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Abstract. In this paper we provide an arbitrary order averaging
theory for higher dimensional periodic analytic differential systems.
This result extends and improves results on averaging theory of
periodic analytic differential systems, and it unifies many different
kinds of averaging methods.

Applying our theory to autonomous analytic differential sys-
tems, we obtain some conditions on the existence of limit cycles
and integrability.

For polynomial differential systems with a singularity at the
origin having a pair of pure imaginary eigenvalues, we prove that
there always exists a positive number N such that if its first N
averaging functions vanish, then all averaging functions vanish, and
consequently there exists a neighborhood of the origin filled with
periodic orbits. Consequently if all averaging functions vanish, the
origin is a center for n = 2.

Furthermore, in a punctured neighborhood of the origin, the
system is C∞ completely integrable for n > 2 provided that each
periodic orbit has a trivial holonomy.

Finally we develop an averaging theory for studying limit cycle
bifurcations and the integrability of planar polynomial differential
systems near a nilpotent monodromic singularity and some degen-
erate monodromic singularities.

1. Introduction and statement of the main results

To know when a differential system has or not periodic solutions is
very important for understanding its dynamics. Averaging theory is a
good theory for studying the periodic solutions. Of course, the aver-
aging theory is a classical tool for studying the behaviour of nonlinear
differential systems. This theory has a long history that starts with
the works of Lagrange and Laplace, who work with it in an intuitive
way. One of first formalizations of the averaging theory was done by
Fatou in 1928 [15]. Later on Bogoliubov and Krylov [4] in the 1930s
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and Bogoliubov [3] in 1945 did very important practical and theoretical
contributions to the averaging theory. The ideas of averaging theory
has been improved in several directions for the finite and infinite di-
mensional differentiable systems. More recently Hale also did good
contributions to the averaging theory, see the books [20, 21]. For mod-
ern expositions and results on the averaging theory see also the books
of Sanders, Verhulst and Murdock [37] and Verhulst [38].

Consider periodic analytic differential systems

(1) ẋ = F0(t, x) +
∞∑

i=1

εiFi(t, x), (t, x) ∈ R × Ω,

where Ω ⊂ Rn is an open subset, ε is a parameter with |ε| sufficiently
small, and the Fi(t, x)’s are n–dimensional vector valued analytic func-
tions in their variables in R×Ω and periodic of period T in the variable
t. For z ∈ Ω, let x(t, z, ε) be the solution of (1) satisfying x(0, z, ε) = z.
One of the important problems in the study of the dynamics of a dif-
ferential system (1) is to know when x(t, z, ε) is a periodic solution.
There are many different methods for studying this problem, and the
averaging method is one very useful.

In order to apply the averaging theory for studying periodic orbits
of the differential system (1), one of the basic assumptions is that the
unperturbed system ẋ = F0(t, x) has an invariant manifold formed by
periodic orbits. In this direction there are extensive studies for the first,
second and third order averaging theories, see for instance [6, 7, 8, 9,
13, 31, 36, 37] and the references therein. Also the averaging theory
has broad applications, see e.g. [1, 2, 13, 16, 17, 19, 23, 28, 29, 35] and
the references therein.

Recently the averaging theory was extended to arbitrary order for
computing periodic orbits. Giné et al [18] provided an arbitrary order
averaging formula of system (1) when n = 1. In [16] the averaging
theory in Rn up to any order in ε for the particular case F0(t, x) ≡ 0 is
described in a recursive way and it is applied to the center problem for
planar systems. Llibre et al [24] further extended the arbitrary order
averaging method to any finite dimensional periodic differential system
provided that the manifold formed by periodic solutions of the unper-
turbed differential system ẋ = F0(t, x) is an open subset of Ω. When
the manifold formed by periodic solutions of the unperturbed differ-
ential system ẋ = F0(t, x) has dimension less than n, Malkin [31] and
Roseau [36] provided the averaging theory of first order. For a different
and shorter proof, see [6]. Buică et al [7, 8] extended the Malkin and
Roseau’s first order averaging theory to second order. Here we extend



AVERAGING METHODS, PERIODIC SOLUTIONS AND INTEGRABILITY 3

these previous results to arbitrary order for any finite dimensional peri-
odic analytic differential system (1). As a consequence our results also
extend and improve the ones of [18, 24].

1.1. Arbitrary order averaging theory of periodic differential
systems. For stating our results, we first consider the initial value
problem of the unperturbed differential system of (1)

(2) ẋ0(t, z) = F0(t, x0(t, z)), x0(0, z) = z.

Let V ⊂ Rk, with 1 ≤ k ≤ n, be an open and bounded subset,
and let η : cl(V ) → Rn−k be a C2 function such that M0 := {zw =
(w, η(w))| w ∈ cl(V )} ⊂ Ω is strictly contained in the set of all periodic
solutions of the unperturbed differential system, where cl denotes the
closure of a set. Then M0 is a k–dimensional smooth submanifold in
Ω. Of course, if k = n the map η does not appear, and M0 = cl(V ). In
this paper we have a basic assumption that the unperturbed system of
(1), i.e. the initial value problem (2) with z = zw, has the T periodic
solutions

x0(t, zw) = φ(t, zw) for all zw ∈ M0.

Let Φ(t, zw) be a fundamental matrix solution of the variational equa-
tion of system (2) along the solution x0(t, zw) = φ(t, zw)

(3) ẏ = ∂F0(t, φ(t, zw))y,

where ∂F0(t, φ(t, zw)) denotes the Jacobian matrix of F0(t, x) with re-
spect to x taking values at x = φ(t, zw). We inductively define the
functions

(4) xj(t, zw) = Φ(t, zw)

∫ t

0

Φ−1(s, zw) Kj(s, zw)ds, j = 1, 2, . . . ,

where
(5)

Kj(t, zw) :=

j∑

|α|=2

F0,α,j(t, zw) + Fj(t, φ0(t, zw)) +

j−1∑

i=1

j−i∑

|α|=1

Fi,α,j−i(t, zw),

for j = 1, 2, . . ., are successively known functions, with

(6) Fi,α,r(t, zw) =
(
F (1)

i,α,r(t, zw), . . . , F (n)
i,α,r(t, zw)

)
, r = 0, 1, . . .
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and for l = 1, . . . , n

F (l)
i,α,r(t, zw) =

∂αF
(l)
i (t, φ(t, zw))

α!

×
∑

s1+...+sn=r


 ∑

j1+...+jα1=s1

x
(1)
j1

(t, zw) . . . x
(1)
jα1

(t, zw)


(7)

× . . . ×


 ∑

j1+...+jαn=sn

x
(n)
j1

(t, zw) . . . x
(n)
jαn

(t, zw)


 ,

where we have used the notations xj(t, z) = (x
(1)
j (t, z), . . . , x

(n)
j (t, z))

and Fj(t, x) = (F
(1)
j (t, x), . . . , F

(n)
j (t, x)) for j = 1, 2, . . . And also the

notations

∂αF
(l)
i (t, x)

α!
=

1

α!

