered as locally invariant under the flow of system (1), we have:

dg⃗

dt
(x⃗, y⃗, 0) = 0 ⇐⇒ Dx⃗g⃗. ˙⃗x + Dy⃗ g⃗. ˙⃗y = 0⃗.

By replacing ˙⃗x by f⃗ (x⃗, y⃗, 0) leads to:

Dx⃗g⃗.f⃗ (x⃗, y⃗, 0) + Dy⃗ g⃗. ˙⃗y = 0⃗.

This justifies the introduction of the constrained system.

Now, let adj(Dy⃗ g⃗) denote the adjoint of the matrix Dy⃗ g⃗ which is the transpose
of the co-factor matrix Dy⃗ g⃗, then while multiplying the left hand side of (6) by the
inverse matrix (Dy⃗ g⃗)−1 obtained by the adjoint method we have:

11See Benôıt [6, 9], Szmolyan and Wechselberger [41] and Wechselberger [46, 47].
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(7)

˙⃗x = f⃗ (x⃗, y⃗, 0) ,

det(Dy⃗ g⃗) ˙⃗y = −(adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) ,

0⃗ = g⃗ (x⃗, y⃗, 0) .

2.6. Normalized slow dynamics. Then, by rescaling the time by setting t =
−det(Dy⃗ g⃗)τ we obtain the following system which has been called by Eric Benôıt
[6, p. 166] “normalized slow dynamics”:

(8)

˙⃗x = −det(Dy⃗ g⃗)f⃗ (x⃗, y⃗, 0) ,

˙⃗y = (adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) ,

0⃗ = g⃗ (x⃗, y⃗, 0) .

where the overdot now denotes the time derivation with respect to τ . Let’s notice
that Argémi [1] proposed to rescale time by setting t = −det(Dy⃗ g⃗)sgn(det(Dy⃗ g⃗))τ
in order to keep the same flow direction in (8) as in (7).

2.7. Desingularized vector field. By application of the Implicit Function The-
orem, let suppose that we can explicitly express from Eq. (4), say without loss
of generality, x1 as a function ϕ1 of the other variables. This implies that M0 is
locally the graph of a function ϕ1 : Rk → Rm over the base U = (χ⃗, y⃗) where
χ⃗ = (x2, x3, ..., xk). Thus, we can span the “normalized slow dynamics” on the
tangent bundle at the critical manifold M0 at the pseudo singular point. This leads
to the so-called desingularized vector field :

(9)
˙⃗χ = −det(Dy⃗ g⃗)f⃗ (χ⃗, y⃗, 0) ,

˙⃗y = (adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (χ⃗, y⃗, 0) .

2.8. Pseudo singular points and pseudo singular manifolds. As recalled by
Guckenheimer and Haiduc [24, p. 91], pseudo-singular points have been introduced
by the late José Argémi [1] for low-dimensional singularly perturbed systems and
are defined as singular points of the “normalized slow dynamics” (8). Twenty-three
years later, Szmolyan and Wechselberger [41, p. 428] called such pseudo singular
points, folded singularities. In a recent publication entitled “A propos de canards”
Wechselberger [47, p. 3295] proposed to define such singularities for n-dimensional
singularly perturbed systems with k slow variables and m fast as the solutions of
the following system:

(10)

det(Dy⃗ g⃗) = 0,

(adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) = 0⃗,

g⃗ (x⃗, y⃗, 0) = 0⃗.

Thus, for dimensions higher than three, his concept encompasses that of Argémi.
Moreover, Wechselberger [47, p. 3296] proved that folded singularities form a (k −
2)-dimensional manifold. Thus, for k = 2 the folded singularities are nothing else
than the pseudo singular points defined by Argémi [1]. While for k > 3 the folded
singularities are no more points but a (k−2)-dimensional manifold. Moreover, let’s
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notice on the one hand that the original system (1) includes n = k+m variables and
on the other hand, that the system (10) comprises p = 2m+1 equations. So, we are
faced to a system of p equations with n unknowns. If p < n the system is triangular
and will necessarily have an infinite number of solutions that will be able to express
in terms of the last unknowns. Since in this work we are only interested in three
and four-dimensional singularly perturbed systems with m = 1 fast variable and
with k slow variables we have p = 3 and n = k + 1 and so, n − p = k − 2. Thus, we
will examine the case k = 2 and k > 3.

2.8.1. Pseudo singular points – Case k = 2. If k = 2 the number of variables of
system (1) is equal to n = 3 and the number of equations is also equal to p = 3. So,
all the variables (unknowns) of system (10) can be determined. The solutions of
such system are called pseudo singular points. An example of such situation is given
by the third-order Memristor-Based canonical oscillator analyzed in Sec. 5 and for
which (m, k) = (1, 2). We will see in the next Sec. 3 that the stability analysis of
these pseudo singular points will give rise to a condition for the existence of canard
solutions in such systems.

2.8.2. Pseudo singular manifolds – Case k > 3. If k > 3 the number of variables of
system (1) is equal to n = k +1 and the number of equations is still equal to p = 3.
So, only three variables (unknowns) of system (10) can be determined while the
remaining k−2 unknowns are undetermined. The solution of such system takes the
form of a (k − 2)-dimensional manifold that we call pseudo singular manifold. An
example of such situation is given by the fourth-order Memristor-Based canonical
oscillator analyzed in Sec. 6 and for which (m, k) = (1, 3). We will see in Sec. 4
that for k > 3 the stability analysis of this pseudo singular manifold will give rise
to a condition (represented by a domain) for the existence of canard solutions in
such systems.

3. Three-dimensional singularly perturbed systems

A three-dimensional singularly perturbed dynamical system (2) with k = 2 slow
variables and m = 1 fast may be written as:

ẋ1 = f1 (x1, x2, y1) ,(11a)

ẋ2 = f2 (x1, x2, y1) ,(11b)

εẏ1 = g1 (x1, x2, y1) ,(11c)

where x⃗ = (x1, x2)
t ∈ R2, y⃗ = (y1) ∈ R, 0 < ε ≪ 1 and the functions fi and gi

are assumed to be C2 functions of (x1, x2, y1).

3.1. Critical Manifold. The critical manifold equation of system (11) is defined
by setting ε = 0 in Eq. (11c). Thus, we obtain:

(12) g1 (x1, x2, y1) = 0.

By application of the Implicit Function Theorem, let suppose that we can ex-
plicitly express from Eq. (11), say without loss of generality, x1 as functions of the
others variables:
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x1 = ϕ (x2, y1)

3.2. Constrained system. The constrained system of system (11) is obtained by
equating to zero the time derivative of g1 (x1, x2, y1):

(13)
dg1

dt
=

∂g1

∂x1
ẋ1 +

∂g1

∂x2
ẋ2 +

∂g1

∂y1
ẏ1 = 0

By replacing ẋi by fi (x1, x2, y1) with i = 1, 2, Eq. (13) reads:

(14) ẏ1 = −
∂g1

∂x1
f1 +

∂g1

∂x2
f2

∂g1

∂y1

.

So, we have the following constrained system:

(15)

ẋ1 = f1 (x1, x2, y1) ,

ẋ2 = f2 (x1, x2, y1) ,

ẏ1 = −
∂g1

∂x1
f1 +

∂g1

∂x2
f2

∂g1

∂y1

,

0 = g1 (x1, x2, y1) .

3.3. Normalized slow dynamics. By rescaling the time by setting t = −∂g1

∂y1
τ

we obtain the “normalized slow dynamics”:

(16)

ẋ1 = −f1 (x1, x2, y1)
∂g1

∂y1
= F1 (x1, x2, y1) ,

ẋ2 = −f2 (x1, x2, y1)
∂g1

∂y1
= F2 (x1, x2, y1) ,

ẏ1 =
∂g1

∂x1
f1 +

∂g1

∂x2
f2 = G1 (x1, x2, y1) ,

0 = g1 (x1, x2, y1) .

where the overdot now denotes the time derivation with respect to τ12.

3.4. Desingularized vector field. Then, since we have supposed that x1 may be
explicitly expressed as a function ϕ (x2, y1) on the others variables (Eq. 12), it can
be used to project the “normalized slow dynamics” (16) on the tangent bundle of
the critical manifold. Thus we obtain the so-called “desingularized vector field”

12In the three-dimensional case det(Dy⃗ g⃗) = ∂g1/∂y1.



10 J.M. GINOUX, J. LLIBRE

(17)

ẋ2 = −f2 (x1, x2, y1)
∂g1

∂y1
(x1, x2, y1) ,

ẏ1 =
∂g1

∂x1
f1 (x1, x2, y1) +

∂g1

∂x2
f2 (x1, x2, y1) .

in which x1 must be replaced by ϕ (x2, y1).

3.5. Pseudo-Singular Points. Pseudo-singular points are defined as singular points
of the “normalized slow dynamics” (16), i.e. as the set of points for which we have:

g1 (x1, x2, y1) = 0,(18a)

∂g1

∂y1
= 0,(18b)

∂g1

∂x1
f1 +

∂g1

∂x2
f2 = 0.(18c)

Remark 1. According to Argémi [1], pseudo singular points are singular points of
(18) but not necessarily singular points of (11). In the following, we do not consider
the case for which f1(x1, x2, y1) = f2(x1, x2, y1) = g1(x1, x2, y1) = 0. Let’s notice
that contrary to the previous works we don’t use the “desingularized vector field”
(17) but the “normalized slow dynamics” (16).

