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Abstract Bounded orbits such as closed, homoclinic and
heteroclinic orbits are discussed in this work for a Lorenz-
like 3D nonlinear system. For a large spectrum of the param-
eters the system has neither closed nor homoclinic orbits but
has exactly two heteroclinic orbits, while under other con-
straints the system has symmetrical homoclinic orbits.

Keywords ODE systems · bifurcations · homoclinic and
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1 Introduction

In this paper we consider a Lorenz-like three-dimensional
system [13], namely the Chen system. Interesting results
reported recently on this system concerning closed, homo-
clinic and heteroclinic orbits are found in [7]. More results
on the Chen system are given in [3], [8], [9], [10], [11], [14],
[17] and in some references therein.

In this paper we first refine some results reported in [7]
and present a different proof of these results. Secondly, we
consider an important case not treated in [7] and show the
system has homoclinic orbits for a large spectrum of the pa-
rameters, by transforming the system into a new form and
using results reported in [1]. Proving existence of homo-
clinic or heteroclinic orbits in nonlinear ode systems is in
general a difficult task [2], [5], [6], [12], [15], [16].

The Chen system is given by:

ẋ = a(y− x), ẏ = (c−a)x− xz+ cy, ż = xy−bz, (1)

where a > 0, b > 0 and c > 0 are positive real parameters.
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Recall that, if x0 is an equilibrium hyperbolic point such
that the stable manifold W s(x0) intersected with the unsta-
ble manifold W u(x0) is not empty, then the orbits belong-
ing to W s(x0) ∩W u(x0) ̸= Φ are called homoclinic orbits.
They are doubly asymptotic to an equilibrium point. Sim-
ilarly, if x1,x2 are two hyperbolic equilibrium points such
there exists an orbit Γ ⊂ W s(x1)∩W u(x2) or inversely Γ ⊂
W u(x1)∩W s(x2), then Γ is called a hyperbolic orbit.

The system (1) has the origin O as an equilibrium point
for any a,b,c > 0 and it has two more equilibrium points
S1 = (

√
b(2c−a),

√
b(2c−a),2c−a)

and
S2 = (−

√
b(2c−a),−

√
b(2c−a),2c−a),

for 2c > a. Assume also further a > c. As the transformation
(x,y,z) → (−x,−y,z) leaves the system unchanged, the or-
bits of the system are symmetrical with respect to the z-axis.

2 Existence of heteroclinic orbits

The matrix of the linearized system to (1) at the origin has
the eigenvalues and the corresponding eigenvectors given
by:

d1 = 1
2 c− 1

2 a+ 1
2

√
6ac−3a2 + c2,

u1 =
(

1
2a−2c

(
a+ c−

√
6ac−3a2 + c2

)
1 0

)T
;

d2 = 1
2 c− 1

2 a− 1
2

√
6ac−3a2 + c2,

u2 =
(

1
2a−2c

(
a+ c+

√
6ac−3a2 + c2

)
1 0

)T
;

d3 = −b,

u3 =
(

0 0 1
)T

.

Considering 2c > a > c > 0, it follows that d1 > 0 and
d2,3 < 0, that is, the origin is a saddle point having a one-
dimensional unstable manifold W u

0 and a two-dimensional
stable manifold W s

0 . The tangent unstable subspace TW u
0 is
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given by
TW u

0 =
{

2(a− c)y =
(

a+ c−
√

6ac−3a2 + c2
)

x,z = 0
}

.
The unstable manifold W u

0 contains O(0,0,0) and is tangent
to TW u

0 at the origin.
Using the method of undetermined coefficients in a small

neighborhood of the origin we get

W u
0 =

{
(x,y,z) ∈ R3 | y = a1x+O(x2)

z = a1
−2a+b+2aa1

x2 +O(x3)

}
,

where |x| ≪ 1 and a1 = 1
2(a−c)

(
a+ c−

√
6ac−3a2 + c2

)
.

Note that W u
0 is indeed tangent to TW u

0 since z′(0) = 0,

y′(0) = a1 and the vector (1,y′(0),z′(0))T is collinear to the
direction vector u1 of the line TW u

0 . Note also that the z-axis
is included in the stable manifold W s

0 .