∂α1 . . . ∂αnF
(l)
i (t, x)

∂xα1
1 . . . ∂xαn

n

, α! = α1! . . . αn!

for α ∈ Zn
+ with Z+ the set of nonnegative integers. In (7) and also in

the full paper, for simplifying notations we have used the convention
that when αp = 0 for some p = 1, . . . , n we have

(8)

∑
j1+...+jαp=0

x
(p)
j1

(t, zw) . . . x
(p)
jαp

(t, zw) = 1,

∑
j1+...+jαp=s∈N

x
(p)
j1

(t, zw) . . . x
(p)
jαp

(t, zw) = 0.

In this paper we also use the convention
j∑

s=i

cs = 0 for any cs if j < i.

We note that the integrals which appear in (4) are nested integrals
whose computation usually are not easy.

Now we can state our first main result.

Theorem 1. For a periodic analytic differential system (1) we assume:

(i) For each zw ∈ M0 the unique solution x0(t, zw) of system (2)
satisfying the condition x0(0, zw) = zw is T periodic.

(ii) The fundamental matrix solution Φ(t, zw) of the variational equa-
tion (3) satisfies that Φ−1(0, zw) − Φ−1(T, zw) has in the upper
right corner the null k× (n−k) matrix, while in the lower right
corner has the (n − k) × (n − k) matrix ∆w, with det ∆w ̸= 0.

Then the following statements hold.
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(a) Assume that there exists a k ∈ N such that Gk(zw) ̸≡ 0 and
Gi(zw) ≡ 0 in M0 for i < k, where

Gj(zw) =

∫ T

0

Φ−1(s, zw) Kj(s, zw)ds, j = 0, 1, . . .

Defining fk(w) : cl(V ) → Rk by fk(w) = πGk(zw), with π :
Rn → Rk the projection into the first k components. If w0 ∈
V is a zero of fk, i.e. fk(w0) = 0, and det(∂wfk(w0)) ̸=
0, then system (1) has a T periodic solution ϕ(t, ε) such that
lim
ε→0

ϕ(0, ε) = zw0.

(b) If Gk(zw) ≡ 0 for all k ∈ Z+, then all orbits of system (1) with
initial points in M0 are periodic of period T .

Theorem 1 will be proved in section 2. We remark that there are
many dynamical systems which satisfy the conditions (i) and (ii) of
Theorem 1, see for instance [7, 26, 27] and the references therein.

Theorem 1 for periodic analytic differential systems extends and im-
proves the main results of [18, 24].

We now turn to autonomous differential systems and study the exis-
tence of limit cycles and their local integrability via averaging theory.
The problem on limit cycles and integrability of polynomial differential
systems (especially for planar polynomial systems) has been extensively
studied from different points of view, see for instance [1, 10, 11, 14, 25,
39, 40, 41, 42] and the references therein. But there remain lots of
unsolved difficult problems. In what follows we will use our extended
arbitrary order averaging theory to investigate the limit cycle bifurca-
tions and the integrability. As far as we know it is the first time that
the averaging theory is applied to study the integrability of polynomial
differential systems.

1.2. Averaging method for higher dimensional autonomous
differential systems. For polynomial differential systems near a sin-
gularity such that its linear part has a pair of pure imaginary eigenval-
ues, we can strength Theorem 1 not only on the limit cycle bifurcation
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but also on the local integrability of the singularity. Consider the fol-
lowing polynomial differential systems of degree m in Rn with n ≥ 2

ẋ = −y + f1(x, y, z) := −y +
m∑

i=2

f1i(x, y, z),

ẏ = x + f2(x, y, z) := x +
m∑

i=2

f2i(x, y, z),(9)

ż = Az + f3(x, y, z) := Az +
m∑

i=2

f3i(x, y, z),

where z = (z(3), . . . , z(n)) ∈ Rn−2, A is a real square matrix of order
n − 2, f1i and f2i are real homogeneous polynomials of degree i and
f3i are n − 2 dimensional real vector valued homogeneous polynomials
of degree i. Of course if n = 2 system (9) is a planar polynomial
differential system, i.e. the other components of system (9) do not
appear.

Taking the change of variables (x, y, z) → ε(x, y, z), system (9) be-
comes the one depending on the parameter ε. Applying the change of
variables x = r cos θ, y = r sin θ, z = w to the resulting system, and
choosing θ as the new independent variable, we get the following n − 1
dimensional analytic periodic differential system

(10)

(
r′(θ, ε)
w′(θ, ε)

)
= R0(θ, r, w) +

∞∑

i=1

εiRi(θ, r, w),

where R0(θ, r, w) =

(
0

Aw

)
, and Ri(θ, r, w) are polynomials in the

variables r and w, and trigonometric polynomials in the variables cos θ
and sin θ. For more details see the proof of Theorem 2.

Let z0 = (r0, w0) with r0 > 0 be any initial value, and x(θ, z0, ε) :=
(r(θ, z0, ε), w(θ, z0, ε)) be the solution of system (10) satisfying x(0, z0, ε) =
z0. Since system (10) is analytic in a neighborhood of the origin, we
can write the solution x(θ, z0, ε) in the Taylor series

x(θ, z0, ε) = x0(θ, z0) +
∞∑

j=1

εjxj(θ, z0).

Let x0(θ, z0) be the solution of system

(11) x′(θ, z0) = R0(θ, x0(θ, z0)),
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satisfying the initial condition x(0, z0) = z0, and let Φ(θ, z0) be the
fundamental solution matrix of the variational equations of system (11)
along the solution x0(θ, z0) such that Φ(0, z0 is the identity matrix.

Define

(12) Lj(θ, z0) := Rj(θ, x0(θ, z0)) +

j−1∑

i=1

j−i∑

|α|=1

Ri,α,j−i(θ, z0),

where

(13) Ri,α,j(θ, z0) =
(
R(1)

i,α,j(θ, z0), . . . , R(n−1)
i,α,j (θ, z0)

)
,

and for l = 1, . . . , n

R(l)
i,α,j(θ, z0) =

∂αR
(l)
i (θ, x0(θ, z0))

α!

×
∑

s1+...+sn−1=j


 ∑

j1+...+jα1=s1

x
(1)
j1

(θ, z0) . . . x
(1)
jα1

(θ, z0)




× . . . ×


 ∑

j1+...+jαn−1=sn−1

x
(n−1)
j1

(θ, z0) . . . x
(n−1)
jαn−1

(θ, z0)


 ,

(14)

with

xj(θ, z0) =
(
x

(1)
j (θ, z0), . . . , x

(n−1)
j (θ, z0)

)

=
(
rj(θ, z0), w

(3)
j (θ, z0), . . . , w

(n)
j (θ, z0)

)
, j = 1, 2, . . .

and

xj(θ, z0) = Φ(θ, z0)

∫ θ

0

Φ−1(s, z0)Lj(s, z0)ds, j = 1, 2, . . . ,

are successively known functions.

Let U be an open subset of Rn. For the differential system (9) a
non–locally constant function H : U → R such that it is constant on
the orbits of (9) contained in U is called a first integral of system (9)
on U .

Recall that an analytic autonomous differential system in Rn is locally
C l completely integrable in an open subset U of Rn with l ∈ N∪{∞, ω},
if it has n − 1 functionally independent C l first integrals in U .