Thus, the Jacobian matrix of system (16) reads:

(19) J(F1,F2,G1) =




∂F1

∂x1

∂F1

∂x2

∂F2

∂y1

∂F2

∂x1

∂F2

∂x2

∂F2

∂y1

∂G1

∂x1

∂G1

∂x2

∂G1

∂y1




3.6. Benôıt’s generic hypothesis. In his famous papers, Eric Benôıt [5, 6, 8]
made the following assumptions without loss of generality. First, he supposed that
by a “standard translation” the pseudo-singular point can be shifted at the origin
and that by a “standard rotation” of y1-axis that the critical manifold (12) is
tangent to (x2, y1)-plane, so he had:

(20) f1 (0, 0, 0) = g1 (0, 0, 0) =
∂g1

∂x2

∣∣∣∣
(0,0,0)

=
∂g1

∂y1

∣∣∣∣
(0,0,0)

= 0.

Then, he made the following assumptions for the non-degeneracy of the pseudo-
singular point :

(21) f2 (0, 0, 0) ̸= 0 ;
∂g1

∂x1

∣∣∣∣
(0,0,0)

̸= 0 ;
∂2g1

∂y2
1

∣∣∣∣
(0,0,0)

̸= 0
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According to Benôıt’s generic hypotheses Eqs. (20-21), the Jacobian matrix (19)
reads:

(22) J(F1,F2,G1) =




0 0 0

−f2
∂2g1

∂x1∂y1
−f2

∂2g1

∂x2∂y1
−f2

∂2g1

∂y2
1

a31 a32 a33




where

a3i =
∂g1

∂x1

∂f1

∂xi
+ f2

∂2g1

∂x2∂xi
for i = 1, 2,

a33 =
∂g1

∂x1

∂f1

∂y1
+ f2

∂2g1

∂x2∂y1
.

Thus, we have the following Cayley-Hamilton eigenpolynomial associated with
such a Jacobian matrix (22) evaluated at the pseudo singular point, i.e., at the
origin:

(23) λ3 − σ1λ
2 + σ2λ − σ3 = 0

It appears that σ3 = |J(F1,F2,G1)| = 0 since one row of the Jacobian matrix (22)
is null. So, the Cayley-Hamilton eigenpolynomial reduces to:

(24) λ
(
λ2 − σ1λ + σ2

)
= 0

Let λi be the eigenvalues of the eigenpolynomial (24) and let’s denote by λ3 = 0
the obvious root of this polynomial. We have:

(25)

σ1 =Tr(J(F1,F2,G1)) = λ1 + λ2 =
∂g1

∂x1

∂f1

∂y1
,

σ2 =

3∑

i=1

∣∣∣J ii
(F1,F2,G1)

∣∣∣ = λ1λ2

=f2
2

(
∂2g1

∂x2
2

∂2g1

∂y2
1

−
(

∂2g1

∂x2∂y1

)2
)

+ f2
∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x2
− ∂2g1

∂x2∂y1

∂f1

∂y1

)
.

where σ1 = Tr(J(F1,F2,G1)) = p is the sum of all first-order diagonal minors of

J(F1,F2,G1), i.e. the trace of J(F1,F2,G1) and σ2 =
∑3

i=1

∣∣∣J ii
(F1,F2,G1)

∣∣∣ = q represents

the sum of all second-order diagonal minors of J(F1,F2,G1). Thus, the pseudo singular
point is of saddle-type iff the following conditions C1 and C2 are verified:

(26)
C1 : ∆ = p2 − 4q > 0,

C2 : q < 0.
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Condition C1 is systematically satisfied provided that condition C2 is verified.
Thus, the pseudo singular point is of saddle-type iff q < 0.

3.7. Canard existence in R3. In an article entitled “Systèmes lents-rapides dans
R3 et leurs canards”, Benôıt [6, p. 171] has stated in the framework of “non-
standard analysis” a theorem that can be written as follows:

Benôıt’s theorem [1983]

If the desingularized vector field (17) has a pseudo singular point of saddle type,
then system (11) exhibits a canard solution which evolves from the attractive part
of the slow manifold towards its repelling part.

Proof. See Benôıt [1983]. �
In his work, Benôıt [6, p. 168] computed the trace T and determinant D of the

Jacobian matrix J(F2,G1) associated with the two-dimensional desingularized vector
field (17). Taking into account his generic hypotheses Eqs. (20-21) he found that:

(27)

T =Tr(J(F2,G1)) = λ1 + λ2 =
∂g1

∂x1

∂f1

∂y1
,

D =
∣∣J(F2,G1)

∣∣ = λ1λ2

=f2
2

(
∂2g1

∂x2
2

∂2g1

∂y2
1

− (
∂2g1

∂x2∂y1
)2
)

+ f2
∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x2
− ∂2g1

∂x2∂y1

∂f1

∂y1

)
.

from which he established that the pseudo singular point is of saddle type pro-
vided that D < 0. Then, Benôıt [6, p. 171] stated his theorem.

In a paper entitled “Canards et enlacements”, Benôıt [8] stated, while using a
standard polynomial change of variables (see Appendix A), that the original system
(11) can be transformed into the following “normal version”:

(28)

ẋ1 = ax2 + by1 + O
(
x1, ε, x

2
2, x2y1, y

2
1

)
,

ẋ2 = 1 + O (x1, x2, y1, ε) ,

εẏ1 = −
(
x1 + y2

1

)
+ O

(
εx1, εx2, εy1, ε

2, x2
1y1, y

3
1 , x1x2y1

)
,

where he established that

a =
1

2
f2
2

(
∂2g1

∂x2
2

∂2g1

∂y2
1

− (
∂2g1

∂x2∂y1
)2
)

+
1

2
f2

∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x2
− ∂2g1

∂x2∂y1

∂f1

∂y1

)
,

b = − ∂g1

∂x1

∂f1

∂y1
,

A few years later, Szmolyan and Wechselberger [41] gave a “standard version” of
Benôıt’s theorem [6] (see Benôıt’s theorem above) for three-dimensional singularly
perturbed systems with k = 2 slow variables and m = 1 fast. While using “standard
analysis” and blow-up technique, Szmolyan and Wechselberger [41, p. 427] stated
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in their Lemma 2.1, while using “a smooth change of coordinates” (see Appendix
A), that the original system (11) can be transformed into the “normal form” (28)
from which they deduced that the condition for the pseudo singular point to be of
saddle type is a < 0. Then, they proved the existence of canard solutions for the
original system (11) according to their Theorem 4.1 presented below.

Theorem 2.
Assume system (28). In the folded saddle and in the folded node case singular

canards perturb to maximal canards solutions for sufficiently small ε.

Proof. See Szmolyan and Wechselberger [41]. �
As previously recalled, the method presented in this paper doesn’t use the “desin-

gularized vector field” (17) but the “normalized slow dynamics” (16). So, we have
the following proposition:

Proposition 3.
If the normalized slow dynamics (16) has a pseudo singular point of saddle type,

i.e. if the sum σ2 of all second-order diagonal minors of the Jacobian matrix of the
normalized slow dynamics (16) evaluated at the pseudo singular point is negative,
i.e. if σ2 < 0 then, according to Theorem 2, system (11) exhibits a canard solution
which evolves from the attractive part of the slow manifold towards its repelling
part.

Proof. According to Eqs. (25,27) it is easy to verify that:

(29)

σ1 = Tr(J(F1,F2,G1)) = Tr(J(F2,G1)) = T = λ1 + λ2 = −b,

σ2 =

3∑

i=1

∣∣∣J ii
(F1,F2,G1)

∣∣∣ =
∣∣J(F2,G1)

∣∣ = D = λ1λ2 = 2a.

So, the condition for which the pseudo singular point is of saddle type, i.e. σ2 < 0
is identical to that proposed by Benôıt [1983, p. 171] in his theorem, i.e. D < 0
and also to that provided by Szmolyan and Wechselberger [41], i.e. a < 0. So,
Prop. 3 can be used to state the existence of canard solution for such systems.

�
Of course, in the three-dimensional case the proof is obvious. We will see in the

next Sect. 4 that for four-dimensional singularly perturbed systems this is not the
case. Application of Proposition 3 to the three-dimensional memristor canonical
Chua’s circuits, presented in Sec. 5, will enable to prove the existence of generic
“canard solutions” in such Memristor Based Chaotic Circuits.

4. Four-dimensional singularly perturbed systems

A four-dimensional singularly perturbed dynamical system (2) with k = 3 slow
variables and m = 1 fast may be written as:

ẋ1 = f1 (x1, x2, x3, y1) ,(30a)

ẋ2 = f2 (x1, x2, x3, y1) ,(30b)

ẋ3 = f3 (x1, x2, x3, y1) ,(30c)

εẏ1 = g1 (x1, x2, x3, y1) ,(30d)
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where x⃗ = (x1, x2, x3)
t ∈ R3, y⃗ = (y1) ∈ R, 0 < ε ≪ 1 and the functions fi

and gi are assumed to be C2 functions of (x1, x2, x3, y1).

4.1. Critical Manifold. The critical manifold equation of system (30) is defined
by setting ε = 0 in Eq. (30d). Thus, we obtain:

(31) g1 (x1, x2, x3, y1) = 0.

By application of the Implicit Function Theorem, let suppose that we can ex-
plicitly express from Eq. (31), say without loss of generality, x1 as functions of the
others variables:

(32) x1 = ϕ1 (x2, x3, y1) .