Denote in the following by ϕtu0 =(x(t,u0),y(t,u0),z(t,u0))
a solution of the system (1) through the initial point u0 =
(x0,y0,z0) and by W u

+

(
W u

−
)

the positive (negative) branch
of the unstable manifold W u

0 corresponding to x > 0 (x < 0).
Define a Lyapunov-like function

U(x,y,z) = A(y− x)2 +B
(
z− x2/b

)2
+C

(
x2 −b(2c−a)

)2.
Choosing
A = b−2a ≥ 0, B = b > 0 and C = 1

2ab (b−2a) ≥ 0,
it follows that

dU
dt

= −2(b−2a)(a− c)(x− y)2 −2
(
bz− x2)2 ≤ 0. (2)

Remark 1 Different from [7], the Lyapunov function U is
defined both for b > 2a and b = 2a.

PROPOSITION 1 If 2c > a > c > 0, b ≥ 2a the following
assertions are true:
a) If there exist t1 and t2 such that t1 < t2 and U satisfies
U(ϕt1u0) = U(ϕt2u0), then either
• u0 is an equilibrium point of system (1), or
• b = 2a and the orbit ϕtu0 is contained in the parabolic
cylinder bz = x2.
b) Assume b > 2a. If ϕtu0 → O as t → −∞ and x(t,u0) > 0
for some t, then
U(O) > U(ϕtu0) and x(t,u0) > 0, for all t ∈ R.
Consequently u0 ∈ W u

+.

Proof a) From (2) and from the hypothesis of a), one gets
dU
dt (ϕtu0) ≡ 0 for all t ∈ (t1, t2), which implies either

ẋ(ϕtu0) = ẏ(ϕtu0) = ż(ϕtu0) ≡ 0 (3)

for all t ∈ (t1, t2), i.e u0 is one of the equilibria of (1), or
b > 2a and the orbit ϕtu0 is contained in the intersection of
the plane x = y with the parabolic cylinder bz = x2. But this
latter case leads again to (3), i.e u0 is one of the equilibria
of system (1), because from ϕtu0 ∈ {x = y}∩{bz = x2} for
all t, we get ẋ(t,u0) = 0, ż(t,u0) = 0. Hence x(t) = x0, but
y(t) = x(t) for all t, i.e ẏ(t,u0) = 0. We notice that the three

equilibrium points lie on the non-invariant curve {x = y}∩
{bz = x2}.

Finally, (2) and the hypothesis of a) lead also to b = 2a
and the orbit ϕtu0 is contained in the parabolic cylinder bz =
x2 (for these values of the parameters this cylinder is invari-
ant by the flow of system (1), i.e. if an orbit has a point in it
the whole orbit is contained in the cylinder).

b) We prove first U(O) > U(ϕtu0) for all t ∈ R; U(O) > 0.
To this end, assume by contrary that there exists a t0 ∈ R
such that 0 < U(O) ≤ U(ϕt0u0). From ϕtu0 → O as t → −∞
and U continuous on t, it follows that there exists a se-
quence tn → −∞ and an integer positive number n1 such
that |U(ϕtnu0)−U(O)| < ε for all ε > 0 and n > n1. Since
tn → −∞ and t0 ∈ R, there is an integer positive number
n2 such that tn < t0 for all n > n2. Denote further by n0 =
max{n1,n2} and take ε = 1

2 (U(ϕt0u0) −U(O)). It is clear
that ε ≥ 0. Then U(ϕtnu0)−U(ϕt0u0) = U(ϕtnu0)−U(O)+
U(O)−U(ϕt0u0) < ε +U(O)−U(ϕt0u0) = −ε ≤ 0. On the
other hand U(t) is decreasing with respect to t, which, by
definition, leads to U(ϕtnu0) ≥ U(ϕt0u0) for all tn < t0 and
n > n0. Therefore, U(ϕtnu0) = U(ϕt0u0) and by virtue of a)
we get that u0 is an equilibrium point of system (1). Since
ϕtu0 → O we get u0 ≡ O and x(t,u0) = 0 for all t. But this
contradicts the hypothesis x(t,u0) > 0 for some t. Hence,
U(O) > U(ϕtu0) for all t ∈ R.