The notion of holonomy intends to be a replacement of the flow
of a vector field in the case when the natural parametrization of the
solutions is absent or ignored. Its definition is involved and will not be
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presented here, for details on it we refer to Section 2.3 of Chapter 1 of
[22]. We note that this notion is essential in the statement and proof
of our next theorem.

If a singularity in Rn has a punctured neighborhood filled of periodic
orbits it is called a center.

Now we can state our next main result.

Theorem 2. For a polynomial differential system (9) with the associ-
ated 2π periodic differential system (10), we define z = (r, w) and

gj(z) =

∫ 2π

0

Φ−1(s, z)Lj(θ, z)dθ, j = 1, 2, . . .

Assume that there exists a δ > 0 such that for all |z0| = |(r0, w0)| ≤ δ,
system (11) has a 2π periodic solution x0(θ, z0) satisfying x0(0, z0) =
z0. Then the following statements hold.

(a) Assume that there exists a k ∈ N such that gk(z) ̸≡ 0 and
gi(z) ≡ 0 for i < k. If z0 ∈ (R \ {0}) × Rn−2 is such that
gk(z0) = 0, and det(∂zgk(z0)) ̸= 0, then system (10) has a 2π
periodic solution ϕ(θ, ε) such that lim

ε→0
ϕ(0, ε) = z0. Furthermore

system (9) has a hyperbolic limit cycle associated to z0 in a
neighborhood of the origin.

(b) If gk(z) ≡ 0 for all k ∈ N, then all orbits of system (9) with
initial points in a punctured neighborhood of the origin are pe-
riodic, i.e., the origin is a center. Moreover we have the next
results.
(b1) For n = 2 the origin of system (9) is an analytic integrable

center.
(b2) For n > 2 if all the periodic orbits have trivial holonomy,

then system (9) is locally C∞ completely integrable in a
punctured neighborhood of the origin.

(c) There exists an N ∈ N such that if gk(z) ≡ 0 for all k =
1, . . . , N , then gk(z) ≡ 0 for all k ∈ N.

(d) For n odd if gk(z) ≡ 0 for all k ∈ N, system (9) is not locally C l

completely integrable in a punctured neighborhood of the origin
for all l ∈ N ∪ {∞, ω}. Consequently there exist periodic orbits
which have nontrivial holonomy.

We note that for analytic differential systems in the plane if all the
averaged functions are zero, then we have a center, and after using the
Poincaré center theorem we obtain the integrability in the plane. Thus
we provide a new sufficient condition for integrability in the plane,
i.e. all the averaging functions are zero. So, in this sense the averaging
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theory contributes to the integrability in dimension two. But for higher
dimension we must add to the condition of all the averaged functions
are zero, the assumption of trivial holonomy of the periodic solutions
of the center, then using the integrability result given in reference [34],
it follows the complete integrability in a neighborhood of the center in
higher dimension.

We must also note that the N which appears in statement (c) of
Theorem 2 is a uniform constant which depends only on the dimension
of the space where is defined the polynomial differential system and on
the degree of the polynomial differential system.

It is known that for any analytic vector field in dimension three
having an isolated singular point there exists a trajectory through a
point different from the singularity tending to the singularity as time
goes to +∞ or −∞, see [5]. So clearly statement (d) is empty when
n = 3. We do not know if it would be empty or not for n > 3.

The next example shows that for n even there are systems, whose
associated gk’s all vanish.

Example 1. Consider the dimensional system

(15) ẋ = −y + x2, ẏ = x + xy, ż = −w, ẇ = z,

in R4. Since the system (ẋ, ẏ) is reversible under the symmetry (x, y, t) →
(−x, y, −t) and the system (ż, ẇ) is a linear center, it follows that the
origin of system (15) in R4 is a center. Now we shall see that this
system satisfies that all the polynomials gk’s defined in Theorem 2 are
zero, and consequently this theorem confirms that system (15) has a
center at the origin of R4.

The proof of Example 1 will be given in section 3.

Remark 1. In Theorem 2 we need the assumption that system (10)
has 2π periodic solutions filling a neighborhood of the constant solution
(r, w) = (0, 0). If every entry of the matrix A of system (9) is a
parameter or A = 0, without this assumption we can also obtain the
same result as Theorem 2 working in the following way. Scale the
parameters A → εA, and using the same techniques than we used before
the statement of Theorem 2, we get system (10) with R0(θ, r, w) = 0
in the cylindric coordinates. This system for ε = 0 has only constant
solutions, which of course are all 2π–periodic. The rest of the proof
follows using the same arguments as in the proof of Theorem 2.

1.3. Averaging theory for planar monodromic nilpotent sin-
gularities. Finally we restrict to real planar polynomial differential
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systems

(16) ẋ = y + P (x, y), ẏ = Q(x, y),

where P (x, y), Q(x, y) ∈ R[x, y] are polynomials without constant and
linear terms. Recall that R[x, y] is the ring of polynomials in the vari-
ables x and y with coefficients in R. We note that the origin of system
(16) is a nilpotent singularity. We will develop an averaging theory to
study the limit cycle bifurcations and the integrability of system (16).
A monodromic singularity is the one whose small neighborhood is filled
with rotating orbits, i.e., it is a focus or a center.

Under the invertible and analytic change of variables ξ = x, η =
y + P (x, y), system (16) becomes

(17) ξ̇ = η, η̇ = akξ
k (1 + h(ξ)) + bnξnη (1 + g(ξ)) + η2p(ξ, η),

where h(ξ), g(ξ) = O(x) and p(ξ, η) = O(1) are analytic. Theorems
7.2 and 7.3 of [42] show that the origin of system (17) is a monodromic
singularity if and only if k = 2m + 1 for some m ∈ N, a2m+1 < 0 and

(i1) either bn = 0;
(i2) or n > m;
(i3) or n = m and λ := b2

n + 4(m + 1)a2m+1 < 0.

The case (i1), i.e. bn = 0, can be treated as in the case (i2) when
n = ∞. So we will not discuss (i1). The case (i3) may be studied in a
similar way to the case (i2) but the expressions are much complicated,
and so we omit it. In what follows for simplifying notation we set
a2m+1 = −a with a > 0 and bn = b.

Rescaling the variables and the time of system (17) by ξ → εξ, η →
εm+1η, t → ε−mt, and taking the generalized Lyapunov polar coordi-
nate change of variables

(18) x = r(θ) Cs(θ), y = rm+1(θ) Sn(θ),

we can write system (17) as

(19)
dr

dθ
= K1(θ, r)ε + K2(θ, r)ε

2 + . . . ,

where

K1(θ, r) =





− ab0

m + 1
r Cs2m+1 θ Sn θ +

p0

m + 1
r2 Sn3 θ, n > m + 1,

− ab0

m + 1
r Cs2m+1 θ Sn θ +

p0

m + 1
r2 Sn3 θ

+
b

m + 1
r2 Cs2 θ Sn2 θ, n = m + 1,
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and Kj(θ, r) are polynomials in the variables r, Cs θ and Sn θ with co-
efficients polynomials in the coefficient of system (16), the details are
omitted. Recall that Cs θ and Sn θ are solutions of a Cauchy problem
and they are periodic with period Tm. They will be expressed clearly
in the proof of the next Theorem 3.