4.2. Constrained system. The constrained system is obtained by equating to
zero the time derivative of g1 (x1, x2, x3, y1):

(33)
dg1

dt
=

∂g1

∂x1
ẋ1 +

∂g1

∂x2
ẋ2 +

∂g1

∂x3
ẋ3 +

∂g1

∂y1
ẏ1 = 0

By replacing ẋi by fi (x1, x2, x3, y1) with i = 1, 2, 3, Eqs. (33) may be written
as:

(34) ẏ1 = −
∂g1

∂x1
f1 +

∂g1

∂x2
f2 +

∂g1

∂x3
f3

∂g1

∂y1

.

So, we have the following constrained system:

(35)

ẋ1 = f1 (x1, x2, x3, y1) ,

ẋ2 = f2 (x1, x2, x3, y1) ,

ẋ3 = f3 (x1, x2, x3, y1) ,

ẏ1 = −
∂g1

∂x1
f1 +

∂g1

∂x2
f2 +

∂g1

∂x3
f3

∂g1

∂y1

,

0 = g1 (x1, x2, x3, y1) .

4.3. Normalized slow dynamics. By rescaling the time by setting t = −∂g1

∂y1
τ

we obtain the “normalized slow dynamics”:
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(36)

ẋ1 = −f1 (x1, x2, x3, y1)
∂g1

∂y1
= F1 (x1, x2, x3, y1) ,

ẋ2 = −f2 (x1, x2, x3, y1)
∂g1

∂y1
= F2 (x1, x2, x3, y1) ,

ẋ3 = −f3 (x1, x2, x3, y1)
∂g1

∂y1
= F3 (x1, x2, x3, y1) ,

ẏ1 =
∂g1

∂x1
f1 +

∂g1

∂x2
f2 +

∂g1

∂x3
f3 = G1 (x1, x2, x3, y1) ,

0 = g1 (x1, x2, x3, y1) .

where the overdot now denotes the time derivation with respect to τ .

4.4. Desingularized vector field. Then, since we have supposed that x1 may be
explicitly expressed as a function ϕ1 of the others variables (32), it can be used to
project the “normalized slow dynamics” (36) on the tangent bundle of the critical
manifold. So, we have:

(37)

ẋ2 = −f2 (x1, x2, x3, y1)
∂g1

∂y1
,

ẋ3 = −f3 (x1, x2, x3, y1)
∂g1

∂y1
,

ẏ1 =
∂g1

∂x1
f1 +

∂g1

∂x2
f2 +

∂g1

∂x3
f3.

in which x1 must be replaced by ϕ1 (x2, x3, y1).

4.5. Pseudo singular manifold. Pseudo singular manifold is defined as singular
solution of the “normalized slow dynamics” (36), so we have:

g1 (x1, x2, x3, y1) = 0,(38a)

∂g1

∂y1
= 0,(38b)

∂g1

∂x1
f1 +

∂g1

∂x2
f2 +

∂g1

∂x3
f3 = 0.(38c)

Remark 4. In the case of a four-dimensional singularly perturbed system with
k = 3 slow variables and m = 1 fast, pseudo singular manifold forms a (k − 2)-
dimensional manifold, i.e. a 1-dimensional manifold since the system (38) com-
prises p = 3 equations and n = 4 variables (unknowns). So, in spite of having a
pseudo singular point (x̃1, x̃2, x̃3, ỹ1) we have pseudo singular manifold represented
by, say without loss of generality, (x̃1, x2, x̃3, ỹ1), where x2 is undetermined.

Let’s notice again that contrary to the previous works we don’t use the “desingu-
larized vector field” (37) but the “normalized slow dynamics” (36).

The Jacobian matrix of system (36) reads:
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(39) J(F1,F2,F3,G1) =




∂F1

∂x1

∂F1

∂x2

∂F1

∂x3

∂F1

∂y1

∂F2

∂x1

∂F2

∂x2

∂F2

∂x3

∂F2

∂y1

∂F3

∂x1

∂F3

∂x2

∂F3

∂x3

∂F3

∂y1

∂G1

∂x1

∂G1

∂x2

∂G1

∂x3

∂G1

∂y1




4.6. Extension of Benôıt’s generic hypothesis. Without loss of generality, it
seems reasonable to extend Benôıt’s generic hypotheses introduced for the three-
dimensional case to the four-dimensional case. So, first let’s suppose that by a “stan-
dard translation” the pseudo singular manifold can be transformed into (0, x2, 0, 0)
and that by a “standard rotation” of y1-axis that the critical manifold (31) is
tangent to (x2, x3, y1)-hyperplane, so we have

(40)

f1 (0, x2, 0, 0) = g1 (0, x2, 0, 0) = 0

∂g1

∂x2

∣∣∣∣
(0,x2,0,0)

=
∂g1

∂x3

∣∣∣∣
(0,x2,0,0)

=
∂g1

∂y1

∣∣∣∣
(0,x2,0,0)

= 0

Then, let’s make the following assumptions for the non-degeneracy of the folded
singularity :

(41) f2 (0, x2, 0, 0) ̸= 0 ;
∂g1

∂x1

∣∣∣∣
(0,x2,0,0)

̸= 0 ;
∂2g1

∂y2
1

∣∣∣∣
(0,x2,0,0)

̸= 0.

According to these generic hypotheses Eqs. (40-41), the Jacobian matrix (39)
reads:

(42) J(F1,F2,F3,G1) =




0 0 0 0

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




where



CANARDS EXISTENCE IN MEMRISTOR’S CIRCUITS 17

a2i = − f2
∂2g1

∂xi∂y1
for i = 1, 2, 3,

a24 = − f2
∂2g1

∂y2
1

a3i = − f3
∂2g1

∂xi∂y1
for i = 1, 2, 3,

a34 = − f3
∂2g1

∂y2
1

a4i =f1
∂2g1

∂x1∂xi
+

∂g1

∂x1

∂f1

∂xi
+ f2

∂2g1

∂x2∂xi
+

∂g1

∂x2

∂f2

∂xi

+ f3
∂2g1

∂x3∂xi
+

∂g1

∂x3

∂f3

∂xi
for i = 1, 2, 3,

a44 =f1
∂2g1

∂x1∂y1
+

∂g1

∂x1

∂f1

∂y1
+ f2

∂2g1

∂x2∂y1
+

∂g1

∂x2

∂f2

∂y1

+ f3
∂2g1

∂x3∂y1
+

∂g1

∂x3

∂f3

∂y1
.

In his paper Wechselberger [47] stated that the determinant of the Jacobian
matrix associated to the “desingularized vector field” and evaluated at a folded
singularity, i.e. on the pseudo singular manifold is always zero13.

Thus, we have the following Cayley-Hamilton eigenpolynomial associated with
such a Jacobian matrix (41) evaluated on the pseudo singular manifold, i.e., at
(0, x2, 0, 0):

(43) λ4 − σ1λ
3 + σ2λ

2 − σ3λ + σ4 = 0,

where σ1 = Tr(J(F1,F2,F3,G1)) is the sum of all first-order diagonal minors of
J(F1,F2,F3,G1), i.e., the trace of J(F1,F2,F3,G1), σ2 represents the sum of all second-
order diagonal minors of J(F1,F2,F3,G1) and σ3 represents the sum of all third-order
diagonal minors of J(F1,F2,F3,G1). It appears that σ4 = |J(F1,F2,F3,G1)| = 0 since one
row of the Jacobian matrix (42) is null. So, the Cayley-Hamilton eigenpolynomial
reduces to:

(44) λ
(
λ3 − σ1λ

2 + σ2λ − σ3

)
= 0.

But, according to Wechselberger [47], σ3 vanishes on the pseudo singular mani-
fold. Let’s prove it:

Proof. The sum of all third-order diagonal minors of J reads:

13This result will be proved below.
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σ3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−f2
∂2g1

∂x2∂y1
−f2

∂2g1

∂x3∂y1
−f2

∂2g1

∂y2
1

−f3
∂2g1

∂x2∂y1
−f3

∂2g1

∂x3∂y1
−f3

∂2g1

∂y2
1

a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣∣
Then, while using a Laplace’s expansion to compute this determinant, it’s easy

to show that it vanishes.
�

So, the Cayley-Hamilton eigenpolynomial (44) is thus reduced to

(45) λ2
(
λ2 − σ1λ + σ2

)
= 0

Let λi be the eigenvalues of the eigenpolynomial (45) and let’s denote by λ3,4 = 0
the obvious double root of this polynomial. We have:

(46)

σ1 =Tr(J(F1,F2,F3,G1)) = λ1 + λ2 = − ∂g1

∂x1

∂f1

∂y1
,

σ2 =
3∑

i=1

∣∣∣J ii
(F1,F2,F3,G1)

∣∣∣ = λ1λ2

=2f2f3

(
∂2g1

∂x2∂x3

∂2g1

∂y2
1

− ∂2g1

∂x2∂y1

∂2g1

∂x3∂y1

)

+ f2
2

(
∂2g1

∂x2
2

∂2g1

∂y2
1

− (
∂2g1

∂x2∂y1
)2
)

+ f2
∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x2
− ∂2g1

∂x2∂y1

∂f1

∂y1

)

+ f2
3

(
∂2g1

∂x2
3

∂2g1

∂y2
1

− (
∂2g1

∂x3∂y1
)2
)

+ f3
∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x3
− ∂2g1

∂x3∂y1

∂f1

∂y1

)
,

where σ1 = Tr(J(F1,F2,F3,G1)) = p is is the sum of all first-order diagonal minors
of J(F1,F2,F3,G1), i.e. the trace of the Jacobian matrix J(F1,F2,F3,G1) and σ2 =
∑3

i=1

∣∣∣J ii
(F1,F2,F3,G1)

∣∣∣ = q represents the sum of all second-order diagonal minors of

J(F1,F2,F3,G1).
Thus, the pseudo singular manifold is of saddle-type iff the following conditions

C1 and C2 are verified:

(47)
C1 : ∆ = p2 − 4q > 0,

C2 : q < 0.