Let us prove now that x(t,u0) > 0 for all t ∈ R. Assum-
ing that there exists a t ′ ∈ R such that x(t ′,u0) ≤ 0 and us-
ing x(t ′′,u0) > 0 for some t ′′ ∈ R from the hypothesis of b),
one gets that there exists a τ ∈ R such that x(τ,u0) = 0. As
U(O) > U(ϕtu0) for all t ∈ R, it follows that ϕτ u0 ∈ Ω ∩P,
where Ω = {(x,y,z) : U(O) > U(x,y,z)} and P is the plane
x = 0. On the other hand, Ω ∩P is given by
Ay2 +Bz2 +Cb2(2c−a)2 < Cb2(2c−a)2,
i.e. Ay2 +Bz2 < 0 with A,B ≥ 0. It leads to Ω ∩P = Φ which
is a contradiction. Therefore x(t,u0) > 0 for all t ∈ R. This
completes the proof of the proposition.

Theorem 1 Consider 2c > a > c > 0, b > 2a and the above
function U. Then the following assertions are true:
a) The ω-limit of any trajectory of system (1) is an equilib-
rium point. In particular system (1) has no closed trajecto-
ries.
b) System (1) has no homoclinic trajectories.
c) System (1) has exactly two heteroclinic trajectories.

Proof While the function U is different, the proof is similar
to the one presented in [7]. However, we choose to present it
here as it may be a useful handy exercise for some readers.
a) If a > c > 0, the function U is decreasing along trajecto-
ries of the system both for b > 2a and b = 2a, except perhaps
for the orbits on the cylinder bz = x2 if b = 2a, and the or-
bits contained in {x = y}∩ {bz = x2} if b > 2a, where the
function U is constant and equal to zero. This implies that
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for all t ≥ 0

0 ≤ U(ϕtu0) ≤ U(u0), (4)

where ϕtu0 is a trajectory of the system through the initial
point u0. It implies that, the limit limt→∞ U(ϕtu0) exists. De-
note it by U∗(u0). From (4) one gets that U(ϕtu0) is bounded
for t ≥ 0, which implies further that x(t,u0), y(t,u0), z(t,u0)
are bounded for t ≥ 0, i.e. ϕtu0 is bounded for t ≥ 0. De-
note by Ω(u0) the ω-limit set of the orbit ϕtu0. It is known
that, if u ∈ Ω(u0), then all points of the orbit through u be-
long to Ω(u0), i.e. ϕtu ∈ Ω(u0). Therefore, for any point
ϕtu, t ≥ 0, there exists a sequence tn → ∞ for n → ∞ such
that limn→∞ ϕtnu0 = ϕtu which leads to

U(ϕtu) = lim
n→∞

U(ϕtnu0) = U∗(u0) = const,

for all t ≥ 0. So there exists t1 < t2 such that U(ϕt1u) =
U(ϕt2u) for all t ∈ (t1, t2), and by Proposition 1 either u is
one of the equilibria of the system, or b = 2a and the point u
is contained in the invariant cylinder bz = x2, or b > 2a and
the point u is contained in the curve {x = y}∩{bz = x2}.
Assume b = 2a and the point u is contained in the invariant
cylinder bz = x2. Then the function U takes the value zero
on this cylinder, and eventually the system can have periodic
orbits on the cylinder.
Assume b > 2a and u ∈ {x = y} ∩ {bz = x2}. Since in the
connected curve {x = y}∩{bz = x2} there are the three equi-
libria of the system, and u is an ω-limit set, u is one of the
equilibria of the system by the Bendixson-Poincaré Theo-
rem (see for instance Corollary 1.30 of [4]).
b) Assume that the system has a homoclinic orbit γ(t) at one
of the equilibria O,S1 or S2, that is, limt→±∞ γ(t) = q where
q ∈ {O,S1,S2}. Since U is decreasing along the trajectories
of the system, it follows that

U(q) ≤ U(γ(t)) ≤ U(q), (5)

c) By statement a) every one-dimensional branch of the un-
stable manifold W u has ω-limit an equilibrium point p.
Assume b > 2a. Since U(O) > U(Si) = 0 for i = 1,2, the
equilibrium point p must be either S1 or S2, and by the sym-
metry of the system with respect to the z-axis, one of the
two branches of W u must go to S1 and the other to S2, ob-
taining in this way two heteroclinic orbits. A numerical case
with two heteroclinic orbits is illustrated in Fig.1 a). This
completes the proof of the theorem.