Let r0(θ, r) = r be the solution of the initial value problem r′
0(θ) = 0,

r0(0) = r. For j = 1, 2, . . ., define

(20) rj(θ, r) =

∫ θ

0

Nj(s, r)ds,

with
(21)

Nj(θ, r) := Kj(θ, r) +

j−1∑

i=1

j−i∑

l=1

∂lKi(θ, z)

l!

∑

j1+...+jl=j−i

rj1(θ, r) . . . rjl
(θ, r).

Clearly all Nj(θ, r) and rj(θ, r) are functions that can be computed
recursively.

Now we can state our last main result.

Theorem 3. For a planar polynomial differential system (16) with the
associated Tm periodic differential system (19), we define

gj(r) =

∫ Tm

0

Nj(θ, r)dθ, j = 1, 2, . . .

Then the following statements hold.

(a) Assume that there exists a k ∈ N such that gk(r) ̸≡ 0 and
gi(r) ≡ 0 for i < k. If r0 > 0 is such that gk(r0) = 0, and
g′

k(r0) ̸= 0, then system (19) has a Tm periodic solution r(θ, ε)
such that lim

ε→0
r(0, ε) = r0. Furthermore system (9) has a hyper-

bolic limit cycle associated to r0 for ε ̸= 0 sufficiently small.
(b) If gk(r) ≡ 0 for all k ∈ N, then the origin of system (16) is

a center and there is a neighborhood of the origin where the
system is C∞ integrable.

(c) There exists an N ∈ N such that if gk(r) ≡ 0 for all k =
1, . . . , N , then gk(r) ≡ 0 for all k ∈ N.

We remark that Theorem 3 deals with perturbations of individual
monodromic nilpotent differential systems in the plane. In fact this
perturbation technique is applicable to all monodromic nilpotent dif-
ferential systems in the plane.
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This paper is organized as follows. In the next section we will prove
Theorem 1 and Corollaries 4 and 5. The proof of Theorem 2 will be
given in section 3. In the last section we will prove Theorem 3.

2. Proof of Theorem 1 and two corollaires

This section is devoted to prove Theorem 1 on arbitrary order aver-
aging theory for the analytic periodic differential system (1), and two
corollaries of it.

2.1. Proof of Theorem 1. For arbitrary z ∈ Ω, let x(t, z, ε) be the
solution of system (1) satisfying the initial condition x(0, z, ε) = z.
Then we have

(22) x(t, z, ε) = z +
∞∑

i=0

εi

∫ t

0

Fi(s, x(s, z, ε))ds.

To study the existence of periodic solutions is equivalent to find the
initial value z such that x(T, z, ε) = z. Since system (1) is analytic, the
solution x(t, z, ε) is analytic in its variables. Expanding this solution
in the Taylor series in ε, i.e.,

(23) x(t, z, ε) = x0(t, z) +
∞∑

j=1

εjxj(t, z).

Clearly x0(t, z) satisfies the unperturbed system (2) of system (1), and
xj(t, z) for j > 0 satisfy xj(0, z) = 0.

Our next objective will be to find the differential equations that the
functions xj(t, z) satisfy, later on we find the explicit expressions of
these functions, which help us to study the displacement function to
time T of the differential system (1), and finally the analysis of the
zeros of that function will provide us the periodic solutions of period
T which appear in the statement of the theorem.

For any zw ∈ M0 ⊂ Ω by assumption the solution x0(t, zw) =
φ(t, zw) of system (2) is T periodic, we have that the associated so-
lution x(t, zw, ε) of system (1) is of the form

x(t, zw, ε) = x0(t, zw) +
∞∑

j=1

εjxj(t, zw).

Set

Fi(t, x(t, zw, ε)) =
(
F

(1)
i (t, x(t, zw, ε)), . . . , F

(n)
i (t, x(t, zw, ε))

)
,
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with i = 0, 1, 2, . . . Doing the Taylor expansion of functions in several

variables to each F
(l)
i , l = 1, . . . , n, together with the expansion (23) of

the solution x(t, z, ε), we get

F
(l)
i (t, x(t, zw, ε)) =

∞∑

k=0

∑

|α|=k

∂αF
(l)
i (t, φ(t, zw))

α!

( ∞∑

j=1

εjxj(t, zw)

)α

=
∞∑

|α|=0

∂αF
(l)
i (t, φ(t, zw))

α!

( ∞∑

j=1

εjxj(t, zw)

)α

,(24)

where α ∈ Zn
+, |α| = α1 + . . . + αn, and for |α| ≥ 1

∂αF
(l)
i (t, x) =

∂α1 . . . ∂αnF
(l)
j (t, x)

∂xα1
1 . . . ∂xαn

n

,

( ∞∑

j=1

εjxj(t, zw)

)α

=

( ∞∑

j=1

εjx
(1)
j (t, zw)

)α1

. . .

( ∞∑

j=1

εjx
(n)
j (t, zw)

)αn

,

where we have used the notation xj =
(
x

(1)
j , . . . , x

(n)
j

)
. Note that

( ∞∑

j=1

εjx
(p)
j (t, zw)

)αp

=
∞∑

sp=αp

εsp
∑

j1+...+jαp=sp

x
(p)
j1

(t, zw) . . . x
(p)
jαp

(t, zw),

where js, s ∈ {1, . . . , αp}, is any positive integer such that their sum-
mation is sp. Recall that we have used the convention (8) for αp = 0,
p = 1, . . . , n. Then we have

( ∞∑

j=1

εjxj(t, zw)

)α

=
∞∑

r=|α|
εr

∑

s1+...+sn=r


 ∑

j1+...+jα1=s1

x
(1)
j1

(t, zw) . . . x
(1)
jα1

(t, zw)




× . . . ×


 ∑

j1+...+jαn=sn

x
(n)
j1

(t, zw) . . . x
(n)
jαn

(t, zw)


 .

So we get from (24) that for i = 0, 1, . . . , and l = 1, . . . , n,

F
(l)
i (t, x(t, zw, ε)) = F

(l)
i (t, φ(t, zw)) +

∞∑

|α|=1

∑

r=|α|
εrF (l)

i,α,r(t, zw)

= F
(l)
i (t, φ(t, zw)) +

∞∑

j=1

εj

j∑

|α|=1

F (l)
i,α,j(t, zw),(25)
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where F (l)
i,α,j(t, zw) was defined in (7). Furthermore we have for l =

1, . . . , n
∞∑

i=1

εi

∫ t

0

F
(l)
i (s, x(s, zw, ε))ds

=
∞∑

i=1

εi

∫ t

0

F
(l)
i (s, φ(s, zw)ds +

∞∑

i=1

∞∑

j=1

εi+j

j∑

|α|=1

∫ t

0

F (l)
i,α,j(s, zw)ds

(26)

=
∞∑

j=1

εj

∫ t

0

F
(l)
j (s, φ(s, zw))ds +

∞∑

j=2

εj

j−1∑

i=1

j−i∑

|α|=1

∫ t

0

F (l)
i,α,j−i(s, zw)ds.