Condition C1 is systematically satisfied provided that condition C2 is verified.
Thus, the pseudo singular manifold is of saddle-type iff q < 0. But, as recalled
previously, one coordinate is undetermined, say x2 without loss of generality. So, the
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eigenvalues (46) of the characteristic polynomial are also functions of the variable
x2 and of the parameters of system (30). Now, let suppose that one parameter, say
without loss of generality α2 (see Sec. 6), modifies the nature of the pseudo singular
manifold. Condition C2, i.e. q < 0 is then represented in the space (x2, α2) by a
straight line defining a region within which the pseudo singular points are of saddle
type. In other words, it means that by choosing a value of the coordinate x2 inside
this region ensures that the pseudo singular point would be of saddle type.

4.7. Canard existence in R4. In a paper entitled “A propos de canards” Wech-
selberger [47] stated, while using a standard polynomial change of variables, that
any n-dimensional singularly perturbed systems with k slow variables (k > 2) and
m fast (m > 1) (1) can be transformed into the following “normal form” (see
Appendix B):

(48)

ẋ1 =ãx2 + b̃y1 + O
(
x1, x

2
2, x2y1, y

2
1

)
+ εO (x1, x2, xk, y1) ,

ẋ2 =1 + O (x1, x2, y1, ε) ,

ẋj =c̃j + O (x1, x2, y1, ε) , j = 3, . . . , k

εẏ1 =x1 + y2
1 + x1y1O (x2, . . . , xk) + y2

1O (x1, y1)

+ εO (x1, x2, y1, ε) ,

which is a generalization of system (28). We will establish in Appendix B for
any four-dimensional singularly perturbed systems (30) with k = 3 slow variables
and m = 1 fast variable that

ã =
1

2
f2
2

(
∂2g1

∂x2
2

∂2g1

∂y2
1

− (
∂2g1

∂x2∂y1
)2
)

+
1

2
f2

∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x2
− ∂2g1

∂x2∂y1

∂f1

∂y1

)

+
1

2
f2
3

(
∂2g1

∂x2
3

∂2g1

∂y2
1

− (
∂2g1

∂x3∂y1
)2
)

+
1

2
f3

∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x3
− ∂2g1

∂x3∂y1

∂f1

∂y1

)

+ f2f3

(
∂2g1

∂x2∂x3

∂2g1

∂y2
1

− ∂2g1

∂x2∂y1

∂2g1

∂x3∂y1

)
,

b̃ = − ∂g1

∂x1

∂f1

∂y1
,

Remark 5. Let’s notice that by posing f3 = 0 in ã we find again a given in Sec.
3.7.

Thus, in his article entitled “A propos de canards” Wechselberger [47, p. 3304]
has provided in the framework of “standard analysis” a generalization of Benôıt’s
theorem [6] (see Benôıt’s theorem above) for any n-dimensional singularly perturbed
systems with k slow variables (k > 2) and m fast (m > 1). According to his
Theorem 4.1 presented below he proved the existence of canard solutions for the
original system (1).
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Theorem 6.
In the folded saddle case of system (48) singular canards perturb to maximal canards
solutions for sufficiently small ε ≪ 1.

Proof. See Wechselberger [47]. �

As previously recalled, the method presented in this paper doesn’t use the “desin-
gularized vector field” (37) but the “normalized slow dynamics” (36). So, we have
the following proposition:

Proposition 7.
If the normalized slow dynamics (36) has a pseudo singular point of saddle type,

i.e. if the sum σ2 of all second-order diagonal minors of the Jacobian matrix of
the normalized slow dynamics (36) evaluated at a pseudo singular point is negative,
i.e. if σ2 < 0 then, according to Theorem 6, system (30) exhibits a canard solution
which evolves from the attractive part of the slow manifold towards its repelling
part.

Proof. By making some smooth changes of time and smooth changes of coordinates
(see Appendix B) we brought the system (30) to the following “normal form”:

ẋ1 = ãx2 + b̃y1 + O
(
x1, ε, x

2
2, x2y1, y

2
1

)
,

ẋ2 = 1 + O (x1, x2, y1, ε) ,

ẋ3 = 1 + O (x1, x2, y1, ε) ,

εẏ1 = x1 + y2
1 + O

(
εx1, εx2, εy1, ε

2, x2
1y1, y

3
1 , x1x2y1

)
,

Then, we deduce that the condition for the pseudo singular point to be of saddle
type is ã < 0. According to Eqs. (46) it is easy to verify that

σ1 = Tr(J(F1,F2,F3,G1)) = λ1 + λ2 = −b̃,

σ2 =

3∑

i=1

∣∣∣J ii
(F1,F2,F3,G1)

∣∣∣ = λ1λ2 = 2ã.

So, the condition for which the pseudo singular point is of saddle type, i.e.
σ2 < 0 is identical to that proposed by Wechselberger [47, p. 3298] in his theorem,
i.e. ã < 0. �

So, Prop. 7 can be used to state the existence of canard solution for such systems.
Application of Proposition 7 to the four-dimensional memristor canonical Chua’s
circuits, presented in Sec. 6, will enable to prove the existence of generic “canards
solutions” in such Memristor Based Chaotic Circuits.

5. Third-order Memristor-Based canonical oscillator

Let’s consider the Memristor-Based canonical Chua’s circuit [27, 28] containing
five circuits elements: two passive capacitors, one passive inductor, one negative
resistor, and one active Chua’s flux controlled memristor (see Fig. 2).

The parameter values used by Itoh and Chua [28, p. 1330001-14] i.e. are:

C1 =
1

10
, C2 =

1

0.47
, G = L = 1, a = −2.0, b = 4.0.
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Figure 2. Memristor-Based canonical Chua’s circuit [28].

5.1. Flux-linkage and charge phase space. Applying Kirchhoff’s circuit laws
to the nodes A, B and the loop C of the circuit Fig. 2, Itoh and Chua [27, 28]
obtained the following set of differential equations, i.e., the following memristor
based chaotic circuit :

(49)

C1
dφ1

dt
= q3 − k (φ1) ,

C2
dφ2

dt
= −q3 + Gφ2,

L
dq3

dt
= φ2 − φ1.

where the φ − q characteristic curve of the Chua’s memristor is given by the
following piecewise-linear function:

(50) q = k (φ) = bφ +
a − b

2
(|φ + 1| − |φ − 1|)

By setting x = φ1, y = q3, z = φ2, ε = C1, β =
1

C2
, γ =

G

C2
and L = 1 the

memristor based chaotic circuit (50) can be written:

(51)

dx

dt
=

1

ε
[y − k (x)] ,

dy

dt
= z − x,

dz

dt
= −βy + γz.

Following the works of Tsuneda [44], let’s replace the φ − q characteristic curve
of the Chua’s memristor q(φ) which is given by the piecewise-linear function (51)

by a smooth cubic nonlinear function k̂(φ) = c1φ
3 + c2φ for which the parameters

c1 and c2 are determined while using the least squares method.

The square error between k(φ) and k̂(φ) is defined by:
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(52) S =

∫ d

−d

[
k(φ) − k̂(φ)

]2
dφ

where [−d, d] is an interval for approximation. Let’s note that in our case d is
considered as a parameter such that |d| > 1. Solving ∂S/∂c1 = 0 and ∂S/∂c2 = 0,
we find

(53)
c1 = −35(a − b)

(
−1 + d2

)2

16d7
,

c2 =
(a − b)

(
21 − 50d2 + 45d4

)

16d5
+ b.

5.2. Piecewise-linear and cubic nonlinearity. While still using the same pa-
rameter values as Itoh and Chua [28, p. 1330001-14] i.e.

C1 =
1

10
, C2 =

1

0.47
, G = L = 1, a = −2.0, b = 4.0,

the coefficients c1 and c2 have been chosen such that the extrema of both
piecewise-linear and cubic nonlinearity characteristic curves substantially coincides
as exemplified on Fig. 3. This condition is realized for d = 3 and for

c1 =
280

729
; c2 = −26

27
.

-2 -1 0 1 2
-3

-2

-1

0

1

2

3

Φ

qHΦL and q`HΦL

Figure 3. Piecewise-linear and cubic φ − q characteristic curves
for parameter values: a = −2, b = 4 and d = 3.
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So, let’s consider the memristor based chaotic circuit (51):

(54)

dx

dt
=

1

ε
[y − k (x)] ,

dy

dt
= z − x,

dz

dt
= −βy + γz,

and let’s replace the piecewise-linear characteristic curves k(x) by the cubic

k̂(x) = c1x
3 +c2x. First, let’s notice that both chaotic attractors given respectively

by Eqs. (51) & Eqs. (54) are quite similar as highlighted on Fig. 4.

Figure 4. Memristor-Based canonical Chua’s circuits with piece-
wise linear (Eqs. (38) in red) and cubic (Eqs. (41) in blue) func-
tions for parameter values: ε = 1/10, β = γ = 0.47, a = −2, b = 4
and d = 3.

Now, let’s make the following variable changes in Eqs. (54) in order to apply the
method presented in Sec. 3:

x → z, y → −x, z → y.

Thus, we have:
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(55)

dx

dt
= z − y,

dy

dt
= βx + γy,

dz

dt
=

1

ε
[−x − k (z)] .

This last transformation will enable to compare the condition (given below) for
the existence of canard solutions in system (55) with those given in our previous
works entitled “Canards from Chua’s circuits” [22].