The case b = 2a has been studied in [7] using a Lyapunov-
like function in the form
V (x,y,z) = a2 (y− x)2 + 1

4

(
x2 −2a(2c−a)

)2.
In particular, the following results have been reported:
a) If the negative orbit from a point u0 is bounded, then the
solution ϕtu0 approaches one of the equilibria of the system
as t → −∞. Consequently, the system has no closed orbits.
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Fig. 1 a) Two symmetrical heteroclinic orbits for a = 1,b = 2.1,c =
0.8. (up); b) Two symmetrical homoclinic orbits for a = 1,b =
1.17,c = 0.8 (down).

b) The system (1) has no homoclinic orbits.
c) The system (1) has exactly two heteroclinic orbits: one
linking O to S1 and the other O to S2.

3 Existence of homoclinic orbits

Consider in the following the case 2c > a > c > 0, 2a > b >
0 and make the nonsingular transformation:

u = αx, v = β (y− x), w = γ
(

z− x2

2a

)
,

and the rescaling τ = rt. Then the system (1) becomes:

u̇ =
aα
rβ

v,

v̇ =
β

2arα3

(
2a
γ

α2 − 2aα2

γ
w−u2

)
u+

c−a
r

v, (6)

ẇ =
u2

α2

(
1− b

2a

)
γ
r

− b
r

w.

Choosing

α =

√
1

2a(2c−a)
> 0, β =

√
2

2(2c−a)
> 0, γ =

1
2c−a

> 0,
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and r =
√

a(2c−a) > 0, system (6) reads:

u̇ = v,

v̇ = −
(
u2 +w−1

)
u−λv, (7)

ẇ = −σw+δu2,

where λ = a−c
r , σ = b√

a(2c−a)
, δ = (2a−b)

√
1

a(2c−a) .

Notice that β = 2arα3 = a
r α, γ = 2aα2 and r2 = 1

2α2 . But
system (7) is treated in [1] and after a laborious study and
using a method based on comparison systems, the following
result is reported:

Theorem 2 For each σ > 0, there is, in the region of posi-
tive parameters δ and λ , a bifurcation curve {ρ(σ ,δ ,λ ) =
0}, beginning at (0,0) and going to infinity for δ → ∞, cor-
responding to a homoclinic orbit to the saddle point O(0,0,0)

of system (7).

It implies that for any a,b,c with 2c > a > c > 0 and
2a > b > 0, system (1) has two symmetrical homoclinic or-
bits to the equilibrium point O. A particular numerical case
in this regard is presented in Fig.1 b) where the homoclinic
orbits are depicted.

4 Conclusions

In this paper we have investigated closed, homoclinic and
heteroclinic orbits in a three-dimensional autonomous sys-
tem, known as the Chen system. Using a convenient Lyapunov-
like function, we proved that the system under some con-
straints of its parameters has no homoclinic orbits and no
closed orbits but it has exactly two heteroclinic orbits, sym-
metrically with respect to the z-axis. Moreover, transforming
the system to a new form and using some known results from
[1], we obtained results on cases not covered in [7] concern-
ing homoclinic orbits. More exactly, we have proved that the
system has two symmetrical homoclinic orbits to the equi-
librium point O.
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ysis: Real World Applications, 10(4)(2009), 2357-2368.

9. X. Li, P. Wang, Hopf bifurcation and heteroclinic orbit in a 3D
autonomous chaotic system, Nonlinear Dynamics, 73(1-2)(2013),
621-632.

10. J. Llibre, M. Messias, P.R. da Silva, Global dynamics in the
Poincaré ball of the Chen system having invariant algebraic sur-
faces, IJBC, 22(2012).

11. J. Llibre, A. Rodrigues, On the Dynamics of the Unified Chaotic
System Between Lorenz and Chen Systems, IJBC, 25(2015).

12. A. Lohse, Stability of heteroclinic cycles in transverse bifurca-
tions, Physica D, 310(2015), 95-103.

13. E.N. Lorenz, Deterministic nonperiodic flow, J.Atmos. Sci.,
20(1963), 130-141.

14. T. Lu, X. Zhang, Darboux polynomials and algebraic integrability
of the Chen system, IJBC, 17(08)(2007), 2739-2748.

15. G. Tigan, D. Turaev, Analytical search for homoclinic bifurcations
in the Shimizu-Morioka model, Physica D, 240(12)(2011), 985-
989.

16. K. Yagasaki, T. Wagenknecht, Detection of symmetric homo-
clinic orbits to saddle-centres in reversible systems, Physica D,
214(2)(2006), 169â181.
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