Substituting (23), (25) and (26) into (1), and equating the coeffi-
cients of εj, we get

ẋ1(t, zw) =
∑

|α|=1

F0,α,1(t, zw) + F1(t, φ(t, zw)),(27)

ẋj(t, zw) =

j∑

|α|=1

F0,α,j(t, zw) + Fj(t, φ(t, zw))(28)

+

j−1∑

i=1

j−i∑

|α|=1

Fi,α,j−i(t, zw), j = 2, 3, . . .

where

Fj(t, φ(t, zw)) =
(
F

(1)
j (t, φ(t, zw)), . . . , F

(n)
j (t, φ(t, zw))

)
, j = 1, 2, . . .

Note that ∑

|α|=1

F0,α,j(t, zw) = ∂F0(t, φ(t, zw))xj(t, zw).

Recall that ∂F0(t, φ(t, zw)) is the Jacobian matrix of F0(t, x) with re-
spect to x taking values at x = φ(t, zw).

Since x(t, zw, ε) satisfies the initial condition x(0, zw, ε) = zw, it fol-
lows that

(29) xj(0, zw) = 0, j = 1, 2, . . .

Notice that

Kj(t, zw) =

j∑

|α|=2

F0,α,j(t, zw) + Fj(t, φ0(t, zw)) +

j−1∑

i=1

j−i∑

|α|=1

Fi,α,j−i(t, zw),
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and

Fi,α,j(t, zw) =
(
F (1)

i,α,j(t, zw), . . . , F (n)
i,α,j(t, zw)

)
, j = 1, 2, . . .

are successively known functions. Then systems (27) and (28) satisfy-
ing the initial conditions (29) have the solutions given in (4), i.e.

xj(t, zw) = Φ(t, zw)

∫ t

0

Φ−1(s, zw) Kj(s, zw)ds, j = 1, 2, . . . ,

For zw ∈ M0, we define the displacement function

(30) d(zw, ε) = x(T, zw, ε) − zw.

Then x(t, zw, ε) is a periodic solution of period T of system (1) if and
only if d(zw, ε) = 0. Set

Gj(zw) = Φ(T, zw)

∫ T

0

Φ−1(s, zw) Kj(s, zw)ds, j = 2, 3, . . .

Then

(31) d(zw, ε) =
∞∑

j=1

εjGj(zw).

Proof of statement (a). Since Φ(t, zw) is invertible for each zw ∈ M0,
the zeros of d(zw, ε) are the same as those of Φ−1(T, zw)d(zw, ε). We
consider the function

P (z, ε) = Φ−1(T, z)d(z, ε),

together with its Taylor expansion in ε, i.e.

P (z, ε) = P0(z) + εP1(z) + . . . + εkPk(z) + . . .

By assumption we have

(32) P (zw, ε) = εkPk(zw) + . . . , fk(zw) = πPk(zw), zw ∈ M0.

We recall that the functions fk(zw) are the averaged functions which
appear in the statement of Theorem 1.

We claim that

(33) ∂zP (zw, 0) = Φ−1(0, zw) − Φ−1(T, zw).

Indeed, first we have

∂zP (z, ε) = ∂zΦ
−1(T, z)d(z, ε) + Φ−1(T, z)(∂zx(T, z, ε) − E),

where E is the n × n identity matrix. In addition ∂zx(t, zw, ε) is the
fundamental matrix solution of the variational equation (3) with the
initial condition ∂zx(0, zw, 0) = E, so we have

∂zx(t, zw, 0) = Φ(t, zw)Φ−1(0, zw).
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Then the equality (33) follows from the fact that d(zw, 0) = φ(T, zw)−
zw ≡ 0 for all zw ∈ M0, where we have used the fact that φ(t, zw) is
the solution of the initial value problem (2), and the assumption that
all orbits of the unperturbed system (2) with the initial values in M0

are T periodic.
Let π+ : Rn → Rn−k be the projection of Rn to its last n − k

components. Since P (zw, 0) = 0, we get from (33) and the assumption
det ∆w ̸= 0 that the equation π+P (z, ε) = 0, by the Implicit Function
Theorem, has a unique analytic solution v = g(u, ε) in a neighborhood
of (z, ε) = (zw, 0), where we have used the notation z = (u, v) with
u = (z1, . . . , zk) and v = (zk+1, . . . , zn). Substituting this solution
into πP (z, ε) and using the assumptions of the theorem we get that
πP (u, g(u, ε), ε) = 0 has a unique analytic solution u = u(ε) in a
neighborhood of (u, ε) = (w, 0) with w ∈ V . This proves that near
each zw0 with w0 satisfying fk(w0) = 0 system (1) has a unique analytic
solution x = ϕ(t, ε) such that lim

ε→0
ϕ(0, ε) = zw0 . Statement (a) follows.

�

Proof of statement (b). Since Gk(zw) ≡ 0 for all k ∈ N and zw ∈ M0, it
follows that d(z, ε) ≡ 0 for all z = zw ∈ M0. This implies that all orbits
of system (1) with initial points in M0 are periodic of period T . We
complete the proof of statement (b) and consequently the theorem. �

Two results which follows from Theorem 1 are the following two
corollaries.

Corollary 4. For a periodic analytic differential system (1) we assume
that V ⊂ Ω ⊂ Rn is an open and bounded subset, such that for each
z ∈ V the unique solution x0(t, z) of system (2) satisfying the condition
x0(0, z) = z is T periodic. Then the following statements hold.

(a) Assume that there exists a k ∈ N such that gk(z) ̸≡ 0 and
gi(z) ≡ 0 in V for i < k, where

gj(z) =

∫ T

0

Φ−1(s, z) Kj(s, z)ds, j = 1, 2, . . .

If z0 ∈ V is such that gk(z0) = 0 and det(∂zgk(z0)) ̸= 0, then
system (1) has a T periodic solution ϕ(t, ε) such that lim

ε→0
ϕ(0, ε) =

z0.
(b) If gj(z) ≡ 0 for all j ∈ N, then all orbits of system (1) with

initial points in V are periodic of period T .

Proof. Corresponding to Theorem 1 we have k = n. Now the projection
π is the identity map on Rn, and the minor ∆n of order n − n = 0 of
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Φ−1(0, z) − Φ−1(T, z) does not appear. So the theorem follows directly
from Theorem 1. �

We remark that Corollary 4 is different from Theorem 1 only in the
region V . In Corollary 4 V is an open subset of Rn while in Theorem
1 V is an open subset of Rk ( Rn.

Corollary 5. For a periodic analytic differential system (1) which has
F0(t, x) ≡ 0, we define

gj(z) =

∫ T

0

Kj(s, z)ds, j = 1, 2, . . .

with Kj(s, z) defined in (5), (6) and (7) instead of zw and φ(t, zw) by
z. Then the following statements hold.

(a) Assume that there exists a k ∈ N such that gk(z) ̸≡ 0 and
gi(z) ≡ 0 for i < k. If z0 ∈ Ω is such that gk(z0) = 0 and
det(∂zgk(z0)) ̸= 0, then system (1) has a T periodic solution
ϕ(t, ε) such that lim

ε→0
ϕ(0, ε) = z0.

(b) If gk(z) ≡ 0 for all k ∈ N, then all orbits of system (1) with
initial points in Ω are periodic of period T .