Finally, let’s replace the variables (x, y, z) by (x1, x2, y1) and let’s apply the
method presented in Sec. 3 to the following system

(56)

dx1

dt
= y1 − x2,

dx2

dt
= βx1 + γx2,

dy1

dt
=

1

ε
[−x1 − k (y1)] .

5.3. Critical manifold and constrained system. The critical manifold of this
system (56) is given by −x1 − k(y1) = 0. According to Eq. (15) the constrained
system on the critical manifold reads:

(57)

ẋ1 = y1 − x2,

ẋ2 = βx1 + γx2,

ẏ1 =
y1 − x2

− (c1y3
1 + c2y1)

,

0 = −x1 −
(
c1y

3
1 + c2y1

)
.

5.4. Normalized slow dynamics. Then, by rescaling the time by setting t =

−∂g1

∂y1
τ = (3c1y

2
1 + c2) we obtain the “normalized slow dynamics”:

(58)

ẋ1 = (y1 − x2)
(
3c1y

2
1 + c2

)
= F1 (x1, x2, y1) ,

ẋ2 = (βx1 + γx2)
(
3c1y

2
1 + c2

)
= F2 (x1, x2, y1) ,

ẏ1 = x2 − y1 = G1 (x1, x2, y1) ,

0 = −x1 −
(
c1y

3
1 + c2y1

)
.

5.5. Pseudo singular points. According to Eq. (18), the pseudo singular points
of system (56) are:

(59) x̃1 = ±2c2

3

√
−c2

3c1
, x̃2 = ∓

√
−c2

3c1
, ỹ1 = ∓

√
−c2

3c1
.
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Let’s notice that these pseudo singular points are independent of the parameter
γ. The Jacobian matrix of system (58) evaluated at the pseudo singular points
reads:

(60) J(F1,F2,G1) =




0 0 0

0 0 −2γc2 +
4βc2

2

3

0 1 −1




Remark 8. Although, the pseudo singular points have not been shifted at the origin
Benôıt’s generic hypotheses (20-21) are satisfied.

5.6. Canard existence in third-order memristor Chua’s circuit. According
to Eqs. (25) we find that:

p = σ1 = Tr [J ] = −1,

q = σ2 =
2

3
c2 (3γ − 2βc2) .

Thus, according to Prop. 3, the pseudo singular points are of saddle-type if and
only if:

2

3
c2 (3γ − 2βc2) < 0.

∆ = p2 − 4q > 0 and q < 0.

So, we have the following conditions C1 and C2:

(61)
C1 : ∆ = 1 + 4(−2c2)(γ − 2βc2

3
) > 0,

C2 : q = 2c2(γ − 2βc2

3
) < 0.

Since the pseudo singular points are independent of the parameter γ let’s choose
γ as the “canard parameter” or “duck parameter”. Obviously, it appears that if
the condition C2 is verified then the condition C1 is de facto satisfied14. Finally,
the pseudo singular points are of saddle-type if and only if we have:

(62) γsaddle−node =
2βc2

3
< γ.

where γsaddle−node represents the critical value of the parameter γ for which one
of the two remaining eigenvalues λ1 or λ2 of the eigenpoynomial associated with
the Jacobian matrix (60) vanishes. With this set of parameters ε = 1/10, β = 0.47,
a = −2, b = 4, d = 3, c1 = 280/729, c2 = −26/27

γsaddle−node =
2βc2

3
≈ −0.3.

14Keep in mind that c2 is generally negative so that the characteristic curve admits a negative
slope.
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5.7. Fixed points stability and Routh-Hurwitz’ theorem. However, as pointed
out in our previous works entitled “Canards from Chua’s circuits” [22] the system
(56) admits, except the origin, two fixed points, the stability of which could pre-
clude the existence of “canards solutions”. So, let’s compute the fixed points of
system (56) and analyze their stability. System (56) admits except the origin the
following fixed points:

(63) x∗
1 = ±γ

β

√
γ − c2β

c1β
, x∗

2 = y∗
1 = ∓

√
γ − c2β

c1β
.

The eigenpolynomial equation of the Jacobian matrix of system (56) evaluated
at these fixed points (63) reads:

(64) ελ3 + λ2(
3γ

β
− γε − 2c2) + λ(1 − 3γ2

β
+ βε + 2γc2) + 2(γ − βc2) = 0

Let suppose that all the parameters are fixed except γ, i.e. the “duck parameter”.
There are two methods to analyze the stability of fixed points as functions of the
“duck parameter” value. The first is to solve the above third degree eigenpolynomial
equation (64) with the Cardano’s method and the second consists in using the
Routh-Hurwitz’ theorem [39, 25]. This latter method enables to easier analyze
the stability of the fixed points as functions of a parameter. According to Routh-
Hurwitz’ theorem, the eigenpolynomial equation can be written as:

a3λ
3 + a2λ

2 + a1λ + a0 = 0.

It states that if D1 = a1 and D2 = a1a2 − a0a3 are both positive then eigen-
polynomial equation would have eigenvalues with negative real parts. In other
words, if D1 and D2 are positive the fixed points will be stable. In the case of the
eigenpolynomial equation (64) we have:

(65)

D1 =1 − 3γ2

β
+ βε + 2γc2,

D2 = − 2ε (γ − βc2) +

(
3γ

β
− γε − 2c2

)(
1 − 3γ2

β
+ βε + 2γc2

)
.

By setting: ε = 1/10, β = 0.47, a = −2, b = 4, d = 3, c1 = 280/729, c2 =
−26/27 and while considering that the “duck parameter” γ can vary, D1 and D2 are
respectively polynomial equations of degree two and three in γ. These quadratic and
cubic functions D1 and D2 have been plotted on Fig. 5. One can see that between
the lower limit called γsaddle−node and, the upper limit called γHopf corresponding
to the value of the parameter γ for which the real parts of both complex eigenvalues
vanishes (see proof in Appendix C), D1 and D2 are strictly positive. So, for γ ∈
[γsaddle−node, γHopf ] (purple rectangle on Fig. 5) the fixed points are stable while
for γ > γHopf they are unstable. With this set of parameters,

γHopf ≈ 0.274.

Thus, it appears from what precedes and from Prop. 1 that “canards solutions”
may be observed in system (56) for γDuck values such that:
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Γsaddle-node

ΓHopf

-1.0 -0.5 0.0 0.5 1.0
-2

-1

0

1

2

Γ

D1 and D2

Figure 5. Routh-Hurwitz determinants of system (56). D1 in
blue, D2 in red and the saddle-node axis γ = 2βc2/3 in green for
parameter values: ε = 1/10, β = 0.47, a = −2, b = 4, d = 3,
c1 = 280/729 and c2 = −26/27.

(66) γsaddle−node =
2βc2

3
< γHopf < γDuck

On Fig. 6, numerical “canards solutions” and slow manifold of system (56) have
been plotted for the “duck parameter” γDuck = 0.3275 (all other parameters are the
same as indicated above). Due to the symmetry of the system (56), any of the two
pseudo singular points plotted in green on Fig. 6 was chosen as initial condition.

5.8. Particular case. In a previous work entitled “Canards from Chua’s circuits”,
Ginoux et al. [22] have studied the system (56) with the following particular pa-
rameters:

γ = β = α c1 =
1

3
c2 = −1

First, let’s replace these parameters in the above conditions C1 and C2 (61). We
have:

C1 : ∆ = 1 +
40α

3
> 0,

C2 : q = −10α

3
< 0.

Obviously, if α > 0, then both conditions C1 and C2 are verified. This is exactly
the result provided by Itoh and Chua [26] as it has been noticed in Ginoux et al.
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Figure 6. Numerical “canards solutions” and slow manifold of
system (56) for parameter values: ε = 1/10, β = 0.47, γDuck =
0.3275, a = −2, b = 4, d = 3, c1 = 280/729 and c2 = −26/27.

[22, p. 1330010-4]. However, it has been also remarked in our same previous paper
[22] that the system (56) admits, except the origin, two fixed points, the stability of
which could preclude the existence of “canards solutions”. By setting: γ = β = α,
c1 = 1

3 and c2 = −1 in Eq. (63) we find again the fixed points obtained by Ginoux
et al. [22, p. 1330010-4]:

x∗
1 = ±

√
6, x∗

2 = ∓
√

6, y∗
1 = ∓

√
6.

Moreover, still using the Routh-Hurwitz’ theorem and by setting: γ = β = α,
c1 = 1

3 and c2 = −1 in Eq. (65) we find that:

D1 = 1 − 5α + εα,

D2 = α2
(
5ε − ε2

)
− 25α + 5.

Functions D1 and D2 have been plotted on Fig. 7 on which one can see that
between the lower limit called αsaddle−node and, the upper limit called αHopf cor-
responding to the value of the parameter α for which the real parts of both complex
eigenvalues vanishes, D1 and D2 are strictly positive. So, for α ∈ [αsaddle−node, αHopf ]
(purple rectangle on Fig. 7) the fixed points are stable while for α > αHopf , i.e.
α > 1/5 they are unstable.

Thus, it appears from what precedes and from Prop. 7 that “canards solutions”
may be observed in system (56) provided that:

αsaddle−node = 0 < αHopf < αDuck
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ΑHopf
Αsaddle-node
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Α

D1 and D2

Figure 7. Routh-Hurwitz determinants of system (56). D1 in
blue, D2 in red and the the saddle-node axis γ = 0 in green for
parameter values: ε = 1/10, β = γ = α, c1 = 1/3 and c2 = −1.