Proof. Since F0(t, x) ≡ 0 for (t, x) ∈ R × Ω, it follows that

(34) ẋ0(t, z) = 0, x0(0, z) = z

with z ∈ Ω any initial value. For any z ∈ Ω, the unique solution
x0(t, z) ≡ z of (34) is a T periodic one of system (34). We are in the
case k = n of Theorem 1. The variational equation of system (34)
along the solution x0(t, z) is ẏ = 0. It has the fundamental matrix
Φ(t, z) = E. Moreover we get from (4) that

(35) xj(t, z) =

∫ t

0

Kj(s, z)ds, j = 1, 2, . . .

for z ∈ Ω. The rest of the proof follows as in the proof of Theorem 1.
This completes the proof of the theorem. �

We note that Corollaries 4 and 5 extend the main results of [18]
from one dimensional periodic analytic differential systems to any finite
dimensional periodic analytic differential systems.

In the case of Ck periodic differential systems Corollaries 4 and 5 were
proved in [24]. In any case the formulas for applying these corollaries
are easier than the formulas given in [24].



18 J. GINÉ, J. LLIBRE, K.S. WU AND X. ZHANG

3. Proof of Theorem 2 and Example 1

3.1. Proof of Theorem 2. For proving Theorem 2 we first transform
system (9) into system (1). Taking the change of variables (x, y, z) →
ε(x, y, z), system (9) can be written in the form

ẋ = −y +
m∑

i=2

εi−1f1i(x, y, z),

ẏ = x +
m∑

i=2

εi−1f2i(x, y, z),(36)

ż = Az +
m∑

i=2

εi−1f3i(x, y, z).

Doing the change of variables

x = r cos θ, y = r sin θ, z = rw,

with w =
(
w(3), . . . , w(n)

)
, system (36) becomes

ṙ =
m∑

i=2

εi−1rig1i(θ, w),

θ̇ = 1 −
m∑

i=2

εi−1ri−1g2i(θ, w),(37)

ẇ = Aw +
m∑

i=2

εi−1ri−1g3i(θ, w),

where for i = 2, . . . , m

g1i(θ, w) = cos θf1i(cos θ, sin θ, w) + sin θf2i(cos θ, sin θ, w),

g2i(θ, w) = sin θf1i(cos θ, sin θ, w) − cos θf2i(cos θ, sin θ, w),

g3i(θ, w) = f3i(cos θ, sin θ, w)

− w(cos θf1i(cos θ, sin θ, w) + sin θf2i(cos θ, sin θ, w)).
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Treating θ as an independent variable, we rewrite system (37) as an
n − 1 dimensional analytic differential system

r′ =
dr

dθ
=

m∑

i=2

εi−1rig1i(θ, w)


1 +

∞∑

j=1

(
m∑

i=2

εi−1ri−1g2i(θ, w)

)j

 ,

w′ =
dw

dθ
=

(
Aw +

m∑

i=2

εi−1ri−1g3i(θ, w)

)(38)

×


1 +

∞∑

j=1

(
m∑

i=2

εi−1ri−1g2i(θ, w)

)j

 ,

which is 2π periodic in θ. Rewriting system (38) in the vector form
given in (10), i.e.

(
r′(θ)
w′(θ)

)
= R0(θ, r, w) +

∞∑

i=1

εiRi(θ, r, w),

where

R0(θ, r, w) =

(
0

Aw

)
,

R1(θ, r, w) =

(
rg12(θ, w)
rg32(θ, w)

)
,

R2(θ, r, w) =

(
r2g13(θ, w) + r2g12(θ, w)g22(θ, w)
r2g33(θ, w) + r2g32(θ, w)g22(θ, w)

)
,

and Rj(θ, r, w), j = 3, 4, . . ., can be expressed as polynomials in gsl(θ, w)
for s = 1, 2, 3 and l = 2, . . . , j + 1. The exact expressions will be omit-
ted.

Proof of statement (a). Since for ε ̸= 0 the periodic orbits of system
(9) are uniquely determined by the periodic orbits of system (36), and
consequently of system (10). In addition, since R0(θ, r, w) is linear in
r and w, all its second order partial derivatives vanish with respect to
r and w. So from (5) we get (12). Then the next proof is a direct
consequence of Corollary 4. �
Proof of statement (b). From Corollary 5 and the proof of statement
(a) of that theorem, it follows that all the orbits of system (10) are
periodic of period 2π. Hence all the orbits of system (9) in a punctured
neighborhood of the origin are periodic.
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(b1). For n = 2 system (9) is a planar analytic differential system.
Since there is a neighborhood of the origin filled with periodic orbits,
the origin is a nondegenerate center. By the Poincaré center theo-
rem system (9) has an analytic first integral in a neighborhood of the
origin. Recall the Poincaré center theorem, i.e. if a real planar ana-
lytic differential system has a singularity with a pair of pure imaginary
eigenvalues, then the origin is a center if and only if the system has an
analytic first integral.

(b2). Since a punctured neighborhood of the origin of system (9) is
filled with periodic orbits, by the assumption that each periodic orbit
has trivial holonomy we get from Theorem 1 of [34] that system (9)
has n − 1 functionally independent C∞ first integrals. �
Proof of statement (c). First we claim that all gk(z) are polynomials in
z = (r, w) with coefficients being polynomials in the coefficients of sys-
tem (9). Later on using the Hilbert basis theorem to these polynomials
we shall prove statement (c).

We now prove this claim. From the construction of system (10) we
know that each Ri(θ, z) with z = (r, w), i = 1, 2, . . ., is a polynomial
in cos θ, sin θ, z with coefficients being polynomials in the coefficients
of system (9). Next we use induction to prove that Lj(θ, z) defined
in (12) and consequently xj(θ, z) are polynomials in cos θ, sin θ, z with
coefficients being polynomials in the coefficients of system (9).

For j = 1, L1(θ, z) = R1(θ, z). So

x1(θ, z) =

∫ θ

0

L1(s, z)ds,

is a polynomial in cos θ, sin θ, z with coefficients polynomials in the
coefficients of system (9). For j = 2 we have

L2(θ, z) = R2(θ, z) +
∑

|α|=1

R1,α,1(θ, z).

Note that R1,α,1(θ, z) has its components R(l)
1,α,1(θ, z), l = 1, . . . , n − 1,

being of the form

R(l)
1,α,1(θ, z) =

∂αR
(l)
1 (θ, z)

α!

∑

s1+...+sn−1=1


 ∑

j1+...+jα1=s1

x
(1)
j1

(θ, z) . . . x
(1)
jα1

(θ, z)




× . . . ×


 ∑

j1+...+jαn−1=sn−1

x
(n−1)
j1

(θ, z) . . . x
(n−1)
jα1

(θ, z)


 .
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Observe that in the right hand side of this last expression of R(l)
1,α,1(θ, z)

all components are polynomials in the variables cos θ, sin θ and z with
coefficients polynomials in the coefficients of system (9). So R1,α,1(θ, z)
and consequently

x2(θ, z) =

∫ θ

0

L2(s, z)ds,

are polynomials in the variables cos θ, sin θ and z with coefficients poly-
nomials in the coefficients of system (9).