This is exactly the result obtained by Ginoux et al. [22, p. 1330010-6]. The
phase portrait of system (56) with this set of parameter values has already been
published by Ginoux et al. [22].

6. Fourth-order Memristor-Based canonical oscillator

Let’s consider again the Memristor-Based canonical Chua’s circuit [27, 28]. By
adding an inductor in parallel with conductance −G, Fitch et al. [18] have modified
this circuit in order to obtain a fourth-order Memristor-Based canonical oscillator
(see Fig. 8).

L2iL2

C2

v2 v1

C1

RiL1

−G

L1

(  )W φ

node1 node2

Loop1

Figure 8. Memristor canonical Chua’s circuit [18].
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6.1. Flux-linkage and charge phase space. Applying Kirchhoff’s circuit laws
to the nodes 1, 2 and the loop 1 of the circuit Fig. 8, Fitch et al. [18] obtained the
following set of differential equations, i.e., the following memristor based chaotic
circuit :

(67)

C1
dφ1

dt
= Rq1 − k (φ1) ,

C2
dφ2

dt
= −q2 + Gφ2 − q1,

L1
dq1

dt
= φ2 − φ1 − Rq1,

L2
dq3

dt
= φ2,

where the classical piecewise-linear function k(φ) of the Chua’s memristor (50)

has been replaced by the cubic k̂(φ) = c1φ
3 + c2φ.

By setting x = φ1, y = q1, z = φ2, u = q2, C1 = ε, C2 = 1, β1 =
1

L1
, β2 =

1

L2
,

G = −α2 and R = 1 the memristor based chaotic circuit (67) can be written:

(68)

ε
dx

dt
= y − k (x) ,

dy

dt
= −u − α2z − y,

dz

dt
= β1 (z − x − y) ,

du

dt
= β2z.

Now, let’s make the following variable changes in Eqs. (68) in order to apply the
method presented in Sec. 4:

x → u, y → x, u → y.

Thus, we have:

(69)

dx

dt
= β1 (z − x − u) ,

dy

dt
= β2z,

dz

dt
= −y − α2z − x,

ε
du

dt
= x − k (u) .

Let’s notice that system (69) is exactly identical to that studied by Ginoux et
al. [22]. Thus, condition (we will provide below) for the existence of canard solu-
tions in system (69) will be compared to that given in our previous works entitled
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“Canards from Chua’s circuits” [22].

Finally, let’s replace the variables (x, y, z, u) by (x1, x2, x3, y1) and let’s apply the
method presented in Sec. 4 to the following system (56) where k(y1) = c1y

3
1 + c2y1.

(70)

dx1

dt
= β1 (x3 − x1 − y1) ,

dx2

dt
= β2x3,

dx3

dt
= −x2 − α2x3 − x1,

ε
dy1

dt
= x1 − k (y1) .

6.2. Critical manifold and contrained system. The critical manifold of this
system (70) is given by x1 − k(y1) = 0. According to Eq. (35) the constrained
system on the critical manifold reads:

(71)

dx1

dt
= β1 (x3 − x1 − y1) ,

dx2

dt
= β2x3,

dx3

dt
= −x2 − α2x3 − x1,

dy1

dt
= −β1 (x3 − x1 − y1)

− (3c1y2
1 + c2)

,

0 = x1 − k (y1) .

6.3. Normalized slow dynamics. Then, by rescaling the time by setting t =

−∂g1

∂y1
τ = (3c1y

2
1 + c2) we obtain the “normalized slow dynamics”:

(72)

dx1

dt
= β1 (x3 − x1 − y1)

(
3c1y

2
1 + c2

)
= F1 (x1, x2, x3, y1) ,

dx2

dt
= β2x3

(
3c1y

2
1 + c2

)
= F2 (x1, x2, x3, y1) ,

dx3

dt
= (−x2 − α2x3 − x1)

(
3c1y

2
1 + c2

)
= F3 (x1, x2, x3, y1) ,

dy1

dt
= β1 (x3 − x1 − y1) = G1 (x1, x2, x3, y1) ,

0 = x1 − k (y1) .

6.4. Pseudo singular manifold. According to Eqs. (38), the pseudo singular
manifold of system (70) is defined by:

(73) (x̃1, x2, x̃3, ỹ1) =

(
±2c2

3

√
−c2

3c1
, x2, ±

(
2c2

3
+ 1

)√−c2

3c1
, ±
√

−c2

3c1

)

Let’s notice that x̃2 is undetermined. In “Canards from Chua’s circuit”, Ginoux
et al. [22] have arbitrarily chosen x̃2 = 0. We will see in the following that this
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choice does not affect their results.

The Jacobian matrix of system (72) evaluated at (x̃±
1 , x2, x̃

±
3 , ỹ±

1 ) reads:

(74) J(F1,F2,F3,G1) =




0 0 0 0

0 0 0 6β2c1x̃3±ỹ1±

0 0 0 −6c1

(
α2x̃3± + x2 + c1ỹ

3
1± + c2ỹ1±

)
ỹ1±

−β1 0 β1 −β1




Remark 9. Although, the pseudo singular manifold has not been transformed into
(0, x2, 0, 0) extension of Benôıt’s generic hypotheses (40-41) are satisfied.

6.5. Canard existence in fourth-order memristor Chua’s circuit. Accord-
ing to Eqs. (46) we find that:

(75)
p = Tr(J) = −β1,

q = σ2 = +6β1c1 (α2x̃3± + x2 + x̃1±) ỹ1±

Thus, the conditions C1 and C2 for (x̃±
1 , x2, x̃

±
3 , ỹ±

1 ) to be of saddle type reads:

(76)
C1 : ∆ = β1 [β1 − 24c1 (α2x̃3± + x2 + x̃1±) ỹ1±] > 0,

C2 : q = +6β1c1 (α2x̃3± + x2 + x̃1±) ỹ1± < 0.

Then, due to the nature (±) of the pseudo singular manifold (73) we have two
cases corresponding to the positive and negative values.

6.6. Positive case. Let’s consider the positive case for which the pseudo singular
manifold (73) can be written as:

(
x̃+

1 , x2, x̃
+
3 , ỹ+

1

)
=

(
+

2c2

3

√
−c2

3c1
, x2, +

(
2c2

3
+ 1

)√−c2

3c1
, +

√
−c2

3c1

)
.

Conditions C1 and C2 reads then:

C1 : α2x̃3+ + x2 + x̃1+ <
β1

24c1ỹ1+
,(77a)

C2 : α2x̃3+ + x2 + x̃1+ < 0.(77b)

Obviously, since the right hand side of the first inequality (77a) is positive (β1 >
0, c1 > 0 and ỹ1+ > 0), both conditions are satisfied provided that the condition
C2 is verified. So, to have pseudo singular manifold of saddle type, the straight line
α2x̃3+ + x2 + x̃1+ must verify:

(78) α2x̃3+ + x2 + x̃1+ < 0.

By taking into account the above preliminary result and while fixing all the
parameters excepted α2, this straight line (D+) can be plotted in the plane (x2, α2)
and reads:
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(79) (D+) : α2

(
2c2

3
+ 1

)√−c2

3c1
+ x2 +

2c2

3

√
−c2

3c1
< 0.

Let’s notice that for:

α2 = 0, x2 = −2c2

3

√
−c2

3c1
,

x2 = 0, α2 = − 2c2

2c2 + 3
.

6.7. Negative case. Let’s consider the negative case for which the pseudo singular
manifold (73) can be written as:

(
x̃−

1 , x2, x̃
−
3 , ỹ−

1

)
=

(
−2c2

3

√
−c2

3c1
, −
(

2c2

3
+ 1

)√−c2

3c1
, −
√

−c2

3c1

)
.

Conditions C1 and C2 reads then:

C1 :
β1

24c1ỹ1−
< α2x̃3− + x2 + x̃1−,(80a)

C2 : 0 < α2x̃3− + x2 + x̃1−.(80b)

Obviously, since the left hand side of the first inequality (80a) is negative (β1 > 0,
c1 > 0 and ỹ1− < 0), both conditions are satisfied provided that the condition C2

is satisfied. So, to have pseudo singular manifold of saddle type, the straight line
α2x̃3− + x2 + x̃1− must verify:

(81) α2x̃3− + x2 + c1ỹ
3
1− + c2ỹ1− > 0.

By taking into account the above preliminary result and while fixing all the
parameters excepted α2, this straight line (D−) can be plotted in the plane (x2, α2)
and reads:

(82) (D−) : −α2

(
2c2

3
+ 1

)√−c2

3c1
+ x2 − 2c2

3

√
−c2

3c1
< 0.

Let’s notice that for:

α2 = 0, x2 =
2c2

3

√
−c2

3c1
,

x2 = 0, α2 = − 2c2

2c2 + 3
.

On Fig. 9a & 9b, the straight lines (D+) and (D−) have been plotted in blue and
in red (respectively). Thus, the region within which the pseudo singular points are
of saddle type corresponds to the cyan triangle. A zoom of Fig. 9a is presented on
Fig. 9b. Let’s notice on the one hand that the point (α2 = 0.9, x2 = 0) arbitrarily
chosen by Ginoux et al. [22] and plotted in yellow on Fig. 9b belongs to the cyan
region within which the pseudo singular points are of saddle type. On the other
hand, this cyan triangular region is limited on the right, at the top of the triangle,
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Figure 9. Region within which the pseudo singular points of
fourth-order memristor Chua’s circuit (70) are of saddle type.
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by the point of coordinate (α2 = − 2c2

2c2 + 3
, x2 = 0) which corresponds exactly with

the condition stated in Ginoux et al. [22] and for which canard solutions have been
observed in Chua’s system 4D (70) according to Prop. 2. In other words, to have
a pseudo singular point of saddle type at x2 = 0, α2 < − 2c2

2c2+3 . To confirm this
fact, the two nonzero eigenvalues of the characteristic polynomial associated with
the Jacobian matrix (74) evaluated at (x̃1, x2, x̃3, ỹ1) (73) have been computed for
α2 = 0.9 and for the corresponding values of x2 which have been taken equal to
zero by Ginoux et al. [22] but which is in fact very small x2 = ∓0.01. We have
found that the two nonzero real eigenvalues are of opposite sign what corresponds
to the case of pseudo singular points of saddle type.

So, the value of the “duck parameter” α2 for which the pseudo singular points
are of saddle-type is defined by:

(83) α2 < α2saddle−node = − 2c2

3 + 2c2
.

where α2saddle−node represents the critical value of the parameter α2 for which
one of the two remaining eigenvalues λ1 or λ2 of the eigenpoynomial associated
with the Jacobian matrix (74) vanishes. With this set of parameters ε = 1/10.1428,
β1 = 0.121, β2 = 0.0047, c1 = 0.393781 and c2 = −0.72357,

α2saddle−node = − 2c2

3 + 2c2
≈ 0.932.

6.8. Fixed points stability and Routh-Hurwitz’ theorem. However, as pointed
out in the previous Sect. 5.7 the system (70) admits the origin O(0, 0, 0, 0) as fixed
point, the stability of which could preclude the existence of “canards solutions”.
The eigenpolynomial equation of the Jacobian matrix of system (70) evaluated at
this fixed point reads:

(84) a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0 = 0

where

a0 = (1 + c2)β1β2,

a1 = c2 ((1 + α2)β1 + β2) + β1 (α2 + εβ2) ,

a2 = (1 + ε + εα2)β1 + c2 (α2 + β1) + εβ2,

a3 = c2 + ε (α2 + β1) ,

a4 = ε.

Let suppose that all the parameters are fixed except α2, i.e. the “duck param-
eter” and, let’s make use again of the Routh-Hurwitz’ theorem [39, 25]. Thus, it
states that if D1 = a1, D2 = a1a2 − a0a3 and D3 = a1a2a3 − a0a

2
3 − a2

1a4 are all
positive then eigenpolynomial equation would have eigenvalues with real negative
parts. In other words, if D1, D2 and D3 are positive the fixed point will be stable.

By setting ε = 1/10.1428, β1 = 0.121, β2 = 0.0047, c1 = 0.393781 and c2 =
−0.72357 and while considering that the “duck parameter” α2 can vary, the func-
tions D1, D2 and D3 have been plotted on Fig. 10. One can see that between
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Α2 Hopf

Α2 saddle-node
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0.0
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0.2

Α2

D1, D2 and D3

Figure 10. Routh-Hurwitz determinants of system (70). D1

in blue, D2 in red, D3 in cyan and the saddle-node axis
α2saddle−node = −2c2/(3 + 2c2) in green for parameter values:
ε = 1/10.1428, β1 = 0.121, β2 = 0.0047, c1 = 0.393781 and c2 =
−0.72357.

the lower limit called α2Hopf corresponding to the value of the parameter α2 for
which the real parts of both complex eigenvalues vanishes (see Proof in the Ap-
pendix D.) and the upper limit called α2saddle−node, D1 and D3 are negative while
D2 is positive. So, in this interval, the fixed point is unstable. With this set of
parameters,

α2Hopf ≈ 0.0451 and α2saddle−node = − 2c2

3 + 2c2
≈ 0.932.

Thus, we deduce from what precedes and from Prop. 2 that “canards solutions”
may be observed in system (70) provided that:

(85) α2Hopf < α2Duck < α2saddle−node =
−2c2

3 + 2c2

On Figs. 11 & 12, numerical “canards solutions” and critical manifold of system
(70) have been plotted for the “duck parameter” α2Duck = 0.1 (all other parameters
are the same as indicated above). Due to the symmetry of the system (70), any
of the two pseudo singular points plotted in green on Figs. 11 & 12 was chosen as
initial condition.
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Figure 11. Numerical “canards solutions” and critical manifold
of system (70) in the (x1, x3, y1) phase space for parameter values:
ε = 1/10.1428, α2 = 0.1, β1 = 0.121, β2 = 0.0047, c1 = 0.393781
and c2 = −0.72357.

7. Discussion

In this work we have proposed an alternative method for determining the con-
dition of existence of “canard solutions” for three and four-dimensional singularly
perturbed systems with only one fast variable in the folded saddle case. This
method enables to highlight a unique generic condition (σ2 < 0) for the existence
of “canard solutions” for such three and four-dimensional singularly perturbed sys-
tems which is based on the stability of folded singularities of the normalized slow
dynamics deduced from a well-known property of linear algebra. It has been stated
that this unique generic condition was perfectly identical to that provided by Benôıt
[6] and then by Szmolyan and Wechselberger [41] and finally by Wechselberger [47].
Finally, it has been established that this condition is “generic” since it is exactly the
same for singularly perturbed systems of dimension three and four with only one
fast variable. Application of this method to the famous three and four-dimensional
memristor canonical Chua’s circuits for which the classical piecewise-linear charac-
teristic curve has been replaced by a smooth cubic nonlinear function according to
the least squares method has enabled to show the existence of “canards solutions”
in such Memristor Based Chaotic Circuits.

However, in this paper, only the case of pseudo singular points of saddle-type
has been analyzed. Of course, the case of pseudo singular points of node-type could
be also studied with the same method. Moreover, this method could be successfully



38 J.M. GINOUX, J. LLIBRE

-0.4 -0.2 0.2 0.4
x1

-1.5

-1.0

-0.5

0.5

1.0

1.5

y1

Figure 12. Numerical “canards solutions” and critical mani-
fold of system (70) (x1, y1) phase plane for parameter values:
ε = 1/10.1428, α2 = 0.1, β1 = 0.121, β2 = 0.0047, c1 = 0.393781
and c2 = −0.72357.

used for proving the existence of “canard solutions” in four-dimensional singularly
perturbed systems with two fast variables such as the famous Hodgkin-Huxley
model or in the so-called coupled FitzHugh-Nagumo system. In a future work we
will state that the existence of canard solutions in such systems can be established
according to the same unique generic condition (σ2 < 0).
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Appendix

Change of coordinates leading to the normal forms of three and four-dimensional
singularly perturbed systems with one fast variable are given in the following sec-
tion.

A. Normal form of 3D singularly perturbed systems with one fast vari-
able. Let’s consider the three-dimensional singularly perturbed dynamical system
(11) with k = 2 slow variables and m = 1 fast and let’s make the following change
of variables:

(A-1) x1 = α2x, x2 = αy, y1 = αz where α << 1.

By taking into account Benôıt’s generic hypothesis Eqs. (20,21) and while using
Taylor series expansion the system (11) becomes:

(A-2)

ẋ =
∂f1

∂y
y +

∂f1

∂z
z,

ẏ = f2 (x, y, z) ,
( ε

α2

)
ż =

∂g1

∂x
x +

1

2

∂2g1

∂y2
y2 +

∂2g1

∂y∂z
yz +

1

2

∂2g1

∂z2
z2.

Then, let’s make the standard polynomial change of variables:

(A-3)

X = Ax + By2,

Y =
y

f2
,

Z = Cy + Dz.

From (A-3) we deduce that:

(A-4)

x =
X − Bf2

2 Y 2

A
,

y = f2Y,

z =
Z − Cf2Y

D
.

The time derivative of system (A-3) gives:

(A-5)

Ẋ = Aẋ + 2Bvẏ,

Ẏ =
ẏ

f2
,

Ż = Cẏ + Dż.

Then, multiplying the third equation of (A-5) by (ε/α2) and while replacing in
(A-5) ẋ, ẏ and ż by the right-hand-side of system (A-2) leads to:
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(A-6)

Ẋ = A

(
∂f1

∂y
y +

∂f1

∂z
z

)
+ 2Byf2,

Ẏ = 1,
( ε

α2

)
Ż =

( ε

α2

)
Cf2 + D

(
∂g1

∂x
x +

1

2

∂2g1

∂y2
y2 +

∂2g1

∂y∂z
yz +

1

2

∂2g1

∂z2
z2

)
,

Since ε/α2 ≪ 1, the first term of the right-hand-side of the third equation of
(A-6) can be neglected. Then, replacing in (A-6) x, y and z by the right-hand-
side of (A-4) and identifying with the following system in which we have posed:
(ε/α2) = ϵ:

(A-7)

Ẋ = aY + bZ + O
(
X, ε, Y 2, Y Z, Z2

)
,

Ẏ = 1 + O (X, Y, Z, ε) ,

ϵŻ = −
(
X + Z2

)
+ O

(
εX, εY, εZ, ε2, X2Z,Z3, XY Z

)
,

we find:

(A-8)

a = A

(
∂f1

∂x2
− C

D

∂f1

∂y1

)
f2 + 2Bf2

2 ,

b =
A

D

∂f1

∂y1
,

where

(A-9)

A =
1

2

∂g1

∂x

∂2g1

∂z2
,

B =
1

4

[
∂2g1

∂y2

∂2g1

∂z2
−
(

∂2g1

∂y∂z

)2
]

,

C = −1

2

∂2g1

∂y∂z
,

D = −1

2

∂2g1

∂z2
.