We assume that for k ∈ N all xj(θ, z) are polynomials in the variables
cos θ, sin θ and z with coefficients polynomials in the coefficients of
system (9), j = 1, . . . , k − 1. We prove the same for xk(θ, z). Since

xk(θ, z) =

∫ θ

0

Lk(s, z)ds,

we only need to prove that Lk(θ, z) is a polynomial in the variables
cos θ, sin θ and z with coefficients polynomials in the coefficients of
system (9). Since

Lk(θ, z) = Rk(θ, z) +
k−1∑

i=1

k−i∑

|α|=1

Ri,α,k−i(θ, z),

it remains to prove that Ri,α,j(θ, z) with i, j < k are polynomials in
the variables cos θ, sin θ and z with coefficients polynomials in the co-
efficients of system (9). But this follows easily from the expressions

Ri,α,j(θ, z) =
(
R(1)

i,α,j(θ, z), . . . , R(n−1)
i,α,j (θ, z)

)
,

and

R(l)
i,α,j(θ, z) =

∂αR
(l)
i (θ, z)

α!

∑

s1+...+sn−1=j


 ∑

j1+...+jα1=s1

x
(1)
j1

(θ, z) . . . x
(1)
jα1

(θ, z)




× . . . ×


 ∑

j1+...+jαn−1=sn−1

x
(n−1)
j1

(θ, z) . . . x
(n−1)
jαn−1

(θ, z)


 .

Finally the claim follows from gk(z) =
∫ 2π

0
Lk(s, z).

The assumption gk(z) ≡ 0 for all k ∈ N, is equivalent to the fact that
all the coefficients of gk(z)’s vanish. Ordering the coefficients of system
(9) as c1, . . . , cM for some M ∈ N, we get from the last claim that
all coefficients of gk(z)’s are polynomials in the variables c1, . . . , cM .
These polynomials form a countable subset, namely {Bk(c1, . . . , cM)},
of R[c1, . . . , cM ]. By the Hilbert basis theorem it follows that there
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exists a K ∈ N such that the algebraic variety
∞∩
i=1

{Bj(c1, . . . , cM) = 0}

is equal to the algebraic variety
K∩

i=1

{Bj(c1, . . . , cM) = 0}.

The above fact shows that there exists an N ∈ N such that B1, . . . , BK

appear in the coefficients of {g1(z), . . . , gN(z)}. So if gk(z) ≡ 0 for
k = 1, . . . , N , then

Bj(c1, . . . , cM) = 0, j = 1, . . . , K,

consequently
Bj(c1, . . . , cM) = 0, j = 1, 2, . . .

This implies that gk(z) ≡ 0 for k = 1, 2 . . . Statement (c) follows. �
Proof of statement (d). The idea of this proof partially comes from
[34]. If all gk(z) are identically zero, then a punctured neighborhood
of the origin of system (9) is filled with periodic orbits. If system (9)
is C l completely integrable in a punctured neighborhood of the origin
for some l ∈ N ∪ {∞, ω}, let h1(x, y, z), . . . , hn−1(x, y, z) be the func-
tionally independent first integrals of system (9). Then a punctured
neighborhood of the origin is foliated by these n − 1 first integrals,
that is each orbit of system (9) in such neighborhood is given by the
intersection of the level hypersurfaces of these first integrals. Without
loss of generality, we assume that hi(0) = 0, i = 1, . . . , n− 1. Since the
origin is an isolated singularity of system (9), it follows that the ori-
gin O = (h1, . . . , hn−1)

−1(0, . . . , 0), and consequently O is an isolated
singularity of the function H(x, y, z) = h2

1(x, y, z) + . . . + h2
n−1(x, y, z).

This implies that each level surface H(x, y, z) = c for c > 0 sufficiently
small is an n− 1 dimensional invariant topological hypersurface. Since
a punctured neighborhood of the origin of system (9) is filled with
periodic orbits, we get that the hypersurface H(x, y, z) = c is foli-
ated by periodic orbits. Since any even dimensional sphere has Euler
characteristic 2, it follows from the Poincaré–Hopf index theorem [32,
p.35] that the vector field associated to system (9) restricted to H = c
must have singularities. We are in contradiction with the fact that the
sphere H = c is filled up with periodic orbits. This shows that system
(9) cannot be C l completely integrable for any l ≥ 1. Statement (d)
follows. �

This completes the proof of Theorem 2. �

3.2. Proof of Example 1. System (15) under the rescaling x → εx,
y → εy, z → εz and w → εz, is transformed into

(39) ẋ = −y + εx2, ẏ = x + εxy, ż = −w, ẇ = z.
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Doing the change of variables x = r cos θ, y = r sin θ, z = ru, w = rv,
system (39) becomes

(40) ṙ = εr2 cos θ, θ̇ = 1, u̇ = −v − εur cos θ, v̇ = u − εvr cos θ.

Choosing θ as the new independent variable, we can write this last
differential system as

(41)
dR

dθ
= F0(θ, R) + εF1(θ,R),

where R = (r, u, v), and

F0(θ, R) =




0
−v

u


 , F1(θ,R) =




r2 cos θ
−ur cos θ
−vr cos θ


 .

Some easy calculations show that system

(42)
dR0(θ)

dθ
= F0(θ, R0(θ)),

satisfying the initial condition R(0) = R0 := (r0, u0, v0), has the solu-
tion

R0(θ) = (r0, u0 cos θ + v0 sin θ, −u0 sin θ + v0 cos θ).

The variational equation of system (42) along the solution R0(θ) has
the fundamental solution matrix

Φ(θ) =




1 0 0
0 cos θ sin θ
0 sin θ − cos θ




Let R(θ,R0, ε) be the solution of system (41) satisfying the initial con-
dition R(0, R0, ε) = R0. Since system (41) is analytic, we can expand
R(θ, R0, ε) in Taylor series

R(θ, R0, ε) = R0(θ, R0) + εR1(θ, R0) + ε2R2(θ,R0) + . . .
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In what follows we denote Rq(θ,R0) = (rq, uq, vq)
T for q = 1, 2, . . ..

Substituting this expression in system (41) we get

dR1

dθ
= JR1 + cos θ




r2
0

−v2

u2


 , R1(0) = 0(43)

dRq

dθ
= JRq + cos θ




q−1∑
s=0

rsrq−1−s

−
q−1∑
s=0

rsuq−1−s

−
q−1∑
s=0

rsvq−1−s




, Rq(0) = 0,(44)

for q = 2, 3, . . ., where J is the Jacobian matrix of F0(θ,R0) with
respect to R0.

Clearly system (43) has the solution

R1(θ,R0) =




r2
0 sin θ

−r0 sin θ(u0 cos θ + v0 sin θ)
−r0 sin θ(u0 sin θ − v0 cos θ)


 .

It follows clearly that g1(2π) = R1(2π, R0) = 0. We claim that system
(44) has the solution

Rq(θ,R0) =




rq+1
0 sinq θ

0
0


 , q = 2, 3, . . . .

Indeed, for q = 2 the proof follows from direct calculation. The fact
that g0(2π, R0) = R0, and gq(2π, R0) = 0 for q = 1, 2, . . . follows easily
from some calculations and induction. This completes the proof of the
example. �

4. Proof of Theorem 3

As we did before the statement of Theorem 3 system (16) under the
change of variables

(45) ξ = x, η = y + P (x, y),

was transformed to system (17), i.e.