Finally, we deduce:

(A-10)

a =
1

2
f2
2

(
∂2g1

∂x2
2

∂2g1

∂y2
1

− (
∂2g1

∂x2∂y1
)2
)

+
1

2
f2

∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x2
− ∂2g1

∂x2∂y1

∂f1

∂y1

)
,

b = − ∂g1

∂x1

∂f1

∂y1
,

This is the result established by Benôıt [8] and presented in Sec. 3.7.
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B. Normal form of 4D singularly perturbed systems with one fast vari-
able. Let’s consider the four-dimensional singularly perturbed dynamical system
(30) with k = 3 slow variables and m = 1 fast and let’s make the following change
of variables:

(A-11) x1 = α2x, x2 = αy, x3 = αz, y1 = αu where α ≪ 1.

By taking into account extension of Benôıt’s generic hypothesis Eqs. (40,41) and
while using Taylor series expansion the system (30) becomes:

(A-12)

ẋ =
∂f1

∂y
y +

∂f1

∂z
z +

∂f1

∂u
u,

ẏ =f2 (x, y, z, u) ,

ż =f3 (x, y, z, u) ,
( ε

α2

)
u̇ =

∂g1

∂x
x +

1

2

∂2g1

∂y2
y2 +

1

2

∂2g1

∂z2
z2 +

1

2

∂2g1

∂u2
u2 +

∂2g1

∂y∂z
yz +

∂2g1

∂y∂u
yu +

∂2g1

∂z∂u
zu.

Then, let’s make the standard polynomial change of variables:

(A-13)

X = Ax + By2 + Cz2,

Y =
y

f2
,

Z =
z

f3
+ Dy,

U = Ey + Fz + Gu.

From (A-13) we deduce that:

(A-14)

x =
X − Bf2

2 Y 2 − Cf2
3 (Z − Df2Y )

2

A
,

y = f2y,

z = f3 (Z − Df2Y ) ,

u =
U − Ef2Y − Ff3 (Z − Df2Y )

G
.

The time derivative of system (A-13) gives:

(A-15)

Ẋ = Aẋ + 2Byẏ + 2Czż,

Ẏ =
ẏ

f2
,

Ż =
ż

f3
+ Dẏ,

U̇ = Eẏ + F ż + Gu̇.

Then, multiplying the fourth equation of (A-15) by (ε/α2) and while replacing
in (A-15) ẋ, ẏ, ż and u̇ by the right-hand-side of system (A-12) leads to:
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(A-16)

Ẋ =A

(
∂f1

∂y
y +

∂f1

∂z
z +

∂f1

∂u
u

)
+ 2Byf2 + 2Czf3,

Ẏ =1,

Ż =1 + Df2,
( ε

α2

)
U̇ =

( ε

α2

)
Ef2 +

( ε

α2

)
Ff3 + G

(
∂g1

∂x
x + . . . +

∂2g1

∂z∂u
zu

)
,

Since ε/α2 << 1, the two first terms of the right-hand-side of the fourth equation
of (A-16) can be neglected. Then, by replacing in (A-16) x, y, z and u by the right-
hand-side of (A-14) and by identifying with the following system in which we have
posed: (ε/α2) = ϵ:

(A-17)

Ẋ = ãY + b̃U + O
(
X, ϵ, Y 2, Y U, U2

)
,

Ẏ = 1 + O (X, Y, U, ϵ) ,

Ż = 1 + O (X, Y, U, ϵ) ,

ϵŻ = −
(
X + U2

)
+ O

(
ϵX, ϵY, ϵU, ϵ2, X2U,U3, XY U

)
,

we find:

(A-18)

ã =A

(
∂f1

∂x2
− E

G

∂f1

∂y1

)
f2 + A

(
∂f1

∂x3
− F

G

∂f1

∂y1

)
+ 2Bf2

2 + 2Cf2
3 ,

b̃ =
A

G

∂f1

∂y1
,

where

(A-19)

A =
1

2

∂g1

∂x

∂2g1

∂u2
,

B =
f3

2f2

[
∂2g1

∂u2

∂2g1

∂y∂z
+

∂2g1

∂y∂u

∂2g1

∂z∂u

]
+

1

4

[
∂2g1

∂u2

∂2g1

∂y2
−
(

∂2g1

∂y∂u

)2
]

,

C =
1

4

[
∂2g1

∂z2

∂2g1

∂u2
−
(

∂2g1

∂z∂u

)2
]

,

D = − 1

f2
,

E = −1

2

∂2g1

∂y∂u
,

F = −1

2

∂2g1

∂z∂u
,

G = −1

2

∂2g1

∂u2
.

Finally, we deduce:
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(A-20)

ã =
1

2
f2
2

(
∂2g1

∂x2
2

∂2g1

∂y2
1

− (
∂2g1

∂x2∂y1
)2
)

+
1

2
f2

∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x2
− ∂2g1

∂x2∂y1

∂f1

∂y1

)

+
1

2
f2
3

(
∂2g1

∂x2
3

∂2g1

∂y2
1

− (
∂2g1

∂x3∂y1
)2
)

+
1

2
f3

∂g1

∂x1

(
∂2g1

∂y2
1

∂f1

∂x3
− ∂2g1

∂x3∂y1

∂f1

∂y1

)

+ f2f3

(
∂2g1

∂x2∂x3

∂2g1

∂y2
1

− ∂2g1

∂x2∂y1

∂2g1

∂x3∂y1

)
,

b̃ = − ∂g1

∂x1

∂f1

∂y1
,

This is the result we established in Sec. 4.7. Moreover, let’s notice that by posing
f3 = 0 in ã we find again a given in Sec. 3.7.

Routh-Hurwitz’ theorem and their application to the determination of the Hopf
bifurcation parameter-value in the case of three and four-dimensional singularly
perturbed system are presented in this appendix.

C. Routh-Hurwitz’s theorem for 3D systems. According to (23) the Cayley-
Hamilton eigenpolynomial associated with the Jacobian of a three-dimensional sin-
gularly perturbed system (11) reads:

(A-21) λ3 − σ1λ
2 + σ2λ − σ3 = 0

where

(A-22)

σ1 = λ1 + λ2 + λ3,

σ2 = λ1λ2 + λ2λ3 + λ1λ3,

σ3 = λ1λ2λ3.

Let’s rewrite the eigenpolynomial (A-21) as: a3λ
3+a2λ

2+a1λ+a0 = 0 (a0 > 0).
Routh-Hurwitz’ theorem [39, ?] states that the real parts of the eigenvalues of this
eigenpolynomial are negative if and only if all the following determinants:

(A-23) D1 = a1 ; D2 =

∣∣∣∣
a1 a0

a3 a2

∣∣∣∣ = a1a2 − a0a3

are positive.

Now, let suppose that the eigenpolynomial (A-21) has one real eigenvalue λ1 ̸= 0
and two complex conjugated λ2,3 = a + ıb (with a ̸= 0 an b ̸= 0). So, we have:

(A-24)

σ1 = λ1 + 2a,

σ2 = 2aλ1 + a2 + b2,

σ3 = λ1

(
a2 + b2

)
.
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The determinant D2 reads:

(A-25) D2 = −2a
(
a2 + b2 + 2aλ1 + λ2

1

)

Moreover, if we consider that the real part of the complex conjugated eigenvalues
λ2,3 depends on a parameter, say µ, we have a = a (µ). Then, determinant D2

vanishes at the location of the points where the real part a = a (µ). So, it can be
used to determine the Hopf-parameter value.

D. Routh-Hurwitz’s theorem for 4D systems. According to (43) the Cayley-
Hamilton eigenpolynomial associated with the Jacobian of a four-dimensional sin-
gularly perturbed system (30) reads:

(A-26) λ4 − σ1λ
3 + σ2λ

2 − σ3λ + σ4 = 0

where

(A-27)

σ1 = λ1 + λ2 + λ3 + λ4,

σ2 = λ1λ2 + λ1λ3 + λ2λ3 + λ1λ4 + λ2λ4 + λ3λ4,

σ3 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4,

σ4 = λ1λ2λ3λ4.

Let’s rewrite the eigenpolynomial (A-26) as: a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0 = 0

(a0 > 0). Routh-Hurwitz’ theorem [1877, 1893] states that the real parts of the
eigenvalues of this eigenpolynomial are negative if and only if all the following
determinants:

(A-28) D1 = a1 ; D2 =

∣∣∣∣
a1 a0

a3 a2

∣∣∣∣ = a1a2 − a0a3 ; D3 =

∣∣∣∣∣∣

a1 a0 0
a3 a2 a1

0 a4 a3

∣∣∣∣∣∣
are positive.

Now, let suppose that the eigenpolynomial (A-26) has two real eigenvalues λ1,
λ2 with λ1 ̸= −λ2 ̸= 0 and two complex conjugated λ3,4 = a + ıb (with a ̸= 0 an
b ̸= 0). So, we have:

(A-29)

σ1 = 2a + λ1 + λ2,

σ2 = a2 + b2 + 2a (λ1 + λ2) + λ1λ2,

σ3 = 2aλ1λ2 +
(
a2 + b2

)
(λ1 + λ2) ,

σ4 =
(
a2 + b2

)
λ1λ2.

The determinant D3 reads:

(A-30) D3 = 2a
(
a2 + b2 + 2aλ1 + λ2

1

)
(λ1 + λ2)

(
a2 + b2 + 2aλ2 + λ2

2

)

Moreover, if we consider that the real part of the complex conjugated eigenvalues
λ2,3 depends on a parameter, say µ, we have a = a (µ). Then, determinant D3

vanishes at the location of the points where the real part a = a (µ). So, it can be
used to determine the Hopf-parameter value.
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