ẋ = y, ẏ = akx
k (1 + h(x)) + bnxny (1 + g(x)) + y2p(x, y),

where we still use (x, y) instead of (ξ, η). Clearly ak, bn, and h(x), g(x),
p(x, y) are uniquely determined by the coefficients of system (16). We
mention that the change (45) and its inverse are locally analytic. And
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we are in the case k = 2m + 1 for some m ∈ N, a2m+1 < 0 and n > m.
In order to simplify notation we set a2m+1 = −a with a > 0 and bn = b.

Rescaling the variables and time by x → εx, y → εm+1y, t → ε−mt,
system (17) can be written in
(46)
ẋ = y,
ẏ = −ax2m+1(1 + h(εx)) + b εn−mxny(1 + g(εx)) + εy2p (εx, εm+1y) .

Let Cs(θ) and Sn(θ) be the solutions of the Cauchy problem

(47) ẋ = y, ẏ = −ax2m+1,

satisfying the initial conditions x(0) = ((m + 1)/a)1/(2m+2), y(0) = 0.
Then we have

(48)
d Cs θ

dθ
= Sn θ,

d Sn θ

dθ
= −a Cs2m+1 θ.

Since

H(x, y) =
a

m + 1
x2m+2 + y2,

is a first integral of system (47), it follows easily that

(49) a Cs2m+2 θ + (m + 1) Sn2 θ = m + 1.

Following Lyapunov [30], see also [12], together with some calculations,
we get that Cs(θ) and Sn(θ) are periodic functions.

Take the generalized Lyapunov polar coordinate change of variables
(18), i.e.

x = r(θ) Cs(θ), y = rm+1(θ) Sn(θ),

we can write system (46) via (48) and (49) as

ṙ = − a

m + 1
rm+1 Cs2m+1 θ Sn θ h(εr Csθ)

+
b

m + 1
εn−mrn+1 Csn θ Sn2 θ (1 + g(εr Cs θ))

+
ε

m + 1
rm+2 Sn3 θ p(εr Cs θ, εm+1rm+1 Sn θ),

θ̇ = rm +
a

m + 1
rm Cs2m+2 θ h(εr Csθ)

− b

m + 1
εn−mrn Csn+1 θ Sn θ (1 + g(εr Cs θ))

− ε

m + 1
rm+1 Cn θ Sn2 θ p(εr Cs θ, εm+1rm+1 Sn θ).
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Choosing θ as the independent variable this last equation can be written
as in (19), i.e.

dr

dθ
= K1(θ, r)ε + K2(θ, r)ε

2 + . . . .

As in the proof of Theorem 1 we write

r(θ, r0, ε) = r0 +
∞∑

j=1

εjrj(θ, r0),

the analytic solution of equation (19) satisfying the initial condition
r(0, r0, ε) = r0. Then we have r0(θ, r0) = r0, and rj(θ, r0), j = 1, 2, . . .,
were defined in (20) and (21).

Proof of statement (a). We note that each Tm periodic solution of equa-
tion (19) is uniquely determined by r(Tm, r0, ε) = r0, and r(Tm, r0, ε)−
r0 =

∞∑
j=1

εjgk(r0) with gk defined in Theorem 3. So statement (a) follows

from the Implicit Function theorem. �
Proof of statement (b). If all gk(r) ≡ 0, then all orbits of equation
(19) are Tm periodic, and consequently all orbits of system (16) in a
punctured neighborhood of the origin are periodic. This shows that
the origin of system (33) is a center. Since the origin is an isolated
singularity of system (16), we get from Theorem 1.3 of [33] that system
(16) has a C∞ first integral defined in a neighborhood of the origin and
it takes an isolated minimum at the origin. �
Proof of statement (c). From the construction of gk(r) and arguing as
in the proof of statement (c) of Theorem 2, we get that all gk(r) are
polynomials in r with coefficients being polynomials in the coefficients
of system (16). Then working in a similar way as in the proof of
statement (c) of Theorem 2, we can prove that there exists an N ∈ N
such that gk(r) ≡ 0 for all k ∈ N is equivalent to gk(r) ≡ 0 for k ∈
{1, . . . , N}.

We complete the proof of Theorem 3. �
Remark 2. Theorem 3 for system (16) can be extended to higher
dimensional polynomial differential systems of the form

(50)
ẋ = y + P (x, y, z),
ẏ = Q(x, y, z),
ż = Az + R(x, y, z),

(x, y, z) ∈ Rn,

where z = (z3, . . . , zn), and P, Q,R are polynomial functions without
constant and linear terms. As in the two dimensional case we rewrite
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system (50) in the following form
(51)
ẋ = y,
ẏ = axk(1 + f(x, z)) + bxly(1 + g(x, z)) + y2h(x, y, z),
ż = Az + r0(x, z) + r1(x, z)y + r2(x, y, z)y2,

(x, y, z) ∈ Rn,

with f, g, h, r0, r1, r2 analytic. Assume that each entry of A is a pa-
rameter or A = 0, and that a < 0, k = 2m + 1, l > m, r0(x, z) =
O(|(x, z)|m+2) and r1(0, 0) = 0. After taking the rescaling

x → εx, y → εm+1y, z → εz, t → ε−mt, A → εm+1A,

and using the methods and arguments in the proofs of Theorem 2 and
Remark 1 we can obtain a result similar to Theorem 2 except for state-
ment (b). Instead we have that for n ≥ 2 if all the periodic orbits have
trivial holonomy, then system (51) is locally C∞ completely integrable
in a punctured neighborhood of the origin. The details are omitted.

Remark 3. Theorem 3 for system (16) can also be extended to degen-
erate singularities. Consider the next system

(52) ẋ = y2l+1 + P (x, y), ẏ = −ax2k+1 + Q(x, y),

where a > 0 is a constant, l and k are positive integers, and P (x, y)
and Q(x, y) are polynomials in x, y and do not identically vanish si-
multaneously. Assume that the lowest order terms of P and Q are of
degree at least 3 max{k, l} if max{k, l} ≥ 2 or of degree at least 4 if
k = l = 1. After rescaling

x → εl+1x, y → εk+1y, t → ε−k−l−2klt,

and taking the generalized Lyapunov polar coordinate changes

x = rl+1 Cs φ, y = rk+1 Sn φ,

with Cs φ and Sn φ the solution of the initial value problem

ẋ = y2l+1, ẏ = −ax2k+1, x(0) = ((k + 1)/a)1/(2k+2), y(0) = 0,

i.e.
dCsφ

dφ
= Sn2l+1φ,

dSnφ

dφ
= −aCs2l+1φ,

we can transform system (52) into a periodic differential equation of
the form (19). Then using the methods and the arguments of the proof
of Theorem 3 we can obtain a result similar to Theorem 3. This result
can also be extended from system (52) to higher dimensional differential
systems with some additional conditions as we did in Remark 2. The
details are omitted.
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(Barcelona) and Departament de Matemàtiques, Universitat Autònoma
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[17] J. Giné and J. Llibre, Limit cycles of cubic polynomial vector fields via the
averaging theory, Nonlinear Anal. 66 (2007), 1707–1721.
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